WEB SERVICE-BASED DISTRIBUTED SIMULATION
OF DISCRETE EVENT MODELS

By

Rami Madhoun, B. Sc.

A thesis submitted to

The Faculty of Graduate Studies and Research

In partial fulfillment of

the requirements of the degree of

Master of Applied Science

Ottawa-Carleton Institute for Electrical and CongylEngineering
Department of Systems and Computer Engineering
Carleton University
Ottawa, Ontario

Canada

© Copyright 2006, Rami Madhoun

The undersigned hereby recommends to the FaculBraduate Studies and Research

acceptance of the thesis

Web Service-Based Distributed Simulation

of Discrete Event Models

Submitted by Rami Madhoun
In partial fulfilment of the requirements for the

Degree of Master of Applied Science

Thesis Supervisor
Dr. Gabriel Wainer

Chair, Department of Systems and Computer Engingeri
Dr. Victor C. Aitken

Carleton University
2006

ABSTRACT

DEVS is a Modeling and Simulation formalism thas lieeen used to study the dynamics
of discrete event systems. Cell-DEVS is a DEVS-Odsemalism that defines the cell
space as a group of DEVS models connected togétherwork presents the design and
implementation of a distributed simulation engineséd on CD++; a modeling and
simulation toolkit capable of executing DEVS andI<DEVS models. The proposed
simulation engine follows the conservative appro&mh synchronization among the
nodes, and takes advantage of web service techaslag order to execute complex
models using the resources available in a disgib@nvironment. In addition, it allows
for the integration with other systems using staddeeb service tools. The performance
of the engine depends on the network connectivitpreg the nodes; which can be
commodity Internet connections, or dedicated ptoApoint links created using User
Controlled Light Path (UCLP). UCLP is a web serviised network management tool

used by grid applications to allocate bandwidtidemand.

Acknowledgments

This work is dedicated to my family for their eedd support
and care. | also would like to thank Dr. Gabriel Wer for his
patience, advice, and for always being there whesaelded him

both on the academic and personal levels.

Table of Contents

ABSTRACT ..ottt ettt ettt e e e e e e et e e e e st e e e e s bt e e e e e e taeeae e e s ntenannreeaeeannes iii
LISt Of TADIES ... e Vil
LISt OF FIQUIES. ...ttt ettt et s tes bt st e ettt st bt mmmnme e e e e viii
Chapter 1: INtrodUCLIONoooiiiii e e 1
1.1 Motivation and GOalS.........cooee e 3
1.2 CONIIBULION ..o ee e e et r e e e e e e e ne 4
1.3Thesis OrganizZationcooiiiiiiiiiieee e 6
Chapter 2: Grid Middleware for Discrete Event Modeling and Sirrulation............ 7
2.1 Discrete Event System Specification (DEVS)...cc..ccooviiiiiiiiiiiiiiiiiiiiiiiiieiiiiiieeees 8
2.2 TIMEd Cell-DEVSot e e e 13
2.3 The CDAH+ TOOIKITeeeiiiiiiiiiiiieiee ettt e e e 16
2.4 Distributed SIMUIALION ... e 25
2.4.1 Conservative SIMUIALIONcccmmeiiiiiiieie e 27
2.4.2 Optimistic SIMUIALION ...ccooeeieeeeeee e 28
2.5 WED SErVICES (WS) ..ottt nne s 29
2.6 Service Oriented Architecture (SOA) ... 34
2.7 User Controlled Light Path (UCLP)cooee e 35
Chapter 3: Trends in the Implementation of Distributed DEVS Smulators......... 37
3.1 Web Service-Based Approach for Distributed DESfi@ulationc.ceeeee. 43
Chapter 4: Web Service-Enabled CD+t.....coeeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiimeeeee e 46
4.1 Design MethodolOgyeeueiiiiiiiiiceeee e 46
4.2 Implementation DetallSuiiiiiiceeee e 48
4.3 SEIVICE AICNITECIUIE......ce it 53
4.4 SEIVICE INTEITACE ...ttt e mne e e e e e e eeeeeeeeees 60
Chapter 5: Distributed CD++ (DCD4H) ..ccviiiiiiiiiiiiiiieiiiiiiiireiiieeiiensnnsimeeeneeeeeeeeeeees 65
5.1 Implementing the Parallel-DEVS AlQOrthmMS e coooveeeeeeiiiiiee, a7
5.2 Implementing the Simulation COMPONENTSoeviiiiiiiiiiiiiiiiiiiiiiiieeeiieees 73
5.3 Designing and Implementing Distributed-CD++ &)ccoooeeeeevieieeeeeeeeeee, 74
5.3.1 Master and Slave COOrdiNAtOrS o e eeeeeeeiiiiaiiee et eeeeeeaieeeeeaeas 77

5.3.2 Model Loading MeChaniSmMooiioiieeeiiiiiiece e 78
5.3.3 Message Passing MechaniSm..........co.iiiiinniniennenieeneeee e eseeeeeens 80

5.4 SAMPIE SCENAIIO....ciiiiiiiiiiiiiiii ettt e e e e seeeean e e 80
5.5 Integrating Optimistic (PCD++) and Conserva(€D++) Simulators 88
5.5.1 Interfacing DCD++ 10 PCDuuuetemmmmreeeeeeeeeieeieeiieieesissessessesensnenneenenees 89
5.5.2 Integrating DCD++ and PCDH+ ... 91
Chapter 6: Performance ANAlYSIS...........oooiiiiiiiiiiiiiiiiiiiiiieieeiie e 94
6.1 Experimental Models and Execution RESUIS we.....cccvvvvviiiiiiiiiiiiiiiiiieiieieeee 95
6.2 RESUIt RELMHEVAL..... .. eee et e e e e e e e eee e 111
Chapter 7: CONCIUSIONS........oiiiiiiiiiiiiiiiiiiieiieet ettt rreree ae e eeeee e 113
7.1 Future ReSearch WOIK ...ttt e ee e e e 114
RETEIENCES. ...t e e e e e e e e e eeees 116
Appendix-A: P-DEVS and DCD++ Simulation Algorithms.............cccccvevvvevivenne. 121
Appendix-B: Web Service COMPONENTS.......cccouiiiiiiiriiiiieiieeer e 132

Vi

List of Tables

Table 1: Atomic Class fUNCLIONS.oooiii i 16
Table 2: DEVS SiMUulator MESSAQES e 19
Table 3: Arguments of thereceiveRemoteMessa@eration............cccceevvveeeeveeeeennee. 86
Table 4: Execution results of the Fire model usingne machine..............cccccccunneen. 98
Table 5: Execution results of the Fire model usingvo machines (Internet).......... 100

Table 6: Execution results of the Fire model usingvo machines (UCLP)............ 102

Table 7: Execution results of the Sand-pile modelging one machine................... 104

Table 8: Execution results of the Sand-pile modelsing two machines (Internet) 106
Table 9: Execution results of the Sand-pile modelging two machines (UCLP)... 107
Table 10: Summary of the execution results of theifé and Sand-pile models..... 109
Table 11: Percentage of remote messages in distrided simulation 110
Table 12: File transfer times via the Internet/UCLP.............cccccceeeeiiininiiiiiieeee 111

vii

List of Figures

Figure 1: Main entities in a M&S environment [ZeI10Qceveeeeerieiiiieeiiiiieiiiiieiienenenes 7
Figure 2: Informal definition of an atomic DEVS model [Zei00]............cccoeeeiiiriinnnn. 9
Figure 3: Coupled DEVS MOEL..........uuuiiiiiii s 11
Figure 4: Cellular AUTOMALAeiiiiiiiiiiiiiiiiiiiiiiiieieeie e ee e e e e et e e e e e e e e e e e e e e e eeeeeeeeeeees 13
Figure 5: CD++ model and class hierarChies.............ccccuvvviviiiiiiiiiiiiiemneeeeeeee. 17
Figure 6: Content and synchronization messages iNMEr+ccoiiiiiinniineneneeneeennn 18
Figure 7: Barbershop model architeCture...........coooeeeiiiiii s 19
Figure 8: BarberShopmodel definition.............oeeiiiiiiiiiiiiiiiiiiiiiiiiiei e 20
Figure 9: An excerpt of theReceptionclass definition...............ceeevvvveviiiiiiiviiiennnnnn. 21
Figure 10: An excerpt of theReceptionclass definition................cevvvvvvviviiviiiviiiiininnnn. 22
Figure 11: An excerpt of theBattlefield model definitionovvvvviiiiiiiiiiiiiininnnn. 24
Figure 12: An excerpt of theBattlefield rule definition ..., 25
Figure 13: Causality errors in distributed simulation..................eevvvvvvviiiiiviiiieninnnn. 27.
Figure 14: An example of a SOAP message embeddedHA TP [GudO03]................ 32
Figure 15: Web ServiCe [ayers.......coooo o 33
Figure 16: A web service container [GIO05]............ccciiiiiiiieeee 33
Figure 17: Major components of the simulation senge..............ccccccvvvviiiiiiiiiieiinennee. 47
Figure 18: Implementing the simulation service usig JNI and message queues.. 49
Figure 19: Simulation web service operation.....................eeeeeeeeeeennnninnnenemnnneeeeees 52
Figure 20: Message queues connecting the simulaticomponents to the
WWEAPPEIPTOXY. ...t e e et e e e e e e e e e b e e e e e e e eee e 53
Figure 21: Web service components UML diagram.............ccccooeiiiiiiiiiiiiiiiiineneen. 96
Figure 22: A samplegrid configuration file ... 58
Figure 23: A typical invocation of the simulation web service...............ccccc 60
Figure 24: An excerpt of themessagelefinition of the simulation web service....... 61
Figure 25: An excerpt of theportTypedefinition of the simulation web service...... 61
Figure 26: An excerpt of thebinding definition of the simulation web service........ 62
Figure 27: An excerpt of theservicedefinition of the simulation web service......... 63
Figure 28: Message exchange during a simulation dgc.............c.ccccevvvvivviivieiieeeeene, 65

viii

Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:

Tie breaking using theselectfunctionccccccvviiiiiinieceeeee, 67
Concurrent model activation in ParallelDEVS.............cccoovviiiiiiiiiiiiiinnns 69
The simulation class hierarchy..................uueeiiiiiiiiiiiiiiieeeee e 70
The MainSimulator ClasS............ e 72
Unnecessary remote messages in distrilma simulation.......................... 75
The use oMasterand Slavecoordinators to avoid unnecessary messages
... 76
Master and Slave coordinator ClasSes...........ccovvvviiiiiiiiiiiieie e, 78
DCD++ model hierarChy.........oooooo o 79
The Generator-Processor-Transducer (GPTnodel...............ccceeeveeenen, 81
GPT model partitioning on two machines................cc., 8l
An excerpt of the log file of Machine 1.............ccciiie, 82
An excerpt of the log file of Machine 2.............cccciee 83
createSlaveSesSSIABAUEST........cocoe i 85
Aninitialization messagesent as SOAP from Machine 1 to Machine 2 87
retrieVeLogFilereSPONSE.......uuuu it s nneneaes 88
Implementing the simulation web servicavith PCD++...........ccooeeeeeeennn. 90
PCD++ architeCture...........oooiiiii e 91
Sending remote messages in distributechsulationccccovvvvveeenee. 94
An excerpt of the Fire model definition..................eeeviiiiiiiiiiiiiiiiiiieees 96
Fire model rule definition..............uveiiiiiiiii e 96
Fire model simulation time using one Matne..................eueeveeveeeeenieenennnns 98
Fire model total execution time using o@ machine.............ccccccvvveveinnnee. 99
Fire model partitions on two machines.............oooovvviiiiiiiiiiiiiiiiiiiiiiiieeeas 99
Comparing the simulation time using 1&2machines (Internet)........... 101
Comparing the total execution time usind &2 machines (Internet).... 101
Comparing the simulation time using 1&2machines............cccccccuuennnnee 102
Comparing the total execution time usind &2 machines..............c....... 103
An excerpt of the Sand-pile model defition ..., 104
Simulation time of the Sand-pile model sing one machine.................. 104
Total execution time of the Sand-pile mael using one machine.......... 105

Figure 59: Sand-pile model partitions on two machiBs..............ccccccvvvviviiiiiiiieennnnn. 105
Figure 60: Comparing the simulation time of the Sad-pile model using............... 106
Figure 61: Comparing the total execution time of tlke Sand-pile model using...... 107
Figure 62: Comparing the simulation time of the Sad-pile model using 1&2

machines (INternet, UCLP).........ooi ittt 108
Figure 63: Comparing the total execution time of tlke Sand-pile model using...... 108
Figure 64: Relationship between remote messages asichulation times............... 110
Figure 65: Comparing the file transfer times via tre Internet/UCLP 111
Figure 66: Simulator’s reaction to acollect Messag.............uuvvvevivuiieiiiieieeninininnns 121
Figure 67: Simulator’s reaction to aninternal MesSag..........cccoeeveeee e 122
Figure 68: Coordinator’s reaction to aninternal messag........ccoooeeeeerieerineeeeeeeeeeen. 123
Figure 69: Coordinator’s reaction to anoutput Message...........cccvvveveeeiveveeeeeeeennnn. 123
Figure 70: Coordinator’s reaction to adoNe MeSSAJE..........uvvevrrrrrerrerrrrrrrrrrrenennnensd M2
Figure 71: Coordinator’s reaction to acolleCt MeSSage........ccooevvvviiiiniiinineiieieeeeeennn 124
Figure 72: The Rootcoordinator behaviour when receiving adone message....... 126
Figure 73: The Master coordinator’s behaviour when receiving............c.ccoceeeeee. 127
Figure 74: The Master coordinator’s behaviour when receiving............c.ccoceeeeee. 128
Figure 75: The Master coordinator’'s behaviour when receiving acollect messagé 28
Figure 76: The Master coordinator’s behaviour when receiving adone message 129
Figure 77: The Slavecoordinator’'s behaviour when receiving acollect message 129

Figure 78:
Figure 79:
Figure 80:
Figure 81:

The Slavecoordinator’'s behaviour when receiving aroutput messagel 30
The Slavecoordinator’s behaviour when receiving adone message... 130
The Slavecoordinator’'s behaviour when receiving............ccccceccceccnnene

Web service COMPONENTS........oooiiiiiiieeeeee e

Chapter 1: Introduction

Modeling and simulation (M&S) plays an importankeran studying complex natural and
artificial systems. For some systems, analyticalysis is not always feasible due to the
complexity pertinent to them, for others, it is angerous or impractical to experiment
with them. One of the fields of M&S is discrete mvesimulation which is related to
studying systems that exist in finite set of disergtates over continuous periods of time.
Some examples of these systems include customeesgue a bank, computer networks,

and manufacturing facilities.

Discrete Event System Specification (DEVS) [Zei@8]a modeling and simulation
formalism that has been used to study discreteteystems. It depends on modeling the
system as hierarchal components, each of whichripag and output ports to interact
with other components and with the external envitent. The model state, output, and
response to external events are defined by a sétunaftions that define the model
behaviour. The success of using the DEVS approacdhd field of M&S has inspired
researchers to define other DEVS-based formalis$mshis regard, Timed Cell-DEVS
[WaiOl1] is an extension to the traditional cellulantomata [WoI86]; it allows for
representing each cell in the cell space as a DEd8el that is only activated when it
receives external inputs from its neighbouring<ellhis improves the performance of
the simulation since only active cells are evaldas opposed to evaluating the whole
cell space as in the case of cellular automatadthition, complex timing behaviour can
be represented by introducing different time delysdifferent cells in the cell space.
Both (DEVS and Cell-DEVS) have been successfullgdued model complex systems
such as fire spread in a forest [Ame01], land éf¢tld between two armies [Mad05], and

computer networks [AhmO05)].

CD++ [Wai02] is a modeling and simulation toollhiat was developed to execute DEVS
and Cell-DEVS models. It follows the definition thfe DEVS abstract simulator [Zei00]
in that there are two separate class hierarchies:for representing the model and the

other for representing the simulator. In its basersion, CD++ has a one-to-one

correspondence between the model and simulatos bia@sarchies. Each DEVS atomic
model has a simulator and each coupled DEVS magtelp of atomic and/or coupled
models connected together) has a coordinator t@sept its behaviour. The simulation
is carried on by processing events by the simudaaod coordinators and advancing the
simulation clock to the timestamp of the event ibabout to be processed. This process
continues until the simulation time reaches thalfexecution time (as provided by the
user) or until there is no more events to procBs$erent versions of CD++ have been
developed to work on different platforms; the stahwhe version runs on regular
workstations, PCD++ [Tro03][Gli04] runs on high fm¥mance distributed-memory
clusters, and the real time version runs on speetl hardware in a real-time
environment [Gli02].

The decision of which version of CD++ to considergoverned by two factors; the
complexity of the system to be modeled, and thel loh resources available to the
modeller. As the system under study gets more deoatpll, the model complexity tends
to increase. This causes more resources to be chéedrder to execute the model, in
which case using a single machine to run the sitimmlanay be impractical. This has

inspired the research in the area of parallel astlilobuted simulation in order to use the
hardware resources in distributed environmentxézigte complex models. At the same
time, as more and more systems got connected thrtwg Internet, a framework to

integrate their resources to execute complex mastalted to gain the attention of the

research community.

Grid computing represents a new paradigm for sgarompute and storage resources in
heterogeneous environments where resources residdifferent platforms connected
together using standard communication protocolsa yrid environment, resources are
virtualized as services that are consumed by dignéa way similar to the way electricity
is consumed in a power grid. The client consumestitity by plugging his appliance in
the power socket without being concerned with tits of the power generator used or
the type of cables used to deliver the electricakgr. Similarly, the objective of grid

computing is to provide the client with compute amorage “services” on demand, with

minimal or no limitation to the platform on whichese resources reside. Part of the
motivation behind grid computing is the enormousoteces available today in terms of

CPU time and memory space. Organizations have ctampsources either in high-end

servers or in user workstations with resourcesheig fully used. By exposing those

resources as services that can be used by rematellass local users, better efficiency in

terms of using those resources can be achievedddition, the complex Business-to-

Business transactions taking place within largeaoizations usually connect different

companies in different locations, traversing digietr security domains. By connecting the
company resources using standard middleware, teeastions among them can have a
robust and more secure environment of operation.

Some of the issues usually faced in grid envirortsérclude resource description and
discovery, resource allocation and management,aigbentication and authorization. To
facilitate the development and deployment of gpgleations, different grid middleware

technologies have been developed. The key feafutese technologies is their reliance
on standard protocols that can be used on diffgrlettorms. Web service technologies
represent a means of deploying and exposing apipisain standard and platform-
independent form. The use of the parallel simutaitgorithms with the emerging grid

and web service technologies provides an appealppgprtunity to use the resources
available in a grid environment to run complex mlstted simulations. In this context,
the idle CPU time and memory resources in a maataneoffer simulation “services” to

remote users/services while the local user is paifay other tasks.

1.1 Motivation and Goals

The motivation of this work comes from the needun increasingly complex models
that represent natural and artificial systems andhtegrate this capability with larger
systems to provide better use of the simulationlt&sAlthough other versions of CD++
have been developed to run complex models on llig&d-memory clusters, they are
specific in terms of the hardware, software, antivoek connectivity among the nodes

running the simulation. We aim at providing a fldei framework for integrating

resources running on commodity hardware and coadeusing commodity Internet

connections to run complex models.

The need to integrate the simulation capabilitirée larger systems is evident when the
user of the simulator is not proficient in interfomg the simulation results or when it is
not convenient for him to do so. Our objective &ing web services is to provide
standard means of interacting with the simulat&mntainto account the wide spread of
web service technologies in distributed environmeelhe examples in which simulation
can be applied in order to better understand tegesyunder study are countless. One of
these examples include using an orchestration Eggyusuch as Business Process
Execution Language (BPEL) [And03] to establish arkflow between the simulation
services and other services such as visualizatemices. These services are being
integrated in a larger project in order to helphéecture engineers to simulate different
incidents taking place in their designs and visgalihe effect of their decisions on
people’s behaviour in case of emergency. By belig @ design a building, simulate the
people’s behaviour in that building, and visualite results of the simulation, the
architects can have better understanding of thesemprences of their designs. The
resources used for that project are located in rgedacally dispersed locations that are
connected together using User Controlled Light RBA6LP) [Arn03]. UCLP is a web
service-based network management tool that carasiyentegrated with the simulation
services. This allows for on-demand connectivitywaen the simulation services, the

visualization services, and the users in a seamlesfficient manner.

1.2 Contribution

In this dissertation, we present our work in designand implementing distributed
simulation services based on the CD++ engine. IFir&D++ waswrappedas a web

service allowing the users to submit the modelit dtae simulation, and retrieve the
results remotely. The services were extended to aamplex models in distributed
environments by taking advantage of web servickriglogies, namely SOAP [Gud03],

as the main messaging protocol. The platform dep@mdrunning the simulation as a

service on each node participating in the disteusession, and synchronizing the
simulation activities through message passing antbagdifferent services. The client
connects to the “master” simulation service thro®BAP and supplies the model
definition and partition information through an XMased configuration file. Once
started, the simulation is processed following ttenservative approach for clock
advancement, which is controlled by a ma®&eot coordinator residing on the master
node. Two types of coordinators are used; rtiester coordinator is responsible for
forwarding messages among its local children arssipg messages from/to the upper-
level coordinator in the simulator class hierarchlyeslavecoordinator is responsible for
forwarding messages among its local child modedtead of forwarding these messages
to the master coordinator that might be running eowlifferent machine. A similar
approach was followed when implementing a previersion of the simulator that runs
on distributed-memory clusters and it has been shihat using the slave coordinators
reduces the overhead of transmitting messages theenetwork [Tro03]. The main
advantage of the proposed simulation engine isithbvides an efficient way of using
the CPU and memory resources by running the simulas a service on commodity
hardware (workstations) that can be used by otkersuto perform other activities, such
as word processing. The resources of such machare®e used collectively to execute
complex models in a distributed manner. The efficiecomes from the fact that those
resources (if not utilized by local users) would/ddeen wasted if not used to run the

simulation services.

We provide a prototype for integrating the disttémli simulator using SOAP as a
messaging protocol and following the conservatippraach with an optimistic parallel
version of the simulator (PCD++) [GliO4] that usk®#l [MPI95] as a messaging
protocol. The optimistic parallel simulator wasappedas a web service in order to
enable remote execution of models on distributediorg clusters. In order to ensure the
correctness of the simulation, changes are proposeBCD++ to ensure that the

simulation results are correct in case of rollbaeksng place within PCD++.

We present a performance analysis of the distrebstsulator when running different
models. Two machines were used to run the tesés|amated in Ottawa and the other in
Montreal. The performance of the simulator in terwhghe time used to initialize and
execute the models was studied using two configurait In one configuration, the
machines were connected using a commodity Inteomtection, and the results showed
a noticeable overhead of the distributed simulatiompared to when using one machine
to execute the model. In the other configuratidie machines were connected using
UCLP, which showed a considerable reduction ofoNerhead.

1.3Thesis Organization

This dissertation is organized in different chapteChapter 2 introduces the Discrete
Event System Specification (DEVS) formalism as aleting and simulation framework
discussing the model definition and the differamdtions that control its behaviour. In
addition, Cell-DEVS is discussed as an extensiaghedraditional cellular automata. The
following section discusses CD++ as the modelingl aimulation toolkit used to
implement the distributed version of the simulafopwed by a section highlighting the
main approaches followed for synchronization in fledd of parallel and distributed
simulation. The second part of chapter 2 provides\aerview of some of the middleware
technologies used nowadays to enable grid andhiiged applications. In chapter 3, we
cover some of the available DEVS simulation enginesgrid and distributed
environments, highlighting the main characteristlwat distinguish our implementation.
Chapter 4 introduces the web service componentiemgnted in the simulation engine
in order to interface its capabilities to web seeviechnologies. Chapter 5 discusses the
implementation of the distributed version of theglator highlighting its design layout
and discussing the functionality of the major comgas. Chapter 6 provides an
experimental performance analysis of the distridienulator when using UCLP versus
regular Internet connections to connect the differeodes in the simulation session.
Finally, in chapter 7, conclusions are presentetifature research work that can extend
the outcome of this dissertation is discussed.

Chapter 2: Grid Middleware for Discrete Event Modeling and

Simulation

Discrete event M&S is concerned with studying tke@dviour of systems that have finite
set of discrete states during continuous periodsinoé. Examples of these systems
include computer networks, traffic in city sectipaad manufacturing facilities. Different
M&S frameworks have different definitions and imeatations of the functional entities
in their environments. One approach of defining rible of each entity is presented by
Zeigler [Zei00], in which, the model has two kind$ relationships. The modeling
relationship exists between the model andsiigrce systenrwhich in turn exists within
anexperimental frameand the simulation relationship that exists betwthe model and

the simulator.

Simulation
Relation

Figure 1: Main entities in a M&S environment [Zei0(

In this chapter, we will introduce the main aspeatsDEVS methodology and cover
some of the currently available grid middlewareldo®he use of grid technologies in the
implementation of distributed DEVS simulators isalissed in the following chapter.
Grid computing is a computing paradigm where comptd data storage resources are
shared among users in distant geographic locatmaisusually belonging to different
security domains. This approach has gained intémesgcent years due to the fact that,
using the grid, complex applications can run orstaxg hardware infrastructure without

worrying about investing in costly dedicated congpugystems such as mainframes and

high-end clusters. In addition, there are largeenatlized computing resources. Most
desktop machines are busy less than 5%, and in eoga@izations, even servers can be
idle most of the time [Fer03]. Grid computing prdes a framework for exploiting these
resources and hence has the possibility of subslignincreasing the efficiency of

resource usage.

The success of achieving the previous advantaggslyadepends on factors such as the
nature of the application to run on the grid, amel kind of grid technology adopted. For
example, certain types of applications can be gmodlidates to run on the grid, such as
batch jobs that spend large amounts of time prauggsput data to produce output data.
On the other hand, running a simple applicatiorhsagcword processor on the grid might
introduce more overheads that make it slower thamnias run on a regular workstation.
The complexity usually pertinent to the grid apation may require different types of
tools and technologies in order to allow the agian to use the grid resources. Due to
the heterogeneous nature of the grid, middlewanallysdepend on standard protocols to
connect the grid resources together. Grid middlewan include services and utilities for
resource description and discovery, resource dlmtaand management, and
user/service authentication and authorizationhénfollowing sections, we will introduce

some of the main ideas in this area.

2.1 Discrete Event System Specification (DEVS)

Discrete Event System Specification (DEVS) [Zei@®]a M&S specification that is
aimed to study discrete event systems. In DEVS, nioglel consists of components
connected together through external port(s). Eveciteduled for a model arrive through
its input ports and the output generated by theahpobpagates to the other models (or
the environment) through its output port(s). Theibauilding block of any DEVS model
is theatomic DEVS modelt simulates the behaviour of the system by déifié functions
that are defined as part of the model definitioacpss. Thenternal transitionfunction
(dnt), evaluates the next state of the model at intestade transition points. The state

defined for the model remains valid for a duratspecified by théime advancdunction

(ta). When the model receives external inputs tijinaits input port(s), it examines those
input(s) with its current state in order to detereniits future state; this is done by
executing theexternal transitionfunction @.x). The output function I{) is executed

before any internal state transition, and it getesréhe model output to be transmitted to

the influencees of the model through its output(sr
X y

11 | — |

8 =Uext (s, €, X)

L)

s ———» $=0n(9

==

Figure 2: Informal definition of an atomic DEVS model [Zei00]

The formal definition of DEVS models is given ag{d0]:
M=<XS,Y, dnt, Qexy , ta >

where

X is the set of input values;

S is the set of states;

Y is the set of output values;

dni: S Sis the internal transition function;

dext Q X X S is the external transition function, where
Q={(s,e)|$ S,0£ ec£ ta(s) is the total state set
e is the time elapsed since last transitio

:S Y is the output function;

ta:S Ro is the time advance function;

By examining Figure 2 and the formal definitionatbmic DEVS models, one can see
the relationship between all the functions definihg model and their effect on its state

and behaviour. In Figure 2, the model exists ilytimn states, and it was scheduled to

remain in that state for duration td(s) However, beforda(s) is elapsed, the model
receives an external input (x), which causes thdehto execute itgexternal transition
function @dex) in order to evaluate the model's new state akeeiving the input. The
external transition function takes into account thedel’s total state (Q) which is
defined by the model stats) @nd the time elapsed since the model was instiadée €).
Had the model not received an external input, iilddhave executed thautput function
() after being in stats for ta(s) time units. This would have been followed by the
internal transitionfunction @), which determines the model's next state becafisam

internal transition.

An exceptional case may take place if the stateswof different models connected
together expire at the same time. The decisiont@inwto evaluate next may have some
implications on the correctness of the model. Hitigation may have serialization effect
on the model, and the decision as of which modelveduate first is left to the modeller
through theselectfunction. In order to overcome this issue, Pali)IEVS (P-DEVS)
[Cho94a] formalism executes all the imminent modéisodels with the earliest
scheduled state change) in parallel. This has ameffect on allowing the DEVS
simulator to take advantage of the parallelism thigtht be available in the model and in
the hardware resources (in the case of using parakchines to run the model). In P-
DEVS, the model has two message bags, one totb®external input messages, and the
other is used to store the output messages.
The formal definition of a P-DEVS model is presehite [Cho94a]:
M =<X,S,Y, dint, Gext, deont, , ta >

where
X is the set of input values;
S is the set of states;
Y is the set of output values;
dn: S Sis the internal transition function;
Oext: Q X X° Sis the external transition function, where

Xis a set of bags over elements in X,

dext (S, €,) = (S, €);

10

deont: SX X S'is the confluent transition function;
S Y"is the output function;
ta:S Ry Iisthe time advance function;
where
Q={(s,e)|$ S,0£f ect£ ta(s)is the total state set

e is the time elapsed since last transitio

The main difference between DEVS and P-DEVS forsnadi is the addition of the
confluentfunction @.onf), Which is responsible for determining the neatestof the model

when an external input arrives at the same timenahternal transition. The definition of
the confluentfunction is determined by the modeller so thatdbeect behaviour can be

modeled depending on the system under study.

The physical system model is created by integratiegdifferent DEVS models together
though their input and output ports; resulting icoapled DEVS modehA coupled DEVS

model consists of atomic and/or other coupled nsdehnected together.

M1 e M2

A

A4

M3 M4

Figure 3: Coupled DEVS model

The formal definition of a coupled DEVS model i[dO]:
N=<X,Y,D,{Mq|dl D}, EIC, EOC, IC,select>
where
X={(p,Vv)|p! IPorts, vl Xy} is the set of input ports and values, iX the set of

external values received through port p;

11

Y ={(p,Vv)|pl OPorts, v Y} isthe set of output ports and values,i¥ the set of
output values generated through port p;
D is the set of the component names;
Ma= (Xg, Ya,S,Y, Gint, Jexs, ta) is @ DEVS model
where X3={(p, v) | pl IPorts, vI Xp}, and
Ya={(p, v) | pI OPortg vI Yy}

External Input Coupling (EIC) connects externalutgto component inputs
EIC 1T {((N,ipn), (d,ipy)) | ipy! [Ports,dl D, ipyl I[Ports}, where
imv is an input port of the coupled model, and

iR is an input port of component d;

External Output Coupling (EOC) connects componeipuats to external outputs
EOC1 {((N, opn), (d, op)) |opn! OPorts,d D, opyl OPortg}, where
OR is an output port of the coupled model, and

oR is an output port of component d;

Internal Coupling (IC) connects component outpatsdmponent inputs
IC I {((a, opy, (b, ip)) | a, bl D, op!l OPorts, ipy!| IPorts};

No direct feedback loops are allowed, i.e. no outpart of a component can be
connected to one of its input ports.
((d, op), (e, ip)) I IC implies d* e;

selectis the tie breaking function (not needed for tABEVS formalism).

A coupled DEVS model exhibits a similar behaviauiah atomic DEVS model in terms
of having input and output ports connecting the ehdd the environment, or to other
DEVS models. The connectivity between the couplddvVB model and the other
external ones is defined though tketernal Input Coupling (EICaNnd theExternal

Output Coupling (EOC)TheEIC defines the connectivity between the input poftthe

12

coupled model with the input ports of its composer®n the other hand, tHeOC
defines the connectivity between the output portsttee coupled DEVS model
components and the output ports of the model asadewInternal Coupling (IC) defines

the connectivity among the model components tharasel

2.2 Timed Cell-DEVS

Cellular automata [Wol86] has been used to modé&rént physical systems, were the

model is represented by group of cells neighboueiach other. Each cell has a state and
a local compute function. The future state of tbkkis determined by its current state and
by the inputs it is receiving from its neighbouvghen the future state is evaluated, it is
transmitted to the neighbouring cells.

Cell's

Figure 4: Cellular Automata

Cell-DEVS [Wai01] is an extension to cellular auttthat depends on defining the cell
as an atomic DEVS model. This adds two improveméaotshe traditional cellular

automata approach:

i) The cells are evaluated asynchronously; i.e. dmydctive cells are evaluated, as
opposed to the synchronous evaluation of cellulatoraata. This has
implementation consequences in terms of requiress Imemory than what is
needed in the case of synchronous evaluation.

ii) The cells are only activated when they experiertege schange. This has an
advantage of reducing the message exchange withellie neighbourhood and

hence improving the performance of the model execut

13

The formal definition of Cell-DEVS models is presashin [WaiO1]:
TDC =<X, Y, I, S,q, N, d,dint, dexsy t, 1, D >

Xis the set of external input events;

Y is the set of external output events;

| represent the definition of the model's modulagrifaice;

S is the set of sequential states of the cell;

g is the definition of the cell's state;

N is the set of states for the input events;

d is the transport/inertial delay of the cell;

dint: g ® q is the internal transition function;

dexe Q XX ® q is the external transition function, where Q is skegte values defined as:

Q={(s,e)/dq xNxd; el [0, D(s)]}:

t: N® Sis the local computation function;

| : S® Y is the output function, and

D:gx Nx d® Ro:E ¥, is the state's duration function;

The asynchronous evaluation of the cells provitiesmodeller with powerful means to
define complex temporal behaviours. Two types tdykecan be definedransportdelay
simulates queued future states. Each state isiassavith a time value, which gets
decremented at each simulation cycle. When the Viahge associated with the state is
equal to zero, it is assigned to the current delfles Usingtransport delays, a state is
considered valid only if it is different from theqviously queued state. Another type of
delay isinertial delay. Using thenertial delay, the newly evaluated state will pre-empt
the scheduled one if they were different. Coupledl-DEVS models can be formed by
connecting different cells together. The cell spaae take different dimensions and
shapes. For example, 2D cell space can be useddslitine spread of fire in a forest; 3D
cell space can be used to model the spread of @fispiype of viruses in a city. The
borders of the coupled cell DEVS model can be dnevo types; awrappedborder
indicates that the cells at the edge of the celtspare neighboured by the cells on the

opposite side. On the other hanmthn-wrappedborder indicates that the cells at the

14

borders have special rules that need to be defigadie modeller. The formal definition
of Coupled Cell-DEVS models is presented in [WaiO1]

GCC =< Xst, Yist, |, X, Y, n, {t1,...,tn}, N, C, B, Zselect>
Xiist IS the input coupling list;
YistiS the output coupling list;
| represent the interface of the modular model,
X is the set of the external input events;
Y is the set of the external output events;
n is the dimension of the cell space;
{t1,..., tn} is the number of cells in each dimeosi
N is the neighbourhood set;
C is the cell space;
B is the set of border cells;
Z is the translation function; and

selectis the tie breaking function;

Since each cell is represented as an atomic DEM&Inthe cell behaviour is defined by
the various functions used to define an atomic DEW&lel. Once an external input
arrives to the cell from one of its neighboursdtivates thexternal transitiorfunction,
which calculates the next state of the model. fline advancdunction is represented by
the delay associated with the cell. Once the delgyres, theutputfunction is triggered
to generate the cell’'s output, followed by theernal transitionfunction, which evaluates
the cell’'s new state. The limitation associatechwite original DEVS model definition,
in terms of activating only one DEVS model at adirfthrough theselectfunction)
restricts the capabilities of the coupled Cell-DEW®del. The Parallel Cell-DEVS
formalism [Wai00] was introduced to extend the fimmality of the Cell-DEVS
formalism taking advantage of the features providgdhe Parallel-DEVS formalism;
which include, executing imminent models in patadeoiding the serialization problem

that can lead to incorrect execution of the model.

15

2.3 The CD++ Toolkit

CD++ [Wai02] is a collection of programs and totliat are used to execute DEVS and
Cell-DEVS models. The main component of the toakithe simulation engine (CD++).
However; the toolkit includes other utilities thae used for the setup of the simulation

and for the interpretation of the results.

CD++ was built following the object-orientation neddusing C++. CD++ executes the
model by creating a collection ohodeland simulator classes following [Zei00]. The
model classes represent the different types of madthkat the simulator is capable of
executing. Those include Model Atomic AtomicCel] InertialDelayCell
TransportDelayCell, Coupled, CoupledCell, FlatCegCell classesThe Atomicis an
abstract class that encapsulates the variablesnattibods common to all models; which
include the model id, input and output ports, pardnetc. TheAtomicclass is used to
represent an atomic DEVS (or Cell-DEVS) model. biditon to the variables and
methods inherited from thidodel class, it defines the features specific to atoDiy/S
models. Each atomic DEVS model has four functiossoeiated with it, which

correspond to the functions defined in the formBMS formalism:

CD++ Atomic method DEVS formalism function

initFunction() -

externalFunction() External transition functiondfx)
internalFunction() Internal transition functiond(y;)

outputFunction() Output function)

holdin(state, time) Time advance function (ta(state) = time), state

= {active passivé

passivate() ta(state) = , state passive

Table 1: Atomic class functions

The AtomicCell class defines variables specific to Cell-DEVS s;efluch as the cell’s

neighbourhoodTransportDelayCellndinertialDelayCellrepresentransportdelay cells

16

and inertial delay cells, respectively. Coupled DEVS models iamplemented in the
simulator using thecoupled class which encapsulates the attributes and method
necessary to define coupled DEVS models, such sablishing the parent-child
relationship between the models. TB®upledCellrepresents a coupled Cell-DEVS
model that has attributes such as border type, rmior, and default delay.
FlatCoupledCelldefines special kind of Coupled Cell-DEVS modelseve the whole
cell space is executed by one processor in thelaiotu Atomic DEVS models are
defined through C++ classes that override the diffefunctions defined by the abstract
Atomicclass. These models are integrated into the tli@sarchy of the model and are
registered by the simulator when the model is |daate before the simulation starts.

I:l Model class

Simulator
‘ ‘ Coupled ‘

‘ AtomicCell %»— Atomic A \

Figure 5: CD++ model and class hierarchies

The simulation is carried out by the simulationseskss; those includerocessor, Root,
Simulator, Coordinator, CellCoordinator, and Flatit@éoordinator. The simulation is
driven by theRoot coordinator, which is responsible for starting astdpping the
simulation, interfacing the simulator with the enoviment in terms of passing external
events/output from/to the environment, and advancihe simulation clock. The
Simulator class executes an atomic DEVS model by receiviifterdnt kinds of
messages and responding by executing the corresggohahction in the atomic DEVS
class Atomiq. In addition, it maintains two important variablthat are used to find the

imminent models and advance the simulation clodlosE are fEsichange @Nd Texichange

17

TiastchangelS the time of the last change of the DEVS modet TexichangelS the time of

the next change.

The coordinator class is responsible for routing the messages grtsrchildren and its
parent-coordinator In addition, it evaluates the minimumelichangefor its children in

order to report it to thdRoot coordinator. TheCellCoordinator is derived from the
coordinator class and is responsible for message routing arttengells in a coupled
Cell-DEVS model. Thé&latCellCoordinatorclass executeftat Cell-DEVSmodels.

Having separate classes for the model and simutders the advantage of isolating the
simulator architecture from the model structurettst changing the simulator internals
does not affect the model definition. In additidgnfacilitates the use of the simulator
since the modeller needs only to define the mod&iout any deep knowledge of the

simulator.

The simulation is driven by passing messages antbegdifferent simulators and
coordinators. The simulation continues until thawdation clock reaches a specific time
or when there are no more events to process. Tresages exchanged between the
simulator entities are grouped into two categogachronization messagesidcontent

messages

»
AT
Y

Figure 6: Content and synchronization messages in[Z+-+

18

Message | Description

I Initialization messages passed by theootcoordinator to all of the

coordinators/simulators at the initialization phagéhe simulation.

* Internal messages passed by thRootcoordinator to the imminent models

(scheduled for state change).

Done Done messagés passed by the simulators to the upper-levetdinators to
designate the end of state transition phase (qurbeessing of an external

event) and report theirdxchange

X External message&epresents an external event that can be arrivamy the

environment or from an output message generateshbther model.

Y Output messageepresents an output generated by the model.

Table 2: DEVS simulator messages

|
f out

& finished

next

v
v
8
2
>

prog.

Figure 7: Barbershop model architecture

An example of a coupled DEVS model is shown in Fégd. TheBarberShopmodel
represents a barbershop with three main compon&htsReceptioncomponent is an
atomic DEVS model simulating the reception deskhefbarbershop. ThHeeceptiorhas
limited seats available for arriving customers, wdre either advised to wait in the
reception if the barber is already busy workingeonustomer, or are forwarded to the
barber if he is idle. ThBarbercomponent is a coupled DEVS model that consisthef

CheckHairandCutHair atomic DEVS models. ThéheckHaircomponent represents the

19

process of checking the customer’s hair and gethiegcustomer’s preference of his hair
style. TheCutHair component represents the actual hair cut process.
The semantics of the model is defined in CD++ udiegCD++ specification language. It
has different constructs to define:
i) The components of the model, in a hierarchal manner
i) The input and output ports connecting the companerdand the
interconnections among those ports;
iii) The specific attributes of each model, such asbtirder type in the case of
coupled Cell-DEVS models;
iv) Parameter values used by the model such as typenaath of stochastic

distributions;

[top] [] . @
: @ @)
in:
out: in:in
Link - @ out : out
Link : out@ @ Link : in cust@
Link : out@ Link - @
Link : cust@ @ Lo
Link @ @
: : Link : @ @
.8 []
: 00:00:01:000 . AN-AN-AQ-
: 09:00:00:000 + 00:00:09:000
:16:00:00:000 []
:00:00:11:000

Figure 8: BarberShopmodel definition

The top construct defines the overaarberShopmodel which is composed of an
instance of th&keceptiormodel (atomic DEVS), and th&arber coupled DEVS model.
The input and output ports of tBarberShopare defined using the andout constructs
respectively. Thdink construct defines the connections between the iapdt output
ports of the model. The different parameters usgedhb Receptionmodel are defined
within the reception construct. They include the number of chairs add in the
reception areanUmberofChairy the preparation time for the customer to mowenfthe
reception to the barber chapréparationTimg and the opening and closing times of the
barbershopdpeningTimeclosingTimé. The Barber coupled DEVS model is composed

20

of an instance of th€EheckHairmodel, and an instance of tB&itHair model. The input
and output ports, and the links among them arendéfin a similar manner to thep
model.

In CD++, each of the atomic DEVS models needs tddfmed as a C++ class overriding
the main functions defined by the abstratimicclass. These functions aretFunction,
internalFunction externalFunctionandoutputFunction By integrating the DEVS model
class into CD++, the simulation is driven by exe@uuthese functions by th®imulator
associated with the model. An excerpt of the dadiniof theReceptiorclass is shown in

Figure 9:

Model & o 0O
{
we_are_full = false ;
cust_is_ready = false ;
.erase(.begin(), .end());
return *this ;

}

Model & n (&)
{
0;

return *this ;
}
Model & n (&msg)
{

if (.size()) {

(msg.time(), cust, front()) ;
.pop_front();

return *this ;

Figure 9: An excerpt of theReceptionclass definition

During the initialization phase of th&eceptionmodel (at the beginning of the
simulation), the variableve are_full (indicates that the reception is occupied by the
maximum allowed number of customers) is reset lgefdn addition, theust_is_ready
variable and the list of customers are reset. Whermodel is scheduled for an internal
transition, theinternalFunctionis executed and it causes the model tgpassiveuntil
further external input events are received. Theuwudf theReceptiormodel is generated
through theoutFunction method; in this case, the output of the model gmts the

customer that was waiting for the longest time.

21

Model & I (&msg)

if(msg.port() == newcust)}{
if ((msg.time().asMsecs() - Time().asMsecs() < 0)
|| (msg.time().asMsecs() - Time().asMsecs() > 0)) {
cout <<" -sorry " <<"\n";
}else {
if (I(elements.size() < N{
cout " -sorry " << "\n";

lelse{
elements.push_back(abs((int)ymsg.value())) ;
if (elements.size() == 1) {
holdIn(active,)
}
}

if (msg.port() == next) {
holdIn(active,)

}

return *this;

Figure 10: An excerpt of theReceptionclass definition

The Receptionmodel has two input portsiewCustomeandnext If a message arrives
throughnewCustomeport representing the arrival of a new customifer@nt scenarios
can occur. If the message arrives with a timestamside the barbershop hours of
operation, no action is taken and a message imggcHtat scenario is printed out to the
modeller. If the customer arrives and there areotteer customers waiting in the
reception, the customer is forwarded to Berber model at the time of next internal
transition (which takes place once theeparationTimeelapses). The third scenario
occurs when a customer arrives while there arerstivaiting in the reception; in which
case, the customer is added to the list of waitimgfomers and the one who was waiting

for the longest period is forwarded to Barber afterpreparationTimdime units.

In order to execute Parallel-DEVS models, an abstsamulator was presented in
[Cho94b]. The basic P-DEVS simulator depends oringaseparate representations of
the model and the simulator entities. In addititime two main components of the
simulator are thesimulators and coordinators The simulators are responsible for
executing atomic DEVS models, and the coordinates responsible for executing
coupled DEVS models. They both interact throughgages that can synchronization

(collect, *, done)or content messages (X, Y)

22

When a simulator receives @llect messagdérom its parent, it executes trautput
function and sends done messagt its parent coordinator indicating the time bé t
next state change. The state change of the sinnuiakes place when it receives an
internal message (Yfrom the coordinator, in which case it executesitsrnal transition
function, external transitionfunction, orconfluent transitionfunction. The choice of
which function to execute depends on differentdesstwhich are:

i) The timestamp of thmternal message

i) The time of the internal transition of the model;

iii) The status of the external message bag of the model

The coordinator is in charge of forwardirgternal and output messageamong the
simulators and synchronizing the activities takpigce during the simulation. When a
coordinator receives eollect messageit forwards the message to its imminent child
processors and reports the time of the next chiamds parent coordinator. Receiving an
internal messagdy a coordinator, causes it to process the messagés external
message bag, and send internal messages to itspbitessors scheduled for internal
and/or external transitions. Aoutput messaggenerated by a simulator is sent to its
parent coordinator, which in turn either forwardga the upper-level coordinator, or
translates it teexternal message®r its local receiving processorExternal messages
received by simulators and coordinators are indarteéheir external message bags to be
processed when they receive the riet¢rnal messagéom the parent coordinator. The
algorithms defining the behaviour of the simulatarsl coordinators are explained in
detail in Appendix-A.

In order to define Cell-DEVS models, the modelleesl not need to define any C++
class; that is, CD++ already includes #mmicCellclasses representing the cell with
transport (TransportDelayCell)and inertial (InertialDelayCell) delays. However, the
modeller uses the CD++ specification language d@eoto define the necessary attributes
of atomic and coupled Cell-DEVS models. Those idelthe border type, the delay type,
the default delay value, the neighbourhood, etc.efample of a Cell-DEVS model is

presented in [Mad05], where a battlefield betwesn armies is modeled. The army

23

consists of number of fighters, each of which hagage that can balive, injured, or
dead Fighters engage in a battle and the outcome ebtitle depends on a randomly
assigned factoFightingAbility, which is assigned to the soldier at the beginmhthe

simulation and at the end of any engagement witehemy.

The Battlefieldmodel is composed of a 3-dimensional cell spadk (®0, 10, 6) cells in
each dimension. The cell delay is defined usingdislay construct to benertial delay
with a default value of 100 milliseconds. The bortpe used in th8attlefieldmodel is
wrappedindicating that the cells at the edges of the g#ice are neighboured by those
on the other side. The neighbourhood of the ceflened by theneighborsconstruct.
Cells are assigned a default value of zenitiglvalue : 0 unless they are assigned
different values by the file “battlel.valihftialcellvalue : battle1.vglL Thezoneconstruct

is used to assign different rules for differenttpaf the cell space. The layer of the cell
space responsible for evaluating the soldiers’ biela in the battlefield is the first layer
((0, 0, 0)..(9, 9, 0)); the other layers are usedtbre and evaluate the different variables

that affect the simulation of the battlefield.

[top]
- battle

[battle]
type : cell
dim: (10,10,6)
 inertial ft dead
100

border : alive

(0,0,-1)

: (0,0,-2)

- battle(0,0,-3))

- battle(0,0,-4) ft alive .
(0,0,-5)

> battle
..... "
- battle1.val
zone : fight-rule { (0,0,0)..(9,9,0) }

Figure 11: An excerpt of theBattlefield model definition

24

The local rule definition specifies the value eaell would take at each simulation cycle.
Each rule will have a condition, delay, and a valllee condition is evaluated, and if it is
true, the cell is assigned the specified value wherdelay elapses. Figure 12 shows part
of the rule definition of th&attlefieldmodel. The first rule checks if a soldier of arfy

is in statanjured ((0, 0, 0) = 1)r alive ((0, 0, 0) = 2)and surrounded by enemy soldiers;
if so, it evaluates the fighting ability of the emg soldiers (using the macro
“fight_rule_1") and if the outcome is larger thametfighting ability of the solider, the
soldier is consideredead ((0, 0, 0) = Onfter 100 time units. The second rule evaluates
the same situation for the soldiers of army B. Tied and fourth rules evaluate the
status of thélags ((0, 0, 0) =5, (0, 0, 0) = -Byhen they get attacked by enemy soldiers.

rule : { if((0,0,0) >= abs(#macro(fight_rule_1)), (0,0,0) + #macro(fight_rule_1),0)} 100

{ (2) =0 and ((0,0,0) =1 or (0,0,0) =2) and ((-1)+ (-2)) > 0}
rule : { if(abs((0,0,0)) >= #macro(fight_rule_2), (0,0,0) + #macro(fight_rule_2),0)} 100

{ (2) =0and ((0,0,0) = -1 0or (0,0,0) =-2) and (1)+ (2)) > 0}
rule : { if(#macro(fight_rule_3)!=0,0,5) } 100

{ (2)=0and (0,0,0) =5 and ((-1)+ (-2))>0}
rule : { if(#macro(fight_rule_4)!=0,0,-5)} 100

{ (2) =0 and (0,0,0) =-5 and (1)+ (2))>0}

Figure 12: An excerpt of theBattlefield rule definition

2.4 Distributed Simulation

The complexity of the model tends to increase asnbdeled system evolves or as more
details need to be taken into account at a lowasl lef abstraction. This in turn requires
more compute and memory resources when executingntidel which results in a longer
execution time, or in not being able to run thewathon at all due to lack of resources.
The field of parallel and distributed simulatiomai to study the possibilities of providing
more efficient runs of complex models. This carabkieved by executing the simulation
on parallel hardware that can be shared-memory ipnotiessing machines, or

distributed-memory clusters. In shared-memory maed)i multiple processors have

25

access to a shared memory which might be a botteiieghe number of processors is

large. In distributed-memory clusters, differenbgessors have different memories and
sharing information takes place through messagsim@sin which case, the network

might be the bottleneck.

To run on distributed environments, the model igallg decomposed into components
that are executed by different simulators runnimgnaultiple processors. This has an
advantage of utilizing the parallelism in the modmwit it requires synchronization among
the different processors. The synchronization antbedifferent processors running the
simulation has gained a lot of attention from thsearch community. The main issue is
how to use the parallelism in the hardware to eteethie model while maintaining the
correctness of the simulation. In discrete evanugation, there are usually dependencies
among the model components, such that, some ewant®nly be processed once the
events they depend on are done. This is referrex$ tausal dependenoyf the model
components [Zei00]. For an arbitrary event x, dllitlee events on which it depends
(either directly or indirectly) have to be procesdefore x gets processed, satisfying the
local causality constraintFailure to do so; might result in causality estofhe problem

of assuring compliance with the local causality stoaint is referred to as the
synchronization problerfiuj99].

In parallel and distributed environments, simulatie considered to be carried out by
logical processors (LPs) that are mapped to phlyprcgessors. The events processed by
each LP might have been received from other LPsutiir time-stamped message
exchange or were scheduled by other local everis.cbrrectness of the simulation is
regarded as not to violate the local causality taimd. “A discrete-event simulation,
consisting of logical processes (LPs) that interastclusively by exchanging time-
stamped messages obey the local causality consifa@md only if each LP processes
events in non-decreasing time stamp ordgf1j99]. Figure 13 shows a scenario where
three logical processes are executing a model &1 receives an out-of-order event
resulting in a causality error.

26

Clock=400
Q]
|

LP1 \

Clock=200 Clock=150

E300
P2 fee LP3

Figure 13: Causality errors in distributed simulation

Two main categories of algorithms exist to addréss issue of synchronization in

parallel and distributed simulation environmentse Tonservative approach restricts the
simulation clock advancement in each logical predesthe condition that no causality

errors will be encountered in the future simulattone. On the other hand, optimistic

approach permits causality errors to occur, butvides the means to rollback the

simulation to the time of the message that cauBedctusality error and resumes the
simulation from that point.

2.4.1 Conservative Simulation

In conservative simulation, the logical processaambes its simulation clock only when it
is “safe” to do so. The safety is judged by thesgmbty of receiving a message with an
earlier timestamp than the clock of the logical ge@ss. One approach for the logical
process to do so is by having a queue for eachthnbdugh which it receives external
messages from other LPs. Then, by checking eadheofjueues for the earliest time
stamp of the message to be processed, and comphasg with the time stamp of the
event to be processed next, the logical processletarmine the time of the event that

won’t cause any causality error if processed.

The problem with this approach is that the logmalcess will not be able to advance its

clock if there is a link without any input in itaugue, since the logical process can't

27

calculate the minimum time stamp of the eventsivecethrough this link. This in turn
may result in a deadlock in the whole simulatiothiére is a cyclic dependency among
the logical processes. The Chandy-Misra-Bryant (GMBry77][Cha79] algorithm
introduces the concept otill messages, which don’t schedule any events, butsame to
inform the logical process of the lowest time bowidany subsequent messages to be
sent by the sending logical process. The time énftiture before which no events will be
scheduled is referred to Ekahead and it depends on the system being modeledsit ha
been shown, that when running parallel/distribute8VS models following the
conservative approach and usimgll messagesvith a non-zerdookaheadfor at least
one logical process, deadlock can never occur. iEhat least one logical process will be

able to advance its clock and process its everd® (.

One of the disadvantages of the conservative stiounl#s that thdookaheadproperty is
application-dependent and may not always be easgatoulate. In addition, the
parallelism in the model and hardware may not bplogéed efficiently due to the

conservative nature of the algorithm.

2.4.2 Optimistic Simulation

Contrary to the conservative simulation, optimistimulation permits causality errors to
occur, but provides mechanisms to rollback the Etan to an earlier time so that the
local causality constraint can be satisfied. Onthefmost known optimistic algorithms is
Time Warp, which was introduced by Jefferson [Jef8Bme Warp introduces the
concept of Global Virtual Time (GVT) and Local el Time (LVT). The global virtual
time is common to all logical processes and it gmadvances in an increasing order, the
local virtual time is local to the logical procemsd it can be advanced in an increasing
order or a decreasing order (in case of rollbatke Global Virtual Time (GVT) at a
specific wall-clock time is the lowest bound on theestamps of all the events in all the
logical processes, and the messages that werdgendt received yet (in transit). Thus,
no rollback can ever take place at a time equak tess than GVT. This is an important

property since it allows the Time Warp simulatiorréclaim the resources used by all the

28

events with timestamps earlier than GVT,; this pssces refereed to dsssil collection
[Jef85]. Different algorithms exist for evaluatinge GVT including Samadi's GVT
algorithm and Mattern’s GVT algorithm [Fuj99].

Rolling back the simulation objects is done by @gsg the states of the objects at the
time of rollback; however, the messages sent bysitimelation objects after the rollback
time need to be “unsent” as well. Time Warp introeli the concept anti messages
(negative messageg)hich annihilate with the corresponding positivessages. So, in
order to cancel the events that were sent by alation object, negative versions of the

messages that were sent after the rollback timelgh® sent out.

The main advantage of the Time Warp algorithm & this able to use the parallelism in
the modeled systemoptimistically by advancing the local simulation clock in each
logical process without waiting for any safety ciioth to be satisfied. On the other
hand, its main disadvantage is that it requiresemnesources to store the state and anti-
message information that are needed in case tfaeil In addition, there is an overhead
associated with rolling back the simulation to aarlier simulation time, however,
Jefferson presents an argument that most programhsw$ the temporal locality
principle, “most messages arrive in the virtual future at tliistination, not causing any
rollback at all, and that those that arrive in thtual past tend strongly to arrive in the

recent past, so that few events are rolled bddkf85].

2.5 Web Services (WS)

Web services are group of standards and languagaagato facilitate developing,

publishing, and discovering web-enabled applicatidon other words, a web service is a
software system designed to support interoperablehine-to-machine interaction over a
network. It has an interface described in a machimdgerstandable format (specifically
Web Service Description Language WSDL [Chr01]).e@li systems interact with the
web service in a manner prescribed by its desonptising SOAP [Gud03] messages,

typically conveyed using HTTP with an XML serialimmn in conjunction with other

29

web-related standards [Alo03]. Web services aréerdint from the traditional web
applications in an important aspect. Web applicagtiare hosted by application/web
servers and they use the HTTP protocol to intesditt the clients. Since the Internet is
the largest network of resources using HTTP, threyuaually embedded in the context of
a service provider's webpage; the important thibguh web applications is that they are
used by humans in the sense that the user hasddhie web application of interest and
perform some tasks (such as launching an applet$é¢ahe functionality offered by the
application provider. On the other hand, web sexwviare meant to be used by other
services (and not directly humans). Although welvises are usually deployed using
HTTP as an application layer protocol, they couiltilarly be used on top of other
protocols such as SMTP. The reason for using HEIat it is familiar to most users
and usually passes through company’s firewallsaitltausing a lot of administration or

management overhead.

The fact that web services are meant to be useapplcations emphasized the need to
express the functionality of the web service in hiae-understandable languages. XML

[Bra04] seemed to be an ideal candidate in whiatheteelop the standard. One advantage
of using XML is that it is a widely accepted langador the flexibility it offers in terms

of defining the document structure. Therefore, sveXML-based languages and

standards have emerged to meet the needs of theemabe applications:

WSDL (Web Service Description Language) [ChrOlJamsXML-based language
used to define and describe the public interfacthefservice. It contains enough
information for the client to develop/use an apgien to consume the web
service.

WSDD (Web Service Deployment Descriptor): is an Xlhsed language used
to define different deployment parameters necestadeploy the web service.
Although WSDD has not been standardized, it is lyidesed by different web

service engines to define parameters like: theopmtused to transfer SOAP
messages, the web service method signature (pamareetd return types), and

the methods that the user is allowed to invoke.

30

UDDI (Universal Description Discovery and Integoat) [Cle04]: is an XML-
based language used to register and query weltssrftising UDDI registries).
XML-Schema [Fal04]: is an XML-based language usedi¢fine complex data
structures within XML documents.

X-Path [Cla99]: is an XML-based language usedrtd filifferent elements within
XML documents.

SOAP [Gud03]: is a messaging protocol designedatoydnformation between
different web services. A SOAP message consis@snanvelopewhich has an

optionalheaderand a mandatoryody.

Among the different standards, two are of particuléerest to this work: WSDL, which
represents the public interface of the web senaoel, SOAP, since it plays an important

role in message passing among web services and:tiesits.

WSDL documents include enough information for thebwservice clients in order to
know the operations it offers, what kind of parasnetare required to invoke an
operation, and the return type of the operatione Thajor elements of any WSDL
document ardype messageportType binding port, and service elements. Some of
those elementstype message and portTypg are used to describe the functional
behaviour of the web service in terms of the fuorwlity it offers. On the other hand, the
binding, port, andservice(in addition to théype messagendportTypg elements define
the operational aspects of the service, in termthefprotocol used to transport SOAP
messages and the URL of the service. The formeefeyred to asabstract service
definition, and the latter is known aesncrete serviceefinition.

SOAP plays an important role in any web servicedaation. It is the messaging protocol
used to convey information to and from the web iservt was designed in a manner that
enables decentralized communication among muligalgies. The structure of SOAP
messages is based on XML and it consists d&rarelopeelement at the root of the XML
document. TheEnvelopeelement is composed of an optiorkd¢ader element and a

mandatoryBodyelement. An example of a SOAP message is showigure 14.

31

POST/
Host: w

<SOAP

<SOAP
<m:

<

</m:

xmIns:SOAP-ENV="http:// . .org/soap/ "
SOAP-ENV: ="http:// . .org/soap/ ">

</SOAP-ENV:Body>
</SOAP-ENV: >

A
WW. .com
-Type: text/xml; charset="utf-8"
:nnnn
: "Some-URI"

-ENV:

-ENV:Body>
:m="Some-URI">
>DIS</ >
>

As pe

perfor

ii)

Figure 14: An example of a SOAP message embeddedHi TP [Gud03]

r the standard specification of SOAP, the iveceof the SOAP message should

m the following tasks [Gud03]:

Examine the SOAP message and identify the partsatieaintended for that
application. The SOAP message can pass througtreliff services, and each
one might have some processing to do before foimwgrthe message to
another service. So, it is important that the serimplementation locates the
parts that it has to process.

Check the parts identified in stapto see if they are supported by the
application and process them accordingly. If thoses are not supported, the
SOAP message is discarded. The application may sehdo ignore the
optional parts of the message without violating$i@AP standard.

In the case of a SOAP message not destined foappécation, it should

remove the parts identified in stepnd forward it to its destination.

In a typical web service solution, different to@ed standards play different roles to

fulfill t

he application requirements. On the tojyeéa, UDDI can be used to register the

web service allowing other services and clientdisgover its existence. At a lower layer,

WSDL is used to describe the functionality of tleevece so that the client can construct

proper SOAP requests knowing the kind of respohseshould expect from the service.

SOAP and its extensions are used as the main niegspgtocol between the web

service and its clients. SOAP is transported viaapplication layer protocol such as
SimpleMail Transport Protocol (SMTR)andHypertext Transfer Protocol (HTTP)

32

Figure 15: Web service layers

From the client perspective, the web services e149e be no more than a SOAP
message processing entity; it receives SOAP regjaest generates SOAP responses
after some processing time. However, It is usafutlistinguish between two main
components of any web service implementation; tbstihg environment which
provides a working space for hosting the web servand the actual web service
implementation. The hosting environment usuallylides a SOAP engine, an
application server, and a web server. Figure 16vsttbe major components of a web

service hosting environment:

H
D

Figure 16: A web service container [Glo05]

The request is received by the service as an HE{jResst containing the SOAP message.
The web server is responsible for handling the HTf&Ric as in the case of any website

hosting environment. Once extracted from the HTE€Ruest, the SOAP message is
forwarded to the SOAP engine, which is responditsigorocessing the SOAP messages

and converting the SOAP request(s) into a methbd(srthat the service implementation

33

code can understand. This process is referred tmaarshalling (deserialization)rhe
service implementation code is the entity respdeditr implementing the logic of the
web service. Once the processing is done by thdemgmtation code, the result is
handed to the SOAP engine to build the SOAP regptinbe sent back to the client, this
is referred to asnarshalling (serialization) The web server encapsulates the SOAP
response into HTTP packets that are sent to teatclThe SOAP engine by itself is an
application that runs within an application servieat is installed as part of the web

service deployment process.

2.6 Service Oriented Architecture (SOA)

Service Oriented Architecture (SOA) [Erl05] reféos a new paradigm in the area of
distributed application development and deploymédntdepends on using standard
technologies in order to split the application togito number of components, each of
which exposes its functionality in a platform-inéaplent manner. Then, the logic of the
overall application is realized by establishing sosort of workflow among the different
components. Web services have been used in thenmepitation of SOA systems due to
its wide acceptance among programmers and budemdsrs. The orchestration between
the web services is usually implemented using stahdnechanisms such as Business
Process Execution Language (BPEL) [And03]. Thersulstle difference between the
traditional distributed systems and SOA systemshat the latter depend on standard
technologies and each of the system componentgidgs) usually implements part of
the logic that communicates with the other comptsména loosely coupled manner. On
the other hand, traditional distributed systemscslly (although not necessarily) are
characterized by objects maintaining a fairly caempinternal structures required to
support their methods, and fine grained interactietween an object and a program
using it. A Service Oriented Architecture (SOA) tigpically characterized by the
following properties [Alo03]:

The service is abstracted by its logical view, wWhimight represent actual
programs, business processes, and databases, fares déhat it does rather than

how it does it.

34

The service is defined by the type of messagescitives as an input and the
messages it generates as an output (message tontdhe implementation
details of the service such as programming langupigess structure, or even
the database structure are hidden from the wehbcseconsumer. This has an
advantage of allowing the interoperability betwettfierent legacy systems that
were developed using different technologies. Treystems can be “wrapped” by
web service wrappers that operate together usingPS®@ithout revealing their
internal complexities.

Services in SOA tend to use small number of opanatwith relatively large and
complex messages.

The services tend to be used in networked enviratsr(@etwork orientation).
The services are platform-independent. They recaivesend XML-based SOAP

messages that can be interpreted and processquatiam-neutral manner.

“It is argued that these features can allow serviceented architectures to cope more
effectively with issues that arise in distributgdtems, such as problems introduced by
latency and unreliability of the underlying transpdhe lack of shared memory between
the caller and object, problems introduced by railure scenarios, the challenges of
concurrent access to remote resources, and theilitsagpf distributed systems if
incompatible updates are introduced to any paracfi [Alo03]. Web service
technologies in general can be used to implementicgeoriented architectures and
distributed-object systems. The design approachetdollowed depends on different
factors such as the platforms used to host theicgipin, the nature of the application,

and expected future evolution.
2.7 User Controlled Light Path (UCLP)

User Controlled Light Path (UCLP) [Arn03] is a peof initiated by CANARIE, a non
for profit organization that promotes collaboratitimough high-speed networks, to
develop management software to be used in highvidttd fibore networks to enable
users to allocate and manage the bandwidth theyreetp achieve their business goals.
The objective of UCLP is to enable the user to mganthe bandwidth without the

35

intervention of network and system engineers, wigaekies time and money usually
associated with managing large fibre networks. UQldgpends on encapsulating the
network resources and components (such as switahgsy web service-enabled
wrappers that the user can interact with insteadsofg management protocols such as
Simple Network Management Protocol (SNMRansaction Language 1 (TL18tc. This
introduces the possibility of integrating the netlkwoesources within the user application
(provided certain security constraints are adh&sgdand being able to create and lease a
light path for a specific period of time after whithe light path is destroyed and its
bandwidth made available to other users. As aidiged application based on web
services, UCLP makes heavy use of the different seliice technologies. Specifically,
it uses BPEL at the orchestration layer to manhgeadifferent network resources in order
to form Articulated Private Networks (APNs). An ARS8la logical group of light paths

that are managed as a single entity.

36

Chapter 3: Trends in the Implementation of Distributed DEVS

Simulators

The success of the DEVS/Cell-DEVS formalism in mimdeand simulating different
complex systems, has attracted a lot of researtbexstend the basic abstract simulator
presented in [Zei00] into a parallel/distributedeo®how, Zeigler, and Kim [Cho94b]
have defined the semantics of an abstract simulatdhe parallel DEVS formalism. The
advantage of the parallel abstract simulator i$ ithtakes advantage of the parallelism
introduced in the P-DEVS formalism [Cho94a] in terof activating all the imminent
components of the model at the same time dispensitiy the need for theselect
function in the original DEVS formalism. Differegroups of researchers have studied
the implementation of DEVS simulators in paralledadistributed environments; each
followed a distinct approach in terms of the miadeee tools adopted to implement the
simulator and the functionality it offers. Sometbé implementations have emphasized
the dynamic aspect of M&S in a grid environmentaflis, they provide a platform for
registering and activating the simulation entitiesa dynamic manner based on some
partitioning scheme. They make heavy use of thés tomvided by grid middleware for
resource allocation and management, user authgoticaand authorization, and
communication among the simulation nodes. Otheftampntations of DEVS simulators
put more emphasis on the performance of the enginey try to take advantage of the
parallelism available in distributed environmentsorder to achieve higher speedups. In
this regard, the implementation of optimistic siatidn algorithms was considered by
some in order to allow the nodes to advance theaks independently as opposed to the
conservative approach for synchronization. In ghapter we provide an overview of
some of the major implementations of distributedSEsimulators, highlighting their
design approach and the functionality they offened, we introduce some of the
differences between those implementations and ésgd we propose in this dissertation
in terms of the design methodology we followed, thmddleware used for the
implementation, and the advantages it offers whegrerating in a distributed

environment.

37

DEVS/Grid

DEVS/Grid [Seo04] implements a grid-enabled DEV8wdator following a layered
approach. The system consists of five layeapplication modeling simulation
middlewareand networklayers. The application layer is the top layer &ndeals with
high level issues within the application domaineThodeling layer provides the required
functionality for defining the model; the simulatidayer is responsible for running the
actual DEVS simulation with the support of otheoltoand utilities. The middleware
layer represents the grid-middleware layer (implete@ using Globus [Glo05])
responsible for the discovery and management ofgbeurces available in the grid. The
network layer represents the hardware resourcelablsin the grid which might include
storage devices, workstations, and high-performatgesters. The main components in
the system are the modgdrtitioner, which is responsible for dividing the model irgo
set of partition blocks. Each partition block cansaone or more components of the
model. The partitioning is done following a costéd criterion and the resulting
partitions are transferred by the modeployerto the host machines for execution. In the
host machine, thactivator receives the model partitioning information aneéates a
simulator to execute the model. In addition, DEVS/Grid pdm& the following

functionality:

Grid Index Information Service (GIIS}t is a M&S directory service used to
resolve the names of the different simulation &gitand publish/subscribe the
resources available to the modeller.

Static/Dynamic model deploymerthe available hosts are identified using the
services offered byGlIS which allow for dynamic assignment of the model
partitions. Once the host is identified, tteployersends the model partitioning
information to the host machine for execution.

Remote activatianthe model is activated remotely through #eivator, which
resides on the hosting machine. It receives thaétipaing information through
the deployerand creates a simulator for each component ofntbeel. The

information about the created simulators and thdetsothey execute is published

38

in GIIS. This information includes the addresses of theukitors, and the

input/output ports that are used to examine the e@ha@dupling scheme and
establish communication channels among the diffesienulators.

Communication channelsthey are formed dynamically by examining the
coupling scheme and simulator addresses publisiredghGlIIS. There are two

types of communication channels:

User Channelsthey are used to route the messages among tfexedif
simulators representing the events scheduled duhegexecution of the
model.

System Channelshey are used to send synchronization informatemuired
for advancing the simulation time and implementingrriers during the

simulation.

vGrid

vGrid [Kha03] is an overall architecture for rungiDEVS and Cell-DEVS models in
grid environments. vGrid divides the model into gaments; thé~ine Computational
Unit (FCU) is the most basic component that corresponds tat@nic DEVS or Cell-
DEVS model. SeverdrCUs can be grouped together to formvVatual Computational
Unit (VCU) which constitutes the basic component that cascheduled on a single grid
resource, such as workstation. Different enginesy pifferent roles in the vGrid
architecture; theGrid Manager (VGM])s responsible for managing all the resources in a
grid environment with coordination with the othergmes. It interacts with thgCUs
throughAutonomous Wrappers (AWyhich maintain operational, functional and cohtro
information about th& CUs TheMonitoring Engine(ME) is responsible for monitoring
the resources in the grid and maintaining thisrimftion to be accessible by tR&M.
Analysis Engine (AEgenerates thé/ork Capability Index (WClIjwhich is a measure of
the complexity of the task) from tHeCU and generates tHeesource Capability Index
(RCI) (which is a measure of the capability availableatsingle resource in the grid);

both are used by thelanning Engine (PEJo partition the cell space inddCUs The

39

architecture distinguishes between inactive antv@&CUs by including the latter into
Working Sets (WSyvhich get checked by tHexecution Engine (EBp pick aVCU for

execution. The vGrid architecture provides thedielhg functionality:

Dynamic model partitioningt is achieved by moving tHeCUs among thé/CUs
so that a specific load threshold is adhered to.
Distributed communication Servic@rovides a flexible communication, event

notification, and access control for the differentities in the simulation.

DEVS/P2P

DEVS/P2P [Che04] is a distributed DEVS simulatoned to peer-to-peer networks. Its
architecture is similar to DEVS/Grid except that uses JXTA [JXTO06] as an
implementation of P2P communication middleware @adt of using Globus as a grid
middleware. It consists of four major parts; fagomatic Hierarchal Model Partitioning
(AHMP), Automatic Model Deployment (AMDActivator, andGeneric Simulator (GS)
AHMP is responsible for partitioning the DEVS model @ding to a cost-based
partitioning algorithm. The partitions are deployiadthe host machines througMD.
The Activator is responsible for receiving a model partition aneatingGSthat runs the
simulation. The message communication among tHerdift nodes is handled by the
JXTA system. DEVS messages from one simulator tahem remote one are converted
to XML-based messages that get sent by JXTA tadbeiving machine. At the receiving
end, the messages are converted back into DEVSagesdo be processed by the
receiving simulator(s). JXTA uses virtual commutima channels (pipes) among the
machines, which get mapped to the DEVS model partassure correct routing of

messages during the simulation.

The simulator doesn’t depend on a master coordinatbandle the synchronization and
clock advancement. Instead, each simulator blockse ot publishes its time advance
value waiting for all the other simulators to de game, then, the one with the minimum

value is allowed to proceed and advance the clcice all the simulators are working

40

simultaneously, there is chance for internal anekreal transitions to take place at the
same time. In this case, the user has the opti@eletting which one to consider first,
with the default being executing the internal traos function followed by the external

transition function.

DEVS/RMI

DEVS/RMI [Zha05] is a distributed DEVS simulatorseal on Java Remote Method
Invocation (RMI). It aims at providing a fully resnfigurable distributed simulation
environment with the capability of load-balancingdafault-tolerance. The use of RMI
has allowed for the synchronization of local andno&e objects without additional
simulation time management to the one used inradstbone version of the simulator. In
addition, Java provides a platform-independent renvnent for the execution of DEVS
models. Different components in the engine plajed#t roles during the execution of
the model. The i&wulation Controlleris responsible for controlling the activities tadi

place during the simulation. This includes takihg partition information generated by
the Configuration Engineand transferring it to the host machines to becetesl by the

Remote Simulatorsin addition, the configuration engine may decith@t a new

partitioning is required during the execution ok tmodel; in this case, the current
execution is stopped and the simulation environmisntreconfigured before the
simulation is resumed. Th8imulation Monitorcollects information about the model
being executed and conveys this information todbmfiguration engine to recreate the

model partitions (if necessary). The partitionirigree model can be one of two types:

Static partitioning in this case, the model is partitioned at thettom phase and
is attached to the corresponding simulator.
Dynamic partitioning the model is dynamically partitioned in a mantieat

allows for the re-partitioning during the executithe model.

Zhang, Zeigler, and Hammonds [Zha05] show thatgusivo or more machines to run

relatively simple models introduces communicatimerbead that slows the simulation

41

down. However, when running complex models, thériigtion of the model on two or

more machines improves the performance which tasesinto shorter execution time.

DEVS/Cluster

DEVS/Cluster [Kim04] is multi-threaded distribut@EVS simulator based on CORBA
[OMGO02]. The simulator was developed using Visuai+Cfollowing the optimistic

approach for synchronization among the nodes.ds 0sme Warp [Jef85] algorithms in
order to achieve speedup by advancing the clockaich machine independently. In
addition, DEVS/Cluster adopts a flattened simulatlwerarchy for the execution of
hierarchal DEVS models. This improves the perforoeaof the flat simulator compared

to the case of having a hierarchal one.

CORBA is used to allow for a location-transparemvienment for distributed
simulation. The synchronization of the simulatienhandled by theoordinatorsthat
exchange messages with each other and with thdatorai using the services provided
by CORBA. Message passing is implemented as dieeabte method invocations on the

receiving simulator/coordinator instead of sending receiving explicit messages.

PCD++

PCD++ [Tro03] [Gli04] is a parallel simulation eng developed using WARPED
[War06] middleware and uses MPI [MPI95] for comnuations. It is based on the
CD++ simulation engine [Wai02], and is able to ekecDEVS and Cell-DEVS models.
WARPED is a middleware that provides basic fundldy usually requited in a M&S
environment. It implements the conceptlafgical Processors (LPsas the execution
entities of the model. Each node hagogical processor (LP)that has one or more
simulation objectsMessages sent between tpmcessorsaarewrappedinto WARPED
messages before they getwrapped(at the receiving end) into the original DEVS
messages used for the CD++ engine. In addition, RRR provides the data structures

and utilities that can be used for the implemeatatf Time Warp algorithms [Jef85].

42

The original version of PCD++ [Tro03] followed aeharchical approach for the
simulator and it uses a conservative algorithmsfgmchronization among the nodes. It
has been shown that the performance of the engimependent on the nature of the
model and the partitioning scheme used to splitnioelel on the different nodes. If the
model partitions are loosely-coupled in a way tmatimizes the remote messages sent
among the nodes, the simulator performs well im$eof the speedup achieved compared
to using one machine to execute the model. Howawethe case of tightly-coupled
partitions, the overhead can be significant, whiclurn, may degrade the performance

of the simulator.

An improved version of PCD++ [Gli04] was developasl a flat simulator dispensing
with the need to have a coordinator for every cedfEVS model, and hence improving
the overall performance of the simulator. In addifiPCD++ uses Time Warp [Jef85]
protocol for synchronization among the differentles participating in the simulation.
The performance of this version is much better th&noriginal one; however, it requires
more resources in order to save and restore thessth the model and simulator during

the execution/rollback phases.

3.1 Web Service-Based Approach for Distributed DEVSimulation

We follow a different approach for the design amdplementation of distributed
simulation engine based on CD++. The design metbggowe follow depends on
implementing web service-based simulation serviabe to expose the functionality of
CD++ in a standard way, and to execute complex tsodedistributed environments
using SOAP as a messaging protocol. The desigroapipiwve propose has the advantage
of providing several features that either were abse partially provided by the other
implementations:

Efficiency: We aim at avoiding the shortcomings of some ofavailable distributed
DEVS engines. For example, DEVS/Grid [Seo04] and/BEP2P [Che04] depend on
synchronizing the simulation by eaplocessorsending the time of its next change to

all of the otherprocessors The processorrunning in one machine blocks until it

43

receives the values from all tipeocessoran the other machines, and then the one
with the earliest value unblocks by processingribet event. Although the authors
did not provide any results to examine the perforceaof the simulator in a
distributed environment, it is expected that thenbar of messages sent among the
processorsin each simulation cycle is causing a considerablerhead, especially
when there is large number of machines involvetthénsimulation. We argue that the
design we present in this dissertation, which use®ordinator to schedule the
processordor execution, limits the number of synchronizatimessages sent among
theprocessorsand hence improves the performance of the sinmmatn addition, the
implementation oMasterandSlavecoordinatorsallows theprocessordo exchange
messages locally if the sender and receiver aneimgron the same machine without
the need to send any remote messages; this in taduces the overhead of

exchanging remote messages in distributed enviratesne

Flexibility: The flexibility pertinent to our design in terno$ having separate, yet
related, simulation and web service components, grasen to be useful when
porting the services to a different simulation emegiln this regard, the services that
were developed to work with the stand-alone versibthe simulator (CD++) were
extended to work with a parallel version (PCD++)rmimng on a high-end distributed-
memory cluster with minimal changes and short dgwekent time. Although PCD++
performs better than the distributed engine propdsze, it is not as flexible in terms
of the network connectivity among the nodes paréittng in the simulation. PCD++
uses MPI for messaging and it requires that thehmas be located in close
proximity to each other. On the other hand, théritisted engine we propose is able
to function irrespective to the network infrasturet used to connect the nodes, which

can be regular Ethernet connections, or high-sfibegloptic links.

Web Service IntegrationThe main web service standards such as XML, WSdDQ,

SOAP were used for storing and parsing the cordigum files used by the service,
describing and exposing the service functionaliyyd messaging among the
simulation services themselves as well as withuers, respectively. This allows the

modeller to execute the model, check the statuth@fsimulation, and retrieve the

44

results remotely irrespective to the platform ubgdhe client. In addition, the use of
web services without restricting the implementatiom any particular grid
middleware, such as Globus, provides the flexipitequired for integration with
different systems using standard orchestrationuaggs such as Business Process
Execution Language (BPEL) [And03]. One of systehad tan be integrated with the
simulation services is a visualization service gldws the modeller to examine the

simulation results in a user-friendly manner.

45

Chapter 4. Web Service-Enabled CD++

CD++ was developed as traditional command-line iagfpbn to run on Unix/Linux
platform. It is capable of executing two kinds obaels, DEVS and Cell-DEVS. To
execute DEVS models, the modeller needs to defich atomic DEVS model as a C++
class (defined in header (h) and implementatigop{.diles) that is to be integrated in the
class hierarchy of CD++. For coupled DEVS modelsd &€ell-DEVS models, the
modeller needs to provide a model definition fiteai text format. The model definition
file includes (among other things) the couplingesok for the coupled model, initial
values for the cells, rule definition to calculdtee state of the cells, etc. In a regular
invocation of CD++, the user submits the modelrdgéin and configuration files to the
simulator as arguments. Once the simulation is,dheruser gets the results in the form
of output and log files. The output file contaime tevents that were generated through
the output ports of the model; the log files camtdétailed information about the progress
of the simulation and can be used for debuggingamimating the results using a

visualization engine [KhaO05].

In the context of our modeling and simulation eamment, web services are introduced

to serve two main purposes:

i) To expose the functionality of the CD++ toolkit asweb service, allowing for
executing simulations and retrieving the resulteulgh web service technologies.

i) Using SOAP as a messaging protocol to enable aldisgdd version of CD++ to

execute complex models on multiple machines.

4.1 Design Methodology

In order to integrate the web service technologigb the CD++ toolkit, a web service
wrapper was developed to interact with the CD++kiband wrap its functionality to be
accessed by web service clients. Two main desigmoapghes were considered at the
beginning. One is to develop the wrapper in C++cesithis will allow for better

integration with the original code of the toollatother is to develop the wrapper in Java

46

and interface the Java classes to the original €¢te of the toolkit when it is necessary

to do so. The second approach was adopted due foltbwing reasons:

i) Many of the web service technologies and middleveaalable in the market today
are well supported by Java and some of them atalfctvritten in Java. So, using
Java allows for better use of the web service tantstechnologies as they advance.

i) Building the simulation web service in a modulammer consisting of different C++
components (to interact with the simulator) andaJeemponents (to interact with the
web service clients) helps to develop differensiars of the service to work with the

different versions of CD++ with minimal changes.

One disadvantage of this design approach is thatfacing the Java and C++ parts of the
simulation service is inevitable, since the servieeds to access and manipulate the data
structures and objects used by the simulator. &lra dlasses are mainly responsible for
handling the web service part of the service fumtlity. On the other hand, the C++
classes are responsible for accessing and manipuldte data structures and objects
used by the simulator. To integrate the two pddsa Native Interface (JNI) [Lia99] was
used. JNI is a collection of APIs and is part oé thava Virtual Machine (JVM)
developed by Sun Microsystems. It allows Java f@mgrto access functions written in
native C/C++ code. In addition, it allows programstten in C/C++ to execute and

access Java objects. The following diagram showsvarview of the service layers.

JNI

(C

CD++ (C++)

Figure 17: Major components of the simulation senge

47

The simulation service acts as a web service mterto the CD++ toolkit. The main
activities performed by the service are:
Receiving the required files to define the modal axecute the simulation. These
files include: C++ and header files (in the cas®BVS models), a model definition
file (.ma), and an external input file (.ev).
Executing the simulation providing the client witte ability to check the progress of
and kill the simulation (if needed).
Sending the results of the simulation to the cliarthe form of text files. These files
include: an external output file (.out), a simwatilog file (.log), and a debug

information file (.info).

The web service engine chosen for the implememtasicApache Axis [Axi06]. Axis is
an open source SOAP engine that has an HTTP skmetionality and runs as a web

application within an application server, in oused omcat application server [TomO06].

4.2 Implementation Details

The wrapper was originally designed to load theutator as a shared library that can be
used to execute the simulation and return the tesnlthe client. The advantage of this
approach is that loading the simulator by the weapgs a shared library, provides a
straightforward way of accessing and manipulatimg data structures of the simulator,
since both (the web service and simulator) will roening as one operating system
process. In addition, since the same simulatobeansed to execute more than one Cell-
DEVS model, this can save memory and storage spdoeiever, designing and
implementing the service in this approach has ledeawo main issues that had to be
resolved:
i) Loading the same simulator as a shared library osase the web service and the
simulator to crash if one of the running sessiomsegated an exception. This is not
acceptable since the CD++ web service should be #ablrun multiple sessions

concurrently without having one of the sessionsdiiig the others.

48

i) The Java Virtual Machine (JVM) can not load the samative shared library more
than once during the lifetime of the class loadsrduto load the library. In addition,
the same library can’t be loaded by two differelaiss loaders. This restriction was
imposed on the JVM as of Java 1.2 to avoid classeneonflicts since the class
loader is considered part of the class full naneslwgithin the JVM [Lia99].

Considering the previous points, the simulation wetvice was redesigned to avoid the
limitations of the JVM and provide a robust envirent for running different simulation
sessions concurrently and independently. The simuolaservice was split into two
independent and separate parts: Wb service componengsnplemented in Java) are
used to handle the web service activities of timeutation service, and th&mulation
componentgimplemented in C++) are used to interact with @D3y accessing and
manipulating its internal objects and data strieguBoth parts interact with each other

though message queues maintained by the Linux kéghneugh théWNrapperProxy.

(C++)
(=N UNE K=Y Proxy (C+)
(Java) €+
(C++)
CD++

L;

Figure 18: Implementing the simulation service usig JNI and message queues

49

The advantages of this approach are that:

i) It provides a separate running workspace for eanhlation session; the simulator is
running as an operating system process indeperfdamnt the simulators running
other sessions.

i) It allows for extending the functionality of eacarpwith minimal or no change to the
other part. For example, the simulation componehtse service were developed to
work with the parallel version of CD++ (PCD++) withinimal changes to the web

service components.

The web service componentd the simulation service are compiled into Javehiae
(.jar) files and deployed in an Axis server, whinhturn runs within an Apache Tomcat
server. When the Tomcat server is started, it aatioally starts the Axis engine. Axis
loads all the libraries available in the directafydeployed services, which include the
JavaWrapper(the backbone of the web service components)sdéineer-side stubs, and
the client-side stubs. In addition, when thevaWrapperclass is loaded, it loads the
WrapperProxy which is implemented in C/C++ and loaded as aeshaative library into
the JVM. At this point the simulation service isnsalered ready to receive client
requests. The exact behaviour of the web serviogpoaents depends on the type and
sequence of requests submitted by the client; hewewtypical sequence of operations is
depicted in Figure 19:

The user is authenticated and if logged on sucakgsh new session is initialized for

him.

A new folder is created on the server to provideoaking space for the new session.

The executables and source files of the simulatcapied to the new session folder.

The web service components invoke a method invMn@pperProxyto initialize a

new session. The/rapperProxyis responsible for the communications between the

web service and simulation components of the sitiwnaervice. Th&\VrapperProxy

is implemented as a shared library and is loadég amce during the lifetime of the

Axis server, hence avoiding the constraint of JVid bbeing able to load a particular

native library more than once.

50

The WrapperProxycreates two message queues through the Linuxlk&ne queue
will be used to send messages from the web secaicgonents to the corresponding
CD++ session, and the other will be used to receigssages from CD++.

Once the initialization steps are over, the user sabmit the different files and
parameters necessary to define the model.

If the user chooses to set DEVS models by sending li@ader and implementation
files, the wrapper will update thmakefile (used to compile the simulator and the
models) to incorporate the newly added models.daiteon, part of the source code
of the simulator is updated to register the new SEWodels.

When the user starts the simulation, if the userdedined at least one DEVS model,
the wrapper will compile the source code of thewator with the newly added
models. In addition, the web service components initialize the slave sessions in
case of running distributed simulation; slave sessiwill be running on other
machines (other than the first machine that the iseconnected to). Then, the
simulation will be started.

On the CD++ side, two additional parameters argigeal to the simulator. These are
the full path of the session directory, and thesisesID that was assigned to the
simulation session.

Once the user invokes th&tartSimulationServiceoperation and before actually
starting the simulation, CD++ will invoke a methiadinitialize the session (from the
CD++ side) through the simulation components. CDvtH use the full path of the
session to query the Linux kernel for the messageuegs created by the
WrapperProxy These queues are used to communicate with the seehice
components associated with the current simulagssien.

When the simulation ends, and in the case of Higeed simulations, the web service
components will retrieve the log files from thev@amachines and archive them into

a single file to be retrieved by the user.

51

User i
Y

es
logged
no
\ 4

session

Set Grid
Config. file
B
v yes g sessions
A
< Send ma, grid
config. files to
slaves
A
4 Yes h 4
models ° sessions
A {><
no
v
B
Ll
yes N
Y
session
N yes
; h 4
archive < files
> logoff

Figure 19: Simulation web service operation

52

The simulation process is started as an extermahw@nd executed by the web service
components and not through the message queueddilioa, for each session there will
be three Java threads and two Linux-POSIX thre@dg Java thread is responsible for
executing the CD++ simulator and streaming its ouipto the session’s log file, another
thread is responsible for responding to the webicerclient requests, and the third
thread is responsible for monitoring the messagrigsi (though thé/rapperProxy. On
the CD++ side, one is the main simulation thread), the other thread is used to monitor

the message queues for an incoming message frowethheervice components.

' (C++)
Proxy
(C++) \ CD++
T ——] I‘//
N <

Figure 20: Message queues connecting the simulaticomponents to the

WrapperProxy

4.3 Service Architecture

The web service components were developed asectioh of Java classes; they fall into
three main categories:

i) The web service wrappeMS-Wrapper. is responsible for most of the
functionality of the web service components. Tkishe backbone of theeb
service componentnce it is linked to the server-side stubs deptbwithin
the Axis server. When Axis receives a web servezpiest from the client, it
passes the request to the server-side stub, whitdrn retrieves the instance
of the JavaWrapperclass associated with the user’s session, bef@euing
the corresponding method in tBavaWrapperobject to fulfill the client’s

request.

53

i) Utility classes: are used to perform secondary tfone required by th&Vs-
Wrappersuch as parsing the users and configuration filas takes place at
two points: when the service is started, tisers fileis parsed to load the user
information such as usernames, passwords, etcwaed the user submits a
grid configuration file the file is parsed to retrieve the model pantitio
information as well as the addresses of the nodmsicipating in the
simulation.

iii) Stub classes: include the client-side and sendsrsiubs. The server-side stub
classes are required by the Axis server and aregbdhe code required to
define and deploy the service. The client-side stabe required by the
JavaWrapperclass to invoke the services offered by the slawdes when

running distributed simulations.

Figure 21 shows a UML diagram of the web servicengonents of the simulation
service. TheJavaWrapperclass is the backbone of the web service compsnand it
includes the attributes and methods necessarynlénanost of the operations offered by
the service. Some of the operations performed lyJ#tvaWrapperclass include: (a
detailed description of the web service componenpsesented in Appendix-B)
User authentication: the methadthenticatas used to authenticate users through
a password file stored on the server.
Session initialization: the methanleateNewSessiotreates a working space for
new sessions. Part of the session creation progedsides creating a
JavaWrapperinstance to handle the newly created session;iriktance will be
used by the server-side stub class deployed witienAxis server to fulfill the
requests submitted by the user. In addition, thehaoakinitialize is used to
initialize the resources needed for the sessiooh 13 the message queues, to
communicate with the simulator.
Setting the model definition: the methodsetMAFile setEventFile
setDEVSModel and setSupportFileare used for defining the model. The

setMAFileis used to submit the model definitissetEventFilesets the external

54

events file,setDEVSModekets the source and implementation files for DEVS
models, andetSupportFilesets the initial values file for Cell-DEVS models.
Setting the configuration information for distriedt sessions: the method
setGridConfigFileis used to send thgrid configuration fileby the user; once the
method is executed it causes the parser to paesi#léhand save the information
contained in it in thdavaWrappeinstance created for the session.

Starting the simulation: the methadartSimulationServicés used to start the
simulator. This includes some initialization to éaglace such as compiling the
submitted DEVS models (if any) with the source cofie¢he simulator, sending
the model definition to slave machines, and stgitime slave sessions.

Checking the status of the simulation: the metis@&imRunnings used to check
the status of the simulation process. This is wsede some models might take
long time to be executed; in which case, the cleamt start the simulation and do
some other processing until the simulation is ovar.addition, the method
killSimulationis used to kill the simulation process (if needed)

Retrieving the results of the simulation: the methaoetrieveLogFileName
retrieveOutputFileNameare used for the log and output files retrieval,
respectively. In case of running distributed sirtioles, theJavaWrapperwill
utilize the services running on the slave machinewder to retrieve and archive
all the log files into one file that can be sente user.

Logging off: the methodogoff is used to log the current user off and invalidate
his session. This method will cause tBavaWrapperclass to reclaim the
resources used by the session and to send messdpesslave sessions to do the

same.

In general, the services offered by the simulasiervice through its WSDL interface, are

mapped into methods invoked on trevaWrapperlass/instance.

55

#%
% &
"]
4 % &
% & k> g
% & < "
" Ko——— "
& "1
Q 77777777777 "
' %
-y
),I.I
n
FX
"$&
$ |
$($
' #%
" #
) $
$ & $(%
$
& !
#"$ " %
ANV
- | i)
- o
A
!
% "&' &'
((
% - %I$ " % !$
)")"
$ & $ &"

Figure 21: Web service components UML diagram

Parts of the methods defined in thevaWrapperclass are actually native methods that

were implemented in C/C++. Those constitute YWeapperProxycomponent of the

56

service (see Figure 18), and are implemented as@uves written in C/C++ since Java
can't access the Linux message queues. These msethos interfaced to the
JavaWrapperclass using the Java Native Interface (JNI) [L]a99
initializeNewSessiant creates two message queues for each sessiact @s a
communication channel between the web service andlation components of
the service.
getCurrentSimulationTimeit is used to query the simulator for the current
execution time.
insertExternalEvent it inserts external events in the simulation whihe
simulation is running.
startMessageMonitorit starts the message monitor that keeps chedkingny
message coming from the simulator. This is staated separate thread from the
Java side.
getMachinelD it gets the id of the machine running the simatatThis executes
the getMachinelDmethod in thelJavaWrapperclass, which in turn checks the
address of the running service and compares it th#tones available in tiggid
configuration fileto find the machine id.
machineForModelit returns the id of the machine running a paitc session. It
is used in distributed simulation sessions. Thierimation is retrieved from the
JavaWrapperclass which keeps the information supplied to géevice through
thegrid configuration file
sendRemoteMessagk is used to send remote messages between machines in
distributed simulation sessions. It takes a C++gsags and passes it to the web
service components to be sent as a SOAP message.
receiveRemoteMessageByProxy is used to receive remote messages when
running distributed simulations. It gets a SOAP sage contents from the web
service components and passes it to the simulator.
stopSimulationSessioit is used to stop the simulation session ande@llocate
any used resources.
addZonePartition it is used to define the Cell-DEVS model partitionsewh

running distributed simulations.

57

The JavaWrapperclass uses utility classes to handle tasks su@asing theusersand
grid configurationfiles. TheParser class is the main class used for parsing andeis us
the SAXParser SAXParserFactory and MyContentHandlerclasses to do so. When
parsing XML documents, there are normally two apphes that can be adopted; using a
SAX (Simple APIs for XML)parser or aDOM (Document Object Modelparser.
SAXParserns an event-driven parser that calls specific meshin theContentHandler
class (or one of its children) at specific poinfstlee parsing process, such as the
beginning and end of each element in the XML doaitm&he programmer can then
override the functions defined in tl@ontentHandlerclass in order to implement the
required functionality. Another option would be ngiaDOM parser that loads the entire
document into memory and allows the programmer &mipulate the document. The
users file is used for authentication and it cargghe usernames, passwords, and roles
for all the users that are authorized to use tineice The grid configuration file is an
XML file that contains:

i) The URLs of the simulation services participatingisession;

i) The model partitioning information which includdsetparts of the model

running on each machine in a distributed simulasession;

<Grid>
< >
< >
< _RANK>0</ _RANK>
< _URI>http://192.168.1.146:8080/axis/services/ </ _URI>
</ >
< >
< _RANK>1</ _RANK>
< _URI>http://192.168.1.144:8080/axis/services/ </ _URI>
</ >
</ >
<MODEL_ >
< ="Q">
<MODEL> </MODEL>
</ >
< ="1">
<ZONE> (0,0)..(9,9)</ZONE>
</ >
</MODEL_ >
</Grid>

Figure 22: A samplegrid configuration file

58

Figure 22 shows a sampigid configuration file It consists of two main elements: the
MACHINESelement and th#IODEL_PARTITION&lement. TheACHINESelement
includes two sub-elements for each machine padirig in the simulation session. The
MACHINE_RANKis the machine id, and tiMACHINE_URIis the URL used to access
the service. ThdMODEL_PARTITIONSlement contains oneARTITIONelement for
each model partition in the machine. Each modditpar can be aMODEL designating
a DEVS model or ZONEdesignating a Cell-DEVS zone (group of cells). Tdhef the
machine running the model partition is set as &ibate of thePARTITIONelement.

The client and server-side stubs are required Herdeployment and utilization of the
simulation service. While the client stubs are aohust for using the simulation service,
the client can create the SOAP requests dynamjdaklyserver stub classes are required
by the Axis server in order to properly deploy theervice. The
CDppPortTypeSoapBindinglmpepresents the server-side stub; when the Axigeser
receives a request from the client in the form oS@AP message, it does some
processing on the SOAP message and extracts tlileutes necessary to execute the
service. Once the attributes are extracted, itkesca method in théavaWrapperclass
corresponding to the operation requested by thentcliTheCDppPortTypeServicand
CDppPortTypeServiceLocatoare used to locate the web service using its Ebhifi
Resource Locator (URL). The former is an interfted is implemented by the latter and
it is usually used at the beginning of any web iservinvocation process. The
CDppPortTypeSoapBindingStub a client-side stub that can be used by therpmg
accessing the simulation service. It defines thgbates and methods that allow the
client to deal with the web service as if it wasdbclasses residing on his machine. This
client-side stub is used within the simulation ggvo access and setup slave sessions
while running distributed simulations. When therusennects to one machine to start a
distributed simulation session, the web service mmments examine theyrid
configuration filein order to extract the addresses of the seryegtcipating in the
simulation. Then, it uses tHeéDppPortTypeServiceLocatalass in order to locate the
slave machines and create instances oClbppPortTypeSoapBindingStatass that are

59

used to send the model definition files and giniel configuration file and to initialize

new sessions in the slave machines.

4.4 Service Interface

In order for the client to “consume” the simulatiservice, he needs to have access to the
WSDL document defining the service interface. Thée, client can choose one of two
options: either to generate client-side stubs, hiictv case he can deal with the operations
offered by the simulation service as if they wereal object methods; or he can invoke
the services by dynamically creating SOAP requests.

$ 1L

12

0$3"
%..10 1/$ (

4 & 5/4" 5/4

Figure 23: A typical invocation of the simulation web service

WSDL documents usually contairtygpe element to define non-standard parameter types
of the messages exchanged between the web senddbeaclient. This element does not
exist in our implementation since the types areneef within the message itself. The
messagelement defines the request and response SOARgessF-igure 24 shows the
request and response messages forstt®EVSModeloperation; thesetDEVSModel
operation takes four arguments (through the messatf=VSModelRequégsthe name

of the header file defining the DEVS model clasBagaHandlerobject representing the
file (sent as a SOAP attachment), the name of the @le containing the class
implementation, and BataHandlerobject representing the C++ filDataHandleris a

Java class that provides a consistent interfacdat® available in many different formats,

60

in our case th®ataHandlerrepresents a file that gets serialized by thentiieto SOAP
attachment and gets deserialized to a file on ¢inees side. TheetDEVSModelResponse
message represents the return type ofs#i®EVSModebperation, which is a string

stating whether the operation was successful or not

<wsdl: =" ">
<wsdl: ="in0" type=" : ">
<wsdl: ="in1" type=" : ">
<wsdl: ="in2" type=" : ">
<wsdl: ="in3" type=" : ">
</wsdl: >
<wsdl: =" ">
<wsdl: =" " type=" : ">
</wsdl: >
<wsdl: =" ">
<wsdl: =" ">

Figure 24: An excerpt of themessagelefinition of the simulation web service

The portTypeelement defines a collection of operations, eadraipn has an input and
output. In this case (Figure 25), the input is $eDEVSModelRequeshessage and the
output is thesetDEVSModelResponsmessage. ThportTypeelement is analogous to

theInterfaceconcept in the Java programming language.

<wsdl: =" ">
<wsdl: =" " ="in0in1in2in3">
<wsdl: =" "
name=" ">
<wsdl: =" "
name=" ">
</wsdl: >

Figure 25: An excerpt of theportTypedefinition of the simulation web service

61

The binding element defines the binding of the web service B@#essages to an actual
protocol (HTTP or SMTP). In addition, it definestencoding style (RPC/message) and
encoding type (encoded/literal). Figure 26 showsudial definition of the binding of the
simulation service to HTTPh{tp://schmas.xmlsoap.org/soap/httihe binding element

lists the operations implemented in the servicénlite input and output messages for

each one.
6 "71 / 89% & $($: 9 89 "7$ & - 9
6 " 71 / "89 9/ 89 7<<' 42" 4 < < 9k

6 "7 /I 89 %!$ "9/
6 " 7 / 899/<;/
6 "7 &1 89 %l$ " =& 9/

6 " 71/ $"89 T<<' 42" 4 < < <9
89" 7<< 4 4 " 4 < $<$ &" $(9
& 89 9/
6< "7 &/
6 "7& &/ 89 %!$ " 9;/
6 " 71/ $"89 T<<' 42" 4 < < <9/
89 7<< 4 4 " 4 < $<$ &" $ (9
& 89 9/
6< "7& &;/
6< "7 i/
6< "71

Figure 26: An excerpt of thebinding definition of the simulation web service

The service element groups a number of ports together. Eaah Ipiks a binding
definition of a specifiqportTypeto a Uniform Resource Identifier (URI) to be uded
access the service. In Figure 27, the simulationrvige binding
(SimulationServiceSoapBinding) linked to theSimulationServicgort, which in turn is
assigned the URLNh(tp://localhost:8080/axis/Service/SimulationSeeyicThe URL is

necessary in order for the clients to access ahzeuthe simulation service.

62

<wsdl: =" ">
<wsdl: ="impl: " name=" ">
< : ="http:// :8080/axis/ / ">
</wsdl:port>

</wsdl: >

Figure 27: An excerpt of theservicedefinition of the simulation web service

The operations offered by the simulation web sereice:

authenticate it is responsible for authenticating users antailizing a new session
for each successful login.

setMAFile: it is used to set the model definition file (.ma)

setDEVSModel it is used to set a DEVS model by C++ headeriamqdementation
files.

setEventFile it is used to set the external events file (.ev).

setSupportFileit is used to set support files that need to\malable to the simulator
such as a file containing the initial values of ttels (in the case of Cell-DEVS
models).

setExecutionTimeit is used to set the execution time of the model
enableParsinginfo it is used to inform the simulator to generateparsing
information file that can be used to debug Cell-CEviodels.

setGridConfigFile it is used to set thgrid configuration filewhich contains the
model partitions and the addresses of the machpagscipating in a distributed
simulation session.

createSlaveSessiont is used to initialize slave sessions when mgrdistributed
simulations.

receiveRemoteMessagi is used to exchange remote messages duringtrébdted

simulation session.

63

stopSimulation it is used by the master machine to stop the Isition in the slave
machines at the end of a distributed simulatiosisas

startSimulationServiceit is used to start the simulation.

isSimRunning it is used to check whether the simulation ising or not.
getCurrentSimulationTimeit is used to check the current simulation time.
insertExternalEvent it is used to insert external events to the modkeile the
simulation is running.

kill[Simulation: it is used to kill the simulation.

retreiveLogFile it is used to retrieve the log file(s) generabgdhe simulator.
retreiveOutputFile it is used to retrieve the output file generatgdhe simulator.
retrieveParsingInfoFile it is used to retrieve the generated parsingrmétion file
that can be used to debug Cell-DEVS models.

retrieveSessionLogFileit is used to retrieve the session log file whicbludes the
output messages generated by the simulator.

logOff: it is used to log the current user off and tcalidate his session.

64

Chapter 5. Distributed CD++ (DCD++)

CD++ executes the model by passing messages arhendifferentprocessorsin the
simulation. Coordinatorsare theprocessorsresponsible for executing coupled models
while Simulatorsare associated with atomic DEVS models and theyresponsible for
executing each of the functions defined by the rhddpending on the time and type of
the received message. Root coordinatoris in charge of driving the simulation as a
whole and interacting with the environment. Titecessorsare created and initialized at
the beginning of the simulation in a hierarchy thmattches the model hierarchy in terms
of the parent-child relationship.

(
G a

Figure 28: Message exchange during a simulation dgc

J

(Sint)a (Sext)a O") J

When the simulation is started, tR®otcoordinator sendsnitialization messaged) to
all of its child coordinators which in turn forwatlem to their child coordinators and
simulators. When the simulator receivesimitialization messageit calculates the time
of the next state transition and it reports it t® parent coordinator through done
message (D)When theRoot coordinatorreceives all th&elone messagdsom its child
processorsit advances the simulation clock to the timehaf hext state transition, and it
sends annternal message (*Yo the simulators of the imminent child modelstatg a

new simulation cycle. When the simulator receivesnéernal messagérom its parent

65

coordinator, it executes tlmutput functiorv{) of its model and sends autput message
(Y)to the parent coordinator. Then, it executedriternal transitionfunction(dh) of the
model in order to evaluate the next state. Thel fat@p of state transition would be
sending adone messag® the parent coordinator reporting the time of tiext state
change of the mode. If an external event is foredr the simulator though axternal
message (X{from the environment, or translated from @utput messagéom another
model), the simulator executes thgternal transitionfunction (@) of the model and
reports the time of the next state change to itergacoordinator. The previous steps
continue until there are no more messages/evemstess or until the simulation clock

reaches the maximum execution time as providedéyrtodeller.

CD++ was developed originally to run on a singlerkstation; by implementing the
original CD++ algorithms, it was able to run DEVBdaCell-DEVS models as long as
the modeller defines theelectfunction for tie breaking. Whenever two models are
scheduled for state transitions at the same timesf@wn in Figure 29), CD++ would
pick the one specified by theelectfunction to execute first, followed by the other
imminent models. Although this might be acceptafde some models, it has two
limitations:
i) It introduces a serialization problem that may lgad incorrect model
execution.
i) It prohibits the modeller from defining complex CBEVS models taking
advantage of the zero-delay permissible by thelleb€ell-DEVS formalism.

Figure 29 shows an example of two simulators in sgenarios; with and without tie.
The left part of Figure 29 shows message exchaagaeesice between the coordinator
and the two simulators. The coordinator sendsirdialization message (Io the
simulators followed by twalone messages (Bgnt by the simulators reporting the times
of their next state changeSimulator lis scheduled for internal transition after twodim
units, andSimulator?2 is scheduled for internal transition after simeg units. This results
in the coordinator activatingimulator 1first (by sending arinternal message (¥)

followed by Simulator 2 The second case (shown in the right part of Ed®), shows

66

the two simulators scheduled for internal transitet the same time (after four time
units). This results in the coordinator examinihg $electfunction in order to decide

which simulator to activate first, in this caSenulator 2

In order to expand CD++ into a distributed engialele to execute complex models in
distributed environments, the serialization issuth WL D++ had to be resolved. That is,
partitioning the model on different components whiking the original CD++ algorithms

doesn't allow parallel execution of the model.

0%67074K0Y0)'0) 0767074N0)0)\6)
* / *
N QQ/\ * Ve @ ~ Q@ * _ %
1 2 1 2
Model 1 Model 2 Model 1 Model 2
(Bint)a (6e“), (7\) (Bint)a (Bext): 0\) (6int)s (6e\t)s O\) (Bint)a (Be\()a ()V)
(No Tie) (> selec{model1,model2} = model2>

Figure 29: Tie breaking using theselectfunction

5.1 Implementing the Parallel-DEVS Algorithms

The Parallel-DEVS (P-DEVS) algorithms [Cho94a] werdroduced to solve the

serialization problem with the original DEVS algbrn and to enable the execution of
DEVS models in parallel and distributed environmsefthe main additions in P-DEVS
are the message bags, anddbefluent transitiorfunction(¢on). Message bags are used
to hold multiple input messages arriving to the elodnd multiple output messages
generated by the model. Thenfluent function allows the modeller to define the

behaviour of the model when it receiveseatternal messagehile being scheduled for

67

internal transition. In such case, tbenfluent transitiorfunction is executed in place of
the internal and external transitionfunctions. The abstract simulator for DEVS models
was extended to run P-DEVS models so that multiplainent models can be executed
together. In the P-DEVS abstract simulator, fiveds of messages are used and can be
categorized intocontent messageand synchronization message€ontent messages
includeexternal messages (hdoutput messages (Y)at are used to represent events
generated by the model. Synchronization messagési#internal messages (*tollect
messages (@anddone messages (Ohternal messageare used by the coordinators to
trigger three different transitions depending oa thessage arrival time and the status of
the external message b&ipllect messageare used to trigger thmutputfunction of the
model before any internal transitidDdone messageare used by the simulator to report
the time of the next transition to its coordinator.

CD++ was redesigned in order to implement the P-BENgorithms. As in the original
version, Simulatorsare used to execute atomic DEVS and Cell-DEVS hsodehile
Coordinatorshandle message passing and event synchronizagioveén the different
models. A Root coordinatoris used for starting/stopping the simulation, Ekloc
advancement, and interfacing with the environme&@iD++ executes the model by
creating a simulator/coordinator hierarchy that ahats the model hierarchy; for each
atomic DEVS/Cell-DEVS model there is a simulatord dor each coupled DEVS/Cell-
DEVS model there is a coordinator. The simulaters eoordinators behave differently
to each of the messages received. The simulatoesveeinitialization messages (l)
collect messages (@)nternal messages (*), and external messages Kwever,
coordinators receiviitialization messages (Irollect messages (@pternal messages
(*), external messages (Xjone messages (Dandoutput messages (YJhe details of
the algorithms that define the behaviours of theutators and coordinators are presented

in Appendix-A.

68

Model 1 Model 2 Model 1 Model 2
Sinlg Sc“, A 8inta 8c\h» A 6inl,-» Sexla 8t:onl’a P 6inl,-» Sexl; 6cmlfa P8

(++ (DEVS) > (++ (P-DEVS))

Figure 30: Concurrent model activation in ParallelDEVS

By implementing the previous algorithms, CD++ ideatp activate imminent models
concurrently avoiding the serialization problenrawiuced in the original version. This is
of considerable importance to the Cell-DEVS modaalst allows for executing cells with
zero time delay (due to the availability of messaggs). In addition, it provided the
possibility of extending the simulator into a distited engine which can execute
concurrent imminent models in parallel. Figure 3@ws the difference between the
previous and current implementation of the CD++im&gn the case of two imminent
simulators. The original implementation (left pagjjuired the use of treelectfunction

in order to choose the simulator to activate firdbwever, when implementing the P-
DEVS algorithms, the coordinator is activating beimulators at the same time solving

the issue of serialization introduced in the o)iDEVS formalism.

Implementing the P-DEVS algorithms required changede made in the class and
model hierarchies of CD++. Th®ocessorclass is the parent of all the classes in charge
of executing the model. Those include 8ienulator Coordinator, FlatCellCoordinator
andRootclasses. Th@rocessorclass implements the basic functionality requiogdall
simulation classes. Those include theceive methods, which are responsible for
receiving and processing the different simulatieessages. The messages are sent among

processorghrough theMlsgAdminclass. The sendingrocessomwould send the message

69

to theMsgAdminthrough thesendmethod, which will cause the message to be queued
until it gets sent. Sending a message is done kygutixg thereceive method on the
receivingprocessor In addition to theeceivemethod, theprocessorclass implements

three important methods for the execution of thel@hahose are:

lastChange()it reports the time of the last state change;
nextChange()it reports the time of the next state change;

absoluteNext()it reports the absolute time of the next changst@hange() +

nextChange());
Root J7
Processor
timeStop model ko>
next
last begin()
- 0 procld end()
initialize() absoluteNext() iterator()
receive() description() ()
0 id0 0
simulate() 0 0
stop() model()
0
Dreceive()
allPorts
cdppPath
machineld
Simulator
Coordinator
receive() receive_queue_id
doneCount send_queue_id
sessionlD
0
receive() addPortToList()
0 0
0 <} receive() 0 0
0
0
0
- 0
running 0
Message ()
0
run() E:ﬁgld setSession|D()
:g';(? asString() stop() 0
sendTo()
type()
N\

Figure 31: The simulation class hierarchy

70

The Simulator class extends thBrocessorclass and overrides threceive function in
order to execute the function of the DEVS modelregponding to the type of the
received message. For example, wheS8iraulatorreceives aollect messagérom its
parent coordinator, it executes tbetputfunction associated with its model in order to
generate the model output. This is followed by $iaulatorsending adlone messag®
the coordinator reporting the time of the next derof the model. Th&imulator
receives only specific types of messagesgoieor output messagese received by the

Simulator

The Coordinatorclass is responsible for forwarding messages arttengimulatorsand

for synchronizing the events taking place during simulation. Theeceivemethod has
the same functionality as in arprocessorclass, but the behaviour of the method is
different from that in th&imulatorclass. That is, to implement the P-DEVS algorithms
the coordinator receives all kinds of synchronization and conte@ssages and reacts
accordingly (detailed description of the coordimadtyorithms is provided in Appendix-
A). The message bag associated with tteordinator is processed through the
sortExternalMessagesethod which gets invoked at the time of receivamginternal
message (*) This causes the messages in the bag to be faddodtheir destinations
(Simulatorsand/orCoordinatorg. ThesortOutputMessagemethod is invoked whenever
a child Simulatoror Coordinatorsends amutput messag® its parent coordinator. This,
results in the message either being translatedexternal message(sent to the local
destination(s), or anutput messagbeing forwarded upward in the class hierarchy. The
calculateImminentChilds responsible for evaluating the imminent cipldbcessorshy

examining the minimum time of the next state change
The FlatCellCoordinatoris in charge of executing flat Cell-DEVS modelsieh differ

from Cell-DEVS models in that they are executedobg processorinstead of using a
processoifor each cell in the cell space.

71

TheRootclass is the maiprocessotin the simulation and it is in charge of:
Starting the simulation though teemulatemethod;
Stopping the simulation through teopmethod,;
Interacting with the environment in terms of loagglithe external events and
generating the model output;

Advancing the clock of the simulation;

Messages are implemented as separate classesepessenting a message type with all
the classes inheriting thdessageclass. Different messages have different attryuier
example, thdDone Messagelass has an extra fieldgxtChanggto indicate the time of

the next state change.

In addition to the simulation class hierarchy, otlbkasses play an important role in
driving the simulation. The&SimLoaderclass (shown in Figure 32) is responsible for
loading the model definition and execution optiomsen the simulator is started and
before executing the model. This includes loading model definition and external
events as input streams and loading the simulébigrand output as output streams. The
SimLoaderis used by theMainSimulator class during the initialization phase of the
simulation. The main method in thdainSimulator class is therun method, which
organizes the activities handled by tiainSimulator Those include loading the model
hierarchy in the memory, loading the initial valuesthe cells, loading the external

events, and creating the simulators to executenthaiel.

loader k>——|events
() Iog

Instance() models
0 output

run()

Figure 32: TheMainSimulator class

72

5.2 Implementing the Simulation Components

As discussed in Chapter 3, the design of the sitmoulaservice depends on developing
the service as a set of independent, yet relat@ahponents that interact by message
passing through the Linux kernel. The major partsthe service areweb service
components simulation componentsand the WrapperProxywhich is used to pass
messages between the two. The simulation compoaeatsesponsible for executing the
model and interacting with the web service comptsém receive the model partitions,
fulfill any client request while the simulationrnignning, and retrieve the results when the
simulation is over. They consist of two main patte modified version of the CD++
engine which is in charge of executing the simalafidiscussed in the previous section),
and theCPPWrapperclass (see Figure 31), which is responsible ftarfacing CD++ to

the web service components.

The functionality of theCPPWrapperclass includes:

Initializing the message queues used for commubpitavith the web service
componentsifitializeMessageQueugs

Querying and retrieving the model partitions frone tweb service components
(machineForModeladdZonePartitioin

Querying the current execution time and insertixgemal events while the
simulation is runningdgetCurrentSimulationTiménsertExternalEvent

Sending remote messages while running distributedmulations
(sendRemoteMessggd his method takes a C++ message and sendshie toveb
service components to be sent to the remote machine

Receiving remote messages while running distributesimulations
(receiveRemoteMessggd his method receives a message from the wehcserv
components and constructs a C++ message to bespaatby the simulator.
Stopping the simulation when receiving a stop ngsdaom the web service

componentsgtop.

73

5.3 Designing and Implementing Distributed-CD++ (DO++)

When considering the design and implementationhefdistributed simulation engine,

different approaches were considered to assess irtegration of web service

technologies with the algorithms used in the fiefcparallel and distributed simulation.

The objective of the design was to take advantdgheoweb service capabilities while

minimizing the overhead incurred on the simulatsr a result of adopting a new

middleware. Three main approaches were investigated

)

ii)

Implementing an optimistic simulation engine usitige Time Warp
algorithm. Although Time Warp unties the differantaichines in distributed
simulations by allowing each machine to advancecit€k independently
from the other machines, it depends on exchanginghsonization messages
to handle rollbacks. When considering the overhefatransmitting SOAP
messages embedded in HTTP packets, it was noticad the speedup
achieved by the Time Warp algorithm might be compsed by the delay of
the SOAP messages.

Implementing a conservative simulation engine bgwahg each machine to
advance its clock when it can guarantee that ciysarors will not occur.
This can be accomplished by sendiogkaheadvalues usinquull messages
This approach has the disadvantage of adding toweshead of the engine by
the time required to transmmull messagessing SOAP. In addition, deadlock
might occur if there is a cyclic dependency betw#sn models with zero
lookahead. This in turn, requires implementing dieeld detection and
recovery mechanisms.

Implementing a conservative engine by handling kcladvancement in one
machine to minimize the synchronization messagesngnthe machines

participating in the simulation.

The third approach was adopted in order to limgétglinchronization messages among

the machines to those required by the P-DEVS dlgos. Implementing the

74

distributed engine required two major changes ® simulator. On one side, the

model definition classes had to be extended tavallee partitioning of the model on

multiple machines. On the other side, the modeketien mechanism had to be
extended in order to handle message routing anahsynization on multiple
machines. In principle, executing the model on mldtmachines requires:

i) Loading the model hierarchy and model partitiominfation in each machine
participating in the simulation. This is required arder to check the causal
dependencies among the model components when amh meeds to be sent
from one model to another. In addition, having theodel partition
information is needed to distinguish the local modemponents from the
remote ones.

i) Running simulators and coordinators on each macfondocal models in
order to handle message passing and model execution

The model partitioning information is provided thet simulation through thegrid
configuration file(an XML file containing the addresses of the maehiexecuting the
model and the parts of the model running on eaclthina). Using the original
implementation of theCoordinator class will add unnecessary overhead if two child
processorsvant to exchange messages and are running in himeadifferent than the
coordinator As shown in Figure 335imulator 3sends aroutput messag#hat is to be
translated into amexternal messag® Simulator 2 When sending the message to the
coordinator, it ends up being transmitted twiceessote messages due to the fact that the
coordinator is running on a different machine thha source and destination of the

message.

] (o) (Coomr)
(J(J +

o MOdeI : MOdeI ’
(int)> (Bext)> (A) (Bint), (Sext), (1) (Bine)> (Bext)s (1)

Figure 33: Unnecessary remote messages in distrilaa simulation

75

This problem could have been avoided if there acessorresponsible for message
routing locally in each machine. One approach ttvesdhis issue is to use one
coordinator in each machine for message routingnanibe localprocessorsthis was
initially adopted by PCD++ [Tro03] in order to mmize the remote message
transmission among the machines. The idea dependsing two kinds of coordinators
for each coupled DEVS/Cell-DEVS model:

i) Master Coordinator:is responsible for synchronizing the model exeouyti
interacting with upper level coordinators and mgesauting among the local
and remote model components.

i) Slave Coordinatoris responsible for message routing among the iocalel
components dispensing with the need to send remessages if the master
coordinator is residing on a different machine thhat used to run the

sending and receivingrocessors

Having a slave coordinator iMachine 2(as shown in Figure 34), causes the message
from Simulator 3to Simulator 2to be sent locally improving the performance o th

simulator.

1 2
)
~——
X . ‘\\Y
R r N\)
1 2 3
\. I J _ :)
: : 1 : (5) (3)
(6int)5 (6ext)> O‘) \(Sillt)a (6ext)> O‘)J k(Sinl)a (6ext)> O‘)J

Figure 34: The use oMasterand Slavecoordinators to avoid unnecessary messages

76

Implementing the distributed simulator includeseexting CD++ in three main aspects:
)] The simulation mechanism is implemented mainly githe master and slave
coordinators;
i) The model loading mechanism is extended to mairtkerpartitioning
information;
iii) The message passing mechanism is extended to Hacal@and remote

message passing;

5.3.1 Master and Slave Coordinators

The master and slave coordinators are implementexktending the functionality of the
Coordinator class. The reactions of the master and slave swiois when receiving

messages differ from those of the original coortina

When a master coordinator receivesalect messagdérom its parent coordinator, it
forwards it to its imminent childprocessors those can beSimulators Master
Coordinators or Slave CoordinatorsThe external messagen the master coordinator’s
bag are processed when it receivesndégrnal messagerhis, results in sendingternal
messages$o the childprocessorsscheduled for internal and/or external transitiofise
output messageare processed depending on their destinationg;dbeld be translated
into external message®r local child processorsor output message® be sent to the

parentcoordinator.

The slave coordinator handles the messages inikaisway to the original coordinator in

the stand-alone version of CD++ (discussed in @eetil). The main difference between
the two is in the interaction with the upper lewsordinator; the slave coordinator
interacts with the master coordinator instead oidseg messages directly to the upper
level coordinator. A detailed description of thehéeiour of the master and slave

coordinators is presented in Appendix-A.

77

Figure 35 shows a partial definition of the masted slave coordinators, which are
implemented by extending tli@ordinatorclass and integrating them into the simulator
class hierarchy. Both override theceivefunction used to process the different messages
received by theprocessorsIn addition, they implement theortExternalMessageand
sortOutputMessagesT he sortOutputMessagemethod is triggered when receiving an
output messagéom a childprocessor The sortExternalMessagesiethodis triggered
when the coordinator receives iaernal messagéom its parent coordinator. It causes
the coordinator to process all the messages irbats by forwarding them to their
destinations either locally or remotely. TlealculateNextChangenethod is used to
evaluate the imminent chilgprocessorsand its behaviour is different for each
coordinator. In the case of the master coordingt@gonsiders the local childrocessors

in addition to the remote slave coordinators; winléhe case of the slave coordinator, it

only considers the local chifatocessors

slaves 4{> <]7

Figure 35: Master and Slave coordinator classes
5.3.2 Model Loading Mechanism
The model loading mechanism in the stand-alone Clbas based on parsing the model
definition files and creating the corresponding wdator/coordinator for each of the

model components. Those components can be atomi¢SDodels, coupled DEVS

models, atomic Cell-DEVS models, coupled Cell-DEMSdels, and flat coupled Cell-

78

DEVS models. After implementing DCD++, the modeddong mechanism includes
loading the partitioning information as part of thedel loading process; the partitioning
information is retrieved from the web service comgats through th&CPPWrapper
class. Atomic models are assigned to run on a Bp@sachine and a coupled model can

span different machines with each of its componamising on an individual machine.

Model
Pimodel_ < childs

0 0

0 proc 0
0 0 type()

state

0 delay
0 inertial

inValue 0
localFn 0

value()
0
K T

0 0
0 0 0
0 0 0
0 0 0
0 0

Figure 36: DCD++ model hierarchy

Figure 36 shows the relationship between the diffecclasses representing the model
hierarchy in DCD++. During the model loading pracedeMainSimulatorclass (shown
in Figure 32) executes the modedisdMachinesmethod, which is common to all the
models. TheaddMachinesmethod queries thEPPWrapperfor the model partitioning
information in order to store that information witithe models; this information is used
when thecreateProcessomethod is invoked. ThereateProcessomethod checks the

model partitioning information to see if the modes a local component on the local

79

machine; if so, it creates the correspondangcessorfor the model. If the model is an
atomic one, and is assigned to run on the localhina¢ a simulator is created. On the
other hand, if the model is a coupled model with finst component assigned to run on
the local machine, a master coordinator is creatdderwise, a slave coordinator is

created and associated with the coupled model.

5.3.3 Message Passing Mechanism

The message passing mechanism was extended tehacal and remote messages. The
MsgAdmin class is responsible for forwarding messages iardination with the
CPPWrapperclass. TheMsgAdminclass is activated when the simulation is staraedl,

as long as there is at least one message inutipeocessedMessageapieue. The
MsgAdminclass picks the message at the front ofuhprocessedMessaggsieue and
checks the destination of the message; if the rgin is a locaprocessorthe message
is delivered to th@rocessorby executing itseceivefunction. Otherwise, the message is
passed tcCPPWrappermwhich in turn passes it to the web service comptmelhe web
service components extract the message informati@h encapsulate it into a SOAP
message that is sent to the receiving machine. WinersOAP message arrives to the
destination machine, the web service componentaaxthe information and pass it to
the CPPWrapper The CPPWrapperbuilds a C++ message and hands it over to the
MsgAdmin class, which forwards the message like any otleall message. This
approach was followed to keep message passingoaread to the simulator in the case
of local and remote messages. The message comrionitetween th&CPPWrapper
class and the web service components takes placagth the Linux kernel using the

WrapperProxy

5.4 Sample Scenario

In order to present the overall operation of threutator in a distributed environment, a

coupled DEVS model is executed using two machifike.model consists of four DEVS

models; thegeneratoris an atomic DEVS model producing jobs to be pssed by the

80

processoy the queueis used to queue the arriving jobs before theypyetessed, the
processoris responsible for processing the jobs, and tthesduceris in charge of

calculating statistics such as the throughput efpitocessor The structure of the model
is shown in Figure 37:

GPT

dne ¢ T] ot

Queue PP

——out—p»

v solved

arrived >
> cpuusage

QPT

throughput

Figure 37: The Generator-Processor-Transducer (GPTinodel

Two machines were used to execute the model, aregdd in Ottawa and the other in
Montreal. They were connected using a commoditgrivgt connection. Thgenerator
component of the model was set to runMechine 1(Ottawag)and thequeueg processoy
andtransducemodels were running ddachine 2(Montreal)

il

e
— g

' top Master _SOAP QPT Master

Figure 38: GPT model partitioning on two machines

U

2

_

When loading the models and simulators, Machineads threeprocessorsthe Root
coordinator, the top master coordinatorand thegenerator Machine 2 loads th&p
slave coordinatgrthe QPT (coupled DEVS model consisting of trieue Processoy

81

and Transducer models) master coordinatagr the transduceyr the queue and the
processor The simulation starts by thRoot coordinator sending amitialization
message (I)to the top master coordinatorwhich in turn forwards it to its child
processors(generator and top slave coordinatgr The message to thtop slave
coordinator is sent remotely using a SOAP message. Whertdjheslave coordinator
receives thenitialization messageit forwards it to its childprocessor(QPT). The
initialization messageauses the simulators to initialize their modeld eeport their next
state change to their parent coordinators. DCD+€s¢he progress of the simulation in
each machine into a log file that includes an emftryeach message received by the

processorsunning on that machine.

0/ L/ I/ 00:00:00:000 / Root(00) (06)

0/ L/ I/ 00:00:00:000 / top(06) (01)

0/ L/ D/ 00:00:00:000 / (01) / 00:00:00:000 (06)
0/ R/ D/ 00:00:00:000 / top(07) / 00:00:02:000 (06)

0/ L/ D/ 00:00:00:000 / top(06) / 00:00:00:000 (00)

0/ L/ @/ 00:00:00:000 / Root(00) (06)

0/ L/ @/ 00:00:00:000 / top(06) (01)

0/ L/ Y/ 00:00:00:000 / (01) / out / 0.00000 (06)
0/ L/ D/ 00:00:00:000 / (01) / 00:00:00:000 (06)
0/ L/ D/ 00:00:00:000 / top(06) / 00:00:00:000 (00)

0/ L 00:00:00:000 / Root (00) (06)

0/ L 00:00:00:000 / top(06) (01)

0/ L/ D/ 00:00:00:000 / (01) / 00:00:09:000 (06)
0/ R/ D/ 00:00:00:000 / top(07) / 00:00:00:001 (06)

0/ L/ D/ 00:00:00:000 / top(06) / 00:00:00:001 (00)

Figure 39: An excerpt of the log file of Machine 1

The first field in a log entry is the machine idlléwed by the source of the message (L:
local, R: remote), then the timestamp of the messagsted, followed by the source and
destinationprocessorsin the case oéxternalandoutput messageswo extra fields are
listed, which are the port name and message valuetisrough the port. Figure 39 shows
an excerpt of the log file of Machine 1 while extieg theGPT model. After sending the
initialization messagethetop master coordinatoreceivesdone messagdsom its child
processorsThis includes thelone messagsent from theenerator(line 3 in Figure 39)
reporting the time of the next change as “00:0@007; in addition, it includes a remote
done messageom thetop slave coordinatofline 4 in Figure 39) running on Machine 2
reporting the minimum time of the next change a8:00:02:000”. Thetop master

coordinatorsends the minimum time of next state change tdrttw coordinator (line 5

82

in Figure 39). In the next simulation cycle, tReotcoordinator sends @ollect message
at time “00:00:00:000” to théop master coordinatothat in turn forwards it to the
generator The collect messageauses thgeneratorto execute itoutput function to
generate the output that is forwarded to its pateotdinator. Line 8 in Figure 39 shows
the output messageent from thegeneratorto thetop master coordinatothrough theout
port carrying a value of zero. Nmllect messages sent to theop slave coordinatoat

this point, since its next transition occurs ateif0:00:02:000".

1/ R/ X/ 00:00:00:000 / top(06) / out / 0.00000 (07)

1 /R 00:00:00:000 / top(06) (07)

1/ L/ X/ 00:00:00:000 / top(07) / in / 0.00000 (05)

1/ L/ X/ 00:00:00:000 / top(07) / / 0.00000 (05)
1/ L 00:00:00:000 / top(07) (05)

1/ L/ X/ 00:00:00:000 / gpt(05) / / 0.00000 (04)
1/ L/ X/ 00:00:00:000 / gpt(05) / in / 0.00000 (02)
1/ 1L 00:00:00:000 / gpt (05) (02)

1/ L 00:00:00:000 / gpt(05) (04)

1/ L/ D/ 00:00:00:000 / queue(02) / 00:00:00:001 (05)

1/ L/ D/ 00:00:00:000 / (04) / 00:00:02:000 (05)
1/ L/ D/ 00:00:00:000 / gpt(05) / 00:00:00:001 (07)

Figure 40: An excerpt of the log file of Machine 2

The output messagegenerated by thegenerator is translated by theéop master
coordinatorinto anexternal messagtat is sent to theop slave coordinatovia SOAP
(line 1 in Figure 40). Thaop slave coordinatorsaves the message into its external
message bag until it receivesiaternal messagé&om thetop master coordinatofline 2

in Figure 40); at which point, it forwards the megs to theQPT master coordinator
through thein andarrived ports. This causes tH@PT master coordinatoto send the
external messages its bag to théransducerandqueuemodels (lines 6, 7 in Figure 40).
Theinternal messagsent to theéQPT master coordinatois forwarded to theueueand
transducermodels (lines 8, 9 in Figure 40). This resultsthe queueand transducer
models executing theexternal transitionfunctions and reporting the time of the next
change as “00:00:00:001” and “00:00:02:000", refipely (lines 10, 11 in Figure 40).
The done messagégenerated by théop slave coordinatgris forwarded to theop
master coordinatousing SOAP (line 14 in Figure 39). Then tbe master coordinator

evaluates the minimum time of the next change (f0O@0:001”) and sends it to tiRoot

83

coordinator. Thd&Rootcoordinator advances the clock of the simulatm{D0:00:00:001"

and the simulation continues until at leas onéneffollowing conditions holds:

) There are no more events/messages scheduled lof Hrgprocessors
i) The simulation clock reaches the maximum executiae as provided by the

user.

The actions taken by the simulator when receivingngernal messagelepend on the
timestamp of thenternal messagehe time of the next internal transition of thedel,

and the status of the external message bag. Ihtemal messagarrives when there are
messages in the bag and mbernal transitionis scheduled, thexternal transition
function is executed. If thmternal messagarrives when there are no messages in the
bag and the internal transition is scheduled te takce, thenternal transitionfunction

is executed. If thénternal messagarrives when there are messages in the bag and the
model is scheduled for internal transition; in tbése theonfluent transitiorfunction is
executed. In theGPT example, when thé&ransducerand queuereceived thenternal
messagedrom the QPT master coordinatoflines 8, 9 in Figure 40) they were not
scheduled for any internal transitions; hence teggcuted theirexternal transition

functions as a response to theernal messages

SOAP plays an important role in distributed simolatsessions; it is not only used for
sending remote simulation messages betweerpteoessors Rather, it is also used for
the initialization, and the control of the remoessions. When a user connects to the
simulation service to start a distributed sessenconnects to the first machine which is
considered as thmaster nodehroughout the session. Once the model and caafiign
files are submitted to the service and before digtstarting the simulation, it initializes
the slave sessions running on the other nodese(tlr@sreferred to adave nodes To do

so, the master node uses the services offeredebgithulation services running on the
slave nodes in order to send the model and cordigur files. In the GPT example, this
is done by submitting different requests to Maclina order to initialize the distributed

simulation session.

84

<? ="1.0" ="utf-8"?>
< : : ="http:// .org/soap/ I :xsd="http:/Aww.w3.org/
2001/ " xmins:xsi="http:/iww.w3.0rg/2001/ - ">
< : >
<nst: ; ="http.// .org/soap/ " xmins:ns1="http./
WWW.SCE. .cafars/ ">
<in0 href="#id0"/>
<in1 xsi:type=" " ="hitp:/ .org/soap/ [">Rami</in1>
</nst: >
< ="id0" :root="0" . ="http:// .org/soap/ I
xsi:type="xsd:int" ="hitp:/ .org/soap/ "> </ >
</ : >
</ >

Figure 41: createSlaveSessiarquest

Figure 41 shows a SOAP request for invoking ¢cheateSlaveSessiarperation in the
service running on Machine 2. This operation itite&s a new session on the machine
bypassing the process of user authentication, sitieentication took place when the
user connected to the master node. It takes twanagts: the username of the user who
initiated the session and the session id assiggatidomaster node. The SOAP request
consists of arenvelopewhich contains &ody (and an optionaheadej. The envelope
defines the different namespaces that are normaglyg in SOAP messages such as the
namespace of the SOAP envelop itselMLSchemaand XMLSchema-Instancelhe
body contains the arguments of the operation; timdade the usernam@Rami”) and
session iq153999) After finishing the initialization process, whiahcluded sending the
model definition andyrid configurationfiles to Machine 2, the execution of the GPT
model was started and SOAP was used to exchangeeaamessages between the two
machines. Figure 42 shows the SOAP message ussehtbtheinitialization message
from thetop master coordinato(Machine 1) to theop slave coordinatof{Machine 2).
The envelope and body attributes list the namesgatiaitions that are usually part of
SOAP messages. The operation responsible for gsgndemote messages is
receiveRemoteMessagenning as part of the simulation service in Maehi2; the

arguments submitted in the SOAP request include:

85

Argument Description | Message(Figure 42)
sessionID Session id 153999
MessageTime Timestamp of the message 00:00:00:000
MessageType The type of the message (IMessage)
NextChange Time of the next change Null

(used fordone messaggs

SendingProcessor

The id of the sendingrocessor

6 (top master)

Portld The id of the port -1
(used forX andY messagés
Value The value of th&XandY messages -1
SenderModelld The id of the original sender of thel
message
isFromSlave True if the sender is slavecoordinator, | False
false otherwise
ReceivingProcessarThe id of the receivingrocessor 7 (op slave)

Table 3: Arguments of thereceiveRemoteMessaggeration

86

<
<

<

<

? ="1.0" ="utf-8"?>
: ="http://
www.w3.0rg/2001/
. >
<ns1:

xmlns:ns1="http://www.sce.
<in0 href="#id0"/>
<in1 href="#id1"/>

<in2 xsi:type=" : " xmins:
">00:00:00:000</in2>
<in3 href="#id2"/>
<in4 xsi:type=" " xmins:
<in5 href="#id3"/>
<in6 href="#id4"/>
<in7 href="#id5"/>
<in8 href="#id6"/>
<in9 href="#id7"/>
</ns1: >
< ="id0" :root="0"
[" xsi:type="xsd:int" xmins:
</ >
< ="id1" :root="0"
[" xsi:type="xsd:int" xmins:
o</ >
< ="id2" :root="0"
[" xsi:type="xsd:int" xmins:
6</ >
< ="id3" :root="0"
[" xsi:type="xsd:int" xmins:
1</ >
< ="id4" :root="0"
[" xsi:type="xsd: " xmins:
-1.0</ >
< ="id5" ‘root="0"
[" xsiitype="xsd:int" xmIns:
-1</ >
< ="id6" ‘root="0" :
[" xsi:type="xsd: " xmins:
false</ >
< ="id7" ‘root="0"
[" xsiitype="xsd:int" xmIns:
7</ >
</ : >
/ : >

.org/soap/
" xmins:xsi="http://www.w3.0rg/2001/

="http://
.calars/ ">
="http://
="http://

: ="http://

="http:// .
: ="http://

="http:// .
: ="http://

="http:// .
="http://

="http:// .
="http://

="http://
="http://
="http://
="http://
="http://
="http://
="http://

.org/soap/

.org/soap/

/" xmlIns:xsd="http://

_ S

.org/soap/

I\

/ll/>

. .org/soap/
.org/soap/ /">
. .org/soap/
.org/soap/ /">
. .org/soap/
.org/soap/ /">
. .org/soap/
.org/soap/ /">
.org/soap/
.org/soap/

.org/soap/
.org/soap/ /">
.org/soap/
.org/soap/

.org/soap/

.org/soap/ /">

/ll

/l|>

Figure 42: Aninitialization messagesent as SOAP from Machine 1 to Machine 2

87

(master node) to retrieve the attachment. Thikasve in Figure 43:

At the end of the simulation, the master node ee&s all the log files generated by the
slave nodes and makes them available for the asetrieve. The files are sent from the
slave nodes to the master node as SOAP attachniBms.SOAP message doesn't

actually include the file; rather, it includes ah mecessary for the receiving service

<? ="1.0" ="UTF-8"?>

< : : ="http:// . .org/soap/ /" xmlns:xsd="http://
www.w3.0rg/2001/ " xmlns:xsi="http://www.w3.0rg/2001/ - ">
< . >
<ns1: : ="http:// . .org/soap/ I
xmins:ns1="http://www.sce. .calars/ ">
< ="cid:0251D55ABD69CA54CDFF DBOFF79"
xsi:type="ns2: " xmIns:ns2="http://xml. .org/xml-soap"/>
</ns1: >
</ : >
</ : >

Figure 43: retrieveLogFileresponse

5.5 Integrating Optimistic (PCD++) and Conservative(DCD++) Simulators

Distributed CD++ (DCD++) represents an efficientame of exploiting unused resources
(CPU time and memory resources) in order to execoeplex models. By exposing the
simulator functionality as a service, unused resesircould be used in a productive
manner. However, the middleware tools used to zeaDCD++ have added some
overhead in terms of the execution time of the &tmn. On the other hand, PCD++
[Gli04] was developed following the optimistic appch using WARPED [War06] as a
simulation middleware and MPI [MPI95] as a messggimotocol. PCD++ is able to
execute models in shorter execution times due écatorithms used in the simulation,
and the fact that the delay associated with sendliRfy messages is mush less than the
delay associated with sending SOAP messages. TUsepdint that DCD++ has over
PCD++ is that the connectivity between the machicas be anything ranging from
commodity Internet connections, to high-speed ptroint fibre links. As
demonstrated with th& PT model, one of the machines used for the testslocased in
Ottawa, while the other in Montreal. On the othendh, MPI is usually used for
networked workstations within close proximity inrrtes of the geographic locations.
Integrating the two simulators together has an alppg objective of attaining the
speedup provided by PCD++ while making efficiené w§ unused resources through

DCD++. In order to do so, two major issues neelettaken care of:

88

)] A messaging and coordination mechanism needs testablished since the
two simulators use totally different middleware aaMdjorithms for their
operations.

i) Synchronization mechanisms need to be in placasare the correctness of

the simulation.

In the next two sub-sections, we describe a solutay the first issue, followed by a

proposed solution for the second issue.

5.5.1 Interfacing DCD++ to PCD++

PCD++ uses WAPRED [War06] as a simulation middl@niar order to implement the
Time Warp algorithms for parallel simulations. Timessages sent by the simulator are
encapsulated into WARPED messages that get sent &oe simulation object to
another. When receiving a WARPED message, the atiool object extracts the
information carried by the message as a regular#QODessage that gets processed by
one of the simulators and coordinators in the syst@n the other hand, DCD++ uses the
original CD++ messages for local communications rgndhe simulation objects
(processory and uses SOAP for remote communication. In DCDaRen aprocessor
needs to send a message to a remote one, it skadmdssage to the simulation
components of the service which pass the messagjgetoveb service components to
construct a SOAP message. When received at thmakgsh, the SOAP message is used

to construct a CD++ message that gets processttlygceivingprocessor

In order to Interface DCD++ to PCD++, the simulat&ervices were adapted in order to
work with PCD++. As discussed in Chapter 3, theusation services consist of two
major components: thaveb service componentesponsible for the web service
functionality, which are developed in Java (exctdp native methods developed in
C/C++); and thesimulation componentsvhich are responsible for running the simulation
and interacting with the web service componentse Smulation components were

modified and integrated with the code of PCD++ hwiit any major change on the web

89

service side. The modular approach for developigsimulation services was flexible
enough to be used with PCD++ while maintaining tédesign and reimplementation
time to minimum.

> (C+)

WARPED
| MPI |

K=) INI K=Y Proxy
(Java) (C++) ©+4)

WARPED

Figure 44: Implementing the simulation web servicavith PCD++

After implementing the simulation services using’R@, the client is able to run parallel
simulations remotely as a web service. PCD++ runs tigh performance distributed-
memory cluster consisting of 32 Linux machines. $&evices available for the client are

identical to the ones offered by DCD++ (discusse@lhapter 3) with two exceptions:

i) The createSlaveSessiavperation is not available. That is, PCD++ does no
function as slave node(s) even in the proposeditaothre for integration
with DCD++ (discussed in the following sub-section)

i) New operation is implementedgtPartitionFilg in order to allow the user to
set the partition file of the simulation. The p@ot file is a text file that

defines the model partition on the cluster nodes.

90

5.5.2 Integrating DCD++ and PCD++

The proposed architecture for integrating DCD++ B@&D++ depends on integrating the
CPPWrapperclass (part of the simulation components develope@++) within the
simulation hierarchy of PCD++CPPWrapperwill function as an interface between
DCD++ and PCD++ in order to hide the details andhglexities of DCD++ from
PCD++, and vice versa. PCD++ was developed ag aiffailator [Gli04]; the simulation
hierarchy does not match the model hierarchy imseof having a coordinator for each
coupled DEVS/Cell-DEVS model running on the machiBach node has two main
coordinators and one simulator for each local atdd#VS/Cell-DEVS model. Theode
coordinatoris responsible for interacting with the other rodethe simulation and with
the environment. In addition, it is in charge ofvadcing the simulation clock
independently dptimistically) from the other nodes. THiat coordinatorlies under the
node coordinatorin the simulator hierarchy and is responsible ifderacting with the
simulators and forwarding messages upward and dawhwhe simulation hierarchy
depending on the type and destination of the mesSdge simulators are responsible for
executing the atomic DEVS and Cell-DEVS model$hm $imulation.

1

@

= R ==
el Mo
(O () (OO0

Figure 45: PCD++ architecture

91

Both DCD++ and PCD++ implement the P-DEVS alganhfor the model execution.
However, PCD++ useanti messagesduring the rollback phase of the simulation if a
node coordinatorreceives a message with timestamp earlier tharottad clock of the
machine ¢traggler messageOn the other hand, DCD++ neither uses nor canlleanti
messages So, the main issue in integrating the two is eoned with properly
synchronizing theoptimistic behaviour of PCD++ with theonservativebehaviour of
DCD++. The idea presented here depends on disshiug between two kinds of
information in the optimistic simulationconditional knowledge/informatiorand
unconditional knowledge/information Conditional knowledge is the simulation
transactions that took place after the Global \dirflime (GVT); since those transactions
could be rolled back if the node in which they awmaning has received a straggler
message. Unconditional knowledge, on the other haamlesent all the transactions that
were completed with timestamps less than or equédd current GVT value since those

won'’t be rolled back during the simulation.

The idea depends on integrating @ePWrapperas one of the simulation objects under
the flat coordinator of Node O (the first node in the cluster running PCD++), and
changing the behaviour of thiéat coordinator accordingly to forward any message
destined to remote simulation objects (those assigm run within DCD++) to the

CPPWrapperwhich in turn does one of the following:

i) If the message timestamp is larger than the GVTejathe message is
inserted in a queue maintained by @RPWrapperclass to be sent out when
the GVT is re-evaluated and reaches the timestdrtigeanessage.

i) If the message timestamp is equal to the GVT vdaheemessage is forwarded
to the remote simulation object (running within D€#E) to be processed as if
it was running oriNode 0

The implementation of the previous mechanism reguchanges to be made to the

mechanisms used for loading the model in both sitoud. That is, it is important that

both use identical ids for the same models in otddrandle message routing among the

92

models properly. Otherwise, some mapping/transiatwould be required by the
CPPWrapperin order to ensure correct message passing beteetwo simulators.
Since theCPPWrapperis integrated under th#at coordinator of Node Q the node
coordinatorwon’t be able to advance the clock Mode Oin the same pace as the other
nodes of the cluster running PCD++. This is duetht® processing taking place in
DCD++ and the delay associated with sending SOABsages. In other wordsijode O
has to “wait” for DCD++ to finish processing the ssages that were sent to it. This has
an effect of slowing the overall time for executithg model compared with the case of
running PCD++ alone. However, the parallelism aldé on the other nodes (other than
Node 0 can be exploited to achieve the speedup provigetthe optimistic algorithms of
PCD++. As a result, the performance of the two $aaus working together is expected
to be worse than running PCD++ alone but better thaning DCD++ alone.

93

Chapter 6: Performance Analysis

The web service capabilities introduced to CD++ehaxtended its functionality in two
aspects. In one aspect, it enabled the simulatdretcnvoked remotely and interfaced
with other larger systems using web service stalsddn another aspect, it allowed the
simulator to run complex models in distributed eonments using SOAP as a messaging
protocol. However, the extended functionality hasraduced some overhead when
running distributed simulation. That is, the timhéakes for a local message (implemented
as a C++ object) to be transmitted between twol lpgacessors is much shorter than the
time it takes for a SOAP message carrying the sarftgmation to be transmitted
between two remote processors. The overhead isilwated to by two main parts of the
message path between two remote processors. Fhedit is the time it takes to transmit
a message between the simulator and the web serwioponents through the Linux
kernel; the other part is the time it takes to $rait the SOAP message between the two

simulation web services.

Wrapper Wrapper

(C++) = = (C++)
K= o K= Wrapper Wrapper = 2 O]
2 (Java) (Java) 2
CD++ LR ay

CD++

Figure 46: Sending remote messages in distributedhsulation

In order to study the performance of the simulatifferent distributed simulation

sessions were executed using two machines; oneheofrtachines was located in
Montreal, and the other was in Ottawa. Two différerodels were executed using two
different connections between the machines. Irfiteegroup of runs, the machines were

connected using a commodity Internet connectioriheénsecond group, User Controlled

94

Light Path (UCLP) was used to create a point-ta¥p@2P) connection between the
Montreal and Ottawa sites. The results of thesegwaops were compared to each other
as well as to the results obtained when execuliegriodels using a single machine. The
readings obtained during the runs include:
i) The simulation time required to execute the models;
i) The average time it takes in each run to transm8C#AP message from
Ottawa to Montreal.
iii) The average time it takes in each run to transmieasage within the Linux
kernel using message queues.
iv) The average time it takes in each run to transfeycal message within a
single machine.
V) The bandwidth available for the simulator when gdime Internet and UCLP

connections.

In addition, the average time it takes to retrighie results of the simulation was

measured using files of different sizes.

6.1 Experimental Models and Execution Results

Two types of models were used during the performaaralysis. One of the models is
fire spread in a forest and it is implemented ag3B0coupled Cell-DEVS model
[AmeO01]. The other model is a sand-pile model [S4a@/hich consists of DEVS and
Cell-DEVS models. The DEVS model is a sand partgrerator connected to a coupled
Cell-DEVS model representing the formation of adspite.

The fire model is composed of 30x30 cell spaceheat! represents a square area of the
forest. The cell is considered to be burned iftéisiperature exceeds a specific value.
Figure 47 shows an excerpt of the model definitiath possible initial values of the

cells.

95

[top]
. Fire

[Fire]

type : cell

dim : (30,30)
delay : inertial

10
border :

: Fire(-1,-1) Fire(-1,0) Fire(-1,1)
: Fire(0,-1) Fire(0,0) Fire(0,1)
: Fire(1,-1) Fire(1,0) Fire(1,1)
-0
: Fire.val

burned D D

Figure 47: An excerpt of the Fire model definition

The cell space is 30x30 usingertial delay. The neighbourhood of the cell is defined by
the neighborsconstruct, the cell is neighboured by 8 cells frathsides.Fire(-1,-1)
represents the cell in the North West side (N®#e(0, -1) represents the cell in the west
(W), etc. The rules that define the state of tHésée each simulation cycle are defined

using thdocaltransitionconstruct; those rules are shown in Figure 48:

[]
rule : { (1,-1)+(21. 7.) 3} 1. /7.)* }
{ (0,0)=0 and (1,-1)!=? and 0<(1,-1) }
rule : { (1,0)+(15.24/5.) H{ (15.24/5.)* }
{ (0,0)=0 and (1,0)!=? and 0<(1,0) }
rule : { (0,-1)+(15.24/5.) H{ (15.24/5.)* }
{ (0,0)=0 and (0,-1)!=? and 0<(0,-1) }
rule : { (-1,-1)+(21. /.) (21. .)* }
{ (0,0)=0 and (-1,-1)!=? and 0<(-1,-1) }
rule : { (1,1)+(21. .) 3 1. .)* }
{ (0,0)=0 and (1,1)!=? and 0<(1,1) }
rule : { (-1,0)+(15.24/1.) H{ (15.24/1.)* }
{ (0,0)=0 and (-1,0)!=? and 0<(-1,0) }
rule : { (0,1)+(15.24/1.) H{ (15.24/1.)* }
{ (0,0)=0 and (0,1)!=? and 0<(0,1) }
rule : { (-1,1)+(21. /0.)y (21. /0.)* }
(0,0)=0 and (-1,1)!=? and 0<(-1,1) }
rule : { (0,0) 10{ t }

Figure 48: Fire model rule definition
The rules define the time it takes for the cellb® burned if one of its neighbours is
burned. For example, the first rule dictates th#te cell in the south west side of the cell

is burned (0 < (1,-1)), the cell will take (21.53%617.967136)*60000) milliseconds to

96

be burned. The value of (21.552615) representsdibgonal distance of each cell
(measured in meters), and the value of (17.967186he speed of the fire spread
(measured in meters/minute) as presented in thesihaedinition [Ame01]. By dividing
the distance that the fire has to spread througthéyspeed of the fire spread, the time it
takes for fire spread is evaluated in minutes andhbltiplying it with 60,000 the time in
milliseconds is obtained as the delay of the t¢iethe condition in the first rule holds, the
cell state is updated to the value of Fire(1,-1(2%.552615/17.967136) when the delay
elapses.

In order to study the performance of the distridudgenulator, three types of experiments
were performed using two identical machines (eaith dual PIV 3.2 GHz processors,
and 512 MB of RAM). The first experiment was cadri@ut using one machine in order
to estimate the simulation time without the ovetheéacurred by sending remote
messages using SOAP. The second experiment wasateddy splitting the fire model
into two equal partitions; each of which was ass@jto one machine that is connected to
the other machine using a commodity Internet cotmrecin the third experiment, the
two machines were connected using a P2P fibre dipticcreated using UCLP, as we
discuss following. In order to measure the requiredrics, different pieces of code have
been inserted in the simulation service at diffestages to record the current time, and
by comparing the times at these stages, an acamesdsure of the duration of each stage
could be obtained. The function used to recordithe was the C+gettimeofdaywhich
returns the time since midnight January 1, 1970s@tonds with a precision of
microseconds. In order to evaluate the confidemterval, the approach presented in

[Ban01] was followed; a confidence interval of 10Qf) % can be calculated as follows:

g -tapis ()£ g £ q+tapts (9);

— R— R —
Where g is the point estimator of, g :% q;
r=1
- —.) . —n = 1 R — — 5.
s (g) is an estimate of the variance®f s “ (q) = (g-qg)°;
R(R-1

f = R -1 is the degrees of freedom, R is the nunabeeplications,a is the confidence
coefficient;

97

Average Std. Deviation Confidence Interval 95%
Local Msg. (us) 3.655 0.16843255 3.562X 3.748
Init. Time (Ms) 99.811 24.03019409 86.534X 113.089
Simulation Time (S) 2.695 0.008052211 2.691X 2.7
Total Exec. Time (s) 2.795 0.022725378 2.782 X 2.808

Table 4: Execution results of the Fire model usingne machine

2.715

Simulation Time (Fire model- 1 Machine)

2.71

2.705

a\

2.7
2.695

[\ A
WA

Time (s)

2.69

2.685

N/
\/\./

2.68
2.675

8
Run#

10

12 14 16

Figure 49: Fire model simulation time using one mduane

The Local Message time is the time requited tosim@iha message from ompeocessor

(simulation processor) to another in the same mmachihe transmission of a local

message in a single machine is implemented as laochell (receive)in the receiving

processoy which explains the short time required to comroate between two local

processorgaverage of 3.655 microseconds). The Initializafflame is the time required

by the simulator to load the model into memoryspahe configuration files, etc; this is

done before starting the simulation process. Theulition Time is the time of running

the simulation which begins before processing tist évent and ends after processing

the last event.

98

Total Execution Time (Fire model- 1 Machine)

2.88
2.86
2.84
2.82 /\
2.8 Y PaV

578 \J v \ N / W
2.76 T T T T T T T

0 2 4 6 8 10 12 14 16

Run#

Time (s)

Figure 50: Fire model total execution time using om machine

Although the graphs in Figures 49 and 50 show tiana in the simulation and total

execution times of the fire model in one machihe, ariations are very small compared
to the average value of the total execution timen@ard deviation of 0.022725378 with
an average of 2.795 seconds). These variationthareesult of the different processes
and daemons running on the machine.

In the second experiment, the cell space was isplittwo equal parts (15x30) and each

part was assigned to run on a different machinehawn in Figure 51.

Machine #1 Machine #1

Machine #2

Figure 51: Fire model partitions on two machines

99

Due to the nature of the Internet, the bandwidttwben the machine in Ottawa and
Montreal was not constant since the connection dspeges dependant on the Internet
usage in both sites. In order to estimate the baittvavailable for the machines during
the simulation runs, a separate software utilipeft [Gat06]) was run concurrently with

the simulation:

Average | Std. Deviation Confidence Interval (95%)

Local Msg. (us 3.98¢ 0.11384199 3.9251 X 4.05]
Kernel Msg. (ms) 0.86: 0.79242730 0.424 X 1.t
SOAP Msg. (ms) 892.63: 177.501008 794.553 X 990.70i
Init. Time (ms) 315.00¢ 352.367532 120.307 X 509.70!
Simulation Time (s) 98.97" 5.1728770 96.119 X 101.83!
Total Exec. Time (s) 99.29: 5.191] 96.424 X 102.16:
Bandwidth (KB/s) 811.22: 29.606378 794.863 X 827.58:

Table 5: Execution results of the Fire model usinggvo machines (Internet)

The local message transfer is close to that whengua single machine since the
messages are sent between lggalcessors When two machines are used to run
distributed simulation, sending a message from proiEessor to another remote one
involves sending it through the Linux kernel fitstreach the web service components of
the simulation service, then sending it as a SOA&ssage through the network
(Internet), and finally from the web service coments to the simulator at the receiving
end (through the Linux kernel). The average tintenfiessage transfer through the kernel
is .862 milliseconds. On the other hand, the tioreSOAP transfer from one machine to
another is much longer than the kernel messagesfénariime, and it is the main
contributing factor to the overhead associated i distributed simulator. Another
point to notice is that the initialization time isnger when running distributed
simulation; this is due to the exfpaocessorcreated to manage message passing among
multiple machinesnasterand slave coordinators). By comparing the simulation time
when using one and two machines, the overheaddimtes by the distributed simulator

can be visualized:

100

Simulation Time (Fire Model- 1&2 Machines)

120

100 + k.\l/k.—\—./.—_\/.\l——'\l

80

—e— 1 Machine
60

Time (s)

—=— 2 Machines

40
20

0O fe—0—0—0—0—"0—"90_—"0—060¢60—00¢ ¢ ¢
12 3 456 7 8 9101112131415
Run#

Figure 52: Comparing the simulation time using 1&2machines (Internet)

Total Execution Time (Fire Mode- 1&2 Machines)

120

100 1 l\.\././l-—_/—\/.\._k.

80 -

—e— 1 Machine
60 -

—=— 2 Machines

Time (S)

40 |
20 -

0 T T T T T
12 3 456 7 8 9101112131415

Run#

Figure 53: Comparing the total execution time usind.&2 machines (Internet)

Comparing Figures 52 and 53, shows that the simula@nd total execution times of the
model are almost identical. The difference betw#en two is the time necessary to
initialize the model which is insignificant compdr& the time required to execute the
model (average of 315 milliseconds compared to\arage of 99.292 seconds). It is
worth mentioning that the initialization time is aseired for Machine 1 since the model

in Machine 2 is loaded before starting the simatain Machine 1. In addition, the time

101

for loading the model in Machine 1 is very closethat in Machine 2 due to the

symmetric partitioning of the model.

To minimize the overhead incurred by the distridusenulator, the two machines were
connected through a P2P connection using UCLP a®sap to using a commodity
Internet connection. In order to estimate the badthnavailable to the simulator, Iperf
[Gat06] was used to estimate the average bandwglf#td1.13 M Bit/second.

Average Std. Deviation Confidence Interval (95%)
Local Msg. (us) 3.85¢ 0.28587709 3.698 X 4.01¢
Kernel Msg. (ms) 0.70¢ 0.51641039 0.424 X 0.99¢
SOAP Msg. (ms) 489.34: 178.939812 390.47C X 58.21¢
Init. Time (ms) 256.10: 349.07839 63.219 X 448.98:
Simulation time (s) 27.62: 0.4431325 27.377 X 27.86°
Total Exec.Time (s) 27.87¢ 0.53910035 27.580 X 28.17¢

Table 6: Execution results of the Fire model usingvo machines (UCLP)

Simulation Time (Fire Model- 1&2 Machines)

120
100 ,%)/“"\ HM
O 80 —e— 1 Machine
g 60 —a— 2 Machines (Internet)
= 40 2 Machines (UCLP)
20
D e—e o o o o o o o o o o o o o

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Run#

Figure 54: Comparing the simulation time using 1&2machines
(Internet, UCLP)

102

By examining the simulation time when using UCLRyas noticed that the performance
is much better than that when using a regular heteconnection. That is, UCLP provides
a dedicated P2P connection that is solely usedhfosimulation session. Another point
to notice is that the variation in simulation tinveen using UCLP is less than that when

using a regular Internet connection.

Total Execution Time (Fire Model- 1&2 Machines)

120
100 | =—8 e S u

80 —e— 1 Machine
60 —a— 2 Machines (Internet)
40 2 Machines (UCLP)

Time (s)

20

07 T T T T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Run#

Figure 55: Comparing the total execution time usind &2 machines
(Internet, UCLP)

Examining the total execution time of the simulatim Figure 55 shows the same
behaviour as in Figure 54. That is, the initiali@attime is insignificant compared to the

time required to execute the model.

The sand-pile model [Saa03] consists of a DEVS inoeleresenting a sand particle
generator and a coupled Cell-DEVS model that sitesléhe sand-pile formation. The
output of the generator is connected to the inpth@ coupled Cell-DEVS model, which
in turn is connected to the input of one of ceBandpile(5, 5)) An excerpt of the

definition of the sand-pile model is shown in Fig&6.

103

[top]

link : out@ @
out : out
link : out@

[|
type : cell
dim: (10, 10)
delay : inertial

1100

border :

(0,1) (1,0) (0,-1) v
(-1,0) (0,0)

in:in
link : in in@ (5,5)
10

: -rule
L in@ (5,5) -rule

Figure 56: An excerpt of the Sand-pile model defition

The sand-pile model was first executed using adeimgchine:

Average Std. Deviation Confidence Interval 95%
Local Msg. (us 3.76¢ 0.25323055 3.624 X 3.90¢
Init. Time (ms) 25.92¢ 3.16885664 24174 X 27.67¢
Simulation Time (s) 0.109: 0.00058938 0.1087 X 0.109:
Total exec. Time (s 0.13¢ 0.00320! 0.1332 X 0.136¢

Table 7: Execution results of the Sand-pile modelging one machine

Simulation Time (Sand-pile Model- 1 Machine)

0.1105

0.11 +

0.1095 -

0.109

Time (s)

0.1085 .\\,

0.108 T T T T T T T
0 2 4 6 8 10 12 14 16

Run#

Figure 57: Simulation time of the Sand-pile model sing one machine

104

The initialization time was less than that for fire model due to the smaller cell space
used, which resulted in smaller number of modelbdanitialized. However, the time

required to load the models seems to be significantpared to the simulation time (the
average initialization time is 25.925 millisecondsd the average simulation time is
109.1 milliseconds), which resulted in a longercimn time as in Figure 58. On the
other hand, the variations in the simulation andcetion times are insignificant (the
standard deviation of execution time is 0.0032068osds with an average of .135

seconds) and are due to the different processedaardons running on the machine.

Total Execution Time (Sand-pile Model- 1
Machine)
0.145
0.14 /N
z
QO -
2 0.135
|_
0.13 &
0125 T T T T T T T
0 2 4 6 8 10 12 14 16
Run#

Figure 58: Total execution time of the Sand-pile miel using one machine

When running the distributed simulation, the mosla$ split into two parts. The first part
contained the sand particle generator (DEVS) ard siacond included the sand-pile
formation model (Cell-DEVS). Each part was assigtedun on one machine and the

two machines were connected using a commodityrietezonnection.

Machine #1 #1

Generator Generator

Figure 59: Sand-pile model partitions on two machias

105

Average | Std. Deviation Confidence Interval (95%)

Local Msg. (us 4.42¢ 0.35559741 4233 X 4.62¢
Kernel Msg. (ms) 0.49¢ 0.05917222 0.461 X 0.527
SOAP Msg. (ms) 846.54. 195.558800 738.489 X 954.60!
Init. Time (ms) 46.59° 31.5487055 29.165 X 64.02¢
Simulation Time (s) 50.43¢ 0.90578055 49939 X 50.93¢
Total exec. Time (S) 50.48¢ 0.92204030 49976 X 50.99!
Bandwidth (KB/s) 810.94° 29.513261 794.63%9 X 827.25

Table 8: Execution results of the Sand-pile modelsing two machines (Internet)

Simulation Time (Sand-pile Model- 1&2 Machines)

60

50 ,A%M_F.,
_ 40 -
< —e— 1 Machine
o 30 .
£ _= 2 Machines
~ 20 -

10 -

0 0T0—0—0T0—0T0—0T0—0—0—0—0T0—0
1 2 3 45 6 7 8 9 101112 1314 15
Run#

Figure 60: Comparing the simulation time of the Sad-pile model using
1&2 machines (Internet)

The results obtained are consistent with the oféaireed when running the fire model.
The initialization time is longer when running distited simulation since more
processorsneed to be initialized. The simulation time isden than that for a single
machine due to the delay caused by sending SOARages between the remote
processors

106

Total Execution Time (Sand-pile Model- 1&2
Machines)

60

50 ,AHM..:F_‘#.%.,
o 40 -
~ —e— 1 Machine
o 30 A .
£ _m 2 Machines
= 20 -

10

0+ 0060000

1 2 3 45 6 7 8 91011121314 15
Run#

Figure 61: Comparing the total execution time of tk Sand-pile model using

1&2 machines (Internet)

The behaviour of the execution time is almost igd@hto the behaviour of the simulation
time due to the insignificance of the initializatibme (the average initialization time is
46.597 milliseconds, and the average simulatiore isn50.439 seconds). The following
table shows the execution results when connedtiagrachines using UCLP:

Average Std. Deviatior Confidence Interval (95%)
Local Msg. (us) 4.413 0.08869423 4364 X 4.46:
Kernel Msg. (ms) 0.41¢ 0.04822672 0.387 X 0.44(
SOAP Msg. (ms 483.52! 133.234974 409.907 X 557.14.
Init. Time (ms) 19.25¢ 1.70819404 18.315 X 20.20:
Simulation Time (s) 8.11% 0.08147020 8.0719 X 8.161¢
Total Exec. Time (s 8.13¢ 0.08126408 8.091 X 8.18:

Table 9: Execution results of the Sand-pile modelsing two machines (UCLP)

107

Simulation Time (Sand-pile Model- 1&2 Machines)
60
50 (a2, 5 =" g = g .
O 40 —e— 1 Machine
g 30 —=— 2 Machines (Internet)
= 20 2 Machines (UCLP)
10
0 | 00—0—00—0—0T0T0—0T0—0—0—0—0
1 23 456 7 8 9101112131415
Run#

Figure 62: Comparing the simulation time of the Sad-pile model using 1&2

machines (Internet, UCLP)

When using a dedicated link between the two mashitiee simulation time improved
from an average of 50.439 to an average of 8.1&@nsks. In addition, the variation in
simulation time when using UCLP is less than thaem using a commodity Internet

connection.

Total Execution Time (Sand-pile Model- 1&2 Machines)
60
50 mgut, 5 » B a o8, =
w 40 1 —e— 1 Machine
g 30 - —=— 2 Machines (Internet)
F o0 4 2 Machines (UCLP)
10
O +oToo—0 000006000009
1 23 456 7 8 9101112131415
Run#

Figure 63: Comparing the total execution time of tke Sand-pile model using
1&2 machines (Internet, UCLP)

108

As in the case of the fire model, the executionetifollows the behaviour of the
simulation time since the initialization time is aliuless than the simulation/execution

time. Table 10 shows a summary of the three exmerisnperformed on each one of the

models (the Fire and Sand-pile models):

Fire#l Fire#2 Fire#2 Sand- Sand- Sand-
(Int.) (UCLP) pile#l | pile#2(Int.) | pile#2(UCLP)

Init. Time (ms) | 99.81: | 315.00¢ 256.10: 25.92¢ 46.59' 19.25¢
Sim. Time (s) 2.69¢ 98.97" 27.62: 0.109: 50.43¢ 8.117
Total Exec. 2.79¢ 99.29: 27.87¢ 0.13¢ 50.48¢ 8.13¢
Time (s)
SOAP Delay NA 892.63: 489.34: NA 846.54« 483.52!
(ms)
Total No. of 4597 4777(4777(371(4191 4191
Messages
Local 10C 96.2¢ 96.2¢ 10C 88.52 88.52
Messages (%)
Remote 0 3.7¢ 3.7¢ 0 11.4¢ 11.4¢
Messages (%)

Table 10: Summary of the execution results of theife and Sand-pile models

The overall results show few points that are wenttphasizing. The time to execute the
model in one machine is usually shorter than tHa¢musing two machines. This is due
to the overhead incurred by sending remote messEg)&OAP, which seems to be the
major contributor to the overhead. There are othetors affecting the overhead such as
the time required to send messages through thexldarnel (message queues); however,
it is insignificant compared to the delay causedSIAP. The initialization time for the
Fire model was longer when running the simulationtwo machines due to the extra
coordinators required for message passing and symclation (naster and slave
coordinators). This was not the case for the saledapodel (using UCLP) due to the fact

109

that the initialization time was measured for MaehlL which only had one of the model

components running (thgeneratormodel) as shown in Figure 59.

In order to study the contribution of the remotessages sent between remptecessors

to the overhead introduced by the distributed satau the average simulation times
when using two machines were divided by those whging a single machine. The

results are compared with the percentage of remmssages sent in each case. By
dividing the simulation time when using two maclhingy the time when using one, a
measure of the slowdown of the simulation can b@iobd. This measure is compared
with the percentage of the remote messages semgdthre simulation in order to

examine the relationship between the two.

Remote Msgs. (%)| Sim_Time2(Int.)/ Sim_Time2(UCLP)/
Sim_Timel Sim_Timel
Fire model 3.7¢ 36.7: 10.2¢
Sand-pile model 11.4¢ 462.3. 74.£

Table 11: Percentage of remote messages in distrile simulation

The Effect of Remote Messages on The
Simulation Time

n 500
& E 400 - /
E/E E 300 —e— Internet
'; % g 200 - —=UCLP
2= 100
§ ol
0 5 10 15

% of Remote Messages

Figure 64: Relationship between remote messages asithulation times
Figure 64 shows the effect of the remote messagakenexecution times of the models

in distributed simulations. The effect is more evitl when using regular Internet

connections than when using UCLP. The curve in pegtesents the slowdown of the

110

model execution versus the percentage of remotesages when using commodity
Internet connections. The curve in blue represdmsslowdown when connecting the

machines using UCLP.

6.2 Result Retrieval

In addition to measuring the performance of theusator, different experiments were
performed in order to assess the performance afltrestrieval when using UCLP
compared to when using a commaodity Internet conmect hree log files generated by
the Fire model were used in the experiments. Thessof the files were (filel ~ 1MB,
file2 ~2.5 MB, file3 ~5MB).

Average Std. Deviation Confidence Interval (95%)
Filel (Internet) (s) 8.117 0.23210524 2.316 X 13.91¢
File1(UCLP) (s) 0.06¢ 0.00108140 0.0188 X 0.112¢
File2(Internet) (s) 20.87¢ 0.69852849 5.957 X 35.79¢
File2(UCLP) (s) 0.12¢ 0.00367574 0.0369 X 0.221!
File3(Internet) (s) 36.07(1.00854683 10.292 X 61.84¢
File3(UCLP) (s) 0.23¢ 0.02473616 0.0671 X 0.403:

Table 12: File transfer times via the Internet/UCLP

File Transfer Time
45
40 .
35 "—M_X\Y *—x —e— Filel (Internet)
30 —=— Filel (UCLP)
T:’ 25 A File2 (Internet)
£ 20 - File2 (UCLP)
F 151 -
—*— File3 (Internet)
12 : 0o o o oo o —e— File3 (UCLP)
0 *—" . * *—e *—e *—=e
0 2 4 6 8 10 12
Run#

Figure 65: Comparing the file transfer times via tre Internet/UCLP

111

Figure 65 shows a big difference between the timeeded to retrieve the results when
using UCLP and those needed when using commodi¢yret connections. This is due
to the larger bandwidth provided by UCLP (averafjg41.13 M Bits/second) compared
to that provided by regular Internet connectiorsglthan 1M Bit/second).

112

Chapter 7: Conclusions

Discrete event simulation plays an important rote studying complex systems,
especially those that are not feasible for anaytstudies. The nature of discrete event
models tends to be more complex as the modeleémystolves or more information
needs to be considered when developing the modhes Aas required more efficient
simulation engines that are able to execute compleaels in a reasonable amount of
time. CD++ is a simulation engine that was devalbjpeexecute DEVS and Cell-DEVS
models on different platforms. In this dissertatianframework of using web services
with CD++ was presented in order to accomplish twen goals.

The first goal is to interface the original versiof the simulator to web service
technologies using web service wrappers. This habled the modeller to execute the
simulation, check the progress of the model exenutand retrieve the results remotely
using SOAP (and its extensions) protocol. In additiit allowed for integrating the
simulation services into larger systems to formoenglex workflow. Business Process
Execution Language (BPEL) can be used in this conti® integrate the simulation
services with visualization services that enabke ritodeller to study the results of the
model execution in a user-friendly manner. The otieal achieved through using web
services, is the implementation of distributed datian engine that is able to execute
complex models using multiple machines. The modellme split into different partitions,
each of which is assigned to run on a different hiree By establishing network
connectivity among the machines, the different $ataus can exchange messages during
the distributed session using SOAP. The advantdgasiog SOAP is that it can be
embedded into HTTP traffic which in turn can be disen different network
infrastructures, such as LAN, WAN, Ethernet, fiby#ic, etc.

The approach followed for implementing the disttéduli simulator depends on having
master and slave coordinators. The master coordinator is respoesiiolr passing
messages between its child models and the uppet Emponents in the model

hierarchy. On the other hand, the slave coordinateesponsible for passing messages

113

among its local children instead of involving theaster coordinator that might be
running on a different machine. This has a conaldler effect of reducing the remote
message traffic among the machines when runningribdised simulations. This
minimizes the overhead incurred with sending ameivng SOAP messages and hence

improves the performance of the simulator.

The web service components added to CD++ havednted some overhead that is
mostly apparent when running distributed simulatiobhe time of transferring a SOAP
message from one machine to another is by far lotinga the time it takes to exchange
messages locally. This is especially true when iha&chines are connected using
commodity Internet connections. The advancemenienarea of application-controlled
networks where the network management can be rdnallean upper layer (the
application layer), has enabled grid applicatioogake control on their needs of the
network bandwidth. User Controlled Light Path (UGLB a web service-based
management services for fibre optic networks thatenwused in conjunction with CD++
in order to establish the connectivity between edéht machines in a distributed
environment. Having a point-to-point connection wetn the machines running
distributed simulation has improved the performaaté¢he simulator a lot in terms of
shorter execution time of the model. In additidm bandwidth could be relinquished
when the application doesn’t need it anymore, whiesults in an efficient use of the

network resources.

7.1 Future Research Work

Implementing DCD++ using web services has answerddt of questions about the

feasibility, advantages, and disadvantages of pipeoach presented in this dissertation.
However, it kept a lot to be investigated in futuesearch work and left some room for
improvement of the features already implementdd@D++:

One of the main advantages of using web servicets iability to be interfaced and
integrated with other systems. The simulation sexwideveloped could be integrated

with larger systems such as the Participatory DeSitudio (PDS) [San06]. PDS is a

114

project aiming at building collaborative environmei different resources using web
services. The resources available include visuadizaservices; image capture devices
such as cameras, camcorders, and network managsereites such as User Controlled
Light Path (UCLP). The project is to provide an ieowment for architecture engineers to
facilitate the process of designing buildings inclaborative manner. Business Process
Execution Language (discussed in chapter 2) carudsal to establish a workflow
between the simulation and visualization servidéss allows the engineers to simulate
different incidents in the buildings they designdato visualize the results of the

simulation in real time.

The user authentication process in the simulatenvise is based on a password file
stored on the server; this is done when the usst ¢onnects to the service. When
establishing slave sessions, no authenticatioreifopned since the service nodes are
considered to trust each other. This can be imgrdyehaving the authentication process
based on digital certificates. In order for theruseconnect to the service, the user would
need to have a trusted digital certificate; in #ddi each node would have its certificate

in order to be used when establishing slave sessinrthe slave nodes.

The success of a distributed simulation sessiorertlp on the network connectivity
among the nodes; if any network failure happengduhe simulation, the slave sessions
may end up running and consuming resources withoimy any useful processing. This
can be avoided by implementing some synchronizatiechanism among the nodes in
order to detect any network problems and kill teesgon (and reclaim its resources)

accordingly after raising the proper exceptionh® tser.

Integrating DCD++ and PCD++ into one framework basappealing objective of taking
advantage of both engines, the speedup offered ®R+F and the web service
capabilities offered by DCD++. In addition, this wd provide proof of concept of the
approach presented in chapter 5 for integratingrogtic and conservative simulations

together.

115

References

[AhmO05] Ahmed, M.; Yonis, K.; Elshafei, M.; Waine@. “Building a tool for modeling
and simulation of computer networks”. Proceedingsthe 38" IEEE/SCS Annual
Simulation SymposiunSan Diego, CA. U.S.A. 2005.

[Alo03] Alonso, G.Web services : concepts, architectures and apppinat Springer.
2003.

[Ame01] Ameghino, J.; Troccoli, A.; Wainer, G. “Mel$ of complex physical systems
using Cell-DEVS”. Proceedings of the™Annual Simulation Symposium. Seattle, WA.
USA. 2001.

[And03] Andrews T.; Curbera, F.; Dholakia, H.; Guda Y.; Klein, J.; Leymann, F.; Liu,
K.; Roller, D.; Smith, D.; Thatte, S.; Trickovic,, Weerawarana, S.Business Process
Execution Language for Web Services version 1.1"ayM2003. Available via
<http://www-128.ibm.com/developerworks/library/speation/ws-bpel/>. [Accessed
February, 2006].

[Arn03] Arnaud, B.; Wu, J.; Kalali, B. “Customer @wolled and Managed Optical
networks “. IEEE/OSA Journal of Lightwave Technolpgpecial issue on Optical
NetworksVol. 21(11), pp. 2804-2810. November, 2003.

[Axi06] Web Services-Axis. Available via <http://vegpache.org/axis/>. [Accessed
February, 2006].

[Ban01] Banks, J.; Carson, J.; Nelson, B.; Nicol,0iscrete-Event System Simulation
Prentice Hall. 2001.

[BraO4] Bray, T.; Paoli, J.; Sperberg-McQueen, C.Mergeau, F. “Extensible Markup
Language, XML 1.0 (Third Edition)”. February, 2004.Available via
<http://mwvww.w3.0rg/TR/2004/REC-xmlI-20040204/>. [Aassed October, 2005].

[Bry77] Bryant, R.E. Simulation of Packet Commurnica Architecture Computer
Systems. Massachusetts Institute of Technology,iCidge, MA. USA. 1977.

[Cha79] Chandy, K.; Misra, J. “Distributed Simutaii A Case Study in Design and
Verification of Distributed-ProgramsTEEE Transactions on Software Engineeripg,
440-452. 1979.

116

[Che04] Cheon, S.; Seo, C.; Park, S.; Zeigler, Besign and Implementation of
Distributed DEVS Simulation in a Peer to Peer Netw®ystem”. Advanced Simulation
Technologies Conference, Arlington Virginia. Apai04

[Cho94a] Chow, A.; Zeigler, B. “Parallel DEVS: A nadlel, hierarchical, modular
modeling formalism”. Proceedings of the Winter Catgp Simulation Conference.
Orlando, FL. USA. 1994.

[Cho94b] Chow, A.; Kim, D.; Zeigler, B. “AbstractirBulator for the parallel DEVS
formalism”. Al, Simulation, and Planning in High famomy Systems. Gainesville, FL.
USA. 1994.

[Chr01] Christensen, E; Curbera, F.; Meredith, @Bleerawarana, S.” Web Service
Desctiption Language (WSDL) 1.1" March, 2001. Ashble via
< http://www.w3.0rg/TR/wsdI>. [Accessed Decembdi03].

[Cla99] Clark, J.; DeRose, S. “XML Path LanguagePéxh),Version 1.0”. November,
1999. Available via <http://www.w3.org/TR/xpath’Adcessed February, 2005].

[Cle04] Clement, L.; Hately, A.; Riegen, C.; Rogefs “UDDI Version 3.0.2, UDDI
Spec Technical Committee Draft”. October, 2004. iRde via
< http://uddi.org/pubs/uddi_v3.htm>. [Accessed Mar2006].

[ErlO5] Erl, T. Service-Oriented Architecture, Concepts, Technglogiyd Design
Pearson Education, Inc. 2005.

[FalO4] Fallside, D.; Walmsley, P. “XML Schema P&t Primer Second Edition”.
October, 2004. Available via <http://www.w3.org/XN&chema>. [Accessed November,
2004].

[Fer03] Ferreira, L.; Bursitis, V.; Armstrong, JKendzierski, M.; Neukoetter, A.;
Masanobu T.; Bing-Wo, R.; Amir, A.; Murakawa, R.etandez, O.; Magowan,

J.; Bieberstein, N. ”Introduction to Grid Computingith Globus”. Available via
<http://www.redbooks.ibm.com/redbooks/SG246778/wwievhimpl/java/ntml/wwhel

p.htm>. [Accessed January, 2006].

[Fuj99] Fujimoto, R.M.Parallel and Distribution Simulation Systengiley. 1999.
[Gat06] Gates, M.; Warshavsky, A. “Iperf versiorl.1”. February, 2000. Available via
<http://dast.nlanr.net/Projects/Iperfl.1.1/>. [Assed July, 2006].

117

[Gli02] Glinsky, E.; Wainer, G. "Performance Anal/of Real-Time DEVS models".
Proceedings of 2002 Winter Simulation Conferenes Biego, U.S.A. 2002.

[Gli04] Glinsky, E. “New Techniques for Paralleln@ilation of DEVS and Cell-DEVS
Models In CD++". Master Thesis. Carleton Univers2§o4.

[Glo05] “A Globus Primer”. Available via
<http://www.globus.org/toolkit/docs/4.0/key/GT4_er_0.6.pdf>. [Accessed January,
2006].

[Gud03] Gudgin, M.; Hadley, M.; Mendelsohn, N.; Mawu, J.; Nielsen, H. “SOAP
Version 1.2 Part 1: Messaging Framework”. —June, 320QAvailable via
<http://www.w3.org/TR/soapl2-partl/>. [Accessed Biober, 2005].

[Jef85] Jefferson, D.R. “Virtual time’ACM Transactions on Programming Languages
and Systemsol. 7(3), pp. 404-425. July, 1985.

[JXT06] www.jxta.org. [Accessed June, 2006]

[Kha03] Khargharia, B.; Hariri, S.; Parashar, M.taMho, L.; Kim, B. “vGrid: A

Framework for Building Autonomic Applications”. knational Workshop on
Challenges for Large Applications in DistributedvifEanments (CLADE 2003)pp. 19-

26.June, 2003.

[Kha05] Khan, A.; Wainer, G. "A visualization engirbased on Maya for DEVS
models". Proceedings of SISO Fall InteroperabiNprkshop San Diego, CA. U.S.A.
2005.

[Kim04] Kim, K.; Kang, W. “CORBA -Based, Multi-theded Distributed Simulation of
Hierarchical DEVS Models: Transforming Model Sturet into a Non-hierarchical One”.
International Conference on Computational Sciennd #s Applications (ICCSA).
Assisi, Italy. 2004.

[Lia99] Liang, S.Java Native Interface (JNI), Programmer’s Guide ajgecification
Addison-Wesley. 1999

[Mad05] Madhoun, R.; Wainer, G. “Modeling battldflescenarios in Cell-DEVS”.
Proceedings of SISO Fall Interoperability Worksh8an Diego, CA. U.S.A. 2005.

[MPI195] Message Passing Interface Forum. MPI: A $8éee-Passing Interface standard
(version 1.1). Technical report. Available via: ghtwww.mpi-forum.org >. [Accessed
May, 2006].

118

[OMGO02] Object Management Group. The common objequest broker: architecture
and specification. Revision 3.0. OMG Technical mepdune, 2002. 492 Old Connecticut
Path, Framingham, MA. USA.

[Saa03] Saadawi, H.; Wainer , G. “Modeling a saite @pplication using Cell-DEVS”.
Proceedings of the 2003 Summer Computer SimulaGonference. Montreal, QC.
Canada. 2003.

[San06] Sandy, L.; Liang, Y.; Spencer, B. “EucalyptA Service-oriented Participatory
Design Studio Supported by UCLP”. Available via <
http://www.cs.unb.ca/itc/ResearchExpo/posters/28@610a.pdf>. [Accessed February,
2006].

[Sei04] Seidner, R. “A BPEL Primer” July ,2004. Available via
<http://www.webservicespipeline.com/trends/239021(QBccessed March, 2006].

[Seo04] Seo, C.; Park, S.; Kim, B.; Cheon, S.; &ejB. “Implementation of Distributed
high-performance DEVS Simulation Framework in thedGComputing Environment”.
Advanced Simulation Technologies conference (ASP@)ngton, VA. USA. 2004.

[Tom06] Apache Tomcat. Available via <http://tomegiache.org/>. [Accessed
February, 2006].

[Tro03] Troccoli, A., Wainer, G. "Implementing PHeh Cell-DEVS". Proceedings of
36" IEEE/SCS Annual Simulation Symposium. Orlando, BBA. 2003.

[Wai00] Wainer, G. "Improved Cellular Models witlaiallel Cell-DEVS".Transactions
of the Society for Computer Simulation Internatioval. 17(2), pp. 73-88. June, 2000.

[Wai01] Wainer, G.; Giambiasi, N. “Timed Cell-DEVS: modatl and simulation of cell
spaces". Invited paper for the book Discrete Ewdotleling & Simulation: Enabling
Future Technologies. Springer-Verlag. 2001

[Wai02] Wainer, G. “CD++: a toolkit to develop DEMBodels”.Software - Practice and
Experiencevol. 32, pp. 1261-1306. 2002.

[War06] Warped: A Time Warp Simulation Kern&larped Documentation for version
1.0.Available via <www.ececs.uc.edu/~paw/warped/>. [@gsed April, 2006.]

[Web06] WebSphere. Available via <http://www-
128.ibm.com/developerworks/websphere/newto/>. [Ased February, 2006].

119

[Wol86] Wolfram, S.Theory and applications of cellular automatedvances Series on
Complex Systems. World Scientific. Singapore. 1986.

[Zei00] Zeigler, B.; Kim, T.; Praehofer, HTheory of Modeling and Simulation:
Integrating Discrete Event and Continuous Complgx@&mic System#\cademic Press.
2000.

[Zha05] Zhang, M.; Zeigler, B.; Hammonds, P. "DERSII-An Auto-Adaptive and

Reconfigurable Distributed Simulation Environmemwtr fEngineering Studies"ITEA
Journal July. 2005.

120

Appendix-A: P-DEVS and DCD++ Simulation Algorithms

In this appendix, the algorithms governing the béha of the simulators and
coordinators in CD++ and DCD++ are presented. Mer following discussion;T,
represents the time of the last state change ofmibeel, Ty represents the time of the
next state change,is the model states is the time since the last state transition, and

processorrefers to a simulation processor (not physicatessor).

When a simulator receives axternal message (09t time t, it simply adds it to the
external message bag to be processed when thamesttal message (*)s received.
Figure 66 shows the behaviour of the simulator weeeiving acollect message (@at
timet, it executes theutputfunction and returns @one message (ndicating the time
of the next change:

(@1)

ift=TN
{

T|_=t;

yi=Ms);

send (y, t) ;

0) ;

else
{
}

Figure 66: Simulator’s reaction to acollect message (@)

When a simulator receives ariernal messagat timet, depending on the message time
and the message bag status, one of the transitiaidns (ex; int, and con) IS triggered

as shown in Figure 67. If the message arrives wihene is no internal transition
scheduled, and the message bag is not emptgxteenal transitiorfunction is executed.

If the message arrives at the time of an intem@adsition and the message bag is empty,
the internal transitionfunction is executed. The third case is when titernal message
arrives at the time of an internal transition anel inessage bag is not empty; in this case,
the confluent transitiorfunction is executed:

121

(1)

if T, < t<Ty
{

e=t-T.;

S = Jexi(S, €, bag);

bag =@

T|_ = t,

Ty =t+ta(s);
}
{

S= 8int(S) 5

T|_ - t,

Ty =t+ta(s);

S= 600nf(S, bag)?

bag == @;

T|_ = t,

TN :—t+ta(3),

<Tiort>Ty

{ .
}

(Tv)

'

'

Figure 67: Simulator’s reaction to aninternal message (*)

The coordinator receives the same type of messages/ed by the simulator; however,
it reacts in different ways to those messages. Whenordinator receives axternal
messageit simply adds it to its external message bagelVvha coordinator receives an
internal messagdrom its parent coordinator at time the messages in the bag are
forwarded to their destinations, and emernal messages sent to all thgrocessors

scheduled for state change (in gychronize sgtthis behaviour is depicted in Figure

68:

122

(1)
if T, < t<Tn
{
(). (m)
q = Zgar, j(M);
send (q, J);
bag := Zp
send (*, t) to f;
= +1;
=
T|_ = t,
}
< TL ort> TN
{ .
}

Figure 68: Coordinator’s reaction to aninternal message (*)

When a coordinator receives aatput message (¥jom childi at timet, it checks the
influencees of the message. If there are local@nitees, theutput messages translated
into external messagdbat are sent to the influencees; otherwise otitput messages
forwarded to the parent coordinator:

(y. t)

X=7i(y)
send (X, t)

If (

send (y, t)

Figure 69: Coordinator’s reaction to anoutput message (y)

When a coordinator receivesdlane messagat timet, thedoneCountvariable (variable
used to record the number pfocessorsthat receivednternal or collect messages) is
decremented. iloneCountquals zero, the minimum time for the next statedition of

the childprocessorss evaluated and reported to the parent coordinato

123

(D, 1)

ifT. < t<Ty

{ .
if (>0)
{ . —1:

else

{
}

<TL0rt>TN

B

Figure 70: Coordinator’s reaction to adone message (D)

When a coordinator receivesallect messagat timet, it forwards it to all the imminent

child processorsas shown in Figure 71:

(@t)

send (@, t) to f;

else

Figure 71: Coordinator’s reaction to acollect message (@)
The Root coordinatoiis considered as a special coordinator that [goresible for driving

the simulation as a whole. It starts the simulabgrsendingnitialization messages (Ipt
its child processorsand responds to th#one messageis receive by sending either a

124

collect messager aninternal messageepending on the sequence of messages sent to

the childprocessors

When receiving @lone messageheRoot coordinatorchecks to see if theone message

followed acollect or aninternal messagelf it was a response to@llect messagean

internal messagas sent to theop coordinator to complete the simulation cycle by

triggering the state transition in tre@mulators If the done messagevas sent as a

response to aimternal messagethe current simulation cycle is considered ovet the

Rootcoordinator initiates a new cycle by performing fbllowing steps:

ii)

It checks if the simulation clock has reached tleximum execution time; if
so, it stops the simulation.

If the external event list is not empty, the fiesent in the list (with minimum
timestamp) is picked, and its time stamp is congbaoethe time of the next
change as reported by tldone messageThe minimum of the two is
considered as the value of thextTimevariable.

If nextTimeis larger than the maximum execution time as glediby the
user, the simulation is stopped.

If the external event list is not empty, all the eets with a
timestampaextTimeare sent to thep model coordinator.

If nextTimeequals the time of the next chandg)(aninternal messagés

sent to theop coordinator; otherwise, @llect messages sent instead.

125

/ 1 1%5/

- 78//D
- 78/%/- D
2- /8/- /D
2 - [mEer™ s " IFD

12 -1/8 "/

E

M2 - 181" D
M 125 11 / D
F

E

Mg 1--8icl 12 " (/8MH

M o

M

s

M 112t e/

s

My sl /12 "(D
e e 2- 1/
M 2 - 18/ (- /D

M - 16l 2 - 1
.

M1

HHHHHne

i e | L (- 18l2- 1
. | / D)
M-

M 102 - 184-

M nine
T e < N)
M 1 AS/- I D
M e

.

M e
M- 81 2 - I
M- 81 1o
M2 - /80 ™ D
T e T CO A A | /D
M e

HHHHHHne

HHnne

s

F

Figure 72: TheRootcoordinator behaviour when receiving adone message (D)

Implementing DCD++ required extending t@mordinator functionality into aMaster
Coordinatorand a Slave CoordinatorWhen amaster coordinatoreceives arexternal
messageit adds it to the external message bag. Wheeceives annternal messagat

time t, it sorts theexternal messagestored in its bag. This includes sendegernal

126

messages$o the local receivingrocessorsand/or sendingxternal messagdas remote
slave coordinators Then aninternal messageis sent for eachprocessorin the
synchronize seand thedoneCountvariable is incremented once for each sent message
ThedoneCountvariable is used to track the numbepobdcessorscheduled fomternal
and/orexternaltransitions. After sending thexternalandinternal messageshe message

bag andsynchronize seire emptied:

/ 11?25/

- -

#
$% &
I &'
!
&'
#
#
$% H/D
|
(
) $%) *+
! " %% H/D
- $%
#
/1 0
#

Figure 73: TheMaster coordinator’'s behaviour when receiving

an internal message (*)

When a master coordinatorreceives anoutput messaget time t, it checks the

destinations of the message. If the receiyangcessoris local, the message is translated

127

into anexternal messagthat is sent to thprocessor On the other hand, if the receiving
processoris a remote one, the message is sent talthe coordinatoiof the receiving

processorrunning on the destination machine:

(y,)

m:=z;(y);
send (m, t) ;

else

I 2

send(y, i, t) 5

send (v, 1) :

Figure 74: The Master coordinator’s behaviour when receiving

an output message (y)

When amaster coordinatomreceives acollect messagat time t, it sends it to the

imminent local simulators/coordinators and to laél ¢lave coordinatorsvith Ty = t:

(@Y

ift:TN
TL=t;

(H N=t
send (@, t)to f;

send (@, t)tos;

v
s
else

{

}

Figure 75: The Master coordinator’s behaviour when receiving acollect message (@)

128

Receiving adone messagey a master coordinatorat timet causes theloneCount
variable to be decremented. dbneCountequals zero, it indicates that all the child
processorsscheduled forinternal or external transitions are done. Then timeaster
coordinator evaluates the minimum time of the next state ttamsiof the local child
processorsand remoteslave coordinatorsand reports the obtained value to its parent
coordinator through done messagas shown in Figure 76:

(D, t)
if T, < t<Tn
s
) if (> 0)
{
= -1
if (=0)
{
TN1= (TN);
T = (T)3
TN = (Txi and To) ;

(Tx)

else

{

1
s

Figure 76: The Master coordinator’s behaviour when receiving adone message (D)

When aslave coordinatoreceives aexternal messagé adds it to the external message
bag. The behaviour of tredave coordinatomwhen receiving @ollect messages identical

to the behaviour of the coordinator implementing BRDEVS algorithms:

(@t)

if t=TN

send (@, t) to f;

-

Figure 77: The Slavecoordinator’'s behaviour when receiving acollect message (@)

129

When aslave coordinatoreceives aroutput messagat timet, it translates it into an
external messagthat is sent to the local receivipgocessorsand/or it forwards it to its
parentmaster coordinatoto either be sent to a remqigocessoy or upper coordinator,
or both.

(y, t)
{
m:=2z;(y);
send (m, t) ;
}
else
{
= false
send (y,t) ;
=true ;
}
}
= false
send (y, t) ;

Figure 78: The Slavecoordinator’'s behaviour when receiving aroutput message (y)

The behaviour of theslave coordinatorwhen receiving alone messagat timet is
identical to the behaviour of the coordinator inmpémting the P-DEVS algorithms:

(D, t)

ifT. < t<Tn
if (> 0)

<TL0rt>TN

{

}
Figure 79: The Slavecoordinator’'s behaviour when receiving adone message (D)

130

When receiving annternal message (¥)the slave coordinatorforwards theexternal
messages its bag to their local receivingocessorsand sendsternal messaget all

the processorsached in theynchronize sefit the end of this process, the message bag
andsynchronize seire emptied:

$" (/ 1125/

- -

#
#
$% H/D
!
(
) $%) *+
I " $% H/ID
- $%
#
#

Figure 80: The Slavecoordinator’'s behaviour when receiving

aninternal message (*)

131

Appendix-B: Web Service Components

The web service components of the simulation sesvigere implemented using Java.
They communicate with the simulation componentsugh theWrapperProxy which is
implemented in C/C++ and loaded as a shared libbgryhe Axis server. Figure 81

shows a UML diagram of the main classes of the selbice components:

SAXParser
isPassword 1
0 isUs_erName getParser()
startElement() sessionID
lendDocument() 0
endElement() 0 0
startElement())
lendDocument() parse()
lendElement()
0 Parser ~ newlnstance()
startElement() ~
lendDocument() 0 0
endElement() 0 S a— 0
java.rmi.Remote
= Bl devsModels authenticate()
q homeDir ﬂ setMAFile()
maFileName setEventFile()
0
zonePartitions 0
authenticate() 0
0 0 0
0
0 0
0 0
0 kill Simulation()
0 0
0 0 0
0
0
0
0
0
org.apache.axis.client.Service log Off()
A
- i | org.apache.axis.client.Stub
0 | '
7A L
authenticate() authenticate()
logOff() logOff()
0 0
0 0
setMAFile() setMAFile()
0

Figure 81: Web service components

132

The main class in the diagram is thevaWrappeiclass, which constitutes the backbone
of the web service components. In this appendidetailed description of the methods
defined in the classes is presented. Some of #sse$ used are standard classes in Java 2
or part of the Axis libraries; those won't be ca@rhere since their functionality is

described in the official Java/Axis documentationisose include:

ContentHandler (org.xml.sax.ContentHandlei) is an interface that receives
notifications while parsing an XML document deperglon the logical contents
of the document.

DefaultHandler (org.xml.sax.DefaultHandler)t is the base class f&AX2event
handlers.

Remote (Java.rmi.Remotelf is an interface used to identify objects whose
methods can be executed on non-local virtual mashin

Runnable (java.lang.Runnablg) is an interface that should be implemented by
any class whose instance to be executed as a thread

SAXParser (javax.xml.parsers.SAXParsér)is an abstract class that wraps the
functionality of anXMLReaderimplementation class{MLReadelis an interface
for reading XML documents based on notifications.

SAXParserFactory (javax.xml.parsers.SAXParserFagtot is a factory class
that enables applications to obtain SAX-based paitsgparse XML documents.
Service (org.apache.axis.client.Servidgejs Axis’ JAXRPC implementation of
thejavax.xml.rpdnterface. Th&erviceclass is the starting point for accessing
SOAP web services.

Stub (org.apache.axis.client.Stult)is an abstract base class for all stub classes

JavaWrapper:

The methods implemented in thavaWrapperlass are:

* public void addMachine(Integer machineld, String uri)

Used to add a machine id and address by the parser.

133

* public void addModelPartition (String model, Integer machineld)

Used to add model partition information by the pars

* public void addRemoteModelPartition(String model, Integer machineld)
Used to add remote model partitions by the parssed when integrating DCD++ and
PCD++).

* public static voidaddUsei(String userName ,String password):

Used by theparserto add a user credentials.

* public static voidaddUserRol€String userName, String role):

Used by the parser to add a user role.

* public void addZonePartition(String zone, Integer machineld)
Used by the parser to add Cell-DEVS model partition

* private voidaddZonePartitions()

Used to send the Cell-DEVS zone partitioning infation to the simulator.

* private voidarchiveLogFiley)

Used to archive the log files into a (.tar) filelte retrieved by the user.

* public static intauthenticate(String username, String password, boolean isPCDpp
Used to authenticate the users.

* private boolearcompileSource()
Used to compile the source code of the simulatth thie code of the added DEVS

models.

* private voidcopyDirs(java.io.File srcDir, java.io.File destDir)

Used to copy directories during the creation oéwa 13ession.

* private voidcopyFileqjava.io.File srcFile, java.io.File destFile)

Used to copy files during the creation of a nevsges

* private static intreateNewSessiabtring userName, boolean isPCDpp)

Used by theauthenticatenethod to create new sessions.

* public static booleawreateSlaveSessic(int sessionID, String userName):
Used by the master node to initialize slave sessjahen running distributed

simulation).

* public StringenableParsinginfc()

134

Enables the parsing debug option in CD++ (use€fIl-DEVS models).

* public StringgetCurrentSimTime()
Returns the current simulation time by checkingrteetChangevariable in theRoot

coordinator (through the/rapperProxyandCPPWrappe).

* public static intgetMachinelD(int sessionID)
Returns the machine id by examining the addre#iseo§imulation service, and

comparing it with the addresses in tired configuration file

* public int getSessionl()

Used to get the session id of thevaWrappeinstance.

* public static JavaWrappegetWrapperinstanceg(int sessioniD)
Used by the server-side stubs to retriedaeWrappeilnstance corresponding to the

session id (sessionID).

* private booleannitialize ()

Used to initialize the message queues to commuenigilh CD++.

* private booleannitializeSlaveSessiong

Used to initialize slave sessions by sending thdehandgrid configurationfiles.

* public void insertExternalEvent(String time_, String port_, double value)

Used to insert external events while the simulaisomnning.

* public static booleaisLoggedIn(String userName)

Checks to see if the current user has a runnirgiases

* public boolearisSimRunning()

Used to check if the simulation process is stitimng.

* public static booleaisValidSessioi(int sessionID)

Checks to see if the sessionID matches a validosess

* private static booleaisValidUser(String userName, String password)
Checks if the user is a valid one.

* public JavaWrapper(boolean isPCDpp)
The constructor is used to distinguish between D€bBrd PCD++ services.

* public void killSimulation ()

Used to kill the simulation process.

135

* public static booleatpgOff(int sessionID)

Used to log off a user and to invalidate his sessio

* public static intmachineForModel(int sessionID, String modelName)

Returns the machine id that is executing the m@detelName).

* public void receiveRemoteMessadmt msgType, String msgTime, int srcProcld,
String nextChange, int Portld, double value, imtdsgModelld, boolean isFromSlave, i
destProcld)

Used to receive a remote message sent as SOAP (u@ing distributed simulation).

* private booleanmegisterDEVS()
Used to modify theegister.cppfile (part of CD++) to add a DEVS model(s).

* public StringretrieveLogArchiveName()
Used by the server-side stubs to retrieve the rarttee log archive to be sent to the ug

* public StringretrieveOutputFileName()

Used by the server-side stubs to retrieve the rarttee output file to be sent to the user.

A

* public StringretrieveParsinginfoFileNamg()
Used by the server-side stubs to retrieve the rartiee parsing information file to be

sent to the user.

* public StringretrieveSessionLogFileNam@
Used by the server-side stubs to retrieve the rafrtiee session log file to be sent to th

user.

* private booleanetrieveSlavelLogFileg)

Used to retrieve the slave log files at the end distributed simulation session.

* public void run ()
This method is required by tfunnablenterface; it is responsible for streaming the
simulator output into the session log file anddtarting the message monitor (used to

monitor the message queues).

* public static voidsendRemoteMessadmt sessionID, int msgType, String msgTime
int srcProcld, String nextChange, int portld, deubhlue, int senderModelld, boolean
isFromSlave, int machineld, int destProcld)

Used to send a remote message using SOAP (whemguaistributed simulation).

136

er.

=

* public StringsetDEVSMode(String cppFileName,DataHandler dhCPPFile,String
hFileName, DataHandler dhHFile)
Used to set DEVS header and implementation files.

* public StringsetEventFile(String eventFileName,DataHandler dhEventFile)
Used to set the external events file by the user.

* private voidsetFilePermy()
Used to set the file permissions of the CD++ exaaletduring the creation of a new

session.

* public StringsetGridConfigFile(String gcFileName, DataHandler dhGCFile)

Used to set thgrid configuration fileby the user.

* public StringsetMAFile(String maFileName, DataHandler dnMAFile)
Used to set the model definition file (.ma) by tiser.

* public StringsetNumberOfNodegint noNodes)
Sets the number of nodes used by the cluster (witegrating DCD++ and PCD++).

* public StringsetPartitionFile(String partitionFileName, DataHandler dhPartitidef

Used to set the partition file by the user (usedtie PCD++ service).

* public StringsetSimulationTimeg(String simTime)

Sets the execution time.

* public StringsetSupportFile (String supportFileName, DataHandler dhSupport}-ile
Used to set the initial values file (for Cell-DEWi®dels).

* public StringstartSimulationServicg()

Used to start the simulator.

* public void stopSimulation()
Used to stop the simulation in the slave nodes fwhaning distributed simulation).

* private boolearstopSlaveSessiol()

Used to stop the slave sessions at the end ofribdied simulation session.

* public boolearupdateMakeFile()
Used to update thmakefile to incorporate the added DEVS model(s).

137

CDppPortType:

The CDppPortTypéenterface defines the main methods offered bysthmilation service.
The functionality of each method is the same asotie provided for thdavaWrapper
class except for the log and output file retriavathods; since they return the actual files

instead of the file names. Those methods are:

public static intauthenticate(String username, String password, Boolean isPCDpp)

public static booleanreateSlaveSessi((int sessionlID, String userName)

public StringenableParsinginfc()

public StringgetCurrentSimTime()

public voidinsertExternalEvent(String time_, String port_, double value)

public boolearisSimRunning()

public voidkillSimulation ()

public static boolealogOff(int sessionID)

public voidreceiveRemoteMessa((int msgType, String msgTime, int srcProcld, Siri

>

nextChange, int Portld, double value, int senderdlod boolean isFromSlave, int
destProcld)

public StringretrieveLogArchive()

public StringretrieveOutputFile ()

public StringretrieveParsingInfoFile()

public StringretrieveSessionLogFil()

public StringsetDEVSMode(String cppFileName,DataHandler dhCPPFile,String
hFileName, DataHandler dhHFile)

public StringsetEventFile(String eventFileName,DataHandler dhEventFile)

public StringsetGridConfigFile(String gcFileName, DataHandler dhGCFile)

public StringsetMAFile(String maFileName, DataHandler dhMAFile)

public StringsetSimulationTime(String simTime)

public StringsetSupportFile(String supportFileName, DataHandler dhSupportFile)

public StringstartSimulationServiceg)

public voidstopSimulation()

138

CDppPortTypeSoapBindinglmpl:

It is a server-side stub class that implementippPortTypanterface and is deployed
in Axis as part of the service deployment proc@see class is generated by the Axis
tools as askeletonclass that is filled with the implementation byetkveb service
designer/programmer. The methods implemented ircltes are exactly the same as the

ones described for th@DppPortTypenterface.

CDppPortTypeSoapBindingStub:

This is the client-side stub that is used to actiessimulation service. It implements the
CDppPortTypein order to create the SOAP requests and respdosehe interface
methods.

CDppPortTypeService:

It is an interface that defines the methods necgdsalocate the web service given its

URL. It defines two methods:

* public CDppPortTypegetCDppPortTypeg()
It returns a stub class implementing G®ppPortTypeinterface using thdéocal host

address as the address of the web service.

* public CDppPortTypegetCDppPortType(java.net.URL)
It returns a stub class implementing @B@ppPortTypenterface using the URL provided

as the address of the web service.

CDppPortTypeServicelLocator:

It is a class implementing tl@DppPortTypeServiceterface and is used as the starting

point to locate and access the web service.

139

Parser:

It is the main class used for parsing XML documentshe simulation service. Those
documents include: thasers file andgrid configuration file The methods implemented

in the class are:

* public static voidparseUser()
It is used to parse thesers file the users file contains the usernames, passwandk,

roles of all the users authorized to use the sitimurlaservice.

* public static voidparseGridConfig(int sessionID, String fileName)
It is used to parse thgrid configuration file which contains the addresses of the

machines participating in the simulation in additto the model partition.

MyContentHandler:

This class implements the methods defined in GloatentHandlerinterface that gets
called by aSAXParsewhen parsing XML documents. The methods implenteiehe

class are:

* public void registerSessionl@int sessionID)
This method is called by théavaWrapperclass in order to set the session id before

parsing thegrid configuration file

* public void startElement(String namespaceURI, String localName, String rav,
Attributes atts)
This method is called by th@AXParserat the beginning of each element in the XML

document.

public voidendElemen{String namespace, String localName, String rawName
This method is called by th8AXParserat the end of each element in the XML

document.

public voidcharacterq char[] ch, int start, int length)
* This method is called by th8AXParselbetween the start and end of each element in

the XML document with g&har array (ch) containing the element contents.

140

