A Model of Wildfire Propagation Using the Interacting Spatial Automata Formalism

This thesis is presented to the School of Computer Science & Software Engineering for the degree of Doctor of Philosophy of The University of Western Australia

By
Adam Dunn
April 2007
© Copyright 2007

by

Adam Dunn
“How (ceaselessly) heaven revolves! How (constantly) earth abides at rest! And do the sun and moon contend about their (respective) places? Who presides over and directs these (things)? Who binds and connects them together? Who is it that, without trouble or exertion on his part, causes and maintains them? Is it, perhaps, that there is some secret spring, in consequence of which they cannot be but as they are? Or is it, perhaps, that they move and turn as they do, and cannot stop of themselves?”

— Zhuangzhi, 4th century BC [1]
Abstract

In this thesis, I address the modelling and computer simulation of spatial, event-driven systems from a computer science perspective. Spatially explicit models of wildland fire (wildfire) behaviour are addressed as the specific application domain. Wildfire behaviour is expressed as a formal model and the associated simulations are compared to existing models and implementations. It is shown that the interacting spatial automata formalism provides a general framework for modelling spatial event-driven systems and is appropriate to wildfire systems. The challenge addressed is that of physically realistic modelling of wildfire behaviour in heterogeneous environments. Heterogeneous environments are natural and agricultural landscapes that vary spatially in fuel distribution, topography and meteorological conditions. Simulations of wildfire are important because they have the potential to save human lives and offer economic and environmental advantage through real-time prediction of fire spread and risk analysis. Many existing simulation models have known limitations in their ability to describe accurately known fire behaviour such as the shapes of fire fronts and the acceleration of spreading fires. The challenge of building physically realistic models of wildfire behaviour is to capture this behaviour.

The use of an interacting spatial automata formalism is a unique contribution to the science of fire modelling and simulation. Interacting spatial automata are specified using the Circal process algebra as a specification language, taking advantage of the rigour of the formalism’s methods of abstraction and composition. This is significant because it allows a user of the formalism to build hierarchical models
of interacting components using locally determined timing, both of which are important features of the spatial structure of a natural landscape system. A new approach, creating discrete and hierarchical landscape patches, allows for the modelling of isotropy — that is, the circular spread of fire in calm, flat and homogeneous environments. Together, the hierarchical and irregular properties of the structure form an approximate model for the patchiness of real landscapes of fuel distributions. The introduction and use of this structure is novel for both wildfire modelling and generalised cellular automata methods.

A significant feature of the interacting spatial automata formalism that is useful in models of complex systems is the interaction-centric nature of the specification. Using Circal as a specification language, the formalism models the conduits through which interactions occur (connections) between components (cells) as explicit interactions using labelled events. The structure of an interacting spatial automaton extends the structure of generalised cellular automata, typically used to create discrete models of spatial systems. Using labelled connections between sets of cells, rather than just pairs, the formalism is better suited to building neighbourhood-based mechanisms of propagation. Many current models do not incorporate the influence of a neighbourhood (the geometry of the fire front local to an unburnt volume of fuel, for example), but rather determine the propagation of fire using only point information. Whilst neighbourhood-based influence of behaviour is common to cellular automata theory, its use is very rare in existing models of wildfire models.

In this thesis, I present the modelling technique and demonstrate its applicability to wildfire systems via a series of simulation experiments, where I reproduce known spatial wildfire dynamics. I conclude that the interacting spatial automata formalism is appropriate as a basis for constructing new computer simulations of wildfire spread behaviour. Simulation results are compared to existing implementations, highlighting the limitations of current models and demonstrating that the new models are capable of greater physical realism.
Preface

This work was completed in the years 2003 to 2006 at the University of Western Australia in Perth, Western Australia. Chapter 6 is an extended and updated version of an experiment-based paper published by Springer as a part of the Sixth International conference on Cellular Automata for Research and Industry October 25-27, 2004; a conference in Amsterdam that marked the one-hundredth anniversary of von Neumann’s birth.

I acknowledge the assistance of my supervisors Prof. George Milne and Dr. Paul Johnston. Whilst I endeavour to communicate my ideas intelligibly, their assistance in this regard is much appreciated. CSIRO Complex Systems Science provided me with financial support during this period and I am grateful to Dr. Fabio Boschetti for his insightful input. In addition, I acknowledge the financial support I received from an Australian Postgraduate Award. My research began in January, 2003 and was completed in August, 2006.

Complex systems science is an inherently multidisciplinary field of research. I acknowledge the researchers of complex systems, who discover patterns in nature, discover novel ways of reproducing them in computer simulations and have the unenviable job of attempting to communicate their ideas and results in simple ways, despite the complexity of their subject. The best science is the kind that is simple enough to be understood by a diversity of people.
Contents

Abstract v

Preface vii

1 Introduction 1

1.1 Research Context 2

1.2 Motivation 6

1.3 Approach 9

1.4 Contributions 11

1.5 Thesis Structure 12

2 Modelling Formalisms 15

2.1 Finite automata and cellular automata 16

2.1.1 Definitions 16

2.1.2 Some behavioural properties of cellular automata 20

2.2 Process algebras 23

2.2.1 Examples of composition and abstraction 27

2.3 Discussion 30

3 Wildfire Behaviour 33
3.1 Fuel influence .. 36
3.2 Meteorology .. 39
 3.2.1 Wind factors .. 40
3.3 Topography .. 41
 3.3.1 Fire line rotation 43
3.4 Discussion .. 45

4 Analysis of Modelling Methodologies 49

4.1 Models of wildfire spread 54
 4.1.1 Ellipse-based models and implementations 56
 4.1.2 The FARSITE implementation of the ellipse approach ... 60

4.2 Cellular Automata ... 62
 4.2.1 Propagation in cellular automata 64
 4.2.2 Generalised cellular automata 66

4.3 Cell-based implementations 72
 4.3.1 Cellular automata implementations 72
 4.3.2 Other cell-based implementations 75

4.4 Discrete event simulations 78
 4.4.1 DEVS and Cell-DEVS 80

4.5 Discussion .. 81

5 Interacting Spatial Automata 85

5.1 Generalised Cellular Automata 88
 5.1.1 Heterogeneous cellular automata 89
 5.1.2 Stochastic cellular automata 90
5.1.3 Asynchronous cellular automata 93
5.1.4 Multiresolution and behavioural hierarchies with cellular au-
tomata ... 96
5.2 Interacting Spatial Automata ... 98
5.2.1 Structure ... 99
5.2.2 Behaviour .. 104
5.3 Comparison with Cellular Automata, Cell-DEVS 113
5.3.1 A Comparison with Cellular Automata 114
5.3.2 A Comparison with Cell-DEVS 117

6 Implementing a Cell-Based Wildfire Model 123
6.1 Aim ... 126
6.2 Background ... 127
 6.2.1 Model Parameterisation 127
 6.2.2 Individual Cell Behaviours 128
6.3 Method ... 135
 6.3.1 Implementation ... 136
 6.3.2 Inputs ... 140
6.4 Results .. 142
6.5 Discussion .. 150

7 A Novel Propagation Implementation 159
7.1 Background .. 161
 7.1.1 A hierarchical and irregular spatial structure 162
 7.1.2 Continuous time discrete event methods for interacting spa-
tial automata ... 178
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2</td>
<td>Method</td>
<td>180</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Experiment set one</td>
<td>181</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Experiment set two</td>
<td>185</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Experiment set three</td>
<td>187</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Experiment set four</td>
<td>188</td>
</tr>
<tr>
<td>7.3</td>
<td>Results</td>
<td>190</td>
</tr>
<tr>
<td>7.3.1</td>
<td>The effects of minimum distance models on isotropy</td>
<td>191</td>
</tr>
<tr>
<td>7.3.2</td>
<td>The effects of heterogeneous abstraction on isotropy</td>
<td>195</td>
</tr>
<tr>
<td>7.3.3</td>
<td>The effects of variable fuel properties on propagation</td>
<td>201</td>
</tr>
<tr>
<td>7.3.4</td>
<td>The effects of line and point ignitions on propagation</td>
<td>205</td>
</tr>
<tr>
<td>7.4</td>
<td>Discussion</td>
<td>210</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Irregular cellular spaces</td>
<td>211</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Abstraction and the neighbourhood influence propagation mechanism</td>
<td>212</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Point fire acceleration and fireline geometry</td>
<td>215</td>
</tr>
<tr>
<td>7.4.4</td>
<td>Summary of conclusions</td>
<td>217</td>
</tr>
<tr>
<td>8</td>
<td>Summary and Assessment</td>
<td>221</td>
</tr>
<tr>
<td>8.1</td>
<td>Advantages of the formalism</td>
<td>223</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Explicit modelling of interactions</td>
<td>224</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Generalised spatial discretisation</td>
<td>225</td>
</tr>
<tr>
<td>8.1.3</td>
<td>Managing concurrency</td>
<td>227</td>
</tr>
<tr>
<td>8.1.4</td>
<td>Abstraction and hierarchy</td>
<td>228</td>
</tr>
<tr>
<td>8.2</td>
<td>Spatial event-driven systems</td>
<td>230</td>
</tr>
<tr>
<td>8.3</td>
<td>Summary of contributions</td>
<td>231</td>
</tr>
</tbody>
</table>
List of Figures

1. A finite automaton specification. .. 17
2. A cellular automaton’s transition function. 19
3. An example one-dimensional cellular automaton. 21
4. A finite state diagram representation of a Circal process. 25
5. A Circal composition. .. 28
6. A Circal abstraction. .. 29
7. An arbitrary fire front shape. ... 34
8. A typical fire front shape under calm and flat conditions. 38
9. The flame shape for a wind-affected fire. 41
10. The fire front shape for a wind-affected point ignition. 42
11. The fire front shape for a slope-affected point ignition. 43
12. Fire line rotation on a slope. ... 44
13. The two semi-ellipse model of fire perimeter. 57
14. Huygens’ principle of wave propagation 59
15. Isotropic propagation of wildfire. 67
16. Nondeterminism introduced by abstraction of a cellular automaton transition function. 68
17. This heterogeneous cellular automaton has two types of cells. 91
39 A contour plot for spatially heterogeneous wind. 149
40 A demonstration of polygonisation in square cells. 154
41 A demonstration of polygonisation in hexagonal cells. 155
42 A comparison between regular and irregular grids. 163
43 A hierarchically-structured model of a patchy landscape. 166
44 The Delaunay triangulation and Voronoi decomposition shows the connectivity and extent of cells in the cellular space. 169
45 The distribution of points affects the variance in area of the cells. 171
46 The decomposition, triangulation and structural view of an abstraction. 174
47 After 150 and 300 abstractions, the variance in area of the cells increases. 176
48 A four-fuel cellular space with irregular fuel patterns. 177
49 Three local propagation mechanisms are compared in equivalent situations. 183
50 A contour plot and fire geometry view of a line fire simulation. 189
51 A graph of inaccuracy in isotropy for min and max deviations from the radius. 191
52 Isotropic propagation for a unit distance propagation mechanism. 193
53 Isotropic propagation for a distance measure propagation mechanism. 194
54 Isotropic propagation for a neighbourhood influence propagation mechanism. 196
55 In a fine granularity cellular space, isotropy is equally well modelled by the two mechanisms. 198
56 In a coarse granularity, isotropy cannot be measured because the propagations are too erratic. 199
57 In a gradual change in resolution, the neighbourhood influence mechanism produces a better approximation to isotropic propagation than the distance measure mechanism. 200

58 In an abruptly changing resolution cellular space, fire front shapes do not exhibit close approximations to isotropy. 202

59 The two mechanisms produce equivalent behaviour in this cellular space modelling heterogeneous fuel distribution. 204

60 The two mechanisms produce equivalent behaviour in a cellular space modelling patches of thee different fuel types. 206

61 Point and line ignitions in a homogeneous cellular space using a unit distance propagation mechanism. 207

62 Point and line ignitions in a homogeneous cellular space using a distance measure propagation mechanism. 208

63 Point and line ignitions in a homogeneous cellular space using a neighbourhood influence propagation mechanism. 209

64 The rate of spread increases for line geometries in the neighbourhood propagation mechanism. 216