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ABSTRACT 

Cell-DEVS enables efficient execution of complex cellular 
models. The goal of Cell-DEVS is to build discrete-event 
cell spaces, improving their definition by making the tim-
ing specification more expressive. Different models built 
using Cell-DEVS were implemented in a modeling and 
simulation tool (CD++, crated following the formal speci-
fications of the DEVS formalism). The applications range 
from biological systems to complex artificial systems. In 
this tutorial, we will introduce the main characteristics of 
Cell-DEVS, showing how to model complex cell spaces in 
an asynchronous environment. We will focus on the appli-
cation of these techniques to improve model definition, 
which enables reducing development times of these mod-
els. We use a wide variety of previously defined examples 
in different domains of applications to illustrate the use of 
the techniques. 

1 INTRODUCTION 

The advance of science and technology in the last centuries 
has relied on models defining the properties of systems un-
der study. In most cases, models were defined using 
mathematical representations, which enabled mathematical 
analysis techniques. However, these methods showed to be 
infeasible for studying very complex natural systems, and 
the artificial systems developed in the second half of the 
20th century. Computers provided alternative methods of 
analysis. Models can be executed using computer simula-
tion, allowing users to experiment with "virtual" systems. 
Computer simulation has enabled the analysis of natural 
and artificial systems with a level of detail unknown in ear-
lier stages of scientific development. 

Most of the early developments on modeling and 
simulation in digital computers were based on the use of 
differential equations for modeling, and time stepped nu-
merical integration as simulation vehicle. Even today, most 
of the scientists and engineers prefer to use this approach. 
Simulation of continuous systems on digital computers re-

quires discretization. Classical methods as Euler, Runge-
Kutta, Adams, etc., are based on discretization of time re-
sulting in a discrete time simulation model (Press et al. 
1986). 

In the last 20 years, a radically different technique, 
called Cellular Automata (CA) gained popularity. A Cellu-
lar Automaton represents a physical system organized as n-
dimensional infinite lattice whose elements hold a state 
value and a very simple computing apparatus. The com-
posite behavior of thousands of these cells can fully repro-
duce the behavior of a real system. A global transition 
function updates the state of every cell in the space through 
individual updates of the discrete values in each cell by us-
ing the present value for the cell and a finite set of 
neighboring cells. Conceptually, these local functions are 
computed synchronously and in parallel, using the state 
values of the present cell and its neighbors.  

CA, originally defined by J. Von Neumann and S. 
Ulam, have received much attention recently (Wolfram 
2002). Despite these efforts, CA still have several prob-
lems that constrain their power, usability and feasibility to 
analyze complex systems:  

 
·  The use of a discrete time base for cell updates 

constrains the precision and efficiency of simu-
lated models. In order to achieve higher accuracy, 
smaller time steps must be used, increasing the 
demands of computing power.  

·  The discrete time implementation of the formal-
ism makes it very difficult to handle time-
triggered behavior in each of the cells, which is 
usually required in complex applications.  

·  CA do not describe adequately most of existing 
physical systems whose nature is asynchronous. 

 
The Cell-DEVS formalism (Wainer and Giambiasi  

2000) was defined in order to attack these problems. CA 
are defined using discrete variables for time, space and sys-
tem states. Instead, Cell-DEVS is based on the DEVS 
(Discrete Event systems Specification) formalism (Zeigler, 
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Kim and Praehofer 2000), a continuous time technique. 
The goal of Cell-DEVS is to build discrete-event cell 
spaces, improving their definition by making the timing 
specification more expressive.  

DEVS is an increasingly accepted framework for 
understanding and supporting the activities of modeling 
and simulation. DEVS is a sound formal framework based 
on generic dynamic systems, including well defined 
coupling of components, hierarchical, modular 
construction, support for discrete event approximation of 
continuous systems and support for repository reuse. 
DEVS theory provides a rigorous methodology for 
representing models, and it does present an abstract way of 
thinking about the world with independence of the 
simulation mechanisms, underlying hardware and 
middleware (Zeigler, Kim and Praehofer 2000). Different 
modeling formalisms were successfully mapped as DEVS 
(Petri Nets, Queuing Networks, Finite State Machines, 
etc.). Therefore, we can now build multiparadigm models, 
including cellular models that can interact with others 
described using different modeling techniques. DEVS and 
Cell-DEVS were implemented in a modeling and 
simulation tool, called CD++ (Wainer 2002). This toolkit 
was successfully used to develop different types of sys-
tems: biological (ecological models, electrical activity of 
the heart tissue, ant foraging systems, fire spread, etc.), 
physical (diffusion, binary solidification, heat transfer, 
etc.), artificial (traffic problems, seeking devices, etc.), and 
others (Ameghino and Wainer 2000; Ameghino, Troccoli, 
and Wainer 2001; Ameghino, Glinsky, and Wainer 2003; 
Muzy et al. 2002; Lo Tártaro, Torres, and Wainer 2001; 
Troccoli et al. 2002; MacSween and Wainer 2004). The 
models execute through the activation of an abstract simu-
lation engine that is completely independent from the 
models themselves. Consequently, we were able to develop 
different kinds of simulators (stand-alone, parallel, distrib-
uted and real-time), which were used to execute all the 
models we will present in the following sections.  
2 THE CELL-DEVS FORMALISM 

A real system modeled with DEVS is described as a com-
posite of submodels, each of them being behavioral 
(atomic) or structural (coupled). A DEVS atomic model is 
can be informally described as in Figure 1.  

   
x   
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Figure 1: Informal Description of an Atomic Model 

Each atomic model can be seen as having an interface 
consisting of input (x) and output (y) ports to communicate 
with other models. Every state (s) in the model is associ-
ated with a time advance (ta) function, which determines 
the duration of the state. Once the time assigned to the state 
is consumed, an internal transition is triggered. At that 
moment, the model execution results are spread through 
the model’s output ports by activating an output function 
(llll ). Then, an internal transition function (ddddint) is fired, 
producing a local state change. Input external events (those 
events received from other models) are collected in the in-
put ports. An external transition function (ddddext) specifies 
how to react to those inputs.  

A DEVS coupled model is composed by several 
atomic or coupled submodels, as in Figure 2.  

 
Figure 2: Informal Description of a Coupled Model 

 
Coupled models are defined as a set of basic compo-

nents (atomic or coupled), which are interconnected 
through the model's interfaces. The model’s coupling de-
fines how to convert the outputs of a model into inputs for 
the others, and how to handle inputs/outputs from/to exter-
nal models.  

Cell-DEVS combines CA and DEVS, allowing the 
implementation of cellular models with timing delays. 
Cell-DEVS improves execution performance of cellular 
models by using a discrete-event approach. It also en-
hances the cell’s timing definition by making it more ex-
pressive. Each cell is defined as a DEVS atomic model, 
and it can be later integrated to a coupled model represent-
ing the cell space, as showed in Figure 3. 

 

 
Figure 3: Informal Description of Cell-DEVS 
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Each cell uses N inputs to compute its next state. 
These inputs, which are received through the model's inter-
face, activate a local computing function (tttt ). A delay (d) 
can be associated with each cell. The state (s) changes can 
be transmitted to other models, but only after the consump-
tion of this delay. Two kinds of delays can be defined: 
transport delays model a variable commuting time (every 
state change is transmitted), and inertial delays, which 
have preemptive semantics (scheduled events can be dis-
carded). This is informally presented in Figure 4. 

 
Figure 4: Description of a Cell-DEVS Atomic Model 
 
Once the cell behavior is defined, a coupled Cell-

DEVS can be created by putting together a number of cells 
interconnected by the neighborhood relationship. A cou-
pled Cell-DEVS is composed of an array of atomic cells, 
with given size and dimensions. Border cells can have a 
different behavior due to their particular locations, which 
can result in a non-uniform neighborhoods. Finally, the 
model’s couplings permit connecting these models with 
other external submodels. 

CD++ (Wainer 2002) is a modeling tool that was de-
fined using the formal specifications of Cell-DEVS, and 
the basic simulation techniques introduced in (Wainer and 
Giambiasi 2000; Zeigler, Kim and Praehofer 2000). The 
toolkit includes facilities to build DEVS and Cell-DEVS 
models. DEVS Atomic models can be programmed and in-
corporated onto a class hierarchy programmed in C++. 
Coupled and Cell-DEVS models are defined using a built-
in language. Cell-DEVS coupled model specification in-
cludes the definition of the size and dimension of the cell 
space, the shape of the neighborhood and borders. The 
cell’s local computing function is defined using a set of 
rules with the form:  

 
POSTCONDITION   DELAY  {  PRECONDITION }  

 
These indicate that when the PRECONDITION is sat-

isfied, the state of the cell will change to the designated 
POSTCONDITION, whose computed value will be trans-
mitted to other components after consuming the DELAY. If 
the precondition is false, the next rule in the list is evalu-
ated until a rule is satisfied or there are no more rules. Fig-
ure 5 shows the definition of a very simple example im-
plementing the "Life" game (Gardner 1970).  

The Cell-DEVS coupled model is defined by its size 
(width=20, height=20), its border (wrapped, meaning that 
the cells in one border communicate its results to neighbors 
in the opposite border), the shape of the neighborhood, and 
the type of delay (transport).  

 
[ l i f e]  
wi dt h :  20    hei ght  :  20 
del ay :  t r anspor t       bor der  :  wr apped 
nei ghbor s :  ( - 1, - 1)  ( - 1, 0)  ( - 1, 1)   
nei ghbor s :  ( 0, - 1)   ( 0, 0)   ( 0, 1)  
nei ghbor s :  ( 1, - 1)   ( 1, 0)   ( 1, 1)  
l ocal t r ansi t i on :  l i f e- r ul e 
[ l i f e- r ul e]  
Rul e:  1 10 {  ( 0, 0)  = 1 and (  t r uecount  = 3  
                         or  t r uecount  = 4 )  }  
Rul e:  1 10 {  ( 0, 0)  = 0 and t r uecount  = 3 }  
Rul e:  0 10 {  t  }  

Figure 5: Definition of the Life Game 
 

The rules define the behavior of each cell in the 
model. In this case, they state that an active cell ((0,0) =1) 
remains active when the number of active neighbors is 3 or 
4 (truecount indicates the number of active neighbors) us-
ing a transport delay of 10 ms. If the cell is inactive ((0,0) 
=0) and the neighborhood has 3 active cells, the cell be-
comes active. In every other case, the cell remains inactive 
(t indicates that whenever the rule is evaluated, a True 
value is returned).  CD++ is able to interpret these specifi-
cations, and execute a simulation of this model. The fol-
lowing sections are devoted to show how to define and 
execute different applications using this method. We will 
divide the examples to be discussed in three different ar-
eas: models of physical systems, models of biosystems, 
and artificial systems. 

3 MODELS OF PHYSICAL SYSTEMS 

Cellular models are well tailored to model a wide variety 
of complex physical systems, as we can see in (Wolfram 
2002). In this section, we will show how to implement 
some of these systems using Cell-DEVS. Our first example 
defines a model of excitable media, a phenomenon appear-
ing in magnetic fields. The model is defined in Figure 6. 
 

[ ExMedi a]  
di m:  ( 9, 9)   del ay:  t r anspor t  bor der :  wr apped 
nei ghbor s :  ( - 1, - 1)  ( - 1, 0)  ( - 1, 1)  ( 0, - 1)   
nei ghbor s :  ( 0, 1)  ( 1, - 1)  ( 1, 0)  ( 1, 1)  ( 0, 0)  
l ocal t r ansi t i on :  Ex- r ul es 
 
[ Ex- r ul es]  
r ul e :  0 100 { ( 0, 0) =0 and st at ecount ( 2) =0 }  
r ul e :  2 100 { ( 0, 0) =0 and st at ecount ( 2) >0 }  
r ul e :  1 100 {  ( 0, 0)  = 2 }  
r ul e :  0 100 {  ( 0, 0)  = 1 }  
r ul e :  {  ( 0, 0)  }  100 {  t  }  
Figure 6: Definition of an Excitable Media Model 
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The model, originally presented in (Ameghino and 
Wainer 2000), we can recognize three states: resting, ex-
cited or recovering. Following our discussion in Section 2, 
the Cell-DEVS coupled model here defined has 9x9 cells, 
and 9 adjacent neighbors. The model is wrapped, and it 
uses transport delays. The Ex-rules section represents the 
local computing function. If the cell and its neighbors are 
not excited  (value 0), the cell remains resting. Resting 
cells with excited neighbors (value 2) become excited. The 
third and fourth rules represent the cell transitioning to-
wards the recovery state. In every other case, the cell keeps 
its present state. Figure 7 shows the execution results for 
this model using different neighborhoods. In Figure 7a, we 
use all the 9 adjacent neighbors (Moore neighborhood). In 
Figure 7b, we only use four adjacent cells (N-S-E-W), and 
Figure 7c shows the execution on an a hexagonal lattice 
(illustrated on a square grid). 
 

 

 
Figure 7: Results of ExMedia with Different Neighbor-
hoods: (a) Moore; (b) Von Neumann; (c) Hexagonal Grid 
 

The example in Figure 8 represents a model of surface 
tension, can be found in (Toffoli 1994), and it was previ-
ously defined as a Cell-DEVS in (Ameghino and Wainer 
2000).  
 

[ Tensi on]  
di m :  ( 40, 40)   
del ay :  t r anspor t     bor der  :  wr apped 
nei ghbor s :  ( - 1, - 1)  ( - 1, 0)  ( - 1, 1)  ( 0, - 1)   
nei ghbor s :  ( 1, - 1)  ( 1, 0)  ( 1, 1)  ( 0, 0)  ( 0, 1)  
l ocal t r ansi t i on :  Ten- r ul es 
 
[ Ten- r ul es]  
r ul e :  0 100 {  st at ecount ( 0)  >= 5 }  
r ul e :  1 100 {  t  }  

Figure 8:  Surface Tension Model Specification 
 

This Cell-DEVS uses a grid of 40x40, Moore 
neighborhood, transport delays and wrapped borders. We 
have two states: presence (value 1) or absence (value 0) of 
particles. This model represents a "majority vote" system. 
In each step, the new state depends of most neighbors. It 
remains in the cell if at least 5 of the 9 are occupied; oth-
erwise, it becomes empty. Figure 9 shows how particles 
concentrate where there is more tension. The resulting be-
havior of the surface is a high level representation of the 
majority vote rules. 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 9: Execution Results of the Surface Tension Model 

 
Flow-injection methods are analytical methods used 

for automated analysis of liquid samples. In a flow injec-
tion analyzer, a small, fixed volume of a sample is injected 
as a discrete zone using an injection device into a liquid 
carrier, which flows through a narrow tube. Because of 
convection at the beginning, and axial and radial diffusion 
later, the sample is progressively dispersed into the carrier 
as it is transported along the tube, producing reactive spe-
cies that can be sensed (Troccoli et al. 2002). 

We built a Cell-DEVS model describing the integrated 
conductivity in a flow-injection system. The system con-
sists of a 0.025 cm radius tube, a 10.75 cm loop and a 9.25 
reactor coil. A cell space of 25x 200 columns was defined, 
each cell representing a 0.001 x 0.1cm of a half tube sec-
tion. Row 0 represents the center of the tube and row 24 
the section of the tube walls. The value in each cell repre-
sents concentration of nitric acid. 

To deal with convective transport and radial diffusion, 
the model reacts in two phases: transport and diffusion. 
Cell-DEVS models can be coupled with standard DEVS 
models. The coupling is done by linking a DEVS output 
port to a new cell's input port and defining a rule to be 
evaluated when a message is received through this new 
port. Here, the local computing function simulates the 
transport phase, and an external generator triggers the dif-
fusion phase, as showed in Figure 10. 

  
[ Top]  
component s :   f i a gener at or @Const Gener at or  
l i nk :  out @gener at or  di f f use@f i a 
 
[ gener at or ]   
f r equency :  00: 00: 00: 014 
 
[ f i a]  
i n :  di f f use wi dt h :  200   hei ght  :  25 
del ay :    i ner t i al  bor der  :    nowr apped  
nei ghbor s :  ( - 1, - 1)  ( - 1, 0)  ( - 1, 1)  ( 0, - 1)   
nei ghbor s :  ( 0, 0)  ( 0, 1)  ( 1, - 1)  ( 1, 0)  ( 1, 1)   
l ocal t r ansi t i on :   t r anspor t   

Figure 10: Definition of the FIA Coupled Model 
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The model is built as a coupled DEVS model with two 
components: a Cell-DEVS (named fia) representing the 
tube, and an atomic model (named generator). The genera-
tor has one output port (out) to send the diffusion-
triggering event. This port is mapped to the diffuse input 
port of the fia model. This means all output events sent 
through the out port will be received as external events by 
the fia model through the diffuse port.  

This model uses inertial delays. Thus, a cell with 
scheduled future value f will preempt this value if upon re-
ceiving an external event and evaluating the local transition 
rules, a new future value f1 ¹  f is obtained. In this case, f1 
will be scheduled as the future value with a given delay d. 
The behavior of each cell is defined by this function, de-
fined in Figure 11.  

 
[ t r anspor t ]  
r ul e :  {  ( 0, - 1)  }  {  0. 1 /  (  22. 57878 *  (  1 -     
    power (  cel l Pos( 0)  *  0. 001 + 0. 0005 ,  2)  
      / 0. 000625) ) * 1000 }  {  cel l Pos( 1)  ! = 0 }   
r ul e :  {  0. 8 }  {  0. 1 /  (  22. 57878 *  (  1 –  
     power (  cel l Pos( 0)  *  0. 001 + 0. 0005 ,  2)   
       / 0. 000625) ) * 1000 }  {  cel l Pos( 1)  = 0 }  

Figure 11: Definition of the Border Cells 
 
The convective transport has been arbitrarily chosen 

from left to right. Thus, the local transition rule for the 
transport phase should set a cell’s value to the current 
value of its (0,-1) neighbor cell. The rate at which this is 
done depends on the velocity of the flow (maximum at the 
center of the tube and decreasing towards its walls). This is 
stated in the first transport. 

The delay is calculated using transport equations (Troc-
coli et al. 2002): for a pump with a constant flow of 
1,33ml/min, the average speed is 11,29 cm/s. This value 
yields the number 22.57878 shown in the delay expression.  
In addition, cel l Pos( 0)  *  0. 001 + 0. 0005 is the dis-
tance of the center of the cell to the center of the tube 
(cellPos(0) returns the cell’s row).  

The generic rule we have just given is only valid for all 
cells that have a valid (0,-1) neighbor. The left border cells 
(those in column 0) do not satisfy this prerequisite, stated 
in the condition component cel l Pos( 1)  ! = 0,  and should 
therefore have a different rule. 

The following rule is used for the left border cells. It 
simply states that for these cells the new value should be 
0.8, which corresponds to the concentration of the carrier 
solution being pumped into the tube.  

The model was run for 10s and the state of the whole 
cell space was logged every 100ms. Figure 12 shows a 
graphical representation of five different stages the FIA 
model (only half of the tube: the other half is symmetrical; 
the upper cells represent the center of the tube). The ex-
periment starts at time 0, where the sample (white), is in-
jected. At this moment, half of the tube contains the carrier 
solution (dark gray). The convective transport makes the 

sample disperse faster at the middle of the tube than near 
the walls.  The experiment finishes when the whole tube 
contains the carrier solution only. 

 

 
Figure 12: Different Execution Stages of the FIA Model 

4 MODELS OF BIOSYSTEMS 

In this section, we introduce a number of models with 
application to biological systems. Our first model, pre-
sented in Figure 13, defines the behavior of a flock of 
birds, previously presented in (Ameghino and Wainer 
2004). The motion of a flock resembles a fluid, as an 
emerging behavior, which is the result of the individual in-
teraction between birds in the flock.  

 
[ boi ds]  
di m: ( 20, 20)  del ay:   t r anspor t  bor der :  wr apped 
nei ghbor s :  ( - 2, - 2)  ( - 2, - 1)  ( - 2, 0)  ( - 2, 1)  ( -
2, 2)  ( - 1, - 2)  ( - 1, - 1)  ( - 1, 0)  ( - 1, 1)  ( - 1, 2)  
( 0, - 2)  ( 0, - 1)  ( 0, 0)  ( 0, 1)  ( 0, 2)  ( 1, - 2)  ( 1, - 1)  
( 1, 0)  ( 1, 1)  ( 1, 2)  ( 2, - 2)  ( 2, - 1)  ( 2, 0)  ( 2, 1)   
. . .  
[ f l y- r ul e]  
r ul e:  {  1+i f ( ( ( - 2, - 2) >100000) , 1, 0) +i f ( ( ( - 2, -
1) >100000) , 1, 0) + i f ( ( ( - 2, 0) >100000) , 1, 0) +  
i f ( ( ( - 2, 1) >100000) , 1, 0) +i f ( ( ( - 2, 2) >100000)  
, 1, 0)  +i f ( ( ( - 1, - 2) >100000) , 1, 0) +i f ( ( ( - 1, - 1)  
>100000) , 1, 0) +i f ( ( ( 1, 0) >100000) , 1, 0) + 
i f ( ( ( - 1, 1) >100000) , 1, 0) +i f ( ( ( - 1, 2) >100000)  
, 1, 0) + i f ( ( ( 0, - 2) >100000) , 1, 0) +i f ( ( ( 0, - 1)  
>100000) , 1, 0) + i f ( ( ( 0, 1) >100000) , 1, 0) + 
i f ( ( ( 0, 2) >100000) , 1, 0) +i f ( ( ( 1, - 2) >100000)  
, 1, 0) +i f ( ( ( 1, - 1) >100000) , 1, 0) + 
i f ( ( ( 1, 0) >100000) , 1, 0) +i f ( ( ( 1, 1) >100000) , 1, 0)
+i f ( ( ( 1, 2) >100000) , 1, 0) +i f ( ( ( 2, -
2) >100000) , 1, 0) +i f ( ( ( 2, - 1) >100000) , 1, 0) + 
i f ( ( ( 2, 0) >100000) , 1, 0) +i f ( ( ( 2, 1) >100000) , 1, 0)
+i f ( ( ( 2, 2) >100000) , 1, 0) } { 90+t r unc( ( 0, 0) / 10-
10000) * 10}  
. . .  

Figure 13: Specification of the Flock of Birds Model 
 
We modeled the behavior of an individual bird, based 

on the following behavior rules (Reynolds Craig 1987): 
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·  Collision avoidance with nearby flock mates. 
·  Attempt to match velocity with nearby mates. 
·  Attempt to stay close to nearby flock mates 
 
The birds fly in certain direction at a certain speed. 

Their field of vision is 300°, but they only have good for-
ward sight. Based on these rules we built a Cell-DEVS 
model to simulate the birds’  fly. Each cell of the model 
represents a space of 4 m2. The cell state codification 
represents the direction of the bird (1:NW; 2:N; 3:NE; 
4:W; 6:E; 7:SW; 8:S; 9:SE) and its speed. For example, the 
cell value 10004 represents a bird flying west (unit value 
equal to 4) at 1 second/cell. In order to avoid collision, 
when two or more birds want to move to the same place, 
they change their direction at random.  

Figure 14 shows the execution of the model using 
CD++: when one bird sees the other, they start flying to-
gether.   

      
 

  
Figure 14: Joining Behavior (a) Four Birds Flying Isolated; 
(b) Birds Flying Together 

 
In (Ameghino, Glinsky, and Wainer 2003) we pre-

sented a model of the reproduction of the Vibrio Para-
haemolyticus bacterium, a marine germ that lives in the 
coast and estuaries. Its reproduction takes place at 15ºC ei-
ther in the skin or the intestine of a fish. To survive, the 
bacteria need temperatures ranging from 15ºC to 43ºC. 
They need between 20 and 30 minutes to reproduce, how-
ever they cannot do it below 8ºC. If the temperature is 
close to 8ºC, reproduction takes longer. Bacteria are de-
stroyed when exposed to temperatures higher than 60ºC 
over 10 minutes. 

We couple a DEVS component to introduce tempera-
ture changes between -10ºC and 0ºC. Figure 15 shows the 
specification of the model in CD++. We first declare 
Coldgenerator, a DEVS model that generates cold tem-
peratures using an exponential distribution function with 

the specified parameters. The Cell-DEVS model contam is 
defined including size, neighborhood shape, type of delay, 
and borders. In this case, we also define the input ports and 
connections with Coldgenerator.  

The temperature in a cell is calculated as the average of 
its neighbors, and the diffusion time is 1000ms. We have 
two surfaces, the first representing the concentration of 
bacteria, and the second showing the variation of tempera-
ture. The rules that govern the reproduction of bacteria are 
the following:  

1. If the temperature is below 8ºC for 10s, bacterium 
does not reproduce. 

2. If the temperature is within 8ºC and 60ºC during 30s, 
then bacteria reproduce. 

3. If the temperature is above 60ºC during of 10s, the 
bacteria die. 

We use inertial cell delay and define that a cell reaching 
the concentration of 100 germs begins infecting the 
neighboring cells. The Temperature section represents the 
local computing function for the behavioral temperature 
model. The Evolution rules describe the bacterium behav-
ior. The setCold section states the range of temperatures 
generated by the DEVS component. 

 
[ t op]  
component s :  cont am Col dgener at or @Gener at or  
l i nk :  out @Col dgener at or  i nput Col d@cont am 
 
[ Col dgener at or ]  
di st r i but i on :  exponent i al           
mean :  3      i ni t i al  :  1   i ncr ement  :  0 
 
[ cont am]  
di m :  ( 10,  10,  2)     bor der  :  nowr apped   
del ay :  i ner t i al    l ocal t r ansi t i on:  Evol ut i on 
nei ghbor s :  ( - 1, - 1, 0)  ( - 1, 0, 0)  ( - 1, 1, 0)   
( 0, - 1, 0)  ( 0, 0, 0)  ( 0, 1, 0)  ( 1, - 1, 0)  ( 1, 0, 0)  
( 1, 1, 0)  ( 0, 1, 1)  ( - 1, - 1, 1)  ( - 1, 0, 1)  ( - 1, 1, 1)  
( 0, - 1, 1)  ( 0, 0, 1)  ( 1, - 1, 1)  ( 1, 0, 1)  ( 1, 1, 1)  
l i nk:  i nput Col d  i n@cont am( 0, 0, 1)  
por t I nTr ansi t i on :  i n@cont am( 0, 0, 1)  set Col d 
zone :  Temper at ur es {  ( 0, 0, 1) . . ( 9, 9, 1)  }  
 
[ Temper at ur es]  
r ul e:  {  (  i f ( ( - 1, - 1, 0) ! = ?, ( - 1, - 1, 0) , 0)  + 
i f ( ( - 1, 0, 0) ! =?, ( - 1, 0, 0) , 0) +i f ( ( - 1, 1, 0) ! = ?, ( -
1, 1, 0) , 0)  + … }  1000 {  t  }  
 
[ Evol ut i on]  
r ul e:  0 10000 { cel l pos( 2) =0 and ( 0, 0, 1) >60 }  
r ul e:  { r ound( i f ( ( 0, 0, 0) * 2 > 99, 0. 7, 1) * ( 0, 0, 0)  
* 2) +i f ( ( - 1, - 1, 1) ! =? and …}  30000 {  cel l -
pos( 2) =0 and ( 0, 0, 1) >8 and st at ecount ( ?) =10 }  
… 
r ul e:  { ( 0, 0, 0) }  10000 {  cel l pos( 2)  = 0 }  
 

Figure 15: Specification of the Bacteria Model 
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Figure 16 illustrates the results obtained when this 
model is executed, showing the evolution over the surface 
of a fish for 4 hours. The left side represents the bacteria 
concentration (white areas represent absence of bacteria; 
darker shades represent higher concentrations). The right 
side represents the temperatures of the surface (darker is 
colder). 

 

  
(a) 

  
(b) 

  
(c) 

Figure 16: Results of Bacteria Propagation: (a) Initial Con-
centration; (b) After 1.5 hours; (c) After 4 hours 

 
The following example, also introduced in (Ameghino, 

Glinsky, and Wainer 2003), represents the behavior of ants 
following a specific path from an anthill to a source of 
nourishment. When an ant finds food, it returns to the ant-
hill leaving a hormone (pheromone) on its path; the others 
use this as a signal leading to the source of food. To avoid 
collisions, if two or more ants want to move to the same 
place, they all stay in their positions and change the direc-

tion at random until one of them actually moves. When an 
ant finds food, it changes its course and follows the 
pheromone path to return to the anthill. In the case that 
there is no pheromone, the ant moves at random, seeking 
the anthill or another pheromone path. The example here 
presented assumes that each cell in the Cell-DEVS space 
represents a section of soil, whose state can be one of the 
following: pheromone; ant seeking; ant following phero-
mone; food; or ant returning to the anthill with food. 

Figure 17 describes the model specification. We define 
the dimensions of the cell space, neighborhood and the 
rules that define the behavior of an ant. We use different 
macro definitions to avoid long statements in the specifica-
tion. In this case, macros provide an easy mechanism for 
frequent statements such as checking the existence of an 
ant, food or pheromone in the neighboring cells. Hence, the 
rules specify the behavior of an ant based on its direction, 
current location, and the value of the adjacent cells. Figure 
18 shows the simulation results. 

 
[ ant ]  
di m:  ( 20, 20)  del ay:  t r anspor t   
nei ghbor s: ( 0, - 2) ( - 1, - 1) ( 0, - 1) ( 1, - 1) ( - 2, 0)  
( - 1, 0) ( 0, 0) ( 1, 0) ( 2, 0) ( - 1, 1) ( 0, 1) ( 1, 1) ( 0, 2)  
. . .  
[ r ul es]  
r ul e:  {  ( 0, 0) +2 }  1000 {  #i sAnt 00 and #di r 00 
=0 and ( #i sAnt 19 and #di r 19=3)  or  ( #i sAnt 99 
and #di r 99=1)  or  ( #i sAnt 08 and #di r 08=2) ) }  
r ul e :  {  ( 0, 0) +2 }  1000 {  #i sAnt 00 and #di r 00 
=1 and ( #i sAnt 19 and #di r 19=2)  or  ( #i sAnt 20 
and #di r 20=3)  or  ( #i sAnt 11 and #di r 11 = 0) )  }  
. . .  
r ul e :  {  21003 }  1000 {  #i sAnt B00 and #di r 00= 
2 and #i sAnt B91 and #di r 91=1 }  
r ul e :  {  0 } 1000 {  #i sAnt B00 and #di r 00=2 and 
#i sNot hi ngAnt 01 }  
. . .  

Figure 17: Specification of the Ants Model 
 

a)  b)  

c)  d)  
Figure 18: Two Ants: a) Returning; b) Seeking Food; c) 
Found Pheromone; d) Get to the Anthill 
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The figure shows the execution of the model using 
CD++. The black cells represent two ants seeking food and 
the gray cells leading the paths in the upper left area of the 
graph represent two ants carrying food. The source of food 
is located in the lower right section of the figure, and dif-
ferent gray colors represent the concentration of phero-
mone showing the way to the food. 

Our last ecological model, originally presented in 
(Ameghino, Troccoli, and Wainer 2001), represents the 
behavior of forest fires under different environmental con-
ditions. This Cell-DEVS model has been built using a well-
known model for fire propagation in forests is due to 
Rothermel (Rothermel 1972), which computes the ratio of 
spread and intensity of fire based on environmental and 
vegetation conditions. Three parameter groups determine 
the fire spread ratio: a) vegetation type (caloric content, 
mineral content and density); b) fuel properties (the vegeta-
tion is classified according to its size); and c) environ-
mental parameters (wind speed, fuel humidity and field 
slope).  

Our first step was to use a fuel model, the speed and 
direction of the wind, the terrain topology and the dimen-
sions of a region to obtain the spread ratio in every direc-
tion (fuel model group number 9, a SE wind of 24.135 
km/h and a cell size of 15.24 x 15.24 m). 

Figure 19 shows a 20x20 Cell-DEVS representing the 
terrain and vegetation. In this case, the state variables use a 
value 0 to indicate the absence of fire and a value different 
to 0 to indicate the time when fire has started.  

 
[ For est Fi r e]  
di m:  ( 20, 20)   l ocal t r ansi t i on :  Fi r eBehavi or  
bor der :  nowr apped del ay :  i ner t i al  
nei ghbor s :  ( - 1, - 1)  ( - 1, 0)  ( - 1, 1)  ( 0, - 1)   
( 0, 0)   ( 0, 1)  ( 1, - 1)   ( 1, 0)   ( 1, 1)  
 
[ Fi r eBehavi or ]  
r ul e: { ( 1, - 1) +( 21. 5526/ 17. 9671) }  { ( 21. 5526/  
17. 9671) * 60000}  { ( 0, 0) =0 and 0<( 1, - 1) }  
r ul e: { ( 1, 0) +( 15. 24/ 5. 1069) }  { ( 15. 24/   
5. 1069) * 60000}  { ( 0, 0) =0 and 0<( 1, 0) }  
r ul e:  { ( 0, - 1) +( 15. 24/ 5. 1069) }  { ( 15. 24 /  
5. 1069) * 60000}  { ( 0, 0) =0 and 0<( 0, - 1) }  
r ul e: { ( - 1, - 1) +( 21. 5526/ 1. 8720) }  { ( 21. 5526 /  
1. 8720) * 60000}  { ( 0, 0) =0 and 0<( - 1, - 1) }  
r ul e: { ( 1, 1) +( 21. 5526/ 1. 8720) }  { ( 21. 5526 
/ 1. 8720) * 60000}  { ( 0, 0) =0 and 0<( 1, 1) }  
r ul e:  { ( - 1, 0) +( 15. 24/ 1. 1460) }  { ( 15. 24/ 1. 1460)  
* 60000}  { ( 0, 0) =0 and 0<( - 1, 0) }  
r ul e: { ( 0, 1) +( 15. 24/ 1. 1460) }  { ( 15. 24 /  1. 1460)  
* 60000}  { ( 0, 0) =0 and 0<( 0, 1) }  
r ul e: { ( - 1, 1) +( 21. 5526/ 0. 9874) }  { ( 21. 5526 /  
0. 9874) * 60000}  { ( 0, 0) =0 and 0<( - 1, 1) }  
r ul e :  { ( 0, 0) }  0 {  t  }  

Figure 19: Definition of a Fire Forest model 
 
The rules defining the behavior of the local computing 

function  are devoted to detect the presence of fire in the 

eight neighboring cells. If there is fire in one, the cell will 
burn. For instance, the first rule checks if the current cell is 
not burning ((0,0)=0) and if the SW neighbor has started to 
burn (0<(1,-1)). If this condition holds, the value will be 
(1,-1)+(21.5526/17.9671), which is the time to spread the 
fire in the cell. As the spread ratio is 17.9671 mpm and a 
cell has a diagonal of 21.5526 m, it will take 
(21.5526/17.9671) minutes for the fire to reach the a cell 
once it has started in its SW neighbor. Therefore, we use a 
delay of (21.5526/17.9671)*60000 ms after which the pre-
sent cell state will spread to the neighbors.  

The results of the execution of this model are pre-
sented in Figure 20. As we can see, the burning time of a 
cell depends on the spread ratio in the direction of the 
burning cell. This value is used as the delay component for 
the rules. It is important to notice that the cells are updated 
at different times, as set by a rule's delay component. This 
is a clear departure from the classical approach of CA, 
where all active cells are updated at the same time. A non-
burning cell in the direction of the fire spread will be up-
dated in a shorter period than a non-burning cell in the op-
posite direction. Another advantage is that expressing a 
timing delay is done naturally. 

 

 
(a) 

 
(b) 

Figure 20: (a) Fire Propagation Results; (b) A Two-our Pe-
riod (each zone represents 20 minutes) 

5 MODELS OF ARTIFICIAL SYSTEMS 

We have defined a number of models of artificial systems, 
some of which will be introduced in this section. The first 
example presented previously in (Lam and Wainer 2003), 
is used to solve path planning on a maze. The algorithm 
effectively blocks off every dead-end path in the maze, 
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making every free cell that is accessible from only one di-
rection (i.e. three wall cells around it) a dead end and 
therefore not part of the solution. These cells become new 
wall cells, and this procedures is repeated until the system 
remains in a steady state. In this state, the only remaining 
free cells represent the solution(s) to the maze. If there is 
no solution, the entire array of cells will be wall cells. 
These rules were translated into the coupled model defini-
tion presented in Figure 21. 
 

[ maze]  
di m :  ( 20,  20)       del ay :  t r anspor t  
bor der  :  nowr apped  
nei ghbor s :  ( - 1, 0)  ( 0, - 1)  ( 0, 0)  ( 0, 1)  ( 1, 0)  
l ocal t r ansi t i on :  maze- r ul e 
 
[ maze- r ul e]  
r ul e :  1 100 {  ( 0, 0) =0 and ( t r uecount =3 or   
       t r uecount =4)  }   
r ul e :  0 100 {  ( 0, 0) =0 and t r uecount <3 }   
r ul e :  1 100 {  t  }   

Figure 21: Maze-solving Specification in CD++ 
 
The results are showed in Figure 22, which include the 

graphical displays of a maze with a given initial state. 
 

a)    

b)    
Figure 22. a) Original Maze; b) After Processing 

 
Our next example presents the movement of robots us-

ing predefined paths in an industrial plant. Robots are used 
to carry a load from the source point where it is produced, 
to a destination point where it is consumed. The robots can 
move N-S-E-W, following predefined routes at different 

speeds. There may be more than one robot on each route. 
A robot stops when it detects a nearby robot on the same 
route. In addition, routes can have crossing points, so there 
is a potential risk for collisions. The plant is represented by 
a 20x20 Cell-DEVS. This cellular model is linked to four 
different DEVS models, each devoted to generate a load at 
the source points (12, 19), (0,10), (9,0) and (19,6).  

This coupled model, presented in Figure 23 contains 5 
components: Floor (a Cell-DEVS) and Source1-Source4 
(DEVS random generators). Then, the model's coupling is 
defined (generators’  output ports are connected to Floor 
input ports). Finally, we define the Cell-DEVS Floor cou-
pled model parameters (size, borders, delay, etc.). In this 
example we show how to react to the external events re-
ceived: the input ports in1 to in3 are coupled to the cell 
space; events arriving on port in1 should be sent to the in 
port of cell (12,19).  

 
[ t op]  
component s:  Fl oor  Sour ce1@Gener at or  
Sour ce2@Gener at or  Sour ce3@Gener at or   
l i nk :  out @Sour ce1 i n1@Fl oor  
l i nk :  out @Sour ce2 i n2@Fl oor  
l i nk :  out @Sour ce3 i n3@Fl oor  
 
[ Fl oor ]  
di m :  ( 20, 20)    l ocal t r ansi t i on :  Robot sMov 
del ay :  i ner t i al  bor der  :  nowr apped 
nei ghbor s :  ( - 1, 0)  ( 0, - 1)  ( 0, 0)  ( 0, 1)  ( 1, 0)  
i n :  i n1 i n2 i n3 i n4 
l i nk :  i n1 i n@Fl oor ( 12, 19)  
l i nk :  i n2 i n@Fl oor ( 0, 10)  
l i nk :  i n3 i n@Fl oor ( 9, 0)  
 
[ Robot sMov]  
% - - - - - -  Robot  1 - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
r ul e :  10 1000 { ( 0, 1) =1 and ( 0, 0) =0 and  
        cel l pos( 1) ! =4}  
r ul e :  11 1000 { ( 0, 1) =1 and ( 0, 0) =0 and  
        cel l pos( 1) =4}  
r ul e :  0 0 { ( 0, - 1) =10 and ( 0, 0) =1}  
r ul e :  0 0 { ( 0, - 1) =11 and ( 0, 0) =1}  
r ul e :  2 0 { ( 0, 0) =11}  
r ul e :  1 0 { ( 0, 0) =10}  
 
r ul e :  20 2000 { ( - 1, 0) =2 and ( 0, 0) =0 and  
        cel l pos( 0) ! =17}  
r ul e :  21 2000 { ( - 1, 0) =2 and ( 0, 0) =0 and  
        cel l pos( 0) =17}  
r ul e :  0 0 { ( 1, 0) =20 and ( 0, 0) =2}  
r ul e :  0 0 { ( 1, 0) =21 and ( 0, 0) =2}  
r ul e :  2 0 {  ( 0, 0) =20 }  
r ul e :  1 0 {  ( 0, 0) =21 }  
% - - - - - -  Robot  2 - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
. . .  

Figure 23. Model Definition for Robot Routes 
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We also included a part of the cell behavior for the 
Cell-DEVS model. In this case, a zero value is used if the 
cell is empty. A value different from zero will indicate the 
presence of a robot. A cell containing a route 1 robot can 
have the values 1, 10 or 11 if the robot is moving horizon-
tally and 2, 20 or 21 if the robot is moving vertically. The 
cellpos() function is used to see if the robot is on the path, 
defining the predefined movement on the floor. The same 
applies for cell containing robots belonging to other routes.  

A robot movement is done in three steps. For example, 
a route 1 robot at the source is indicated by a 1 in cell 
(12,19). This value says the robot is ready to move hori-
zontally. The next cell on the route will receive a neighbor 
change event indicating that cell (12,19) has just changed 
to 1. Then, cell will get ready to receive the robot by ac-
quiring a value of 10 or 11 after a delay of 1000 ms (step 
1). The value 10 will be used if the robot continues hori-
zontally and 11 if the robot must turn. Once this change is 
produced, the original cell that had a value of 1 will now 
change to 0 (step 2) indicating the robot is not longer pre-
sent and the cell that had the value 10 or 11 will change to 
1 or 2, respectively (step 3). The value of 1 will again indi-
cate the presence of a robot that is about to move horizon-
tally and the value 2 a robot that is about to move verti-
cally. The collisions are avoided by only allowing step 1 to 
take place if the destination cell is empty, as expressed a 
condition statement. 

Figure 24 shows different robots running at different 
speeds (according with their delays). The figure also shows 
the collision avoidance between two robots. 

 

        

 
Figure 24: Executing the Robots Model (two robots reach-
ing an intersection point) 

 

Our last set of models, presented in (Ameghino, 
Glinsky, and Wainer 2003; Ameghino and Wainer 2004) is 
devoted to simulate evacuation processes. The model 
represents people moving through a room or group of 
rooms, trying to gather their belongings or related persons 
and to get out through an exit door. The goal is to under-
stand where the bottlenecks can occur, and which solutions 
are effective to prevent congestion.  

The basic idea was to simulate the behavior and 
movement of every single person involved in the evacua-
tion process. A Cell-DEVS model was chosen with a 
minimum set of rules to characterize a person's behavior: 

 
·  A person, in normal state, goes to the most nearby 

exit. 
·  A person in panic goes in opposite direction. 
·  People move at different speeds. 
·  If the way is blocked, the person can decide to 

move away and look for another path. 
 
Figure 25 shows the simulation results of this model. 

The gray cells represent people who want to escape using 
the exit doors. The black cells represent walls. Note that 
the leftmost part in the figure shows people waiting in the 
exit door. 

 
(a) 

 

  
 (b) 

Figure 25: (a) People Seeking an Exit. (b) After 15 sec-
onds, People Found the Exit 
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We used two planes, one for the floor plan of the 
structure and people moving, and the other for orientation. 
Each cell in the grid is 0.4 m2 (one person/cell). The orien-
tation layer (Figure 26) contains information that serves to 
guide persons towards emergency exits. We assigned a po-
tential distance to an exit to every cell of this layer.  

 

 
Figure 26: Cell-DEVS Layer used for Orientation 
 

Figure 27 (Ameghino, Glinsky, and Wainer 2003) 
shows the execution of the same model in the context of 
the movement of persons waiting for subways in a subway 
station. The following figure resembles people arriving to 
the train station. Two light gray cells located on the right 
side of each slide represent the platform entrance. The gray 
cells represent people who want to get in the train using the 
door A, placed in the upper part of the Cell-DEVS grid. 
The dark gray cells represent people who want to get in the 
train using the door B, placed in the lower part of the grid. 
The rightmost slide in the figure shows two groups of peo-
ple standing in the border of the platform waiting for the 
doors to open. 

 
Figure 27: Execution Results of Metro Station Model 
 
Figure 28 shows in detail the conflict of people trying 

to get in the railroad, represented by gray cells, that find 
people trying to get out from it using the same door, repre-
sented by dark gray cells. The light gray cell located in the 
left side of each slide denotes door A.  

 

 
Figure 28: People Getting In and Out Using Door A 

CONCLUSION 

Cell–DEVS allows describing physical systems using an n-
dimensional cell-based formalism. Input/output port defini-
tions allow defining multiple interconnection between 
Cell-DEVS and DEVS models. Complex timing behavior 
for the cells in the space can be defined using very simple 
constructions. The CD++ tool, based on the formalism 
permits defining complex cell-shaped models using a high-
level specification language. 

We showed that different kinds of applications can be 
easily developed, allowing the study of complex problems 
through simulation, which, otherwise, could not be at-
tacked. Finally, the use of a formal base improves the de-
velopment, checking and maintaining phases, facilitating 
the testing and reuse of their components.  

The discrete event nature of the formalism provides 
better precision and performance, due to the independent 
timing for each cell. If a cell state does not change, it is de-
activated up to the arrival of a new external event, thus, im-
proving CPU use without needing small time slots. 

The tool and the examples are the public domain and 
they can be obtained in:  
<ht t p: / / www. sce. car l et on. ca/ f acul t y / wai
ner / > 
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