

WEB SERVICE-BASED DISTRIBUTED SIMULATION
OF DISCRETE EVENT MODELS

By

Rami Madhoun, B. Sc.

A thesis submitted to

The Faculty of Graduate Studies and Research

In partial fulfillment of

the requirements of the degree of

Master of Applied Science

Ottawa-Carleton Institute for Electrical and Computer Engineering

Department of Systems and Computer Engineering

Carleton University

Ottawa, Ontario

Canada

© Copyright 2006, Rami Madhoun

 ii

The undersigned hereby recommends to the Faculty of Graduate Studies and Research

acceptance of the thesis

Web Service-Based Distributed Simulation

of Discrete Event Models

Submitted by Rami Madhoun

In partial fulfillment of the requirements for the

Degree of Master of Applied Science

__

Thesis Supervisor

Dr. Gabriel Wainer

__

Chair, Department of Systems and Computer Engineering

Dr. Victor C. Aitken

Carleton University

2006

 iii

ABSTRACT

DEVS is a Modeling and Simulation formalism that has been used to study the dynamics

of discrete event systems. Cell-DEVS is a DEVS-based formalism that defines the cell

space as a group of DEVS models connected together. This work presents the design and

implementation of a distributed simulation engine based on CD++; a modeling and

simulation toolkit capable of executing DEVS and Cell-DEVS models. The proposed

simulation engine follows the conservative approach for synchronization among the

nodes, and takes advantage of web service technologies in order to execute complex

models using the resources available in a distributed environment. In addition, it allows

for the integration with other systems using standard web service tools. The performance

of the engine depends on the network connectivity among the nodes; which can be

commodity Internet connections, or dedicated point-to-point links created using User

Controlled Light Path (UCLP). UCLP is a web service-based network management tool

used by grid applications to allocate bandwidth on demand.

 iv

Acknowledgments

This work is dedicated to my family for their end-less support

and care. I also would like to thank Dr. Gabriel Wainer for his

patience, advice, and for always being there when I needed him

both on the academic and personal levels.

 v

Table of Contents

ABSTRACT .. iii

List of Tables ... vii

List of Figures ... viii

Chapter 1: Introduction .. 1

 1.1 Motivation and Goals .. 3

 1.2 Contribution .. 4

 1.3 Thesis Organization .. 6

Chapter 2: Grid Middleware for Discrete Event Modeling and Simulation 7

 2.1 Discrete Event System Specification (DEVS) .. 8

 2.2 Timed Cell-DEVS ... 13

 2.3 The CD++ Toolkit .. 16

 2.4 Distributed Simulation .. 25

 2.4.1 Conservative Simulation .. 27

 2.4.2 Optimistic Simulation .. 28

 2.5 Web Services (WS) ... 29

 2.6 Service Oriented Architecture (SOA) ... 34

 2.7 User Controlled Light Path (UCLP) ... 35

Chapter 3: Trends in the Implementation of Distributed DEVS Simulators......... 37

 3.1 Web Service-Based Approach for Distributed DEVS Simulation 43

Chapter 4: Web Service-Enabled CD++ .. 46

 4.1 Design Methodology ... 46

 4.2 Implementation Details ... 48

 4.3 Service Architecture .. 53

 4.4 Service Interface ... 60

Chapter 5: Distributed CD++ (DCD++) .. 65

 5.1 Implementing the Parallel-DEVS Algorithms .. 67

 5.2 Implementing the Simulation Components .. 73

 5.3 Designing and Implementing Distributed-CD++ (DCD++) 74

 5.3.1 Master and Slave Coordinators .. 77

 vi

 5.3.2 Model Loading Mechanism ... 78

 5.3.3 Message Passing Mechanism ... 80

 5.4 Sample Scenario.. 80

 5.5 Integrating Optimistic (PCD++) and Conservative (DCD++) Simulators 88

 5.5.1 Interfacing DCD++ to PCD++ ... 89

 5.5.2 Integrating DCD++ and PCD++ .. 91

Chapter 6: Performance Analysis .. 94

 6.1 Experimental Models and Execution Results ... 95

 6.2 Result Retrieval ... 111

Chapter 7: Conclusions ... 113

 7.1 Future Research Work .. 114

References .. 116

Appendix-A: P-DEVS and DCD++ Simulation Algorithms 121

Appendix-B: Web Service Components .. 132

 vii

List of Tables

Table 1: Atomic class functions .. 16

Table 2: DEVS simulator messages ... 19

Table 3: Arguments of the receiveRemoteMessage operation 86

Table 4: Execution results of the Fire model using one machine 98

Table 5: Execution results of the Fire model using two machines (Internet) 100

Table 6: Execution results of the Fire model using two machines (UCLP) 102

Table 7: Execution results of the Sand-pile model using one machine 104

Table 8: Execution results of the Sand-pile model using two machines (Internet) . 106

Table 9: Execution results of the Sand-pile model using two machines (UCLP) 107

Table 10: Summary of the execution results of the Fire and Sand-pile models 109

Table 11: Percentage of remote messages in distributed simulation 110

Table 12: File transfer times via the Internet/UCLP ... 111

 viii

List of Figures

Figure 1: Main entities in a M&S environment [Zei00] .. 7

Figure 2: Informal definition of an atomic DEVS model [Zei00] 9

Figure 3: Coupled DEVS model .. 11

Figure 4: Cellular Automata .. 13

Figure 5: CD++ model and class hierarchies.. 17

Figure 6: Content and synchronization messages in CD++ .. 18

Figure 7: Barbershop model architecture .. 19

Figure 8: BarberShop model definition ... 20

Figure 9: An excerpt of the Reception class definition ... 21

Figure 10: An excerpt of the Reception class definition... 22

Figure 11: An excerpt of the Battlefield model definition ... 24

Figure 12: An excerpt of the Battlefield rule definition ... 25

Figure 13: Causality errors in distributed simulation ... 27

Figure 14: An example of a SOAP message embedded in HTTP [Gud03]................ 32

Figure 15: Web service layers .. 33

Figure 16: A web service container [Glo05] ... 33

Figure 17: Major components of the simulation service ... 47

Figure 18: Implementing the simulation service using JNI and message queues 49

Figure 19: Simulation web service operation ... 52

Figure 20: Message queues connecting the simulation components to the

WrapperProxy .. 53

Figure 21: Web service components UML diagram .. 56

Figure 22: A sample grid configuration file .. 58

Figure 23: A typical invocation of the simulation web service 60

Figure 24: An excerpt of the message definition of the simulation web service 61

Figure 25: An excerpt of the portType definition of the simulation web service 61

Figure 26: An excerpt of the binding definition of the simulation web service 62

Figure 27: An excerpt of the service definition of the simulation web service 63

Figure 28: Message exchange during a simulation cycle ... 65

 ix

Figure 29: Tie breaking using the select function .. 67

Figure 30: Concurrent model activation in Parallel-DEVS .. 69

Figure 31: The simulation class hierarchy.. 70

Figure 32: The MainSimulator class .. 72

Figure 33: Unnecessary remote messages in distributed simulation 75

Figure 34: The use of Master and Slave coordinators to avoid unnecessary messages

... 76

Figure 35: Master and Slave coordinator classes ... 78

Figure 36: DCD++ model hierarchy.. 79

Figure 37: The Generator-Processor-Transducer (GPT) model 81

Figure 38: GPT model partitioning on two machines ... 81

Figure 39: An excerpt of the log file of Machine 1 ... 82

Figure 40: An excerpt of the log file of Machine 2 ... 83

Figure 41: createSlaveSession request ... 85

Figure 42: An initialization message sent as SOAP from Machine 1 to Machine 2 .. 87

Figure 43: retrieveLogFile response .. 88

Figure 44: Implementing the simulation web service with PCD++............................ 90

Figure 45: PCD++ architecture ... 91

Figure 46: Sending remote messages in distributed simulation 94

Figure 47: An excerpt of the Fire model definition ... 96

Figure 48: Fire model rule definition .. 96

Figure 49: Fire model simulation time using one machine ... 98

Figure 50: Fire model total execution time using one machine 99

Figure 51: Fire model partitions on two machines .. 99

Figure 52: Comparing the simulation time using 1&2 machines (Internet) 101

Figure 53: Comparing the total execution time using 1&2 machines (Internet) 101

Figure 54: Comparing the simulation time using 1&2 machines 102

Figure 55: Comparing the total execution time using 1&2 machines 103

Figure 56: An excerpt of the Sand-pile model definition .. 104

Figure 57: Simulation time of the Sand-pile model using one machine 104

Figure 58: Total execution time of the Sand-pile model using one machine 105

 x

Figure 59: Sand-pile model partitions on two machines ... 105

Figure 60: Comparing the simulation time of the Sand-pile model using 106

Figure 61: Comparing the total execution time of the Sand-pile model using 107

Figure 62: Comparing the simulation time of the Sand-pile model using 1&2

machines (Internet, UCLP) .. 108

Figure 63: Comparing the total execution time of the Sand-pile model using 108

Figure 64: Relationship between remote messages and simulation times 110

Figure 65: Comparing the file transfer times via the Internet/UCLP 111

Figure 66: Simulator’s reaction to a collect messag ... 121

Figure 67: Simulator’s reaction to an internal messag .. 122

Figure 68: Coordinator’s reaction to an internal messag .. 123

Figure 69: Coordinator’s reaction to an output message ... 123

Figure 70: Coordinator’s reaction to a done message.. 124

Figure 71: Coordinator’s reaction to a collect message ... 124

Figure 72: The Root coordinator behaviour when receiving a done message 126

Figure 73: The Master coordinator’s behaviour when receiving 127

Figure 74: The Master coordinator’s behaviour when receiving 128

Figure 75: The Master coordinator’s behaviour when receiving a collect message 128

Figure 76: The Master coordinator’s behaviour when receiving a done message .. 129

Figure 77: The Slave coordinator’s behaviour when receiving a collect message ... 129

Figure 78: The Slave coordinator’s behaviour when receiving an output message 130

Figure 79: The Slave coordinator’s behaviour when receiving a done message 130

Figure 80: The Slave coordinator’s behaviour when receiving 131

Figure 81: Web service components .. 132

1

Chapter 1: Introduction

Modeling and simulation (M&S) plays an important role in studying complex natural and

artificial systems. For some systems, analytical analysis is not always feasible due to the

complexity pertinent to them, for others, it is too dangerous or impractical to experiment

with them. One of the fields of M&S is discrete event simulation which is related to

studying systems that exist in finite set of discrete states over continuous periods of time.

Some examples of these systems include customer queues in a bank, computer networks,

and manufacturing facilities.

Discrete Event System Specification (DEVS) [Zei00] is a modeling and simulation

formalism that has been used to study discrete event systems. It depends on modeling the

system as hierarchal components, each of which has input and output ports to interact

with other components and with the external environment. The model state, output, and

response to external events are defined by a set of functions that define the model

behaviour. The success of using the DEVS approach in the field of M&S has inspired

researchers to define other DEVS-based formalisms. In this regard, Timed Cell-DEVS

[Wai01] is an extension to the traditional cellular automata [Wol86]; it allows for

representing each cell in the cell space as a DEVS model that is only activated when it

receives external inputs from its neighbouring cells. This improves the performance of

the simulation since only active cells are evaluated as opposed to evaluating the whole

cell space as in the case of cellular automata. In addition, complex timing behaviour can

be represented by introducing different time delays for different cells in the cell space.

Both (DEVS and Cell-DEVS) have been successfully used to model complex systems

such as fire spread in a forest [Ame01], land battlefield between two armies [Mad05], and

computer networks [Ahm05].

CD++ [Wai02] is a modeling and simulation toolkit that was developed to execute DEVS

and Cell-DEVS models. It follows the definition of the DEVS abstract simulator [Zei00]

in that there are two separate class hierarchies: one for representing the model and the

other for representing the simulator. In its basic version, CD++ has a one-to-one

2

correspondence between the model and simulator class hierarchies. Each DEVS atomic

model has a simulator and each coupled DEVS model (group of atomic and/or coupled

models connected together) has a coordinator to represent its behaviour. The simulation

is carried on by processing events by the simulators and coordinators and advancing the

simulation clock to the timestamp of the event that is about to be processed. This process

continues until the simulation time reaches the final execution time (as provided by the

user) or until there is no more events to process. Different versions of CD++ have been

developed to work on different platforms; the stand-alone version runs on regular

workstations, PCD++ [Tro03][Gli04] runs on high performance distributed-memory

clusters, and the real time version runs on specialized hardware in a real-time

environment [Gli02].

The decision of which version of CD++ to consider is governed by two factors; the

complexity of the system to be modeled, and the kind of resources available to the

modeller. As the system under study gets more complicated, the model complexity tends

to increase. This causes more resources to be needed in order to execute the model, in

which case using a single machine to run the simulation may be impractical. This has

inspired the research in the area of parallel and distributed simulation in order to use the

hardware resources in distributed environments to execute complex models. At the same

time, as more and more systems got connected through the Internet, a framework to

integrate their resources to execute complex models started to gain the attention of the

research community.

Grid computing represents a new paradigm for sharing compute and storage resources in

heterogeneous environments where resources reside on different platforms connected

together using standard communication protocols. In a grid environment, resources are

virtualized as services that are consumed by clients in a way similar to the way electricity

is consumed in a power grid. The client consumes electricity by plugging his appliance in

the power socket without being concerned with the details of the power generator used or

the type of cables used to deliver the electrical power. Similarly, the objective of grid

computing is to provide the client with compute and storage “services” on demand, with

3

minimal or no limitation to the platform on which these resources reside. Part of the

motivation behind grid computing is the enormous resources available today in terms of

CPU time and memory space. Organizations have compute resources either in high-end

servers or in user workstations with resources not being fully used. By exposing those

resources as services that can be used by remote as well as local users, better efficiency in

terms of using those resources can be achieved. In addition, the complex Business-to-

Business transactions taking place within large organizations usually connect different

companies in different locations, traversing different security domains. By connecting the

company resources using standard middleware, the interactions among them can have a

robust and more secure environment of operation.

Some of the issues usually faced in grid environments include resource description and

discovery, resource allocation and management, user authentication and authorization. To

facilitate the development and deployment of grid applications, different grid middleware

technologies have been developed. The key feature of these technologies is their reliance

on standard protocols that can be used on different platforms. Web service technologies

represent a means of deploying and exposing applications in standard and platform-

independent form. The use of the parallel simulation algorithms with the emerging grid

and web service technologies provides an appealing opportunity to use the resources

available in a grid environment to run complex distributed simulations. In this context,

the idle CPU time and memory resources in a machine can offer simulation “services” to

remote users/services while the local user is performing other tasks.

1.1 Motivation and Goals

The motivation of this work comes from the need to run increasingly complex models

that represent natural and artificial systems and to integrate this capability with larger

systems to provide better use of the simulation results. Although other versions of CD++

have been developed to run complex models on distributed-memory clusters, they are

specific in terms of the hardware, software, and network connectivity among the nodes

running the simulation. We aim at providing a flexible framework for integrating

4

resources running on commodity hardware and connected using commodity Internet

connections to run complex models.

The need to integrate the simulation capabilities into larger systems is evident when the

user of the simulator is not proficient in interpreting the simulation results or when it is

not convenient for him to do so. Our objective of using web services is to provide

standard means of interacting with the simulator taking into account the wide spread of

web service technologies in distributed environments. The examples in which simulation

can be applied in order to better understand the system under study are countless. One of

these examples include using an orchestration language such as Business Process

Execution Language (BPEL) [And03] to establish a workflow between the simulation

services and other services such as visualization services. These services are being

integrated in a larger project in order to help architecture engineers to simulate different

incidents taking place in their designs and visualize the effect of their decisions on

people’s behaviour in case of emergency. By being able to design a building, simulate the

people’s behaviour in that building, and visualize the results of the simulation, the

architects can have better understanding of the consequences of their designs. The

resources used for that project are located in geographically dispersed locations that are

connected together using User Controlled Light Path (UCLP) [Arn03]. UCLP is a web

service-based network management tool that can be easily integrated with the simulation

services. This allows for on-demand connectivity between the simulation services, the

visualization services, and the users in a seamless and efficient manner.

1.2 Contribution

In this dissertation, we present our work in designing and implementing distributed

simulation services based on the CD++ engine. Firstly, CD++ was wrapped as a web

service allowing the users to submit the model, start the simulation, and retrieve the

results remotely. The services were extended to run complex models in distributed

environments by taking advantage of web service technologies, namely SOAP [Gud03],

as the main messaging protocol. The platform depends on running the simulation as a

5

service on each node participating in the distributed session, and synchronizing the

simulation activities through message passing among the different services. The client

connects to the “master” simulation service through SOAP and supplies the model

definition and partition information through an XML-based configuration file. Once

started, the simulation is processed following the conservative approach for clock

advancement, which is controlled by a master Root coordinator residing on the master

node. Two types of coordinators are used; the master coordinator is responsible for

forwarding messages among its local children and passing messages from/to the upper-

level coordinator in the simulator class hierarchy. The slave coordinator is responsible for

forwarding messages among its local child models instead of forwarding these messages

to the master coordinator that might be running on a different machine. A similar

approach was followed when implementing a previous version of the simulator that runs

on distributed-memory clusters and it has been shown that using the slave coordinators

reduces the overhead of transmitting messages over the network [Tro03]. The main

advantage of the proposed simulation engine is that it provides an efficient way of using

the CPU and memory resources by running the simulation as a service on commodity

hardware (workstations) that can be used by other users to perform other activities, such

as word processing. The resources of such machines can be used collectively to execute

complex models in a distributed manner. The efficiency comes from the fact that those

resources (if not utilized by local users) would have been wasted if not used to run the

simulation services.

We provide a prototype for integrating the distributed simulator using SOAP as a

messaging protocol and following the conservative approach with an optimistic parallel

version of the simulator (PCD++) [Gli04] that uses MPI [MPI95] as a messaging

protocol. The optimistic parallel simulator was wrapped as a web service in order to

enable remote execution of models on distributed-memory clusters. In order to ensure the

correctness of the simulation, changes are proposed to PCD++ to ensure that the

simulation results are correct in case of rollbacks taking place within PCD++.

6

We present a performance analysis of the distributed simulator when running different

models. Two machines were used to run the tests, one located in Ottawa and the other in

Montreal. The performance of the simulator in terms of the time used to initialize and

execute the models was studied using two configurations. In one configuration, the

machines were connected using a commodity Internet connection, and the results showed

a noticeable overhead of the distributed simulation compared to when using one machine

to execute the model. In the other configuration, the machines were connected using

UCLP, which showed a considerable reduction of the overhead.

1.3 Thesis Organization

This dissertation is organized in different chapters. Chapter 2 introduces the Discrete

Event System Specification (DEVS) formalism as a modeling and simulation framework

discussing the model definition and the different functions that control its behaviour. In

addition, Cell-DEVS is discussed as an extension to the traditional cellular automata. The

following section discusses CD++ as the modeling and simulation toolkit used to

implement the distributed version of the simulator, followed by a section highlighting the

main approaches followed for synchronization in the field of parallel and distributed

simulation. The second part of chapter 2 provides an overview of some of the middleware

technologies used nowadays to enable grid and distributed applications. In chapter 3, we

cover some of the available DEVS simulation engines in grid and distributed

environments, highlighting the main characteristics that distinguish our implementation.

Chapter 4 introduces the web service components implemented in the simulation engine

in order to interface its capabilities to web service technologies. Chapter 5 discusses the

implementation of the distributed version of the simulator highlighting its design layout

and discussing the functionality of the major components. Chapter 6 provides an

experimental performance analysis of the distributed simulator when using UCLP versus

regular Internet connections to connect the different nodes in the simulation session.

Finally, in chapter 7, conclusions are presented and future research work that can extend

the outcome of this dissertation is discussed.

7

Chapter 2: Grid Middleware for Discrete Event Modeling and

Simulation

Discrete event M&S is concerned with studying the behaviour of systems that have finite

set of discrete states during continuous periods of time. Examples of these systems

include computer networks, traffic in city sections, and manufacturing facilities. Different

M&S frameworks have different definitions and interpretations of the functional entities

in their environments. One approach of defining the role of each entity is presented by

Zeigler [Zei00], in which, the model has two kinds of relationships. The modeling

relationship exists between the model and the source system, which in turn exists within

an experimental frame, and the simulation relationship that exists between the model and

the simulator.

Figure 1: Main entities in a M&S environment [Zei00]

In this chapter, we will introduce the main aspects of DEVS methodology and cover

some of the currently available grid middleware tools. The use of grid technologies in the

implementation of distributed DEVS simulators is discussed in the following chapter.

Grid computing is a computing paradigm where compute and data storage resources are

shared among users in distant geographic locations and usually belonging to different

security domains. This approach has gained interest in recent years due to the fact that,

using the grid, complex applications can run on existing hardware infrastructure without

worrying about investing in costly dedicated computer systems such as mainframes and

8

high-end clusters. In addition, there are large underutilized computing resources. Most

desktop machines are busy less than 5%, and in some organizations, even servers can be

idle most of the time [Fer03]. Grid computing provides a framework for exploiting these

resources and hence has the possibility of substantially increasing the efficiency of

resource usage.

The success of achieving the previous advantages largely depends on factors such as the

nature of the application to run on the grid, and the kind of grid technology adopted. For

example, certain types of applications can be good candidates to run on the grid, such as

batch jobs that spend large amounts of time processing input data to produce output data.

On the other hand, running a simple application such as word processor on the grid might

introduce more overheads that make it slower than if it was run on a regular workstation.

The complexity usually pertinent to the grid application may require different types of

tools and technologies in order to allow the application to use the grid resources. Due to

the heterogeneous nature of the grid, middleware usually depend on standard protocols to

connect the grid resources together. Grid middleware can include services and utilities for

resource description and discovery, resource allocation and management, and

user/service authentication and authorization. In the following sections, we will introduce

some of the main ideas in this area.

2.1 Discrete Event System Specification (DEVS)

Discrete Event System Specification (DEVS) [Zei00] is a M&S specification that is

aimed to study discrete event systems. In DEVS, the model consists of components

connected together through external port(s). Events scheduled for a model arrive through

its input ports and the output generated by the model propagates to the other models (or

the environment) through its output port(s). The basic building block of any DEVS model

is the atomic DEVS model. It simulates the behaviour of the system by different functions

that are defined as part of the model definition process. The internal transition function

(ddddint), evaluates the next state of the model at internal state transition points. The state

defined for the model remains valid for a duration specified by the time advance function

9

(ta). When the model receives external inputs through its input port(s), it examines those

input(s) with its current state in order to determine its future state; this is done by

executing the external transition function (ddddext). The output function (lll l) is executed

before any internal state transition, and it generates the model output to be transmitted to

the influencees of the model through its output port(s).

x

s ' = d ext (s, e, x)

s s ' = d int (s)

y

l (s)

t a(s)

Figure 2: Informal definition of an atomic DEVS model [Zei00]

The formal definition of DEVS models is given as [Zei00]:

M = < X, S, Y, dint, dext, � , ta >

where

X is the set of input values;

S is the set of states;

Y is the set of output values;

dint: S � S is the internal transition function;

dext: Q x X � S is the external transition function, where

 Q = {(s, e) | s Î S, 0 £ e £ ta(s) is the total state set

 e is the time elapsed since last transition;

� : S � Y is the output function;

ta: S � R 0 � � is the time advance function;

By examining Figure 2 and the formal definition of atomic DEVS models, one can see

the relationship between all the functions defining the model and their effect on its state

and behaviour. In Figure 2, the model exists initially in state s, and it was scheduled to

10

remain in that state for duration of ta(s). However, before ta(s) is elapsed, the model

receives an external input (x), which causes the model to execute its external transition

function (dext) in order to evaluate the model’s new state after receiving the input. The

external transition function takes into account the model’s total state (Q), which is

defined by the model state (s) and the time elapsed since the model was in that state (e).

Had the model not received an external input, it would have executed the output function

(�) after being in state s for ta(s) time units. This would have been followed by the

internal transition function (dint), which determines the model’s next state because of an

internal transition.

An exceptional case may take place if the states of two different models connected

together expire at the same time. The decision of whom to evaluate next may have some

implications on the correctness of the model. This situation may have serialization effect

on the model, and the decision as of which model to evaluate first is left to the modeller

through the select function. In order to overcome this issue, Parallel-DEVS (P-DEVS)

[Cho94a] formalism executes all the imminent models (models with the earliest

scheduled state change) in parallel. This has a major effect on allowing the DEVS

simulator to take advantage of the parallelism that might be available in the model and in

the hardware resources (in the case of using parallel machines to run the model). In P-

DEVS, the model has two message bags, one to store the external input messages, and the

other is used to store the output messages.

The formal definition of a P-DEVS model is presented in [Cho94a]:

M = < X, S, Y, dint, dext, dconf, � , ta >

where

X is the set of input values;

S is the set of states;

Y is the set of output values;

dint: S � S is the internal transition function;

dext: Q x Xb � S is the external transition function, where

 Xb is a set of bags over elements in X,

 dext (s, e, �) = (s, e);

11

dconf : S x Xb � S is the confluent transition function;

� : S � Yb is the output function;

ta: S � R 0 � � is the time advance function;

where

 Q = {(s, e) | s Î S, 0 £ e £ ta(s) is the total state set

 e is the time elapsed since last transition;

The main difference between DEVS and P-DEVS formalisms is the addition of the

confluent function (dconf), which is responsible for determining the next state of the model

when an external input arrives at the same time of an internal transition. The definition of

the confluent function is determined by the modeller so that the correct behaviour can be

modeled depending on the system under study.

The physical system model is created by integrating the different DEVS models together

though their input and output ports; resulting in a coupled DEVS model. A coupled DEVS

model consists of atomic and/or other coupled models connected together.

Figure 3: Coupled DEVS model

The formal definition of a coupled DEVS model is [Zei00]:

N = <X, Y, D, {Md | d Î D}, EIC, EOC, IC, select >

where

X = {(p, v) | p Î IPorts, v Î Xp} is the set of input ports and values, Xp is the set of

external values received through port p;

12

Y = {(p, v) | p Î OPorts, v Î Yp} is the set of output ports and values, Yp is the set of

output values generated through port p;

D is the set of the component names;

Md = (Xd, Yd, S, Y, dint, dext, ta) is a DEVS model

where Xd = {(p, v) | p Î IPortsd, v Î Xp}, and

 Yd = {(p, v) | p Î OPortsd, v Î Yp};

External Input Coupling (EIC) connects external inputs to component inputs

EIC Í {((N, ipN), (d, ipd)) | ipN Î IPorts, d Î D, ipd Î IPortsd}, where

 ipN is an input port of the coupled model, and

 ipd is an input port of component d;

External Output Coupling (EOC) connects component outputs to external outputs

EOC Í {((N, opN), (d, opd)) | opN Î OPorts, d Î D, opd Î OPortsd }, where

 opN is an output port of the coupled model, and

 opd is an output port of component d;

Internal Coupling (IC) connects component outputs to component inputs

IC Í {((a, opa), (b, ipb)) | a, b Î D, opa Î OPortsa, ipb Î IPortsb};

No direct feedback loops are allowed, i.e. no output port of a component can be

connected to one of its input ports.

 ((d, opd), (e, ipe)) Î IC implies d ¹ e;

select is the tie breaking function (not needed for the P-DEVS formalism).

A coupled DEVS model exhibits a similar behaviour to an atomic DEVS model in terms

of having input and output ports connecting the model to the environment, or to other

DEVS models. The connectivity between the coupled DEVS model and the other

external ones is defined though the External Input Coupling (EIC) and the External

Output Coupling (EOC). The EIC defines the connectivity between the input ports of the

13

coupled model with the input ports of its components. On the other hand, the EOC

defines the connectivity between the output ports of the coupled DEVS model

components and the output ports of the model as a whole. Internal Coupling (IC) defines

the connectivity among the model components themselves.

2.2 Timed Cell-DEVS

Cellular automata [Wol86] has been used to model different physical systems, were the

model is represented by group of cells neighbouring each other. Each cell has a state and

a local compute function. The future state of the cell is determined by its current state and

by the inputs it is receiving from its neighbours. When the future state is evaluated, it is

transmitted to the neighbouring cells.

Figure 4: Cellular Automata

Cell-DEVS [Wai01] is an extension to cellular automata that depends on defining the cell

as an atomic DEVS model. This adds two improvements to the traditional cellular

automata approach:

i) The cells are evaluated asynchronously; i.e. only the active cells are evaluated, as

opposed to the synchronous evaluation of cellular automata. This has

implementation consequences in terms of requiring less memory than what is

needed in the case of synchronous evaluation.

ii) The cells are only activated when they experience state change. This has an

advantage of reducing the message exchange with the cell’s neighbourhood and

hence improving the performance of the model execution.

14

The formal definition of Cell-DEVS models is presented in [Wai01]:

TDC = < X, Y, I, S, q, N, d, dint, dext, t , l , D >

X is the set of external input events;

Y is the set of external output events;

I represent the definition of the model's modular interface;

S is the set of sequential states of the cell;

q is the definition of the cell's state;

N is the set of states for the input events;

d is the transport/inertial delay of the cell;

dint: q ® q is the internal transition function;

dext: Q x X ® q is the external transition function, where Q is the state values defined as:

Q = {(s, e) / s Î q x N x d; e Î [0, D(s)]};

t : N ® S is the local computation function;

l : S ® Y is the output function, and

D: q x N x d ® R0+ È ¥ , is the state's duration function;

The asynchronous evaluation of the cells provides the modeller with powerful means to

define complex temporal behaviours. Two types of delays can be defined; transport delay

simulates queued future states. Each state is associated with a time value, which gets

decremented at each simulation cycle. When the time value associated with the state is

equal to zero, it is assigned to the current cell state. Using transport delays, a state is

considered valid only if it is different from the previously queued state. Another type of

delay is inertial delay. Using the inertial delay, the newly evaluated state will pre-empt

the scheduled one if they were different. Coupled Cell-DEVS models can be formed by

connecting different cells together. The cell space can take different dimensions and

shapes. For example, 2D cell space can be used to model the spread of fire in a forest; 3D

cell space can be used to model the spread of a specific type of viruses in a city. The

borders of the coupled cell DEVS model can be one of two types; a wrapped border

indicates that the cells at the edge of the cell space are neighboured by the cells on the

opposite side. On the other hand, non-wrapped border indicates that the cells at the

15

borders have special rules that need to be defined by the modeller. The formal definition

of Coupled Cell-DEVS models is presented in [Wai01]:

GCC = < Xlist, Ylist, I, X, Y, n, {t1,...,tn}, N, C, B, Z, select >

X list is the input coupling list;

Y list is the output coupling list;

I represent the interface of the modular model;

X is the set of the external input events;

Y is the set of the external output events;

n is the dimension of the cell space;

{t1,..., tn} is the number of cells in each dimension;

N is the neighbourhood set;

C is the cell space;

B is the set of border cells;

Z is the translation function; and

select is the tie breaking function;

Since each cell is represented as an atomic DEVS model, the cell behaviour is defined by

the various functions used to define an atomic DEVS model. Once an external input

arrives to the cell from one of its neighbours, it activates the external transition function,

which calculates the next state of the model. The time advance function is represented by

the delay associated with the cell. Once the delay expires, the output function is triggered

to generate the cell’s output, followed by the internal transition function, which evaluates

the cell’s new state. The limitation associated with the original DEVS model definition,

in terms of activating only one DEVS model at a time (through the select function)

restricts the capabilities of the coupled Cell-DEVS model. The Parallel Cell-DEVS

formalism [Wai00] was introduced to extend the functionality of the Cell-DEVS

formalism taking advantage of the features provided by the Parallel-DEVS formalism;

which include, executing imminent models in parallel avoiding the serialization problem

that can lead to incorrect execution of the model.

16

2.3 The CD++ Toolkit

CD++ [Wai02] is a collection of programs and tools that are used to execute DEVS and

Cell-DEVS models. The main component of the toolkit is the simulation engine (CD++).

However; the toolkit includes other utilities that are used for the setup of the simulation

and for the interpretation of the results.

CD++ was built following the object-orientation model using C++. CD++ executes the

model by creating a collection of model and simulator classes following [Zei00]. The

model classes represent the different types of models that the simulator is capable of

executing. Those include Model, Atomic, AtomicCell, InertialDelayCell,

TransportDelayCell, Coupled, CoupledCell, FlatCoupledCell classes. The Atomic is an

abstract class that encapsulates the variables and methods common to all models; which

include the model id, input and output ports, parent id, etc. The Atomic class is used to

represent an atomic DEVS (or Cell-DEVS) model. In addition to the variables and

methods inherited from the Model class, it defines the features specific to atomic DEVS

models. Each atomic DEVS model has four functions associated with it, which

correspond to the functions defined in the formal DEVS formalism:

CD++ Atomic method DEVS formalism function

initFunction() -

externalFunction() External transition function (ddddext)

internalFunction() Internal transition function (ddddint)

outputFunction() Output function (lll l)

holdIn(state, time) Time advance function (ta(state) = time), state

= {active, passive}

passivate() ta(state) = � , state = passive

Table 1: Atomic class functions

The AtomicCell class defines variables specific to Cell-DEVS cells, such as the cell’s

neighbourhood. TransportDelayCell and InertialDelayCell represent transport delay cells

17

and inertial delay cells, respectively. Coupled DEVS models are implemented in the

simulator using the coupled class which encapsulates the attributes and methods

necessary to define coupled DEVS models, such as establishing the parent-child

relationship between the models. The CoupledCell represents a coupled Cell-DEVS

model that has attributes such as border type, dimension, and default delay.

FlatCoupledCell defines special kind of Coupled Cell-DEVS models where the whole

cell space is executed by one processor in the simulator. Atomic DEVS models are

defined through C++ classes that override the different functions defined by the abstract

Atomic class. These models are integrated into the class hierarchy of the model and are

registered by the simulator when the model is loaded and before the simulation starts.

Figure 5: CD++ model and class hierarchies

The simulation is carried out by the simulation classes; those include Processor, Root,

Simulator, Coordinator, CellCoordinator, and FlatCellCoordinator. The simulation is

driven by the Root coordinator, which is responsible for starting and stopping the

simulation, interfacing the simulator with the environment in terms of passing external

events/output from/to the environment, and advancing the simulation clock. The

Simulator class executes an atomic DEVS model by receiving different kinds of

messages and responding by executing the corresponding function in the atomic DEVS

class (Atomic). In addition, it maintains two important variables that are used to find the

imminent models and advance the simulation clock. Those are TlastChange, and TnextChange;

18

TlastChange is the time of the last change of the DEVS model, and TnextChange is the time of

the next change.

The coordinator class is responsible for routing the messages among its children and its

parent-coordinator. In addition, it evaluates the minimum TnextChange for its children in

order to report it to the Root coordinator. The CellCoordinator is derived from the

coordinator class and is responsible for message routing among the cells in a coupled

Cell-DEVS model. The FlatCellCoordinator class executes flat Cell-DEVS models.

Having separate classes for the model and simulator offers the advantage of isolating the

simulator architecture from the model structure; so that changing the simulator internals

does not affect the model definition. In addition, it facilitates the use of the simulator

since the modeller needs only to define the model without any deep knowledge of the

simulator.

The simulation is driven by passing messages among the different simulators and

coordinators. The simulation continues until the simulation clock reaches a specific time

or when there are no more events to process. The messages exchanged between the

simulator entities are grouped into two categories: synchronization messages, and content

messages:

Figure 6: Content and synchronization messages in CD++

19

Message Description

I Initialization message: is passed by the Root coordinator to all of the

coordinators/simulators at the initialization phase of the simulation.

* Internal message: is passed by the Root coordinator to the imminent models

(scheduled for state change).

Done Done message: is passed by the simulators to the upper-level coordinators to

designate the end of state transition phase (or the processing of an external

event) and report their TnextChange.

X External message: represents an external event that can be arriving from the

environment or from an output message generated by another model.

Y Output message: represents an output generated by the model.

Table 2: DEVS simulator messages

Figure 7: Barbershop model architecture

An example of a coupled DEVS model is shown in Figure 7. The BarberShop model

represents a barbershop with three main components. The Reception component is an

atomic DEVS model simulating the reception desk of the barbershop. The Reception has

limited seats available for arriving customers, who are either advised to wait in the

reception if the barber is already busy working on a customer, or are forwarded to the

barber if he is idle. The Barber component is a coupled DEVS model that consists of the

CheckHair and CutHair atomic DEVS models. The CheckHair component represents the

20

process of checking the customer’s hair and getting the customer’s preference of his hair

style. The CutHair component represents the actual hair cut process.

The semantics of the model is defined in CD++ using the CD++ specification language. It

has different constructs to define:

i) The components of the model, in a hierarchal manner;

ii) The input and output ports connecting the components, and the

interconnections among those ports;

iii) The specific attributes of each model, such as the border type in the case of

coupled Cell-DEVS models;

iv) Parameter values used by the model such as type and mean of stochastic

distributions;

Figure 8: BarberShop model definition

The top construct defines the overall BarberShop model which is composed of an

instance of the Reception model (atomic DEVS), and the Barber coupled DEVS model.

The input and output ports of the BarberShop are defined using the in and out constructs

respectively. The link construct defines the connections between the input and output

ports of the model. The different parameters used by the Reception model are defined

within the reception construct. They include the number of chairs available in the

reception area (numberofChairs), the preparation time for the customer to move from the

reception to the barber chair (preparationTime), and the opening and closing times of the

barbershop (openingTime, closingTime). The Barber coupled DEVS model is composed

21

of an instance of the CheckHair model, and an instance of the CutHair model. The input

and output ports, and the links among them are defined in a similar manner to the top

model.

In CD++, each of the atomic DEVS models needs to be defined as a C++ class overriding

the main functions defined by the abstract Atomic class. These functions are initFunction,

internalFunction, externalFunction, and outputFunction. By integrating the DEVS model

class into CD++, the simulation is driven by executing these functions by the Simulator

associated with the model. An excerpt of the definition of the Reception class is shown in

Figure 9:

Figure 9: An excerpt of the Reception class definition

During the initialization phase of the Reception model (at the beginning of the

simulation), the variable we_are_full (indicates that the reception is occupied by the

maximum allowed number of customers) is reset to false. In addition, the cust_is_ready

variable and the list of customers are reset. When the model is scheduled for an internal

transition, the internalFunction is executed and it causes the model to be passive until

further external input events are received. The output of the Reception model is generated

through the outFunction method; in this case, the output of the model represents the

customer that was waiting for the longest time.

22

Figure 10: An excerpt of the Reception class definition

The Reception model has two input ports; newCustomer and next. If a message arrives

through newCustomer port representing the arrival of a new customer, different scenarios

can occur. If the message arrives with a timestamp outside the barbershop hours of

operation, no action is taken and a message indicating that scenario is printed out to the

modeller. If the customer arrives and there are no other customers waiting in the

reception, the customer is forwarded to the Barber model at the time of next internal

transition (which takes place once the preparationTime elapses). The third scenario

occurs when a customer arrives while there are others waiting in the reception; in which

case, the customer is added to the list of waiting customers and the one who was waiting

for the longest period is forwarded to the Barber after preparationTime time units.

In order to execute Parallel-DEVS models, an abstract simulator was presented in

[Cho94b]. The basic P-DEVS simulator depends on having separate representations of

the model and the simulator entities. In addition, the two main components of the

simulator are the simulators and coordinators. The simulators are responsible for

executing atomic DEVS models, and the coordinators are responsible for executing

coupled DEVS models. They both interact through messages that can be synchronization

(collect, *, done) or content messages (x, y).

23

When a simulator receives a collect message from its parent, it executes the output

function and sends a done message to its parent coordinator indicating the time of the

next state change. The state change of the simulator takes place when it receives an

internal message (*) from the coordinator, in which case it executes its internal transition

function, external transition function, or confluent transition function. The choice of

which function to execute depends on different factors, which are:

i) The timestamp of the internal message;

ii) The time of the internal transition of the model;

iii) The status of the external message bag of the model;

The coordinator is in charge of forwarding external and output messages among the

simulators and synchronizing the activities taking place during the simulation. When a

coordinator receives a collect message, it forwards the message to its imminent child

processors and reports the time of the next change to its parent coordinator. Receiving an

internal message by a coordinator, causes it to process the messages in its external

message bag, and send internal messages to its child processors scheduled for internal

and/or external transitions. An output message generated by a simulator is sent to its

parent coordinator, which in turn either forwards it to the upper-level coordinator, or

translates it to external messages for its local receiving processors. External messages

received by simulators and coordinators are inserted in their external message bags to be

processed when they receive the next internal message from the parent coordinator. The

algorithms defining the behaviour of the simulators and coordinators are explained in

detail in Appendix-A.

In order to define Cell-DEVS models, the modeller does not need to define any C++

class; that is, CD++ already includes the AtomicCell classes representing the cell with

transport (TransportDelayCell) and inertial (InertialDelayCell) delays. However, the

modeller uses the CD++ specification language in order to define the necessary attributes

of atomic and coupled Cell-DEVS models. Those include the border type, the delay type,

the default delay value, the neighbourhood, etc. An example of a Cell-DEVS model is

presented in [Mad05], where a battlefield between two armies is modeled. The army

24

consists of number of fighters, each of which has a state that can be alive, injured, or

dead. Fighters engage in a battle and the outcome of the battle depends on a randomly

assigned factor FightingAbility, which is assigned to the soldier at the beginning of the

simulation and at the end of any engagement with his enemy.

The Battlefield model is composed of a 3-dimensional cell space with (10, 10, 6) cells in

each dimension. The cell delay is defined using the delay construct to be inertial delay

with a default value of 100 milliseconds. The border type used in the Battlefield model is

wrapped indicating that the cells at the edges of the cell space are neighboured by those

on the other side. The neighbourhood of the cell is defined by the neighbors construct.

Cells are assigned a default value of zero (initialvalue : 0) unless they are assigned

different values by the file “battle1.val” (initialcellvalue : battle1.val). The zone construct

is used to assign different rules for different parts of the cell space. The layer of the cell

space responsible for evaluating the soldiers’ behaviour in the battlefield is the first layer

((0, 0, 0)..(9, 9, 0)); the other layers are used to store and evaluate the different variables

that affect the simulation of the battlefield.

Figure 11: An excerpt of the Battlefield model definition

25

The local rule definition specifies the value each cell would take at each simulation cycle.

Each rule will have a condition, delay, and a value. The condition is evaluated, and if it is

true, the cell is assigned the specified value when the delay elapses. Figure 12 shows part

of the rule definition of the Battlefield model. The first rule checks if a soldier of army A

is in state injured ((0, 0, 0) = 1) or alive ((0, 0, 0) = 2) and surrounded by enemy soldiers;

if so, it evaluates the fighting ability of the enemy soldiers (using the macro

“fight_rule_1”) and if the outcome is larger than the fighting ability of the solider, the

soldier is considered dead ((0, 0, 0) = 0) after 100 time units. The second rule evaluates

the same situation for the soldiers of army B. The third and fourth rules evaluate the

status of the flags ((0, 0, 0) = 5, (0, 0, 0) = -5) when they get attacked by enemy soldiers.

Figure 12: An excerpt of the Battlefield rule definition

2.4 Distributed Simulation

The complexity of the model tends to increase as the modeled system evolves or as more

details need to be taken into account at a lower level of abstraction. This in turn requires

more compute and memory resources when executing the model which results in a longer

execution time, or in not being able to run the simulation at all due to lack of resources.

The field of parallel and distributed simulation aims to study the possibilities of providing

more efficient runs of complex models. This can be achieved by executing the simulation

on parallel hardware that can be shared-memory multiprocessing machines, or

distributed-memory clusters. In shared-memory machines, multiple processors have

26

access to a shared memory which might be a bottleneck if the number of processors is

large. In distributed-memory clusters, different processors have different memories and

sharing information takes place through message passing; in which case, the network

might be the bottleneck.

To run on distributed environments, the model is usually decomposed into components

that are executed by different simulators running on multiple processors. This has an

advantage of utilizing the parallelism in the model, but it requires synchronization among

the different processors. The synchronization among the different processors running the

simulation has gained a lot of attention from the research community. The main issue is

how to use the parallelism in the hardware to execute the model while maintaining the

correctness of the simulation. In discrete event simulation, there are usually dependencies

among the model components, such that, some events can only be processed once the

events they depend on are done. This is referred to as causal dependency of the model

components [Zei00]. For an arbitrary event x, all of the events on which it depends

(either directly or indirectly) have to be processed before x gets processed, satisfying the

local causality constraint. Failure to do so; might result in causality errors. The problem

of assuring compliance with the local causality constraint is referred to as the

synchronization problem [Fuj99].

In parallel and distributed environments, simulation is considered to be carried out by

logical processors (LPs) that are mapped to physical processors. The events processed by

each LP might have been received from other LPs through time-stamped message

exchange or were scheduled by other local events. The correctness of the simulation is

regarded as not to violate the local causality constraint. “A discrete-event simulation,

consisting of logical processes (LPs) that interact exclusively by exchanging time-

stamped messages obey the local causality constraint if and only if each LP processes

events in non-decreasing time stamp order” [Fuj99]. Figure 13 shows a scenario where

three logical processes are executing a model and LP1 receives an out-of-order event

resulting in a causality error.

27

� � �
�

�
� � �

Figure 13: Causality errors in distributed simulation

Two main categories of algorithms exist to address the issue of synchronization in

parallel and distributed simulation environments. The conservative approach restricts the

simulation clock advancement in each logical process to the condition that no causality

errors will be encountered in the future simulation time. On the other hand, optimistic

approach permits causality errors to occur, but provides the means to rollback the

simulation to the time of the message that caused the causality error and resumes the

simulation from that point.

2.4.1 Conservative Simulation

In conservative simulation, the logical process advances its simulation clock only when it

is “safe” to do so. The safety is judged by the possibility of receiving a message with an

earlier timestamp than the clock of the logical process. One approach for the logical

process to do so is by having a queue for each link through which it receives external

messages from other LPs. Then, by checking each of the queues for the earliest time

stamp of the message to be processed, and comparing those with the time stamp of the

event to be processed next, the logical process can determine the time of the event that

won’t cause any causality error if processed.

The problem with this approach is that the logical process will not be able to advance its

clock if there is a link without any input in its queue, since the logical process can’t

28

calculate the minimum time stamp of the events received through this link. This in turn

may result in a deadlock in the whole simulation if there is a cyclic dependency among

the logical processes. The Chandy-Misra-Bryant (CMB) [Bry77][Cha79] algorithm

introduces the concept of null messages, which don’t schedule any events, but are used to

inform the logical process of the lowest time bound of any subsequent messages to be

sent by the sending logical process. The time in the future before which no events will be

scheduled is referred to as lookahead, and it depends on the system being modeled. It has

been shown, that when running parallel/distributed DEVS models following the

conservative approach and using null messages with a non-zero lookahead for at least

one logical process, deadlock can never occur. That is, at least one logical process will be

able to advance its clock and process its events [Zei00].

One of the disadvantages of the conservative simulation is that the lookahead property is

application-dependent and may not always be easy to calculate. In addition, the

parallelism in the model and hardware may not be exploited efficiently due to the

conservative nature of the algorithm.

2.4.2 Optimistic Simulation

Contrary to the conservative simulation, optimistic simulation permits causality errors to

occur, but provides mechanisms to rollback the simulation to an earlier time so that the

local causality constraint can be satisfied. One of the most known optimistic algorithms is

Time Warp, which was introduced by Jefferson [Jef85]. Time Warp introduces the

concept of Global Virtual Time (GVT) and Local Virtual Time (LVT). The global virtual

time is common to all logical processes and it always advances in an increasing order, the

local virtual time is local to the logical process and it can be advanced in an increasing

order or a decreasing order (in case of rollback). The Global Virtual Time (GVT) at a

specific wall-clock time is the lowest bound on the timestamps of all the events in all the

logical processes, and the messages that were sent but not received yet (in transit). Thus,

no rollback can ever take place at a time equal to or less than GVT. This is an important

property since it allows the Time Warp simulation to reclaim the resources used by all the

29

events with timestamps earlier than GVT; this process is refereed to as fossil collection

[Jef85]. Different algorithms exist for evaluating the GVT including Samadi’s GVT

algorithm and Mattern’s GVT algorithm [Fuj99].

Rolling back the simulation objects is done by restoring the states of the objects at the

time of rollback; however, the messages sent by the simulation objects after the rollback

time need to be “unsent” as well. Time Warp introduces the concept of anti messages

(negative messages) which annihilate with the corresponding positive messages. So, in

order to cancel the events that were sent by a simulation object, negative versions of the

messages that were sent after the rollback time should be sent out.

The main advantage of the Time Warp algorithm is that it is able to use the parallelism in

the modeled system “optimistically” by advancing the local simulation clock in each

logical process without waiting for any safety condition to be satisfied. On the other

hand, its main disadvantage is that it requires more resources to store the state and anti-

message information that are needed in case of rollback. In addition, there is an overhead

associated with rolling back the simulation to an earlier simulation time, however,

Jefferson presents an argument that most programs follows the temporal locality

principle, “most messages arrive in the virtual future at their destination, not causing any

rollback at all, and that those that arrive in the virtual past tend strongly to arrive in the

recent past, so that few events are rolled back” [Jef85].

2.5 Web Services (WS)

Web services are group of standards and languages aiming to facilitate developing,

publishing, and discovering web-enabled applications. In other words, a web service is a

software system designed to support interoperable machine-to-machine interaction over a

network. It has an interface described in a machine-understandable format (specifically

Web Service Description Language WSDL [Chr01]). Client systems interact with the

web service in a manner prescribed by its description using SOAP [Gud03] messages,

typically conveyed using HTTP with an XML serialization in conjunction with other

30

web-related standards [Alo03]. Web services are different from the traditional web

applications in an important aspect. Web applications are hosted by application/web

servers and they use the HTTP protocol to interact with the clients. Since the Internet is

the largest network of resources using HTTP, they are usually embedded in the context of

a service provider’s webpage; the important thing about web applications is that they are

used by humans in the sense that the user has to find the web application of interest and

perform some tasks (such as launching an applet) to use the functionality offered by the

application provider. On the other hand, web services are meant to be used by other

services (and not directly humans). Although web services are usually deployed using

HTTP as an application layer protocol, they could similarly be used on top of other

protocols such as SMTP. The reason for using HTTP is that it is familiar to most users

and usually passes through company’s firewalls without causing a lot of administration or

management overhead.

 The fact that web services are meant to be used by applications emphasized the need to

express the functionality of the web service in machine-understandable languages. XML

[Bra04] seemed to be an ideal candidate in which to develop the standard. One advantage

of using XML is that it is a widely accepted language for the flexibility it offers in terms

of defining the document structure. Therefore, several XML-based languages and

standards have emerged to meet the needs of the web service applications:

· WSDL (Web Service Description Language) [Chr01]: is an XML-based language

used to define and describe the public interface of the service. It contains enough

information for the client to develop/use an application to consume the web

service.

· WSDD (Web Service Deployment Descriptor): is an XML-based language used

to define different deployment parameters necessary to deploy the web service.

Although WSDD has not been standardized, it is widely used by different web

service engines to define parameters like: the protocol used to transfer SOAP

messages, the web service method signature (parameters and return types), and

the methods that the user is allowed to invoke.

31

· UDDI (Universal Description Discovery and Integration) [Cle04]: is an XML-

based language used to register and query web services (using UDDI registries).

· XML-Schema [Fal04]: is an XML-based language used to define complex data

structures within XML documents.

· X-Path [Cla99]: is an XML-based language used to find different elements within

XML documents.

· SOAP [Gud03]: is a messaging protocol designed to carry information between

different web services. A SOAP message consists of an envelope which has an

optional header and a mandatory body.

Among the different standards, two are of particular interest to this work: WSDL, which

represents the public interface of the web service; and SOAP, since it plays an important

role in message passing among web services and their clients.

WSDL documents include enough information for the web service clients in order to

know the operations it offers, what kind of parameters are required to invoke an

operation, and the return type of the operation. The major elements of any WSDL

document are type, message, portType, binding, port, and service elements. Some of

those elements (type, message, and portType) are used to describe the functional

behaviour of the web service in terms of the functionality it offers. On the other hand, the

binding, port, and service (in addition to the type, message and portType) elements define

the operational aspects of the service, in terms of the protocol used to transport SOAP

messages and the URL of the service. The former is referred to as abstract service

definition, and the latter is known as concrete service definition.

SOAP plays an important role in any web service transaction. It is the messaging protocol

used to convey information to and from the web service. It was designed in a manner that

enables decentralized communication among multiple parties. The structure of SOAP

messages is based on XML and it consists of an Envelope element at the root of the XML

document. The Envelope element is composed of an optional Header element and a

mandatory Body element. An example of a SOAP message is shown in Figure 14.

32

Figure 14: An example of a SOAP message embedded in HTTP [Gud03]

As per the standard specification of SOAP, the receiver of the SOAP message should

perform the following tasks [Gud03]:

i) Examine the SOAP message and identify the parts that are intended for that

application. The SOAP message can pass through different services, and each

one might have some processing to do before forwarding the message to

another service. So, it is important that the service implementation locates the

parts that it has to process.

ii) Check the parts identified in step i to see if they are supported by the

application and process them accordingly. If those parts are not supported, the

SOAP message is discarded. The application may choose to ignore the

optional parts of the message without violating the SOAP standard.

iii) In the case of a SOAP message not destined for the application, it should

remove the parts identified in step i and forward it to its destination.

In a typical web service solution, different tools and standards play different roles to

fulfill the application requirements. On the top layer, UDDI can be used to register the

web service allowing other services and clients to discover its existence. At a lower layer,

WSDL is used to describe the functionality of the service so that the client can construct

proper SOAP requests knowing the kind of responses he should expect from the service.

SOAP and its extensions are used as the main messaging protocol between the web

service and its clients. SOAP is transported via an application layer protocol such as

Simple Mail Transport Protocol (SMTP), and Hypertext Transfer Protocol (HTTP).

33

Figure 15: Web service layers

From the client perspective, the web services is seen to be no more than a SOAP

message processing entity; it receives SOAP requests and generates SOAP responses

after some processing time. However, It is useful to distinguish between two main

components of any web service implementation; the hosting environment which

provides a working space for hosting the web service, and the actual web service

implementation. The hosting environment usually includes a SOAP engine, an

application server, and a web server. Figure 16 shows the major components of a web

service hosting environment:

Figure 16: A web service container [Glo05]

The request is received by the service as an HTTP request containing the SOAP message.

The web server is responsible for handling the HTTP traffic as in the case of any website

hosting environment. Once extracted from the HTTP request, the SOAP message is

forwarded to the SOAP engine, which is responsible for processing the SOAP messages

and converting the SOAP request(s) into a method call(s) that the service implementation

34

code can understand. This process is referred to as unmarshalling (deserialization). The

service implementation code is the entity responsible for implementing the logic of the

web service. Once the processing is done by the implementation code, the result is

handed to the SOAP engine to build the SOAP response to be sent back to the client, this

is referred to as marshalling (serialization). The web server encapsulates the SOAP

response into HTTP packets that are sent to the client. The SOAP engine by itself is an

application that runs within an application server that is installed as part of the web

service deployment process.

2.6 Service Oriented Architecture (SOA)

Service Oriented Architecture (SOA) [Erl05] refers to a new paradigm in the area of

distributed application development and deployment. It depends on using standard

technologies in order to split the application logic into number of components, each of

which exposes its functionality in a platform-independent manner. Then, the logic of the

overall application is realized by establishing some sort of workflow among the different

components. Web services have been used in the implementation of SOA systems due to

its wide acceptance among programmers and business leaders. The orchestration between

the web services is usually implemented using standard mechanisms such as Business

Process Execution Language (BPEL) [And03]. There is subtle difference between the

traditional distributed systems and SOA systems in that the latter depend on standard

technologies and each of the system components (services) usually implements part of

the logic that communicates with the other components in a loosely coupled manner. On

the other hand, traditional distributed systems typically (although not necessarily) are

characterized by objects maintaining a fairly complex internal structures required to

support their methods, and fine grained interaction between an object and a program

using it. A Service Oriented Architecture (SOA) is typically characterized by the

following properties [Alo03]:

· The service is abstracted by its logical view, which might represent actual

programs, business processes, and databases, and defines what it does rather than

how it does it.

35

· The service is defined by the type of messages it receives as an input and the

messages it generates as an output (message orientation). The implementation

details of the service such as programming language, process structure, or even

the database structure are hidden from the web service consumer. This has an

advantage of allowing the interoperability between different legacy systems that

were developed using different technologies. Those systems can be “wrapped” by

web service wrappers that operate together using SOAP without revealing their

internal complexities.

· Services in SOA tend to use small number of operations with relatively large and

complex messages.

· The services tend to be used in networked environments (network orientation).

· The services are platform-independent. They receive and send XML-based SOAP

messages that can be interpreted and processed in a platform-neutral manner.

“It is argued that these features can allow service-oriented architectures to cope more

effectively with issues that arise in distributed systems, such as problems introduced by

latency and unreliability of the underlying transport, the lack of shared memory between

the caller and object, problems introduced by partial failure scenarios, the challenges of

concurrent access to remote resources, and the fragility of distributed systems if

incompatible updates are introduced to any participant” [Alo03]. Web service

technologies in general can be used to implement service-oriented architectures and

distributed-object systems. The design approach to be followed depends on different

factors such as the platforms used to host the application, the nature of the application,

and expected future evolution.

2.7 User Controlled Light Path (UCLP)

User Controlled Light Path (UCLP) [Arn03] is a project initiated by CANARIE, a non

for profit organization that promotes collaboration through high-speed networks, to

develop management software to be used in high-bandwidth fibre networks to enable

users to allocate and manage the bandwidth they require to achieve their business goals.

The objective of UCLP is to enable the user to manage the bandwidth without the

36

intervention of network and system engineers, which saves time and money usually

associated with managing large fibre networks. UCLP depends on encapsulating the

network resources and components (such as switches) using web service-enabled

wrappers that the user can interact with instead of using management protocols such as

Simple Network Management Protocol (SNMP), Transaction Language 1 (TL1), etc. This

introduces the possibility of integrating the network resources within the user application

(provided certain security constraints are adhered to), and being able to create and lease a

light path for a specific period of time after which the light path is destroyed and its

bandwidth made available to other users. As a distributed application based on web

services, UCLP makes heavy use of the different web service technologies. Specifically,

it uses BPEL at the orchestration layer to manage the different network resources in order

to form Articulated Private Networks (APNs). An APN is a logical group of light paths

that are managed as a single entity.

37

Chapter 3: Trends in the Implementation of Distributed DEVS

Simulators

The success of the DEVS/Cell-DEVS formalism in modeling and simulating different

complex systems, has attracted a lot of researchers to extend the basic abstract simulator

presented in [Zei00] into a parallel/distributed one. Chow, Zeigler, and Kim [Cho94b]

have defined the semantics of an abstract simulator for the parallel DEVS formalism. The

advantage of the parallel abstract simulator is that it takes advantage of the parallelism

introduced in the P-DEVS formalism [Cho94a] in terms of activating all the imminent

components of the model at the same time dispensing with the need for the select

function in the original DEVS formalism. Different groups of researchers have studied

the implementation of DEVS simulators in parallel and distributed environments; each

followed a distinct approach in terms of the middleware tools adopted to implement the

simulator and the functionality it offers. Some of the implementations have emphasized

the dynamic aspect of M&S in a grid environment. That is, they provide a platform for

registering and activating the simulation entities in a dynamic manner based on some

partitioning scheme. They make heavy use of the tools provided by grid middleware for

resource allocation and management, user authentication and authorization, and

communication among the simulation nodes. Other implementations of DEVS simulators

put more emphasis on the performance of the engine. They try to take advantage of the

parallelism available in distributed environments in order to achieve higher speedups. In

this regard, the implementation of optimistic simulation algorithms was considered by

some in order to allow the nodes to advance their clocks independently as opposed to the

conservative approach for synchronization. In this chapter we provide an overview of

some of the major implementations of distributed DEVS simulators, highlighting their

design approach and the functionality they offer. Then, we introduce some of the

differences between those implementations and the design we propose in this dissertation

in terms of the design methodology we followed, the middleware used for the

implementation, and the advantages it offers when operating in a distributed

environment.

38

· DEVS/Grid

DEVS/Grid [Seo04] implements a grid-enabled DEVS simulator following a layered

approach. The system consists of five layers; application, modeling, simulation,

middleware and network layers. The application layer is the top layer and it deals with

high level issues within the application domain. The modeling layer provides the required

functionality for defining the model; the simulation layer is responsible for running the

actual DEVS simulation with the support of other tools and utilities. The middleware

layer represents the grid-middleware layer (implemented using Globus [Glo05])

responsible for the discovery and management of the resources available in the grid. The

network layer represents the hardware resources available in the grid which might include

storage devices, workstations, and high-performance clusters. The main components in

the system are the model partitioner, which is responsible for dividing the model into a

set of partition blocks. Each partition block contains one or more components of the

model. The partitioning is done following a cost-based criterion and the resulting

partitions are transferred by the model deployer to the host machines for execution. In the

host machine, the activator receives the model partitioning information and creates a

simulator to execute the model. In addition, DEVS/Grid provides the following

functionality:

� Grid Index Information Service (GIIS): it is a M&S directory service used to

resolve the names of the different simulation entities and publish/subscribe the

resources available to the modeller.

� Static/Dynamic model deployment: the available hosts are identified using the

services offered by GIIS which allow for dynamic assignment of the model

partitions. Once the host is identified, the deployer sends the model partitioning

information to the host machine for execution.

� Remote activation: the model is activated remotely through the activator, which

resides on the hosting machine. It receives the partitioning information through

the deployer and creates a simulator for each component of the model. The

information about the created simulators and the models they execute is published

39

in GIIS. This information includes the addresses of the simulators, and the

input/output ports that are used to examine the model coupling scheme and

establish communication channels among the different simulators.

� Communication channels: they are formed dynamically by examining the

coupling scheme and simulator addresses published through GIIS. There are two

types of communication channels:

� User Channels: they are used to route the messages among the different

simulators representing the events scheduled during the execution of the

model.

� System Channels: they are used to send synchronization information required

for advancing the simulation time and implementing barriers during the

simulation.

· vGrid

vGrid [Kha03] is an overall architecture for running DEVS and Cell-DEVS models in

grid environments. vGrid divides the model into components; the Fine Computational

Unit (FCU) is the most basic component that corresponds to an atomic DEVS or Cell-

DEVS model. Several FCUs can be grouped together to form a Virtual Computational

Unit (VCU) which constitutes the basic component that can be scheduled on a single grid

resource, such as workstation. Different engines play different roles in the vGrid

architecture; the vGrid Manager (VGM) is responsible for managing all the resources in a

grid environment with coordination with the other engines. It interacts with the VCUs

through Autonomous Wrappers (AW), which maintain operational, functional and control

information about the VCUs. The Monitoring Engine (ME) is responsible for monitoring

the resources in the grid and maintaining this information to be accessible by the VGM.

Analysis Engine (AE) generates the Work Capability Index (WCI) (which is a measure of

the complexity of the task) from the FCU and generates the Resource Capability Index

(RCI) (which is a measure of the capability available to a single resource in the grid);

both are used by the Planning Engine (PE) to partition the cell space into VCUs. The

40

architecture distinguishes between inactive and active FCUs by including the latter into

Working Sets (WS), which get checked by the Execution Engine (EE) to pick a VCU for

execution. The vGrid architecture provides the following functionality:

� Dynamic model partitioning: it is achieved by moving the FCUs among the VCUs

so that a specific load threshold is adhered to.

� Distributed communication Service: provides a flexible communication, event

notification, and access control for the different entities in the simulation.

· DEVS/P2P

DEVS/P2P [Che04] is a distributed DEVS simulator aimed to peer-to-peer networks. Its

architecture is similar to DEVS/Grid except that it uses JXTA [JXT06] as an

implementation of P2P communication middleware instead of using Globus as a grid

middleware. It consists of four major parts; the Automatic Hierarchal Model Partitioning

(AHMP), Automatic Model Deployment (AMD), Activator, and Generic Simulator (GS).

AHMP is responsible for partitioning the DEVS model according to a cost-based

partitioning algorithm. The partitions are deployed in the host machines through AMD.

The Activator is responsible for receiving a model partition and creating GS that runs the

simulation. The message communication among the different nodes is handled by the

JXTA system. DEVS messages from one simulator to another remote one are converted

to XML-based messages that get sent by JXTA to the receiving machine. At the receiving

end, the messages are converted back into DEVS messages to be processed by the

receiving simulator(s). JXTA uses virtual communication channels (pipes) among the

machines, which get mapped to the DEVS model ports to assure correct routing of

messages during the simulation.

The simulator doesn’t depend on a master coordinator to handle the synchronization and

clock advancement. Instead, each simulator blocks once it publishes its time advance

value waiting for all the other simulators to do the same, then, the one with the minimum

value is allowed to proceed and advance the clock. Since all the simulators are working

41

simultaneously, there is chance for internal and external transitions to take place at the

same time. In this case, the user has the option of selecting which one to consider first,

with the default being executing the internal transition function followed by the external

transition function.

· DEVS/RMI

DEVS/RMI [Zha05] is a distributed DEVS simulator based on Java Remote Method

Invocation (RMI). It aims at providing a fully re-configurable distributed simulation

environment with the capability of load-balancing and fault-tolerance. The use of RMI

has allowed for the synchronization of local and remote objects without additional

simulation time management to the one used in a stand-alone version of the simulator. In

addition, Java provides a platform-independent environment for the execution of DEVS

models. Different components in the engine play different roles during the execution of

the model. The Simulation Controller is responsible for controlling the activities taking

place during the simulation. This includes taking the partition information generated by

the Configuration Engine and transferring it to the host machines to be executed by the

Remote Simulators. In addition, the configuration engine may decide that a new

partitioning is required during the execution of the model; in this case, the current

execution is stopped and the simulation environment is reconfigured before the

simulation is resumed. The Simulation Monitor collects information about the model

being executed and conveys this information to the configuration engine to recreate the

model partitions (if necessary). The partitioning of the model can be one of two types:

� Static partitioning: in this case, the model is partitioned at the creation phase and

is attached to the corresponding simulator.

� Dynamic partitioning: the model is dynamically partitioned in a manner that

allows for the re-partitioning during the execution of the model.

Zhang, Zeigler, and Hammonds [Zha05] show that using two or more machines to run

relatively simple models introduces communication overhead that slows the simulation

42

down. However, when running complex models, the distribution of the model on two or

more machines improves the performance which translates into shorter execution time.

· DEVS/Cluster

DEVS/Cluster [Kim04] is multi-threaded distributed DEVS simulator based on CORBA

[OMG02]. The simulator was developed using Visual C++ following the optimistic

approach for synchronization among the nodes. It uses Time Warp [Jef85] algorithms in

order to achieve speedup by advancing the clock in each machine independently. In

addition, DEVS/Cluster adopts a flattened simulation hierarchy for the execution of

hierarchal DEVS models. This improves the performance of the flat simulator compared

to the case of having a hierarchal one.

CORBA is used to allow for a location-transparent environment for distributed

simulation. The synchronization of the simulation is handled by the coordinators that

exchange messages with each other and with the simulators using the services provided

by CORBA. Message passing is implemented as direct remote method invocations on the

receiving simulator/coordinator instead of sending and receiving explicit messages.

· PCD++

PCD++ [Tro03] [Gli04] is a parallel simulation engine developed using WARPED

[War06] middleware and uses MPI [MPI95] for communications. It is based on the

CD++ simulation engine [Wai02], and is able to execute DEVS and Cell-DEVS models.

WARPED is a middleware that provides basic functionality usually requited in a M&S

environment. It implements the concept of Logical Processors (LPs) as the execution

entities of the model. Each node has a logical processor (LP) that has one or more

simulation objects. Messages sent between two processors are wrapped into WARPED

messages before they get unwrapped (at the receiving end) into the original DEVS

messages used for the CD++ engine. In addition, WARPED provides the data structures

and utilities that can be used for the implementation of Time Warp algorithms [Jef85].

43

The original version of PCD++ [Tro03] followed a hierarchical approach for the

simulator and it uses a conservative algorithm for synchronization among the nodes. It

has been shown that the performance of the engine is dependent on the nature of the

model and the partitioning scheme used to split the model on the different nodes. If the

model partitions are loosely-coupled in a way that minimizes the remote messages sent

among the nodes, the simulator performs well in terms of the speedup achieved compared

to using one machine to execute the model. However, in the case of tightly-coupled

partitions, the overhead can be significant, which in turn, may degrade the performance

of the simulator.

An improved version of PCD++ [Gli04] was developed as a flat simulator dispensing

with the need to have a coordinator for every coupled DEVS model, and hence improving

the overall performance of the simulator. In addition, PCD++ uses Time Warp [Jef85]

protocol for synchronization among the different nodes participating in the simulation.

The performance of this version is much better than the original one; however, it requires

more resources in order to save and restore the states of the model and simulator during

the execution/rollback phases.

3.1 Web Service-Based Approach for Distributed DEVS Simulation

We follow a different approach for the design and implementation of distributed

simulation engine based on CD++. The design methodology we follow depends on

implementing web service-based simulation services, able to expose the functionality of

CD++ in a standard way, and to execute complex models in distributed environments

using SOAP as a messaging protocol. The design approach we propose has the advantage

of providing several features that either were absent or partially provided by the other

implementations:

· Efficiency: We aim at avoiding the shortcomings of some of the available distributed

DEVS engines. For example, DEVS/Grid [Seo04] and DEVS/P2P [Che04] depend on

synchronizing the simulation by each processor sending the time of its next change to

all of the other processors. The processor running in one machine blocks until it

44

receives the values from all the processors in the other machines, and then the one

with the earliest value unblocks by processing the next event. Although the authors

did not provide any results to examine the performance of the simulator in a

distributed environment, it is expected that the number of messages sent among the

processors in each simulation cycle is causing a considerable overhead, especially

when there is large number of machines involved in the simulation. We argue that the

design we present in this dissertation, which uses a coordinator to schedule the

processors for execution, limits the number of synchronization messages sent among

the processors and hence improves the performance of the simulation. In addition, the

implementation of Master and Slave coordinators allows the processors to exchange

messages locally if the sender and receiver are running on the same machine without

the need to send any remote messages; this in turn, reduces the overhead of

exchanging remote messages in distributed environments.

· Flexibility : The flexibility pertinent to our design in terms of having separate, yet

related, simulation and web service components, has proven to be useful when

porting the services to a different simulation engine. In this regard, the services that

were developed to work with the stand-alone version of the simulator (CD++) were

extended to work with a parallel version (PCD++) running on a high-end distributed-

memory cluster with minimal changes and short development time. Although PCD++

performs better than the distributed engine proposed here, it is not as flexible in terms

of the network connectivity among the nodes participating in the simulation. PCD++

uses MPI for messaging and it requires that the machines be located in close

proximity to each other. On the other hand, the distributed engine we propose is able

to function irrespective to the network infrastructure used to connect the nodes, which

can be regular Ethernet connections, or high-speed fibre optic links.

· Web Service Integration: The main web service standards such as XML, WSDL, and

SOAP were used for storing and parsing the configuration files used by the service,

describing and exposing the service functionality, and messaging among the

simulation services themselves as well as with the users, respectively. This allows the

modeller to execute the model, check the status of the simulation, and retrieve the

45

results remotely irrespective to the platform used by the client. In addition, the use of

web services without restricting the implementation to any particular grid

middleware, such as Globus, provides the flexibility required for integration with

different systems using standard orchestration languages such as Business Process

Execution Language (BPEL) [And03]. One of systems that can be integrated with the

simulation services is a visualization service that allows the modeller to examine the

simulation results in a user-friendly manner.

46

Chapter 4: Web Service-Enabled CD++

CD++ was developed as traditional command-line application to run on Unix/Linux

platform. It is capable of executing two kinds of models, DEVS and Cell-DEVS. To

execute DEVS models, the modeller needs to define each atomic DEVS model as a C++

class (defined in header (h) and implementation (.cpp) files) that is to be integrated in the

class hierarchy of CD++. For coupled DEVS models, and Cell-DEVS models, the

modeller needs to provide a model definition file in a text format. The model definition

file includes (among other things) the coupling scheme for the coupled model, initial

values for the cells, rule definition to calculate the state of the cells, etc. In a regular

invocation of CD++, the user submits the model definition and configuration files to the

simulator as arguments. Once the simulation is over, the user gets the results in the form

of output and log files. The output file contains the events that were generated through

the output ports of the model; the log files contain detailed information about the progress

of the simulation and can be used for debugging or animating the results using a

visualization engine [Kha05].

In the context of our modeling and simulation environment, web services are introduced

to serve two main purposes:

i) To expose the functionality of the CD++ toolkit as a web service, allowing for

executing simulations and retrieving the results through web service technologies.

ii) Using SOAP as a messaging protocol to enable a distributed version of CD++ to

execute complex models on multiple machines.

4.1 Design Methodology

 In order to integrate the web service technologies with the CD++ toolkit, a web service

wrapper was developed to interact with the CD++ toolkit and wrap its functionality to be

accessed by web service clients. Two main design approaches were considered at the

beginning. One is to develop the wrapper in C++ since this will allow for better

integration with the original code of the toolkit; another is to develop the wrapper in Java

47

and interface the Java classes to the original C++ code of the toolkit when it is necessary

to do so. The second approach was adopted due to the following reasons:

i) Many of the web service technologies and middleware available in the market today

are well supported by Java and some of them are actually written in Java. So, using

Java allows for better use of the web service tools and technologies as they advance.

ii) Building the simulation web service in a modular manner consisting of different C++

components (to interact with the simulator) and Java components (to interact with the

web service clients) helps to develop different versions of the service to work with the

different versions of CD++ with minimal changes.

One disadvantage of this design approach is that interfacing the Java and C++ parts of the

simulation service is inevitable, since the service needs to access and manipulate the data

structures and objects used by the simulator. The Java classes are mainly responsible for

handling the web service part of the service functionality. On the other hand, the C++

classes are responsible for accessing and manipulating the data structures and objects

used by the simulator. To integrate the two parts, Java Native Interface (JNI) [Lia99] was

used. JNI is a collection of APIs and is part of the Java Virtual Machine (JVM)

developed by Sun Microsystems. It allows Java programs to access functions written in

native C/C++ code. In addition, it allows programs written in C/C++ to execute and

access Java objects. The following diagram shows an overview of the service layers.

Figure 17: Major components of the simulation service

48

The simulation service acts as a web service interface to the CD++ toolkit. The main

activities performed by the service are:

· Receiving the required files to define the model and execute the simulation. These

files include: C++ and header files (in the case of DEVS models), a model definition

file (.ma), and an external input file (.ev).

· Executing the simulation providing the client with the ability to check the progress of

and kill the simulation (if needed).

· Sending the results of the simulation to the client in the form of text files. These files

include: an external output file (.out), a simulation log file (.log), and a debug

information file (.info).

The web service engine chosen for the implementation is Apache Axis [Axi06]. Axis is

an open source SOAP engine that has an HTTP server functionality and runs as a web

application within an application server, in our case Tomcat application server [Tom06].

4.2 Implementation Details

The wrapper was originally designed to load the simulator as a shared library that can be

used to execute the simulation and return the results to the client. The advantage of this

approach is that loading the simulator by the wrapper as a shared library, provides a

straightforward way of accessing and manipulating the data structures of the simulator,

since both (the web service and simulator) will be running as one operating system

process. In addition, since the same simulator can be used to execute more than one Cell-

DEVS model, this can save memory and storage space. However, designing and

implementing the service in this approach has revealed two main issues that had to be

resolved:

i) Loading the same simulator as a shared library may cause the web service and the

simulator to crash if one of the running sessions generated an exception. This is not

acceptable since the CD++ web service should be able to run multiple sessions

concurrently without having one of the sessions affecting the others.

49

ii) The Java Virtual Machine (JVM) can not load the same native shared library more

than once during the lifetime of the class loader used to load the library. In addition,

the same library can’t be loaded by two different class loaders. This restriction was

imposed on the JVM as of Java 1.2 to avoid class name conflicts since the class

loader is considered part of the class full name used within the JVM [Lia99].

Considering the previous points, the simulation web service was redesigned to avoid the

limitations of the JVM and provide a robust environment for running different simulation

sessions concurrently and independently. The simulation service was split into two

independent and separate parts: the web service components (implemented in Java) are

used to handle the web service activities of the simulation service, and the simulation

components (implemented in C++) are used to interact with CD++ by accessing and

manipulating its internal objects and data structures. Both parts interact with each other

though message queues maintained by the Linux kernel (through the WrapperProxy).

Figure 18: Implementing the simulation service using JNI and message queues

50

The advantages of this approach are that:

i) It provides a separate running workspace for each simulation session; the simulator is

running as an operating system process independent from the simulators running

other sessions.

ii) It allows for extending the functionality of each part with minimal or no change to the

other part. For example, the simulation components of the service were developed to

work with the parallel version of CD++ (PCD++) with minimal changes to the web

service components.

The web service components of the simulation service are compiled into Java archive

(.jar) files and deployed in an Axis server, which in turn runs within an Apache Tomcat

server. When the Tomcat server is started, it automatically starts the Axis engine. Axis

loads all the libraries available in the directory of deployed services, which include the

JavaWrapper (the backbone of the web service components), the server-side stubs, and

the client-side stubs. In addition, when the JavaWrapper class is loaded, it loads the

WrapperProxy, which is implemented in C/C++ and loaded as a shared native library into

the JVM. At this point the simulation service is considered ready to receive client

requests. The exact behaviour of the web service components depends on the type and

sequence of requests submitted by the client; however, a typical sequence of operations is

depicted in Figure 19:

· The user is authenticated and if logged on successfully, a new session is initialized for

him.

· A new folder is created on the server to provide a working space for the new session.

The executables and source files of the simulator are copied to the new session folder.

· The web service components invoke a method in the WrapperProxy to initialize a

new session. The WrapperProxy is responsible for the communications between the

web service and simulation components of the simulation service. The WrapperProxy

is implemented as a shared library and is loaded only once during the lifetime of the

Axis server, hence avoiding the constraint of JVM not being able to load a particular

native library more than once.

51

· The WrapperProxy creates two message queues through the Linux kernel. One queue

will be used to send messages from the web service components to the corresponding

CD++ session, and the other will be used to receive messages from CD++.

· Once the initialization steps are over, the user can submit the different files and

parameters necessary to define the model.

· If the user chooses to set DEVS models by sending C++ header and implementation

files, the wrapper will update the make file (used to compile the simulator and the

models) to incorporate the newly added models. In addition, part of the source code

of the simulator is updated to register the new DEVS models.

· When the user starts the simulation, if the user has defined at least one DEVS model,

the wrapper will compile the source code of the simulator with the newly added

models. In addition, the web service components will initialize the slave sessions in

case of running distributed simulation; slave sessions will be running on other

machines (other than the first machine that the user is connected to). Then, the

simulation will be started.

· On the CD++ side, two additional parameters are provided to the simulator. These are

the full path of the session directory, and the session ID that was assigned to the

simulation session.

· Once the user invokes the startSimulationService operation and before actually

starting the simulation, CD++ will invoke a method to initialize the session (from the

CD++ side) through the simulation components. CD++ will use the full path of the

session to query the Linux kernel for the message queues created by the

WrapperProxy. These queues are used to communicate with the web service

components associated with the current simulation session.

· When the simulation ends, and in the case of distributed simulations, the web service

components will retrieve the log files from the slave machines and archive them into

a single file to be retrieved by the user.

52

Figure 19: Simulation web service operation

53

The simulation process is started as an external command executed by the web service

components and not through the message queues. In addition, for each session there will

be three Java threads and two Linux-POSIX threads. One Java thread is responsible for

executing the CD++ simulator and streaming its output into the session’s log file, another

thread is responsible for responding to the web service client requests, and the third

thread is responsible for monitoring the message queues (though the WrapperProxy). On

the CD++ side, one is the main simulation thread, and the other thread is used to monitor

the message queues for an incoming message from the web service components.

Figure 20: Message queues connecting the simulation components to the

WrapperProxy

4.3 Service Architecture

The web service components were developed as a collection of Java classes; they fall into

three main categories:

i) The web service wrapper (WS-Wrapper): is responsible for most of the

functionality of the web service components. This is the backbone of the web

service components since it is linked to the server-side stubs deployed within

the Axis server. When Axis receives a web service request from the client, it

passes the request to the server-side stub, which in turn retrieves the instance

of the JavaWrapper class associated with the user’s session, before executing

the corresponding method in the JavaWrapper object to fulfill the client’s

request.

54

ii) Utility classes: are used to perform secondary functions required by the WS-

Wrapper such as parsing the users and configuration files. This takes place at

two points: when the service is started, the users file is parsed to load the user

information such as usernames, passwords, etc; and when the user submits a

grid configuration file, the file is parsed to retrieve the model partition

information as well as the addresses of the nodes participating in the

simulation.

iii) Stub classes: include the client-side and server-side stubs. The server-side stub

classes are required by the Axis server and are part of the code required to

define and deploy the service. The client-side stubs are required by the

JavaWrapper class to invoke the services offered by the slave nodes when

running distributed simulations.

Figure 21 shows a UML diagram of the web service components of the simulation

service. The JavaWrapper class is the backbone of the web service components; and it

includes the attributes and methods necessary to handle most of the operations offered by

the service. Some of the operations performed by the JavaWrapper class include: (a

detailed description of the web service components is presented in Appendix-B)

· User authentication: the method authenticate is used to authenticate users through

a password file stored on the server.

· Session initialization: the method createNewSession creates a working space for

new sessions. Part of the session creation process includes creating a

JavaWrapper instance to handle the newly created session; this instance will be

used by the server-side stub class deployed within the Axis server to fulfill the

requests submitted by the user. In addition, the method initialize is used to

initialize the resources needed for the session, such as the message queues, to

communicate with the simulator.

· Setting the model definition: the methods setMAFile, setEventFile,

setDEVSModel, and setSupportFile are used for defining the model. The

setMAFile is used to submit the model definition, setEventFile sets the external

55

events file, setDEVSModel sets the source and implementation files for DEVS

models, and setSupportFile sets the initial values file for Cell-DEVS models.

· Setting the configuration information for distributed sessions: the method

setGridConfigFile is used to send the grid configuration file by the user; once the

method is executed it causes the parser to parse the file and save the information

contained in it in the JavaWrapper instance created for the session.

· Starting the simulation: the method startSimulationService is used to start the

simulator. This includes some initialization to take place such as compiling the

submitted DEVS models (if any) with the source code of the simulator, sending

the model definition to slave machines, and starting the slave sessions.

· Checking the status of the simulation: the method isSimRunning is used to check

the status of the simulation process. This is used since some models might take

long time to be executed; in which case, the client can start the simulation and do

some other processing until the simulation is over. In addition, the method

killSimulation is used to kill the simulation process (if needed).

· Retrieving the results of the simulation: the methods retrieveLogFileName,

retrieveOutputFileName are used for the log and output files retrieval,

respectively. In case of running distributed simulations, the JavaWrapper will

utilize the services running on the slave machines in order to retrieve and archive

all the log files into one file that can be sent to the user.

· Logging off: the method logoff is used to log the current user off and invalidate

his session. This method will cause the JavaWrapper class to reclaim the

resources used by the session and to send messages to the slave sessions to do the

same.

In general, the services offered by the simulation service through its WSDL interface, are

mapped into methods invoked on the JavaWrapper class/instance.

56

����	
���
�������
����	��	����

������

�	�����	���
�	�����	�����
�	�����	��	���
�����	����	� ��	��
��!�"���������
����	��
�	�����	�����

���������

�	 #������	��
�	 $������	���
��!�"���������
�	�!�"���������

���������	�
���

�����%��&�	����
������"	�	����
	��%��&�	����
	���"	�	����

������ ���
����	����	
�	�����#%

�
��������������

�����%��&�	����
������"	�	����
	��%��&�	����
	���"	�	����

��������������

���������	
���

�������
	
���

������	
���

����
	
���

�����������	�

�&�'	������	��
�����"	$�&��	��
��	��	�	 $	�������
��	��	$"�($	�������
�	����'��	#%��
��!�"��$	�������
�	�
���
�����)�"	��
�����$��&"�����$	�(��	��
&����	��*	��"	��

�	(����	"�
'��	%��
"��)�"	���	
��)�"	���	
���	"����������
+��	����������

�����������

����
������
�

�
������
�

�
��������
��

�
���
�����
�

�
�����������
�

�
���
��������	
�

����
��������� ��

�������	��������
����
�

�
�!���
����	���������	
�

���
�����
������
���

����	"�������

#�����	��������

�
���
�
$�����
�

�
���
�
%��������
�

�
���
�
��������� ����
�

�
���
�
�
�����$�����
�

�
�&���!�� �����
�

��
��
����
�
������

�
�
��
"
	��
�
����
�

������	��������

���% �

����
�
�����

�&�'	������	��
"��,����
�	�	�(�	���	�	����	��
�	�%�!$���	"��
�	���)�"	��
����$��&"�������

���������
�����������������

�&�'	������	��
"��,����
�	�	�(�	���	�	����	��
�	�%�!$���	"��
�	���)�"	��
����$��&"�������

���������
������������� !��

���"���
#�"�$��"
�����"����

������	�

�
�!��������'�
�
����
�

����
�
�������
����

�	�
%������-��	��

���������
�������
�%�
����

���"���
#�"�$��"
�����"�����
�

&���"�!�"'�!���

Figure 21: Web service components UML diagram

Parts of the methods defined in the JavaWrapper class are actually native methods that

were implemented in C/C++. Those constitute the WrapperProxy component of the

57

service (see Figure 18), and are implemented as procedures written in C/C++ since Java

can’t access the Linux message queues. These methods are interfaced to the

JavaWrapper class using the Java Native Interface (JNI) [Lia99]:

· initializeNewSession: it creates two message queues for each session to act as a

communication channel between the web service and simulation components of

the service.

· getCurrentSimulationTime: it is used to query the simulator for the current

execution time.

· insertExternalEvent: it inserts external events in the simulation while the

simulation is running.

· startMessageMonitor: it starts the message monitor that keeps checking for any

message coming from the simulator. This is started as a separate thread from the

Java side.

· getMachineID: it gets the id of the machine running the simulation. This executes

the getMachineID method in the JavaWrapper class, which in turn checks the

address of the running service and compares it with the ones available in the grid

configuration file to find the machine id.

· machineForModel: it returns the id of the machine running a particular session. It

is used in distributed simulation sessions. This information is retrieved from the

JavaWrapper class which keeps the information supplied to the service through

the grid configuration file.

· sendRemoteMessage: it is used to send remote messages between machines in

distributed simulation sessions. It takes a C++ message and passes it to the web

service components to be sent as a SOAP message.

· receiveRemoteMessageByProxy: it is used to receive remote messages when

running distributed simulations. It gets a SOAP message contents from the web

service components and passes it to the simulator.

· stopSimulationSession: it is used to stop the simulation session and to deallocate

any used resources.

· addZonePartition: it is used to define the Cell-DEVS model partitions when

running distributed simulations.

58

The JavaWrapper class uses utility classes to handle tasks such as parsing the users and

grid configuration files. The Parser class is the main class used for parsing and it uses

the SAXParser, SAXParserFactory, and MyContentHandler classes to do so. When

parsing XML documents, there are normally two approaches that can be adopted; using a

SAX (Simple APIs for XML) parser or a DOM (Document Object Model) parser.

SAXParser is an event-driven parser that calls specific methods in the ContentHandler

class (or one of its children) at specific points of the parsing process, such as the

beginning and end of each element in the XML document. The programmer can then

override the functions defined in the ContentHandler class in order to implement the

required functionality. Another option would be using a DOM parser that loads the entire

document into memory and allows the programmer to manipulate the document. The

users file is used for authentication and it contains the usernames, passwords, and roles

for all the users that are authorized to use the service. The grid configuration file is an

XML file that contains:

i) The URLs of the simulation services participating in a session;

ii) The model partitioning information which includes the parts of the model

running on each machine in a distributed simulation session;

Figure 22: A sample grid configuration file

59

Figure 22 shows a sample grid configuration file. It consists of two main elements: the

MACHINES element and the MODEL_PARTITIONS element. The MACHINES element

includes two sub-elements for each machine participating in the simulation session. The

MACHINE_RANK is the machine id, and the MACHINE_URI is the URL used to access

the service. The MODEL_PARTITIONS element contains one PARTITION element for

each model partition in the machine. Each model partition can be a MODEL designating

a DEVS model or a ZONE designating a Cell-DEVS zone (group of cells). The id of the

machine running the model partition is set as an attribute of the PARTITION element.

The client and server-side stubs are required for the deployment and utilization of the

simulation service. While the client stubs are not a must for using the simulation service,

the client can create the SOAP requests dynamically, the server stub classes are required

by the Axis server in order to properly deploy the service. The

CDppPortTypeSoapBindingImpl represents the server-side stub; when the Axis server

receives a request from the client in the form of a SOAP message, it does some

processing on the SOAP message and extracts the attributes necessary to execute the

service. Once the attributes are extracted, it invokes a method in the JavaWrapper class

corresponding to the operation requested by the client. The CDppPortTypeService and

CDppPortTypeServiceLocator are used to locate the web service using its Unified

Resource Locator (URL). The former is an interface that is implemented by the latter and

it is usually used at the beginning of any web service invocation process. The

CDppPortTypeSoapBindingStub is a client-side stub that can be used by the program

accessing the simulation service. It defines the attributes and methods that allow the

client to deal with the web service as if it was local classes residing on his machine. This

client-side stub is used within the simulation service to access and setup slave sessions

while running distributed simulations. When the user connects to one machine to start a

distributed simulation session, the web service components examine the grid

configuration file in order to extract the addresses of the services participating in the

simulation. Then, it uses the CDppPortTypeServiceLocator class in order to locate the

slave machines and create instances of the CDppPortTypeSoapBindingStub class that are

60

used to send the model definition files and the grid configuration file, and to initialize

new sessions in the slave machines.

4.4 Service Interface

In order for the client to “consume” the simulation service, he needs to have access to the

WSDL document defining the service interface. Then, the client can choose one of two

options: either to generate client-side stubs, in which case he can deal with the operations

offered by the simulation service as if they were local object methods; or he can invoke

the services by dynamically creating SOAP requests.

%../0	1/$	�(��	

����'	/�2��

#��	��	�0$3
"�	��

$,��/./�����'�	���
�4��5/4	(5/4���5/4'�

$,��/./�����'�	���
�4�&�5/4"��5/4�����

Figure 23: A typical invocation of the simulation web service

WSDL documents usually contain a type element to define non-standard parameter types

of the messages exchanged between the web service and the client. This element does not

exist in our implementation since the types are defined within the message itself. The

message element defines the request and response SOAP messages. Figure 24 shows the

request and response messages for the setDEVSModel operation; the setDEVSModel

operation takes four arguments (through the message setDEVSModelRequest): the name

of the header file defining the DEVS model class, a DataHandler object representing the

file (sent as a SOAP attachment), the name of the C++ file containing the class

implementation, and a DataHandler object representing the C++ file. DataHandler is a

Java class that provides a consistent interface to data available in many different formats,

61

in our case the DataHandler represents a file that gets serialized by the client into SOAP

attachment and gets deserialized to a file on the server side. The setDEVSModelResponse

message represents the return type of the setDEVSModel operation, which is a string

stating whether the operation was successful or not.

Figure 24: An excerpt of the message definition of the simulation web service

The portType element defines a collection of operations, each operation has an input and

output. In this case (Figure 25), the input is the setDEVSModelRequest message and the

output is the setDEVSModelResponse message. The portType element is analogous to

the Interface concept in the Java programming language.

Figure 25: An excerpt of the portType definition of the simulation web service

62

The binding element defines the binding of the web service SOAP messages to an actual

protocol (HTTP or SMTP). In addition, it defines the encoding style (RPC/message) and

encoding type (encoded/literal). Figure 26 shows a partial definition of the binding of the

simulation service to HTTP (http://schmas.xmlsoap.org/soap/http). The binding element

lists the operations implemented in the service with the input and output messages for

each one.

/6 ��"71������/���	89$��&"�����$	�(��	$���:������9/ ���	89���"7$��&"���������-��	9;/

6 ��"����71������/���"	89���9/���������89'���7<<��' 	���42�"����4���<����<'���9/<;

6 ��"7��	������/���	89�	�%�!$���	"9;/

6 ��"����7��	������/����������899/<;/

/6 ��"7���&�/���	89�	�%�!$���	"�	=&	��9;/

6 ��"����71���/	�������$��"	89'���7<<��'	���42�"��� �4���<����<	�������<9

���	����	89'���7<< 4��	4���"	���4��<��$<$��&"���� �$	�(��	9/

&�	89	����	�9/<;/

6< ��"7���&�;/

/6 ��"7�&��&�/���	89�	�%�!$���	"�	�����	9;/

6 ��"����71���/	�������$��"	89'���7<<��'	���42�"��� �4���<����<	�������<9/

���	����	89'���7<< 4��	4���"	���4��<��$<$��&"���� �$	�(��	9/

&�	89	����	�9/<;/

6< ��"7�&��&�;/

6< ��"7��	������;/

6< ��"71������;

Figure 26: An excerpt of the binding definition of the simulation web service

The service element groups a number of ports together. Each port links a binding

definition of a specific portType to a Uniform Resource Identifier (URI) to be used to

access the service. In Figure 27, the simulation service binding

(SimulationServiceSoapBinding) is linked to the SimulationService port, which in turn is

assigned the URL (http://localhost:8080/axis/Service/SimulationService). The URL is

necessary in order for the clients to access and utilize the simulation service.

63

Figure 27: An excerpt of the service definition of the simulation web service

The operations offered by the simulation web service are:

· authenticate: it is responsible for authenticating users and initializing a new session

for each successful login.

· setMAFile: it is used to set the model definition file (.ma).

· setDEVSModel: it is used to set a DEVS model by C++ header and implementation

files.

· setEventFile: it is used to set the external events file (.ev).

· setSupportFile: it is used to set support files that need to be available to the simulator

such as a file containing the initial values of the cells (in the case of Cell-DEVS

models).

· setExecutionTime: it is used to set the execution time of the model.

· enableParsingInfo: it is used to inform the simulator to generate a parsing

information file that can be used to debug Cell-DEVS models.

· setGridConfigFile: it is used to set the grid configuration file which contains the

model partitions and the addresses of the machines participating in a distributed

simulation session.

· createSlaveSession: it is used to initialize slave sessions when running distributed

simulations.

· receiveRemoteMessage: it is used to exchange remote messages during a distributed

simulation session.

64

· stopSimulation: it is used by the master machine to stop the simulation in the slave

machines at the end of a distributed simulation session.

· startSimulationService: it is used to start the simulation.

· isSimRunning: it is used to check whether the simulation is running or not.

· getCurrentSimulationTime: it is used to check the current simulation time.

· insertExternalEvent: it is used to insert external events to the model while the

simulation is running.

· killSimulation: it is used to kill the simulation.

· retreiveLogFile: it is used to retrieve the log file(s) generated by the simulator.

· retreiveOutputFile: it is used to retrieve the output file generated by the simulator.

· retrieveParsingInfoFile: it is used to retrieve the generated parsing information file

that can be used to debug Cell-DEVS models.

· retrieveSessionLogFile: it is used to retrieve the session log file which includes the

output messages generated by the simulator.

· logOff: it is used to log the current user off and to invalidate his session.

65

Chapter 5: Distributed CD++ (DCD++)

CD++ executes the model by passing messages among the different processors in the

simulation. Coordinators are the processors responsible for executing coupled models

while Simulators are associated with atomic DEVS models and they are responsible for

executing each of the functions defined by the model depending on the time and type of

the received message. A Root coordinator is in charge of driving the simulation as a

whole and interacting with the environment. The processors are created and initialized at

the beginning of the simulation in a hierarchy that matches the model hierarchy in terms

of the parent-child relationship.

%
/�>

�

? @#

Figure 28: Message exchange during a simulation cycle

When the simulation is started, the Root coordinator sends initialization messages (I) to

all of its child coordinators which in turn forward them to their child coordinators and

simulators. When the simulator receives an initialization message, it calculates the time

of the next state transition and it reports it to its parent coordinator through a done

message (D). When the Root coordinator receives all the done messages from its child

processors, it advances the simulation clock to the time of the next state transition, and it

sends an internal message (*) to the simulators of the imminent child models starting a

new simulation cycle. When the simulator receives an internal message from its parent

66

coordinator, it executes the output function (lll l) of its model and sends an output message

(Y) to the parent coordinator. Then, it executes the internal transition function (ddddint) of the

model in order to evaluate the next state. The final step of state transition would be

sending a done message to the parent coordinator reporting the time of the next state

change of the mode. If an external event is forwarded to the simulator though an external

message (X) (from the environment, or translated from an output message from another

model), the simulator executes the external transition function (ddddext) of the model and

reports the time of the next state change to its parent coordinator. The previous steps

continue until there are no more messages/events to process or until the simulation clock

reaches the maximum execution time as provided by the modeller.

CD++ was developed originally to run on a single workstation; by implementing the

original CD++ algorithms, it was able to run DEVS and Cell-DEVS models as long as

the modeller defines the select function for tie breaking. Whenever two models are

scheduled for state transitions at the same time (as shown in Figure 29), CD++ would

pick the one specified by the select function to execute first, followed by the other

imminent models. Although this might be acceptable for some models, it has two

limitations:

i) It introduces a serialization problem that may lead to incorrect model

execution.

ii) It prohibits the modeller from defining complex Cell-DEVS models taking

advantage of the zero-delay permissible by the Parallel Cell-DEVS formalism.

Figure 29 shows an example of two simulators in two scenarios; with and without tie.

The left part of Figure 29 shows message exchange sequence between the coordinator

and the two simulators. The coordinator sends an initialization message (I) to the

simulators followed by two done messages (D) sent by the simulators reporting the times

of their next state changes. Simulator 1 is scheduled for internal transition after two time

units, and Simulator 2 is scheduled for internal transition after six time units. This results

in the coordinator activating Simulator 1 first (by sending an internal message (*))

followed by Simulator 2. The second case (shown in the right part of Figure 29), shows

67

the two simulators scheduled for internal transition at the same time (after four time

units). This results in the coordinator examining the select function in order to decide

which simulator to activate first, in this case Simulator 2.

In order to expand CD++ into a distributed engine, able to execute complex models in

distributed environments, the serialization issue with CD++ had to be resolved. That is,

partitioning the model on different components while using the original CD++ algorithms

doesn’t allow parallel execution of the model.

Figure 29: Tie breaking using the select function

5.1 Implementing the Parallel-DEVS Algorithms

The Parallel-DEVS (P-DEVS) algorithms [Cho94a] were introduced to solve the

serialization problem with the original DEVS algorithm and to enable the execution of

DEVS models in parallel and distributed environments. The main additions in P-DEVS

are the message bags, and the confluent transition function (� conf). Message bags are used

to hold multiple input messages arriving to the model and multiple output messages

generated by the model. The confluent function allows the modeller to define the

behaviour of the model when it receives an external message while being scheduled for

68

internal transition. In such case, the confluent transition function is executed in place of

the internal and external transition functions. The abstract simulator for DEVS models

was extended to run P-DEVS models so that multiple imminent models can be executed

together. In the P-DEVS abstract simulator, five kinds of messages are used and can be

categorized into content messages and synchronization messages. Content messages

include external messages (X) and output messages (Y) that are used to represent events

generated by the model. Synchronization messages include internal messages (*), collect

messages (@), and done messages (D). Internal messages are used by the coordinators to

trigger three different transitions depending on the message arrival time and the status of

the external message bag. Collect messages are used to trigger the output function of the

model before any internal transition. Done messages are used by the simulator to report

the time of the next transition to its coordinator.

CD++ was redesigned in order to implement the P-DEVS algorithms. As in the original

version, Simulators are used to execute atomic DEVS and Cell-DEVS models, while

Coordinators handle message passing and event synchronization between the different

models. A Root coordinator is used for starting/stopping the simulation, clock

advancement, and interfacing with the environment. CD++ executes the model by

creating a simulator/coordinator hierarchy that matches the model hierarchy; for each

atomic DEVS/Cell-DEVS model there is a simulator, and for each coupled DEVS/Cell-

DEVS model there is a coordinator. The simulators and coordinators behave differently

to each of the messages received. The simulators receive initialization messages (I),

collect messages (@), internal messages (*), and external messages (X). However,

coordinators receive initialization messages (I), collect messages (@), internal messages

(*) , external messages (X), done messages (D), and output messages (Y). The details of

the algorithms that define the behaviours of the simulators and coordinators are presented

in Appendix-A.

69

%/��
�

#

/%
/�� �#?

?

@5
/%

��
�

A ?

////@5/%
�� �

A

?

Figure 30: Concurrent model activation in Parallel-DEVS

By implementing the previous algorithms, CD++ is able to activate imminent models

concurrently avoiding the serialization problem introduced in the original version. This is

of considerable importance to the Cell-DEVS models as it allows for executing cells with

zero time delay (due to the availability of message bags). In addition, it provided the

possibility of extending the simulator into a distributed engine which can execute

concurrent imminent models in parallel. Figure 30 shows the difference between the

previous and current implementation of the CD++ engine in the case of two imminent

simulators. The original implementation (left part) required the use of the select function

in order to choose the simulator to activate first. However, when implementing the P-

DEVS algorithms, the coordinator is activating both simulators at the same time solving

the issue of serialization introduced in the original DEVS formalism.

Implementing the P-DEVS algorithms required changes to be made in the class and

model hierarchies of CD++. The processor class is the parent of all the classes in charge

of executing the model. Those include the Simulator, Coordinator, FlatCellCoordinator,

and Root classes. The Processor class implements the basic functionality required by all

simulation classes. Those include the receive methods, which are responsible for

receiving and processing the different simulation messages. The messages are sent among

processors through the MsgAdmin class. The sending processor would send the message

70

to the MsgAdmin through the send method, which will cause the message to be queued

until it gets sent. Sending a message is done by executing the receive method on the

receiving processor. In addition to the receive method, the processor class implements

three important methods for the execution of the model, those are:

· lastChange(): it reports the time of the last state change;

· nextChange(): it reports the time of the next state change;

· absoluteNext(): it reports the absolute time of the next change (lastChange() +

nextChange());

Figure 31: The simulation class hierarchy

71

The Simulator class extends the Processor class and overrides the receive function in

order to execute the function of the DEVS model corresponding to the type of the

received message. For example, when a Simulator receives a collect message from its

parent coordinator, it executes the output function associated with its model in order to

generate the model output. This is followed by the Simulator sending a done message to

the coordinator reporting the time of the next change of the model. The Simulator

receives only specific types of messages; no done or output messages are received by the

Simulator.

The Coordinator class is responsible for forwarding messages among the Simulators and

for synchronizing the events taking place during the simulation. The receive method has

the same functionality as in any processor class, but the behaviour of the method is

different from that in the Simulator class. That is, to implement the P-DEVS algorithms,

the coordinator receives all kinds of synchronization and content messages and reacts

accordingly (detailed description of the coordinator algorithms is provided in Appendix-

A). The message bag associated with the coordinator is processed through the

sortExternalMessages method which gets invoked at the time of receiving an internal

message (*). This causes the messages in the bag to be forwarded to their destinations

(Simulators and/or Coordinators). The sortOutputMessages method is invoked whenever

a child Simulator or Coordinator sends an output message to its parent coordinator. This,

results in the message either being translated into external message(s) sent to the local

destination(s), or an output message being forwarded upward in the class hierarchy. The

calculateImminentChild is responsible for evaluating the imminent child processors by

examining the minimum time of the next state change.

The FlatCellCoordinator is in charge of executing flat Cell-DEVS models, which differ

from Cell-DEVS models in that they are executed by one processor instead of using a

processor for each cell in the cell space.

72

The Root class is the main processor in the simulation and it is in charge of:

· Starting the simulation though the simulate method;

· Stopping the simulation through the stop method;

· Interacting with the environment in terms of loading the external events and

generating the model output;

· Advancing the clock of the simulation;

Messages are implemented as separate classes, each representing a message type with all

the classes inheriting the Message class. Different messages have different attributes; for

example, the Done Message class has an extra field (nextChange) to indicate the time of

the next state change.

In addition to the simulation class hierarchy, other classes play an important role in

driving the simulation. The SimLoader class (shown in Figure 32) is responsible for

loading the model definition and execution options when the simulator is started and

before executing the model. This includes loading the model definition and external

events as input streams and loading the simulation log and output as output streams. The

SimLoader is used by the MainSimulator class during the initialization phase of the

simulation. The main method in the MainSimulator class is the run method, which

organizes the activities handled by the MainSimulator. Those include loading the model

hierarchy in the memory, loading the initial values of the cells, loading the external

events, and creating the simulators to execute the model.

Figure 32: The MainSimulator class

73

5.2 Implementing the Simulation Components

As discussed in Chapter 3, the design of the simulation service depends on developing

the service as a set of independent, yet related, components that interact by message

passing through the Linux kernel. The major parts of the service are: web service

components, simulation components, and the WrapperProxy which is used to pass

messages between the two. The simulation components are responsible for executing the

model and interacting with the web service components to receive the model partitions,

fulfill any client request while the simulation is running, and retrieve the results when the

simulation is over. They consist of two main parts, the modified version of the CD++

engine which is in charge of executing the simulation (discussed in the previous section),

and the CPPWrapper class (see Figure 31), which is responsible for interfacing CD++ to

the web service components.

The functionality of the CPPWrapper class includes:

· Initializing the message queues used for communication with the web service

components (initializeMessageQueues).

· Querying and retrieving the model partitions from the web service components

(machineForModel, addZonePartition).

· Querying the current execution time and inserting external events while the

simulation is running (getCurrentSimulationTime, insertExternalEvent).

· Sending remote messages while running distributed simulations

(sendRemoteMessage). This method takes a C++ message and sends it to the web

service components to be sent to the remote machine.

· Receiving remote messages while running distributed simulations

(receiveRemoteMessage). This method receives a message from the web service

components and constructs a C++ message to be processed by the simulator.

· Stopping the simulation when receiving a stop message from the web service

components (stop).

74

5.3 Designing and Implementing Distributed-CD++ (DCD++)

When considering the design and implementation of the distributed simulation engine,

different approaches were considered to assess the integration of web service

technologies with the algorithms used in the field of parallel and distributed simulation.

The objective of the design was to take advantage of the web service capabilities while

minimizing the overhead incurred on the simulator as a result of adopting a new

middleware. Three main approaches were investigated:

i) Implementing an optimistic simulation engine using the Time Warp

algorithm. Although Time Warp unties the different machines in distributed

simulations by allowing each machine to advance its clock independently

from the other machines, it depends on exchanging synchronization messages

to handle rollbacks. When considering the overhead of transmitting SOAP

messages embedded in HTTP packets, it was noticed that the speedup

achieved by the Time Warp algorithm might be compromised by the delay of

the SOAP messages.

ii) Implementing a conservative simulation engine by allowing each machine to

advance its clock when it can guarantee that causality errors will not occur.

This can be accomplished by sending lookahead values using null messages.

This approach has the disadvantage of adding to the overhead of the engine by

the time required to transmit null messages using SOAP. In addition, deadlock

might occur if there is a cyclic dependency between the models with zero

lookahead. This in turn, requires implementing deadlock detection and

recovery mechanisms.

iii) Implementing a conservative engine by handling clock advancement in one

machine to minimize the synchronization messages among the machines

participating in the simulation.

The third approach was adopted in order to limit the synchronization messages among

the machines to those required by the P-DEVS algorithms. Implementing the

75

distributed engine required two major changes to the simulator. On one side, the

model definition classes had to be extended to allow the partitioning of the model on

multiple machines. On the other side, the model execution mechanism had to be

extended in order to handle message routing and synchronization on multiple

machines. In principle, executing the model on multiple machines requires:

i) Loading the model hierarchy and model partition information in each machine

participating in the simulation. This is required in order to check the causal

dependencies among the model components when an event needs to be sent

from one model to another. In addition, having the model partition

information is needed to distinguish the local model components from the

remote ones.

ii) Running simulators and coordinators on each machine for local models in

order to handle message passing and model execution.

The model partitioning information is provided to the simulation through the grid

configuration file (an XML file containing the addresses of the machines executing the

model and the parts of the model running on each machine). Using the original

implementation of the Coordinator class will add unnecessary overhead if two child

processors want to exchange messages and are running in a machine different than the

coordinator. As shown in Figure 33, Simulator 3 sends an output message that is to be

translated into an external message to Simulator 2. When sending the message to the

coordinator, it ends up being transmitted twice as remote messages due to the fact that the

coordinator is running on a different machine than the source and destination of the

message.

Figure 33: Unnecessary remote messages in distributed simulation

76

This problem could have been avoided if there is a processor responsible for message

routing locally in each machine. One approach to solve this issue is to use one

coordinator in each machine for message routing among the local processors; this was

initially adopted by PCD++ [Tro03] in order to minimize the remote message

transmission among the machines. The idea depends on using two kinds of coordinators

for each coupled DEVS/Cell-DEVS model:

i) Master Coordinator: is responsible for synchronizing the model execution,

interacting with upper level coordinators and message routing among the local

and remote model components.

ii) Slave Coordinator: is responsible for message routing among the local model

components dispensing with the need to send remote messages if the master

coordinator is residing on a different machine than that used to run the

sending and receiving processors.

Having a slave coordinator in Machine 2 (as shown in Figure 34), causes the message

from Simulator 3 to Simulator 2 to be sent locally improving the performance of the

simulator.

Figure 34: The use of Master and Slave coordinators to avoid unnecessary messages

77

Implementing the distributed simulator includes extending CD++ in three main aspects:

i) The simulation mechanism is implemented mainly using the master and slave

coordinators;

ii) The model loading mechanism is extended to maintain the partitioning

information;

iii) The message passing mechanism is extended to handle local and remote

message passing;

5.3.1 Master and Slave Coordinators

The master and slave coordinators are implemented by extending the functionality of the

Coordinator class. The reactions of the master and slave coordinators when receiving

messages differ from those of the original coordinator.

When a master coordinator receives a collect message from its parent coordinator, it

forwards it to its imminent child processors; those can be Simulators, Master

Coordinators, or Slave Coordinators. The external messages in the master coordinator’s

bag are processed when it receives an internal message. This, results in sending internal

messages to the child processors scheduled for internal and/or external transitions. The

output messages are processed depending on their destinations; they could be translated

into external messages for local child processors or output messages to be sent to the

parent coordinator.

The slave coordinator handles the messages in a similar way to the original coordinator in

the stand-alone version of CD++ (discussed in section 4.1). The main difference between

the two is in the interaction with the upper level coordinator; the slave coordinator

interacts with the master coordinator instead of sending messages directly to the upper

level coordinator. A detailed description of the behaviour of the master and slave

coordinators is presented in Appendix-A.

78

Figure 35 shows a partial definition of the master and slave coordinators, which are

implemented by extending the Coordinator class and integrating them into the simulator

class hierarchy. Both override the receive function used to process the different messages

received by the processors. In addition, they implement the sortExternalMessages and

sortOutputMessages. The sortOutputMessages method is triggered when receiving an

output message from a child processor. The sortExternalMessages method is triggered

when the coordinator receives an internal message from its parent coordinator. It causes

the coordinator to process all the messages in its bag by forwarding them to their

destinations either locally or remotely. The calculateNextChange method is used to

evaluate the imminent child processors and its behaviour is different for each

coordinator. In the case of the master coordinator, it considers the local child processors

in addition to the remote slave coordinators; while in the case of the slave coordinator, it

only considers the local child processors.

Figure 35: Master and Slave coordinator classes

5.3.2 Model Loading Mechanism

The model loading mechanism in the stand-alone CD++ was based on parsing the model

definition files and creating the corresponding simulator/coordinator for each of the

model components. Those components can be atomic DEVS models, coupled DEVS

models, atomic Cell-DEVS models, coupled Cell-DEVS models, and flat coupled Cell-

79

DEVS models. After implementing DCD++, the model loading mechanism includes

loading the partitioning information as part of the model loading process; the partitioning

information is retrieved from the web service components through the CPPWrapper

class. Atomic models are assigned to run on a specific machine and a coupled model can

span different machines with each of its components running on an individual machine.

Figure 36: DCD++ model hierarchy

Figure 36 shows the relationship between the different classes representing the model

hierarchy in DCD++. During the model loading process, the MainSimulator class (shown

in Figure 32) executes the model’s addMachines method, which is common to all the

models. The addMachines method queries the CPPWrapper for the model partitioning

information in order to store that information within the models; this information is used

when the createProcessor method is invoked. The createProcessor method checks the

model partitioning information to see if the model has a local component on the local

80

machine; if so, it creates the corresponding processor for the model. If the model is an

atomic one, and is assigned to run on the local machine, a simulator is created. On the

other hand, if the model is a coupled model with the first component assigned to run on

the local machine, a master coordinator is created; otherwise, a slave coordinator is

created and associated with the coupled model.

5.3.3 Message Passing Mechanism

The message passing mechanism was extended to handle local and remote messages. The

MsgAdmin class is responsible for forwarding messages in coordination with the

CPPWrapper class. The MsgAdmin class is activated when the simulation is started, and

as long as there is at least one message in the unprocessedMessages queue. The

MsgAdmin class picks the message at the front of the unprocessedMessages queue and

checks the destination of the message; if the destination is a local processor, the message

is delivered to the processor by executing its receive function. Otherwise, the message is

passed to CPPWrapper which in turn passes it to the web service components. The web

service components extract the message information and encapsulate it into a SOAP

message that is sent to the receiving machine. When the SOAP message arrives to the

destination machine, the web service components extract the information and pass it to

the CPPWrapper. The CPPWrapper builds a C++ message and hands it over to the

MsgAdmin class, which forwards the message like any other local message. This

approach was followed to keep message passing transparent to the simulator in the case

of local and remote messages. The message communication between the CPPWrapper

class and the web service components takes place through the Linux kernel using the

WrapperProxy.

5.4 Sample Scenario

In order to present the overall operation of the simulator in a distributed environment, a

coupled DEVS model is executed using two machines. The model consists of four DEVS

models; the generator is an atomic DEVS model producing jobs to be processed by the

81

processor, the queue is used to queue the arriving jobs before they get processed, the

processor is responsible for processing the jobs, and the transducer is in charge of

calculating statistics such as the throughput of the processor. The structure of the model

is shown in Figure 37:

Figure 37: The Generator-Processor-Transducer (GPT) model

Two machines were used to execute the model, one located in Ottawa and the other in

Montreal. They were connected using a commodity Internet connection. The generator

component of the model was set to run on Machine 1(Ottawa), and the queue, processor,

and transducer models were running on Machine 2(Montreal).

Figure 38: GPT model partitioning on two machines

When loading the models and simulators, Machine 1 loads three processors: the Root

coordinator, the top master coordinator, and the generator. Machine 2 loads the top

slave coordinator, the QPT (coupled DEVS model consisting of the Queue, Processor,

82

and Transducer models) master coordinator, the transducer, the queue, and the

processor. The simulation starts by the Root coordinator sending an initialization

message (I) to the top master coordinator, which in turn forwards it to its child

processors (generator and top slave coordinator). The message to the top slave

coordinator is sent remotely using a SOAP message. When the top slave coordinator

receives the initialization message, it forwards it to its child processor (QPT). The

initialization message causes the simulators to initialize their models and report their next

state change to their parent coordinators. DCD++ saves the progress of the simulation in

each machine into a log file that includes an entry for each message received by the

processors running on that machine.

Figure 39: An excerpt of the log file of Machine 1

The first field in a log entry is the machine id, followed by the source of the message (L:

local, R: remote), then the timestamp of the message is listed, followed by the source and

destination processors. In the case of external and output messages, two extra fields are

listed, which are the port name and message value sent through the port. Figure 39 shows

an excerpt of the log file of Machine 1 while executing the GPT model. After sending the

initialization message, the top master coordinator receives done messages from its child

processors. This includes the done message sent from the generator (line 3 in Figure 39)

reporting the time of the next change as “00:00:00:000”; in addition, it includes a remote

done message from the top slave coordinator (line 4 in Figure 39) running on Machine 2

reporting the minimum time of the next change as “00:00:02:000”. The top master

coordinator sends the minimum time of next state change to the Root coordinator (line 5

83

in Figure 39). In the next simulation cycle, the Root coordinator sends a collect message

at time “00:00:00:000” to the top master coordinator that in turn forwards it to the

generator. The collect message causes the generator to execute its output function to

generate the output that is forwarded to its parent coordinator. Line 8 in Figure 39 shows

the output message sent from the generator to the top master coordinator through the out

port carrying a value of zero. No collect message is sent to the top slave coordinator at

this point, since its next transition occurs at time “00:00:02:000”.

Figure 40: An excerpt of the log file of Machine 2

The output message generated by the generator is translated by the top master

coordinator into an external message that is sent to the top slave coordinator via SOAP

(line 1 in Figure 40). The top slave coordinator saves the message into its external

message bag until it receives an internal message from the top master coordinator (line 2

in Figure 40); at which point, it forwards the message to the QPT master coordinator

through the in and arrived ports. This causes the QPT master coordinator to send the

external messages in its bag to the transducer and queue models (lines 6, 7 in Figure 40).

The internal message sent to the QPT master coordinator is forwarded to the queue and

transducer models (lines 8, 9 in Figure 40). This results in the queue and transducer

models executing their external transition functions and reporting the time of the next

change as “00:00:00:001” and “00:00:02:000”, respectively (lines 10, 11 in Figure 40).

The done message (generated by the top slave coordinator) is forwarded to the top

master coordinator using SOAP (line 14 in Figure 39). Then the top master coordinator

evaluates the minimum time of the next change (“00:00:00:001”) and sends it to the Root

84

coordinator. The Root coordinator advances the clock of the simulation to “00:00:00:001”

and the simulation continues until at leas one of the following conditions holds:

i) There are no more events/messages scheduled by any of the processors.

ii) The simulation clock reaches the maximum execution time as provided by the

user.

The actions taken by the simulator when receiving an internal message depend on the

timestamp of the internal message, the time of the next internal transition of the model,

and the status of the external message bag. If the internal message arrives when there are

messages in the bag and no internal transition is scheduled, the external transition

function is executed. If the internal message arrives when there are no messages in the

bag and the internal transition is scheduled to take place, the internal transition function

is executed. If the internal message arrives when there are messages in the bag and the

model is scheduled for internal transition; in this case the confluent transition function is

executed. In the GPT example, when the transducer and queue received the internal

messages from the QPT master coordinator (lines 8, 9 in Figure 40) they were not

scheduled for any internal transitions; hence they executed their external transition

functions as a response to the internal messages.

SOAP plays an important role in distributed simulation sessions; it is not only used for

sending remote simulation messages between two processors. Rather, it is also used for

the initialization, and the control of the remote sessions. When a user connects to the

simulation service to start a distributed session, he connects to the first machine which is

considered as the master node throughout the session. Once the model and configuration

files are submitted to the service and before actually starting the simulation, it initializes

the slave sessions running on the other nodes (those are referred to as slave nodes). To do

so, the master node uses the services offered by the simulation services running on the

slave nodes in order to send the model and configuration files. In the GPT example, this

is done by submitting different requests to Machine 2 in order to initialize the distributed

simulation session.

85

Figure 41: createSlaveSession request

Figure 41 shows a SOAP request for invoking the createSlaveSession operation in the

service running on Machine 2. This operation initializes a new session on the machine

bypassing the process of user authentication, since authentication took place when the

user connected to the master node. It takes two arguments: the username of the user who

initiated the session and the session id assigned by the master node. The SOAP request

consists of an envelope, which contains a body (and an optional header). The envelope

defines the different namespaces that are normally used in SOAP messages such as the

namespace of the SOAP envelop itself, XMLSchema, and XMLSchema-Instance. The

body contains the arguments of the operation; those include the username (“Rami”) and

session id (153999). After finishing the initialization process, which included sending the

model definition and grid configuration files to Machine 2, the execution of the GPT

model was started and SOAP was used to exchange remote messages between the two

machines. Figure 42 shows the SOAP message used to send the initialization message

from the top master coordinator (Machine 1) to the top slave coordinator (Machine 2).

The envelope and body attributes list the namespace definitions that are usually part of

SOAP messages. The operation responsible for sending remote messages is

receiveRemoteMessage running as part of the simulation service in Machine 2; the

arguments submitted in the SOAP request include:

86

Argument Description I Message (Figure 42)

sessionID Session id 153999

MessageTime Timestamp of the message 00:00:00:000

MessageType The type of the message 9 (I Message)

NextChange Time of the next change

 (used for done messages)

Null

SendingProcessor The id of the sending processor 6 (top master)

PortId The id of the port

 (used for X and Y messages)

-1

Value The value of the X and Y messages -1

SenderModelId The id of the original sender of the

message

-1

isFromSlave True if the sender is a slave coordinator,

false otherwise

False

ReceivingProcessor The id of the receiving processor 7 (top slave)

Table 3: Arguments of the receiveRemoteMessage operation

87

Figure 42: An initialization message sent as SOAP from Machine 1 to Machine 2

At the end of the simulation, the master node retrieves all the log files generated by the

slave nodes and makes them available for the user to retrieve. The files are sent from the

slave nodes to the master node as SOAP attachments. The SOAP message doesn’t

actually include the file; rather, it includes an id necessary for the receiving service

(master node) to retrieve the attachment. This is shown in Figure 43:

88

Figure 43: retrieveLogFile response

5.5 Integrating Optimistic (PCD++) and Conservative (DCD++) Simulators

Distributed CD++ (DCD++) represents an efficient means of exploiting unused resources

(CPU time and memory resources) in order to execute complex models. By exposing the

simulator functionality as a service, unused resources could be used in a productive

manner. However, the middleware tools used to realize DCD++ have added some

overhead in terms of the execution time of the simulation. On the other hand, PCD++

[Gli04] was developed following the optimistic approach using WARPED [War06] as a

simulation middleware and MPI [MPI95] as a messaging protocol. PCD++ is able to

execute models in shorter execution times due to the algorithms used in the simulation,

and the fact that the delay associated with sending MPI messages is mush less than the

delay associated with sending SOAP messages. The plus point that DCD++ has over

PCD++ is that the connectivity between the machines can be anything ranging from

commodity Internet connections, to high-speed point-to-point fibre links. As

demonstrated with the GPT model, one of the machines used for the tests was located in

Ottawa, while the other in Montreal. On the other hand, MPI is usually used for

networked workstations within close proximity in terms of the geographic locations.

Integrating the two simulators together has an appealing objective of attaining the

speedup provided by PCD++ while making efficient use of unused resources through

DCD++. In order to do so, two major issues need to be taken care of:

89

i) A messaging and coordination mechanism needs to be established since the

two simulators use totally different middleware and algorithms for their

operations.

ii) Synchronization mechanisms need to be in place to ensure the correctness of

the simulation.

In the next two sub-sections, we describe a solution for the first issue, followed by a

proposed solution for the second issue.

5.5.1 Interfacing DCD++ to PCD++

PCD++ uses WAPRED [War06] as a simulation middleware in order to implement the

Time Warp algorithms for parallel simulations. The messages sent by the simulator are

encapsulated into WARPED messages that get sent from one simulation object to

another. When receiving a WARPED message, the simulation object extracts the

information carried by the message as a regular PCD++ message that gets processed by

one of the simulators and coordinators in the system. On the other hand, DCD++ uses the

original CD++ messages for local communications among the simulation objects

(processors), and uses SOAP for remote communication. In DCD++, when a processor

needs to send a message to a remote one, it sends the message to the simulation

components of the service which pass the message to the web service components to

construct a SOAP message. When received at the destination, the SOAP message is used

to construct a CD++ message that gets processed by the receiving processor.

In order to Interface DCD++ to PCD++, the simulation services were adapted in order to

work with PCD++. As discussed in Chapter 3, the simulation services consist of two

major components: the web service components responsible for the web service

functionality, which are developed in Java (except the native methods developed in

C/C++); and the simulation components, which are responsible for running the simulation

and interacting with the web service components. The simulation components were

modified and integrated with the code of PCD++, without any major change on the web

90

service side. The modular approach for developing the simulation services was flexible

enough to be used with PCD++ while maintaining the redesign and reimplementation

time to minimum.

Figure 44: Implementing the simulation web service with PCD++

After implementing the simulation services using PCD++, the client is able to run parallel

simulations remotely as a web service. PCD++ runs on a high performance distributed-

memory cluster consisting of 32 Linux machines. The services available for the client are

identical to the ones offered by DCD++ (discussed in Chapter 3) with two exceptions:

i) The createSlaveSession operation is not available. That is, PCD++ does not

function as slave node(s) even in the proposed architecture for integration

with DCD++ (discussed in the following sub-section);

ii) New operation is implemented (setPartitionFile) in order to allow the user to

set the partition file of the simulation. The partition file is a text file that

defines the model partition on the cluster nodes.

91

5.5.2 Integrating DCD++ and PCD++

The proposed architecture for integrating DCD++ and PCD++ depends on integrating the

CPPWrapper class (part of the simulation components developed in C++) within the

simulation hierarchy of PCD++. CPPWrapper will function as an interface between

DCD++ and PCD++ in order to hide the details and complexities of DCD++ from

PCD++, and vice versa. PCD++ was developed as a flat simulator [Gli04]; the simulation

hierarchy does not match the model hierarchy in terms of having a coordinator for each

coupled DEVS/Cell-DEVS model running on the machine. Each node has two main

coordinators and one simulator for each local atomic DEVS/Cell-DEVS model. The node

coordinator is responsible for interacting with the other nodes in the simulation and with

the environment. In addition, it is in charge of advancing the simulation clock

independently (optimistically) from the other nodes. The flat coordinator lies under the

node coordinator in the simulator hierarchy and is responsible for interacting with the

simulators and forwarding messages upward and downward the simulation hierarchy

depending on the type and destination of the message. The simulators are responsible for

executing the atomic DEVS and Cell-DEVS models in the simulation.

Figure 45: PCD++ architecture

92

 Both DCD++ and PCD++ implement the P-DEVS algorithms for the model execution.

However, PCD++ uses anti messages during the rollback phase of the simulation if a

node coordinator receives a message with timestamp earlier than the local clock of the

machine (straggler message). On the other hand, DCD++ neither uses nor can handle anti

messages. So, the main issue in integrating the two is concerned with properly

synchronizing the optimistic behaviour of PCD++ with the conservative behaviour of

DCD++. The idea presented here depends on distinguishing between two kinds of

information in the optimistic simulation: conditional knowledge/information and

unconditional knowledge/information. Conditional knowledge is the simulation

transactions that took place after the Global Virtual Time (GVT); since those transactions

could be rolled back if the node in which they are running has received a straggler

message. Unconditional knowledge, on the other hand, represent all the transactions that

were completed with timestamps less than or equal to the current GVT value since those

won’t be rolled back during the simulation.

The idea depends on integrating the CPPWrapper as one of the simulation objects under

the flat coordinator of Node 0 (the first node in the cluster running PCD++), and

changing the behaviour of the flat coordinator accordingly to forward any message

destined to remote simulation objects (those assigned to run within DCD++) to the

CPPWrapper, which in turn does one of the following:

i) If the message timestamp is larger than the GVT value, the message is

inserted in a queue maintained by the CPPWrapper class to be sent out when

the GVT is re-evaluated and reaches the timestamp of the message.

ii) If the message timestamp is equal to the GVT value, the message is forwarded

to the remote simulation object (running within DCD++) to be processed as if

it was running on Node 0.

The implementation of the previous mechanism requires changes to be made to the

mechanisms used for loading the model in both simulators. That is, it is important that

both use identical ids for the same models in order to handle message routing among the

93

models properly. Otherwise, some mapping/translation would be required by the

CPPWrapper in order to ensure correct message passing between the two simulators.

Since the CPPWrapper is integrated under the flat coordinator of Node 0, the node

coordinator won’t be able to advance the clock on Node 0 in the same pace as the other

nodes of the cluster running PCD++. This is due to the processing taking place in

DCD++ and the delay associated with sending SOAP messages. In other words, Node 0

has to “wait” for DCD++ to finish processing the messages that were sent to it. This has

an effect of slowing the overall time for executing the model compared with the case of

running PCD++ alone. However, the parallelism available on the other nodes (other than

Node 0) can be exploited to achieve the speedup provided by the optimistic algorithms of

PCD++. As a result, the performance of the two simulators working together is expected

to be worse than running PCD++ alone but better than running DCD++ alone.

94

Chapter 6: Performance Analysis

The web service capabilities introduced to CD++ have extended its functionality in two

aspects. In one aspect, it enabled the simulator to be invoked remotely and interfaced

with other larger systems using web service standards. In another aspect, it allowed the

simulator to run complex models in distributed environments using SOAP as a messaging

protocol. However, the extended functionality has introduced some overhead when

running distributed simulation. That is, the time it takes for a local message (implemented

as a C++ object) to be transmitted between two local processors is much shorter than the

time it takes for a SOAP message carrying the same information to be transmitted

between two remote processors. The overhead is contributed to by two main parts of the

message path between two remote processors. The first part is the time it takes to transmit

a message between the simulator and the web service components through the Linux

kernel; the other part is the time it takes to transmit the SOAP message between the two

simulation web services.

�	�
���

	/B
&

	&
	�

���
�&

2/
C

	��
	"

�

�	�
���

	/B
&

	&
	�

���
�&

2/
C

	��
	"

�

Figure 46: Sending remote messages in distributed simulation

In order to study the performance of the simulator, different distributed simulation

sessions were executed using two machines; one of the machines was located in

Montreal, and the other was in Ottawa. Two different models were executed using two

different connections between the machines. In the first group of runs, the machines were

connected using a commodity Internet connection; in the second group, User Controlled

95

Light Path (UCLP) was used to create a point-to-point (P2P) connection between the

Montreal and Ottawa sites. The results of these two groups were compared to each other

as well as to the results obtained when executing the models using a single machine. The

readings obtained during the runs include:

i) The simulation time required to execute the models;

ii) The average time it takes in each run to transmit a SOAP message from

Ottawa to Montreal.

iii) The average time it takes in each run to transmit a message within the Linux

kernel using message queues.

iv) The average time it takes in each run to transfer a local message within a

single machine.

v) The bandwidth available for the simulator when using the Internet and UCLP

connections.

In addition, the average time it takes to retrieve the results of the simulation was

measured using files of different sizes.

6.1 Experimental Models and Execution Results

Two types of models were used during the performance analysis. One of the models is

fire spread in a forest and it is implemented as 30x30 coupled Cell-DEVS model

[Ame01]. The other model is a sand-pile model [Saa03], which consists of DEVS and

Cell-DEVS models. The DEVS model is a sand particle generator connected to a coupled

Cell-DEVS model representing the formation of a sand-pile.

The fire model is composed of 30x30 cell space; each cell represents a square area of the

forest. The cell is considered to be burned if its temperature exceeds a specific value.

Figure 47 shows an excerpt of the model definition with possible initial values of the

cells.

96

Figure 47: An excerpt of the Fire model definition

The cell space is 30x30 using inertial delay. The neighbourhood of the cell is defined by

the neighbors construct, the cell is neighboured by 8 cells from all sides. Fire(-1,-1)

represents the cell in the North West side (NW), Fire(0, -1) represents the cell in the west

(W), etc. The rules that define the state of the cells in each simulation cycle are defined

using the localtransition construct; those rules are shown in Figure 48:

Figure 48: Fire model rule definition

The rules define the time it takes for the cell to be burned if one of its neighbours is

burned. For example, the first rule dictates that if the cell in the south west side of the cell

is burned (0 < (1,-1)), the cell will take (21.552615/17.967136)*60000) milliseconds to

97

be burned. The value of (21.552615) represents the diagonal distance of each cell

(measured in meters), and the value of (17.967136) is the speed of the fire spread

(measured in meters/minute) as presented in the model definition [Ame01]. By dividing

the distance that the fire has to spread through by the speed of the fire spread, the time it

takes for fire spread is evaluated in minutes and by multiplying it with 60,000 the time in

milliseconds is obtained as the delay of the cell. If the condition in the first rule holds, the

cell state is updated to the value of Fire(1,-1) + (21.552615/17.967136) when the delay

elapses.

In order to study the performance of the distributed simulator, three types of experiments

were performed using two identical machines (each with dual PIV 3.2 GHz processors,

and 512 MB of RAM). The first experiment was carried out using one machine in order

to estimate the simulation time without the overhead incurred by sending remote

messages using SOAP. The second experiment was conducted by splitting the fire model

into two equal partitions; each of which was assigned to one machine that is connected to

the other machine using a commodity Internet connection. In the third experiment, the

two machines were connected using a P2P fibre optic link created using UCLP, as we

discuss following. In order to measure the required metrics, different pieces of code have

been inserted in the simulation service at different stages to record the current time, and

by comparing the times at these stages, an accurate measure of the duration of each stage

could be obtained. The function used to record the time was the C++ gettimeofday, which

returns the time since midnight January 1, 1970 in seconds with a precision of

microseconds. In order to evaluate the confidence interval, the approach presented in

[Ban01] was followed; a confidence interval of 100(1-a) % can be calculated as follows:

__

q - ta /2,f

__

s (
__

q) £ q £
__

q + ta /2,f

__

s (
__

q) ;

Where
__

q is the point estimator of q ,
__

q = �
=

R

r

r
R 1

__1
q ;

__

s (
__

q) is an estimate of the variance of q ,
__

s 2 (
__

q) =
)1(

1
-RR

 �
=

R

r 1

(
__

rq -
__

q) 2 ;

f = R -1 is the degrees of freedom, R is the number of replications, a is the confidence

coefficient;

98

 Average Std. Deviation Confidence Interval 95%

Local Msg. (us) 3.655 0.16843255 3.562 � X � 3.748

Init. Time (ms) 99.811 24.03019409 86.534 � X � 113.089

Simulation Time (s) 2.695 0.008052211 2.691 � X � 2.7

Total Exec. Time (s) 2.795 0.022725378 2.782 � X � 2.808

Table 4: Execution results of the Fire model using one machine

Figure 49: Fire model simulation time using one machine

The Local Message time is the time requited to transmit a message from one processor

(simulation processor) to another in the same machine. The transmission of a local

message in a single machine is implemented as a method call (receive) in the receiving

processor, which explains the short time required to communicate between two local

processors (average of 3.655 microseconds). The Initialization Time is the time required

by the simulator to load the model into memory, parse the configuration files, etc; this is

done before starting the simulation process. The Simulation Time is the time of running

the simulation which begins before processing the first event and ends after processing

the last event.

Simulation Time (Fire model- 1 Machine)

2.675

2.68
2.685

2.69
2.695

2.7
2.705

2.71
2.715

0 2 4 6 8 10 12 14 16

Run#

T
im

e
(s

)

99

Total Execution Time (Fire model- 1 Machine)

2.76

2.78

2.8

2.82

2.84

2.86

2.88

0 2 4 6 8 10 12 14 16

Run#

T
im

e
(s

)

Figure 50: Fire model total execution time using one machine

Although the graphs in Figures 49 and 50 show variations in the simulation and total

execution times of the fire model in one machine, the variations are very small compared

to the average value of the total execution time (standard deviation of 0.022725378 with

an average of 2.795 seconds). These variations are the result of the different processes

and daemons running on the machine.

In the second experiment, the cell space was split into two equal parts (15x30) and each

part was assigned to run on a different machine, as shown in Figure 51.

Figure 51: Fire model partitions on two machines

100

Due to the nature of the Internet, the bandwidth between the machine in Ottawa and

Montreal was not constant since the connection speed was dependant on the Internet

usage in both sites. In order to estimate the bandwidth available for the machines during

the simulation runs, a separate software utility (Iperf [Gat06]) was run concurrently with

the simulation:

 Average Std. Deviation Confidence Interval (95%)

Local Msg. (us) 3.988 0.113841996 3.9251 � X � 4.051

Kernel Msg. (ms) 0.862 0.792427302 0.424 � X � 1.3

SOAP Msg. (ms) 892.631 177.5010084 794.553 � X � 990.708

Init. Time (ms) 315.006 352.3675322 120.307 � X � 509.705

Simulation Time (s) 98.977 5.17287701 96.119 � X � 101.835

Total Exec. Time (s) 99.292 5.191 96.424 � X � 102.161

Bandwidth (KB/s) 811.221 29.6063781 794.863 � X � 827.581

Table 5: Execution results of the Fire model using two machines (Internet)

The local message transfer is close to that when using a single machine since the

messages are sent between local processors. When two machines are used to run

distributed simulation, sending a message from one processor to another remote one

involves sending it through the Linux kernel first to reach the web service components of

the simulation service, then sending it as a SOAP message through the network

(Internet), and finally from the web service components to the simulator at the receiving

end (through the Linux kernel). The average time for message transfer through the kernel

is .862 milliseconds. On the other hand, the time for SOAP transfer from one machine to

another is much longer than the kernel message transfer time, and it is the main

contributing factor to the overhead associated with the distributed simulator. Another

point to notice is that the initialization time is longer when running distributed

simulation; this is due to the extra processors created to manage message passing among

multiple machines (master and slave coordinators). By comparing the simulation time

when using one and two machines, the overhead introduced by the distributed simulator

can be visualized:

101

Simulation Time (Fire Model- 1&2 Machines)

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Run#

T
im

e
(s

)

1 Machine

2 Machines

Figure 52: Comparing the simulation time using 1&2 machines (Internet)

Total Execution Time (Fire Mode- 1&2 Machines)

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Run#

T
im

e
(s

)

1 Machine

2 Machines

Figure 53: Comparing the total execution time using 1&2 machines (Internet)

Comparing Figures 52 and 53, shows that the simulation and total execution times of the

model are almost identical. The difference between the two is the time necessary to

initialize the model which is insignificant compared to the time required to execute the

model (average of 315 milliseconds compared to an average of 99.292 seconds). It is

worth mentioning that the initialization time is measured for Machine 1 since the model

in Machine 2 is loaded before starting the simulation in Machine 1. In addition, the time

102

for loading the model in Machine 1 is very close to that in Machine 2 due to the

symmetric partitioning of the model.

To minimize the overhead incurred by the distributed simulator, the two machines were

connected through a P2P connection using UCLP as opposed to using a commodity

Internet connection. In order to estimate the bandwidth available to the simulator, Iperf

[Gat06] was used to estimate the average bandwidth as 241.13 M Bit/second.

 Average Std. Deviation Confidence Interval (95%)

Local Msg. (us) 3.856 0.285877096 3.698 � X � 4.014

Kernel Msg. (ms) 0.709 0.516410394 0.424 � X � 0.995

SOAP Msg. (ms) 489.343 178.9398125 390.470 � X � 588.215

Init. Time (ms) 256.101 349.078392 63.219 � X � 448.983

Simulation time (s) 27.622 0.44313255 27.377 � X � 27.867

Total Exec.Time (s) 27.878 0.539100354 27.580 � X � 28.176

Table 6: Execution results of the Fire model using two machines (UCLP)

Simulation Time (Fire Model- 1&2 Machines)

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Run#

T
im

e
(s

) 1 Machine

2 Machines (Internet)

2 Machines (UCLP)

Figure 54: Comparing the simulation time using 1&2 machines

(Internet, UCLP)

103

By examining the simulation time when using UCLP, it was noticed that the performance

is much better than that when using a regular Internet connection. That is, UCLP provides

a dedicated P2P connection that is solely used for the simulation session. Another point

to notice is that the variation in simulation time when using UCLP is less than that when

using a regular Internet connection.

Total Execution Time (Fire Model- 1&2 Machines)

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Run#

T
im

e
(s

) 1 Machine

2 Machines (Internet)

2 Machines (UCLP)

Figure 55: Comparing the total execution time using 1&2 machines

(Internet, UCLP)

Examining the total execution time of the simulation in Figure 55 shows the same

behaviour as in Figure 54. That is, the initialization time is insignificant compared to the

time required to execute the model.

The sand-pile model [Saa03] consists of a DEVS model representing a sand particle

generator and a coupled Cell-DEVS model that simulates the sand-pile formation. The

output of the generator is connected to the input of the coupled Cell-DEVS model, which

in turn is connected to the input of one of cells (sandpile(5, 5)). An excerpt of the

definition of the sand-pile model is shown in Figure 56.

104

Figure 56: An excerpt of the Sand-pile model definition

The sand-pile model was first executed using a single machine:

 Average Std. Deviation Confidence Interval 95%

Local Msg. (us) 3.764 0.253230556 3.624 � X � 3.904

Init. Time (ms) 25.925 3.168856641 24.174 � X � 27.676

Simulation Time (s) 0.1091 0.000589388 0.1087 � X � 0.1094

Total exec. Time (s) 0.135 0.003209 0.1332 � X � 0.1368

Table 7: Execution results of the Sand-pile model using one machine

Simulation Time (Sand-pile Model- 1 Machine)

0.108

0.1085

0.109

0.1095

0.11

0.1105

0 2 4 6 8 10 12 14 16

Run#

T
im

e
(s

)

Figure 57: Simulation time of the Sand-pile model using one machine

105

The initialization time was less than that for the fire model due to the smaller cell space

used, which resulted in smaller number of models to be initialized. However, the time

required to load the models seems to be significant compared to the simulation time (the

average initialization time is 25.925 milliseconds, and the average simulation time is

109.1 milliseconds), which resulted in a longer execution time as in Figure 58. On the

other hand, the variations in the simulation and execution times are insignificant (the

standard deviation of execution time is 0.003209 seconds with an average of .135

seconds) and are due to the different processes and daemons running on the machine.

Total Execution Time (Sand-pile Model- 1
Machine)

0.125

0.13

0.135

0.14

0.145

0 2 4 6 8 10 12 14 16

Run#

T
im

e
(s

)

Figure 58: Total execution time of the Sand-pile model using one machine

When running the distributed simulation, the model was split into two parts. The first part

contained the sand particle generator (DEVS) and the second included the sand-pile

formation model (Cell-DEVS). Each part was assigned to run on one machine and the

two machines were connected using a commodity Internet connection.

Figure 59: Sand-pile model partitions on two machines

106

 Average Std. Deviation Confidence Interval (95%)

Local Msg. (us) 4.429 0.355597418 4.233 � X � 4.626

Kernel Msg. (ms) 0.494 0.059172226 0.461 � X � 0.527

SOAP Msg. (ms) 846.544 195.5588008 738.489 � X � 954.600

Init. Time (ms) 46.597 31.54870575 29.165 � X � 64.029

Simulation Time (s) 50.439 0.905780553 49.939 � X � 50.939

Total exec. Time (s) 50.485 0.922040301 49.976 � X � 50.995

Bandwidth (KB/s) 810.947 29.5132616 794.639 � X � 827.254

Table 8: Execution results of the Sand-pile model using two machines (Internet)

Simulation Time (Sand-pile Model- 1&2 Machines)

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Run#

T
im

e
(s

)

1 Machine

2 Machines

Figure 60: Comparing the simulation time of the Sand-pile model using

1&2 machines (Internet)

The results obtained are consistent with the ones obtained when running the fire model.

The initialization time is longer when running distributed simulation since more

processors need to be initialized. The simulation time is longer than that for a single

machine due to the delay caused by sending SOAP messages between the remote

processors.

107

Total Execution Time (Sand-pile Model- 1&2
Machines)

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Run#

T
im

e
(s

)

1 Machine

2 Machines

Figure 61: Comparing the total execution time of the Sand-pile model using

 1&2 machines (Internet)

The behaviour of the execution time is almost identical to the behaviour of the simulation

time due to the insignificance of the initialization time (the average initialization time is

46.597 milliseconds, and the average simulation time is 50.439 seconds). The following

table shows the execution results when connecting the machines using UCLP:

 Average Std. Deviation Confidence Interval (95%)

Local Msg. (us) 4.413 0.088694231 4.364 � X � 4.462

Kernel Msg. (ms) 0.414 0.048226722 0.387 � X � 0.440

SOAP Msg. (ms) 483.525 133.2349746 409.907 � X � 557.143

Init. Time (ms) 19.259 1.708194042 18.315 � X � 20.203

Simulation Time (s) 8.117 0.081470209 8.0719 � X � 8.1619

Total Exec. Time (s) 8.136 0.081264089 8.091 � X � 8.181

Table 9: Execution results of the Sand-pile model using two machines (UCLP)

108

Simulation Time (Sand-pile Model- 1&2 Machines)

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Run#

T
im

e
(s

) 1 Machine

2 Machines (Internet)

2 Machines (UCLP)

Figure 62: Comparing the simulation time of the Sand-pile model using 1&2

machines (Internet, UCLP)

When using a dedicated link between the two machines, the simulation time improved

from an average of 50.439 to an average of 8.117 seconds. In addition, the variation in

simulation time when using UCLP is less than that when using a commodity Internet

connection.

Total Execution Time (Sand-pile Model- 1&2 Machines)

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Run#

T
im

e
(s

) 1 Machine

2 Machines (Internet)

2 Machines (UCLP)

Figure 63: Comparing the total execution time of the Sand-pile model using

 1&2 machines (Internet, UCLP)

109

As in the case of the fire model, the execution time follows the behaviour of the

simulation time since the initialization time is much less than the simulation/execution

time. Table 10 shows a summary of the three experiments performed on each one of the

models (the Fire and Sand-pile models):

 Fire#1 Fire#2

(Int.)

Fire#2

(UCLP)

Sand-

pile#1

Sand-

pile#2(Int.)

Sand-

pile#2(UCLP)

Init. Time (ms) 99.811 315.006 256.101 25.925 46.597 19.259

Sim. Time (s) 2.695 98.977 27.622 0.1091 50.439 8.117

Total Exec.

Time (s)

2.795 99.292 27.878 0.135 50.485 8.136

SOAP Delay

(ms)

NA 892.631 489.343 NA 846.544 483.525

Total No. of

Messages

45974 47770 47770 3710 4191 4191

Local

Messages (%)

100 96.24 96.24 100 88.52 88.52

Remote

Messages (%)

0 3.76 3.76 0 11.48 11.48

Table 10: Summary of the execution results of the Fire and Sand-pile models

The overall results show few points that are worth emphasizing. The time to execute the

model in one machine is usually shorter than that when using two machines. This is due

to the overhead incurred by sending remote messages as SOAP, which seems to be the

major contributor to the overhead. There are other factors affecting the overhead such as

the time required to send messages through the Linux kernel (message queues); however,

it is insignificant compared to the delay caused by SOAP. The initialization time for the

Fire model was longer when running the simulation on two machines due to the extra

coordinators required for message passing and synchronization (master and slave

coordinators). This was not the case for the sand-pile model (using UCLP) due to the fact

110

that the initialization time was measured for Machine 1 which only had one of the model

components running (the generator model) as shown in Figure 59.

In order to study the contribution of the remote messages sent between remote processors

to the overhead introduced by the distributed simulator, the average simulation times

when using two machines were divided by those when using a single machine. The

results are compared with the percentage of remote messages sent in each case. By

dividing the simulation time when using two machines by the time when using one, a

measure of the slowdown of the simulation can be obtained. This measure is compared

with the percentage of the remote messages sent during the simulation in order to

examine the relationship between the two.

 Remote Msgs. (%) Sim_Time2(Int.)/

Sim_Time1

Sim_Time2(UCLP)/

Sim_Time1

Fire model 3.76 36.73 10.25

Sand-pile model 11.48 462.32 74.4

Table 11: Percentage of remote messages in distributed simulation

The Effect of Remote Messages on The
Simulation Time

0

100

200

300

400

500

0 5 10 15

% of Remote Messages

S
im

.
T
im

e(
2-

M
ac

hi
ne

s)
/S

im
.
T
im

e(
1-

M
ac

hi
ne

)

Internet

UCLP

Figure 64: Relationship between remote messages and simulation times

Figure 64 shows the effect of the remote messages on the execution times of the models

in distributed simulations. The effect is more evident when using regular Internet

connections than when using UCLP. The curve in pink represents the slowdown of the

111

model execution versus the percentage of remote messages when using commodity

Internet connections. The curve in blue represents the slowdown when connecting the

machines using UCLP.

6.2 Result Retrieval

In addition to measuring the performance of the simulator, different experiments were

performed in order to assess the performance of result retrieval when using UCLP

compared to when using a commodity Internet connection. Three log files generated by

the Fire model were used in the experiments. The sizes of the files were (file1 ~ 1MB,

file2 ~2.5 MB, file3 ~5MB).

 Average Std. Deviation Confidence Interval (95%)

File1 (Internet) (s) 8.117 0.232105244 2.316 � X � 13.918

File1(UCLP) (s) 0.066 0.001081409 0.0188 � X � 0.1129

File2(Internet) (s) 20.878 0.698528493 5.957 � X � 35.798

File2(UCLP) (s) 0.129 0.003675746 0.0369 � X � 0.2215

File3(Internet) (s) 36.070 1.008546831 10.292 � X � 61.849

File3(UCLP) (s) 0.235 0.024736163 0.0671 � X � 0.4031

Table 12: File transfer times via the Internet/UCLP

File Transfer Time

0
5

10
15
20
25
30
35
40
45

0 2 4 6 8 10 12

Run#

T
im

e
(s

)

File1 (Internet)

File1 (UCLP)

File2 (Internet)

File2 (UCLP)

File3 (Internet)

File3 (UCLP)

Figure 65: Comparing the file transfer times via the Internet/UCLP

112

Figure 65 shows a big difference between the times needed to retrieve the results when

using UCLP and those needed when using commodity Internet connections. This is due

to the larger bandwidth provided by UCLP (average of 241.13 M Bits/second) compared

to that provided by regular Internet connections (less than 1M Bit/second).

113

Chapter 7: Conclusions

Discrete event simulation plays an important role in studying complex systems,

especially those that are not feasible for analytical studies. The nature of discrete event

models tends to be more complex as the modeled system evolves or more information

needs to be considered when developing the model. This has required more efficient

simulation engines that are able to execute complex models in a reasonable amount of

time. CD++ is a simulation engine that was developed to execute DEVS and Cell-DEVS

models on different platforms. In this dissertation, a framework of using web services

with CD++ was presented in order to accomplish two main goals.

The first goal is to interface the original version of the simulator to web service

technologies using web service wrappers. This has enabled the modeller to execute the

simulation, check the progress of the model execution, and retrieve the results remotely

using SOAP (and its extensions) protocol. In addition, it allowed for integrating the

simulation services into larger systems to form a complex workflow. Business Process

Execution Language (BPEL) can be used in this context to integrate the simulation

services with visualization services that enable the modeller to study the results of the

model execution in a user-friendly manner. The other goal achieved through using web

services, is the implementation of distributed simulation engine that is able to execute

complex models using multiple machines. The model can be split into different partitions,

each of which is assigned to run on a different machine. By establishing network

connectivity among the machines, the different simulators can exchange messages during

the distributed session using SOAP. The advantage of using SOAP is that it can be

embedded into HTTP traffic which in turn can be used on different network

infrastructures, such as LAN, WAN, Ethernet, fibre optic, etc.

The approach followed for implementing the distributed simulator depends on having

master and slave coordinators. The master coordinator is responsible for passing

messages between its child models and the upper level components in the model

hierarchy. On the other hand, the slave coordinator is responsible for passing messages

114

among its local children instead of involving the master coordinator that might be

running on a different machine. This has a considerable effect of reducing the remote

message traffic among the machines when running distributed simulations. This

minimizes the overhead incurred with sending and receiving SOAP messages and hence

improves the performance of the simulator.

The web service components added to CD++ have introduced some overhead that is

mostly apparent when running distributed simulations. The time of transferring a SOAP

message from one machine to another is by far longer than the time it takes to exchange

messages locally. This is especially true when the machines are connected using

commodity Internet connections. The advancement in the area of application-controlled

networks where the network management can be handled at an upper layer (the

application layer), has enabled grid applications to take control on their needs of the

network bandwidth. User Controlled Light Path (UCLP) is a web service-based

management services for fibre optic networks that were used in conjunction with CD++

in order to establish the connectivity between different machines in a distributed

environment. Having a point-to-point connection between the machines running

distributed simulation has improved the performance of the simulator a lot in terms of

shorter execution time of the model. In addition, the bandwidth could be relinquished

when the application doesn’t need it anymore, which results in an efficient use of the

network resources.

7.1 Future Research Work

Implementing DCD++ using web services has answered a lot of questions about the

feasibility, advantages, and disadvantages of the approach presented in this dissertation.

However, it kept a lot to be investigated in future research work and left some room for

improvement of the features already implemented in DCD++:

One of the main advantages of using web services is its ability to be interfaced and

integrated with other systems. The simulation services developed could be integrated

with larger systems such as the Participatory Design Studio (PDS) [San06]. PDS is a

115

project aiming at building collaborative environment of different resources using web

services. The resources available include visualization services; image capture devices

such as cameras, camcorders, and network management services such as User Controlled

Light Path (UCLP). The project is to provide an environment for architecture engineers to

facilitate the process of designing buildings in a collaborative manner. Business Process

Execution Language (discussed in chapter 2) can be used to establish a workflow

between the simulation and visualization services. This allows the engineers to simulate

different incidents in the buildings they design and to visualize the results of the

simulation in real time.

The user authentication process in the simulation service is based on a password file

stored on the server; this is done when the user first connects to the service. When

establishing slave sessions, no authentication is performed since the service nodes are

considered to trust each other. This can be improved by having the authentication process

based on digital certificates. In order for the user to connect to the service, the user would

need to have a trusted digital certificate; in addition, each node would have its certificate

in order to be used when establishing slave sessions on the slave nodes.

The success of a distributed simulation session depends on the network connectivity

among the nodes; if any network failure happens during the simulation, the slave sessions

may end up running and consuming resources without doing any useful processing. This

can be avoided by implementing some synchronization mechanism among the nodes in

order to detect any network problems and kill the session (and reclaim its resources)

accordingly after raising the proper exception to the user.

Integrating DCD++ and PCD++ into one framework has an appealing objective of taking

advantage of both engines, the speedup offered by PCD++ and the web service

capabilities offered by DCD++. In addition, this would provide proof of concept of the

approach presented in chapter 5 for integrating optimistic and conservative simulations

together.

116

References

[Ahm05] Ahmed, M.; Yonis, K.; Elshafei, M.; Wainer, G. “Building a tool for modeling
and simulation of computer networks”. Proceedings of the 38th IEEE/SCS Annual
Simulation Symposium. San Diego, CA. U.S.A. 2005.

[Alo03] Alonso, G. Web services : concepts, architectures and applications. Springer.
2003.

[Ame01] Ameghino, J.; Troccoli, A.; Wainer, G. “Models of complex physical systems
using Cell-DEVS”. Proceedings of the 34th Annual Simulation Symposium. Seattle, WA.
USA. 2001.

[And03] Andrews T.; Curbera, F.; Dholakia, H.; Goland, Y.; Klein, J.; Leymann, F.; Liu,
K.; Roller, D.; Smith, D.; Thatte, S.; Trickovic, I.; Weerawarana, S. “ Business Process
Execution Language for Web Services version 1.1”. May, 2003. Available via
<http://www-128.ibm.com/developerworks/library/specification/ws-bpel/>. [Accessed
February, 2006].

[Arn03] Arnaud, B.; Wu, J.; Kalali, B. “Customer Controlled and Managed Optical
networks “. IEEE/OSA Journal of Lightwave Technology, special issue on Optical
Networks. Vol. 21(11), pp. 2804-2810. November, 2003.

[Axi06] Web Services-Axis. Available via <http://ws.apache.org/axis/>. [Accessed
February, 2006].

[Ban01] Banks, J.; Carson, J.; Nelson, B.; Nicol, D. Discrete-Event System Simulation.
Prentice Hall. 2001.

[Bra04] Bray, T.; Paoli, J.; Sperberg-McQueen, C.M.; Yergeau, F. “Extensible Markup
Language, XML 1.0 (Third Edition)”. February, 2004. Available via
<http://www.w3.org/TR/2004/REC-xml-20040204/>. [Accessed October, 2005].

[Bry77] Bryant, R.E. Simulation of Packet Communication Architecture Computer
Systems. Massachusetts Institute of Technology, Cambridge, MA. USA. 1977.

[Cha79] Chandy, K.; Misra, J. “Distributed Simulation: A Case Study in Design and
Verification of Distributed-Programs”. IEEE Transactions on Software Engineering, pp.
440-452. 1979.

117

[Che04] Cheon, S.; Seo, C.; Park, S.; Zeigler, B.P. “Design and Implementation of
Distributed DEVS Simulation in a Peer to Peer Network System”. Advanced Simulation
Technologies Conference, Arlington Virginia. April, 2004

[Cho94a] Chow, A.; Zeigler, B. “Parallel DEVS: A parallel, hierarchical, modular
modeling formalism”. Proceedings of the Winter Computer Simulation Conference.
Orlando, FL. USA. 1994.

[Cho94b] Chow, A.; Kim, D.; Zeigler, B. “Abstract Simulator for the parallel DEVS
formalism”. AI, Simulation, and Planning in High Autonomy Systems. Gainesville, FL.
USA. 1994.

[Chr01] Christensen, E; Curbera, F.; Meredith, G.; Weerawarana, S.” Web Service
Desctiption Language (WSDL) 1.1”. March, 2001. Available via
< http://www.w3.org/TR/wsdl>. [Accessed December, 2005].

[Cla99] Clark, J.; DeRose, S. “XML Path Language (XPath),Version 1.0”. November,
1999. Available via <http://www.w3.org/TR/xpath>. [Accessed February, 2005].

[Cle04] Clement, L.; Hately, A.; Riegen, C.; Rogers, T. “UDDI Version 3.0.2, UDDI
Spec Technical Committee Draft”. October, 2004. Available via
< http://uddi.org/pubs/uddi_v3.htm>. [Accessed March, 2006].

[Erl05] Erl, T. Service-Oriented Architecture, Concepts, Technology, and Design.
Pearson Education, Inc. 2005.

[Fal04] Fallside, D.; Walmsley, P. “XML Schema Part 0: Primer Second Edition”.
October, 2004. Available via <http://www.w3.org/XML/Schema>. [Accessed November,
2004].

[Fer03] Ferreira, L.; Bursitis, V.; Armstrong, J.; Kendzierski, M.; Neukoetter, A.;
Masanobu T.; Bing-Wo, R.; Amir, A.; Murakawa, R.; Hernandez, O.; Magowan,
J.; Bieberstein, N. ”Introduction to Grid Computing with Globus”. Available via
<http://www.redbooks.ibm.com/redbooks/SG246778/wwhelp/wwhimpl/java/html/wwhel
p.htm>. [Accessed January, 2006].

[Fuj99] Fujimoto, R.M. Parallel and Distribution Simulation Systems. Wiley. 1999.
[Gat06] Gates, M.; Warshavsky, A. “Iperf version 1.1.1”. February, 2000. Available via
<http://dast.nlanr.net/Projects/Iperf1.1.1/>. [Accessed July, 2006].

118

[Gli02] Glinsky, E.; Wainer, G. "Performance Analysis of Real-Time DEVS models".
Proceedings of 2002 Winter Simulation Conference. San Diego, U.S.A. 2002.

[Gli04] Glinsky, E. “New Techniques for Parallel Simulation of DEVS and Cell-DEVS
Models In CD++”. Master Thesis. Carleton University 2004.

[Glo05] “A Globus Primer”. Available via
<http://www.globus.org/toolkit/docs/4.0/key/GT4_Primer_0.6.pdf>. [Accessed January,
2006].

[Gud03] Gudgin, M.; Hadley, M.; Mendelsohn, N.; Moreau, J.; Nielsen, H. “SOAP
Version 1.2 Part 1: Messaging Framework”. June, 2003. Available via
<http://www.w3.org/TR/soap12-part1/>. [Accessed November, 2005].

[Jef85] Jefferson, D.R. “Virtual time”. ACM Transactions on Programming Languages
and Systems. vol. 7(3), pp. 404-425. July, 1985.

[JXT06] www.jxta.org. [Accessed June, 2006]

[Kha03] Khargharia, B.; Hariri, S.; Parashar, M.; Ntaimo, L.; Kim, B. “vGrid: A
Framework for Building Autonomic Applications”. International Workshop on
Challenges for Large Applications in Distributed Environments (CLADE 2003), pp. 19-
26. June, 2003.

[Kha05] Khan, A.; Wainer, G. "A visualization engine based on Maya for DEVS
models". Proceedings of SISO Fall Interoperability Workshop. San Diego, CA. U.S.A.
2005.

[Kim04] Kim, K.; Kang, W. “CORBA -Based, Multi-threaded Distributed Simulation of
Hierarchical DEVS Models: Transforming Model Structure into a Non-hierarchical One”.
International Conference on Computational Science and Its Applications (ICCSA).
Assisi, Italy. 2004.

[Lia99] Liang, S. Java Native Interface (JNI), Programmer’s Guide and Specification.
Addison-Wesley. 1999
[Mad05] Madhoun, R.; Wainer, G. “Modeling battlefield scenarios in Cell-DEVS”.
Proceedings of SISO Fall Interoperability Workshop. San Diego, CA. U.S.A. 2005.

[MPI95] Message Passing Interface Forum. MPI: A Message-Passing Interface standard
(version 1.1). Technical report. Available via: <http://www.mpi-forum.org >. [Accessed
May, 2006].

119

[OMG02] Object Management Group. The common object request broker: architecture
and specification. Revision 3.0. OMG Technical report. June, 2002. 492 Old Connecticut
Path, Framingham, MA. USA.

[Saa03] Saadawi, H.; Wainer , G. “Modeling a sand pile application using Cell-DEVS”.
Proceedings of the 2003 Summer Computer Simulation Conference. Montreal, QC.
Canada. 2003.

[San06] Sandy, L.; Liang, Y.; Spencer, B. “Eucalyptus: A Service-oriented Participatory
Design Studio Supported by UCLP”. Available via <
http://www.cs.unb.ca/itc/ResearchExpo/posters/2006/abs20a.pdf>. [Accessed February,
2006].

[Sei04] Seidner, R. “A BPEL Primer”. July ,2004. Available via
<http://www.webservicespipeline.com/trends/23902103>. [Accessed March, 2006].

[Seo04] Seo, C.; Park, S.; Kim, B.; Cheon, S.; Zeigler, B. “Implementation of Distributed
high-performance DEVS Simulation Framework in the Grid Computing Environment”.
Advanced Simulation Technologies conference (ASTC). Arlington, VA. USA. 2004.

[Tom06] Apache Tomcat. Available via <http://tomcat.apache.org/>. [Accessed
February, 2006].

[Tro03] Troccoli, A., Wainer, G. "Implementing Parallel Cell-DEVS". Proceedings of
36th IEEE/SCS Annual Simulation Symposium. Orlando, FL. USA. 2003.

[Wai00] Wainer, G. "Improved Cellular Models with Parallel Cell-DEVS". Transactions
of the Society for Computer Simulation International. Vol. 17(2), pp. 73-88. June, 2000.

[Wai01] Wainer, G.; Giambiasi, N. “Timed Cell-DEVS: modelling and simulation of cell
spaces". Invited paper for the book Discrete Event Modeling & Simulation: Enabling
Future Technologies. Springer-Verlag. 2001

[Wai02] Wainer, G. “CD++: a toolkit to develop DEVS models”. Software - Practice and
Experience. vol. 32, pp. 1261-1306. 2002.

[War06] Warped: A Time Warp Simulation Kernel. Warped Documentation for version
1.0. Available via <www.ececs.uc.edu/~paw/warped/>. [Accessed April, 2006.]

[Web06] WebSphere. Available via <http://www-
128.ibm.com/developerworks/websphere/newto/>. [Accessed February, 2006].

120

[Wol86] Wolfram, S. Theory and applications of cellular automata. Advances Series on
Complex Systems. World Scientific. Singapore. 1986.

[Zei00] Zeigler, B.; Kim, T.; Praehofer, H. Theory of Modeling and Simulation:
Integrating Discrete Event and Continuous Complex Dynamic Systems. Academic Press.
2000.

[Zha05] Zhang, M.; Zeigler, B.; Hammonds, P. "DEVS/RMI-An Auto-Adaptive and
Reconfigurable Distributed Simulation Environment for Engineering Studies". ITEA
Journal. July. 2005.

121

Appendix-A: P-DEVS and DCD++ Simulation Algorithms

In this appendix, the algorithms governing the behaviour of the simulators and

coordinators in CD++ and DCD++ are presented. For the following discussion, TL

represents the time of the last state change of the model, TN represents the time of the

next state change, s is the model state, e is the time since the last state transition, and

processor refers to a simulation processor (not physical processor).

When a simulator receives an external message (X) at time t, it simply adds it to the

external message bag to be processed when the next internal message (*) is received.

Figure 66 shows the behaviour of the simulator when receiving a collect message (@) at

time t, it executes the output function and returns a done message (D) indicating the time

of the next change:

Figure 66: Simulator’s reaction to a collect message (@)

When a simulator receives an internal message at time t, depending on the message time

and the message bag status, one of the transition functions (� ext, � int, and � conf) is triggered

as shown in Figure 67. If the message arrives when there is no internal transition

scheduled, and the message bag is not empty, the external transition function is executed.

If the message arrives at the time of an internal transition and the message bag is empty,

the internal transition function is executed. The third case is when the internal message

arrives at the time of an internal transition and the message bag is not empty; in this case,

the confluent transition function is executed:

122

Figure 67: Simulator’s reaction to an internal message (*)

The coordinator receives the same type of messages received by the simulator; however,

it reacts in different ways to those messages. When a coordinator receives an external

message, it simply adds it to its external message bag. When a coordinator receives an

internal message from its parent coordinator at time t, the messages in the bag are

forwarded to their destinations, and an internal message is sent to all the processors

scheduled for state change (in the synchronize set); this behaviour is depicted in Figure

68:

123

Figure 68: Coordinator’s reaction to an internal message (*)

When a coordinator receives an output message (y) from child i at time t, it checks the

influencees of the message. If there are local influencees, the output message is translated

into external messages that are sent to the influencees; otherwise, the output message is

forwarded to the parent coordinator:

Figure 69: Coordinator’s reaction to an output message (y)

When a coordinator receives a done message at time t, the doneCount variable (variable

used to record the number of processors that received internal or collect messages) is

decremented. If doneCount equals zero, the minimum time for the next state transition of

the child processors is evaluated and reported to the parent coordinator:

124

Figure 70: Coordinator’s reaction to a done message (D)

When a coordinator receives a collect message at time t, it forwards it to all the imminent

child processors, as shown in Figure 71:

Figure 71: Coordinator’s reaction to a collect message (@)

The Root coordinator is considered as a special coordinator that is responsible for driving

the simulation as a whole. It starts the simulation by sending initialization messages (I) to

its child processors and responds to the done messages it receive by sending either a

125

collect message or an internal message depending on the sequence of messages sent to

the child processors.

When receiving a done message, the Root coordinator checks to see if the done message

followed a collect or an internal message. If it was a response to a collect message, an

internal message is sent to the top coordinator to complete the simulation cycle by

triggering the state transition in the simulators. If the done message was sent as a

response to an internal message, the current simulation cycle is considered over and the

Root coordinator initiates a new cycle by performing the following steps:

i) It checks if the simulation clock has reached the maximum execution time; if

so, it stops the simulation.

ii) If the external event list is not empty, the first event in the list (with minimum

timestamp) is picked, and its time stamp is compared to the time of the next

change as reported by the done message. The minimum of the two is

considered as the value of the nextTime variable.

iii) If nextTime is larger than the maximum execution time as provided by the

user, the simulation is stopped.

iv) If the external event list is not empty, all the events with a

timestamp=nextTime are sent to the top model coordinator.

v) If nextTime equals the time of the next change (TN), an internal message is

sent to the top coordinator; otherwise, a collect message is sent instead.

126

- � 78/�/D
- � 78/%/�-� �D
�	2�-��	/8/- �/ D
�	2����-��	/////E/��""	�����5/���	���"���/FD

��/�	2����-��	/8/���	���"���/
E
//////////�	2����-��	/8/��""	�����D
//////////�	��/�?5��/��/ ��� /�����������D
F
�"�	
E
//////////#�/�/- � 8/G/���/	2�	���"�(������/8/H �
////////////////////����D
//////////	"�	
//////////E
////////////////////��/�/	2�	���"�(������/I/H �/
////////////////////E
//////////////////////////////	(��/8/�����/	"	�	�� /��/	2�	���"�(������D
//////////////////////////////#�/�//	(��4-��	/6/�	 2�-��	/�
//�	2�-��	/8/ 	(��-��	/D

//////////////////////////////��/�����-��	/6/�	2�-� �	/�/
//����D
//////////////////////////////	"�	/
//////////////////////////////E
//)��/�""/	(���/�	(�/ ��'/-��	/8/�	2�-��	/
//� 	��/	(/��/ ��� /�����������D
//	��/���

//��/�/�	2�-� �	/8/- � �
//E
//� 	2����-��	/8/���	���"���D
//� 	��/�A5/- � �/��/ ��� /�����������D
//F
///////////////////////////////////////�"�	
//E
//- � 8/�	2�-��	/D
//- � 8/�/D
//� 	2����-��	/8/��""	�����D
//� 	��/�/?5/- � �/��/ ��� /�����������/D
//F
/////////////////////////////F
///////////////////F
//////////F
F

����/
����������/�/%5/��

Î

Figure 72: The Root coordinator behaviour when receiving a done message (D)

Implementing DCD++ required extending the Coordinator functionality into a Master

Coordinator and a Slave Coordinator. When a master coordinator receives an external

message, it adds it to the external message bag. When it receives an internal message at

time t, it sorts the external messages stored in its bag. This includes sending external

127

messages to the local receiving processors and/or sending external messages to remote

slave coordinators. Then an internal message is sent for each processor in the

synchronize set and the doneCount variable is incremented once for each sent message.

The doneCount variable is used to track the number of processors scheduled for internal

and/or external transitions. After sending the external and internal messages, the message

bag and synchronize set are emptied:

��/- � � //�//��� - �
�

	
���

����������������������
	
���

���	
������������������������
	����
���

�	������

��
���
����
��
�

�������������
���
������������!����
��"������

#
�
���
�

���$%��
�&���

������
���������������
�	�������������
�&�'���
�

�����������������
����
�������������!����
��"������
��������
��
�&�'��

#
#

����	
��
����	
�

����$%�H/D

	
���

���
����
���	�����!����
��"������
������(������
�	�
�
��)
����$%��
��)
����*�+ �

����	
�

�!����
��"������$%� H/D

,-�$%��� �
#
�
����	���.�, - �
����/�, 0
�

�������������
��
#

����	�/
����������/�/?5/��

Ï

Figure 73: The Master coordinator’s behaviour when receiving

an internal message (*)

When a master coordinator receives an output message at time t, it checks the

destinations of the message. If the receiving processor is local, the message is translated

128

into an external message that is sent to the processor. On the other hand, if the receiving

processor is a remote one, the message is sent to the slave coordinator of the receiving

processor running on the destination machine:

Ï

Figure 74: The Master coordinator’s behaviour when receiving

an output message (y)

When a master coordinator receives a collect message at time t, it sends it to the

imminent local simulators/coordinators and to all the slave coordinators with TN = t:

Figure 75: The Master coordinator’s behaviour when receiving a collect message (@)

129

Receiving a done message by a master coordinator at time t causes the doneCount

variable to be decremented. If doneCount equals zero, it indicates that all the child

processors scheduled for internal or external transitions are done. Then the master

coordinator evaluates the minimum time of the next state transition of the local child

processors and remote slave coordinators and reports the obtained value to its parent

coordinator through a done message, as shown in Figure 76:

Figure 76: The Master coordinator’s behaviour when receiving a done message (D)

When a slave coordinator receives an external message, it adds it to the external message

bag. The behaviour of the slave coordinator when receiving a collect message is identical

to the behaviour of the coordinator implementing the P-DEVS algorithms:

Figure 77: The Slave coordinator’s behaviour when receiving a collect message (@)

130

When a slave coordinator receives an output message at time t, it translates it into an

external message that is sent to the local receiving processors and/or it forwards it to its

parent master coordinator to either be sent to a remote processor, or upper coordinator,

or both.

Figure 78: The Slave coordinator’s behaviour when receiving an output message (y)

The behaviour of the slave coordinator when receiving a done message at time t is

identical to the behaviour of the coordinator implementing the P-DEVS algorithms:

Figure 79: The Slave coordinator’s behaviour when receiving a done message (D)

131

When receiving an internal message (*), the slave coordinator forwards the external

messages in its bag to their local receiving processors and sends internal messages to all

the processors cached in the synchronize set. At the end of this process, the message bag

and synchronize set are emptied:

��/- � � //�/�� - �
�

	
���

����������������������
	
���

���	
������������������������
	����
���

�	������

��
���
����
��
�

�������������
���
������������!����
��"������

#
�
���
�

�
��
������ �
#

����	
��
����	
�

����$%�H/D

	
���

���
����
���	�����!����
��"������
������(������
�	�
�
��)
����$%��
��)
����*�+ �

����	
�

�!����
��"������$%� H/D

,-�$%��� �
#
�
��
�

�������������
��
#

$"�(/
����������/�/?5/��

Figure 80: The Slave coordinator’s behaviour when receiving

an internal message (*)

132

Appendix-B: Web Service Components

The web service components of the simulation services were implemented using Java.

They communicate with the simulation components through the WrapperProxy, which is

implemented in C/C++ and loaded as a shared library by the Axis server. Figure 81

shows a UML diagram of the main classes of the web service components:

Figure 81: Web service components

133

The main class in the diagram is the JavaWrapper class, which constitutes the backbone

of the web service components. In this appendix, a detailed description of the methods

defined in the classes is presented. Some of the classes used are standard classes in Java 2

or part of the Axis libraries; those won’t be covered here since their functionality is

described in the official Java/Axis documentations. Those include:

· ContentHandler (org.xml.sax.ContentHandler): it is an interface that receives

notifications while parsing an XML document depending on the logical contents

of the document.

· DefaultHandler (org.xml.sax.DefaultHandler): it is the base class for SAX2 event

handlers.

· Remote (Java.rmi.Remote): It is an interface used to identify objects whose

methods can be executed on non-local virtual machines.

· Runnable (java.lang.Runnable): it is an interface that should be implemented by

any class whose instance to be executed as a thread.

· SAXParser (javax.xml.parsers.SAXParser): it is an abstract class that wraps the

functionality of an XMLReader implementation class; XMLReader is an interface

for reading XML documents based on notifications.

· SAXParserFactory (javax.xml.parsers.SAXParserFactory): it is a factory class

that enables applications to obtain SAX-based parsers to parse XML documents.

· Service (org.apache.axis.client.Service): it is Axis’ JAXRPC implementation of

the javax.xml.rpc interface. The Service class is the starting point for accessing

SOAP web services.

· Stub (org.apache.axis.client.Stub): it is an abstract base class for all stub classes.

JavaWrapper:

The methods implemented in the JavaWrapper class are:

* public void addMachine(Integer machineId, String uri)

Used to add a machine id and address by the parser.

134

* public void addModelPartition(String model, Integer machineId)

Used to add model partition information by the parser.

* public void addRemoteModelPartition(String model, Integer machineId)

Used to add remote model partitions by the parser (used when integrating DCD++ and

PCD++).

* public static void addUser(String userName ,String password):

Used by the parser to add a user credentials.

* public static void addUserRole(String userName, String role):

Used by the parser to add a user role.

* public void addZonePartition(String zone, Integer machineId)

Used by the parser to add Cell-DEVS model partitions.

* private void addZonePartitions()

Used to send the Cell-DEVS zone partitioning information to the simulator.

* private void archiveLogFiles()

Used to archive the log files into a (.tar) file to be retrieved by the user.

* public static int authenticate(String username, String password, boolean isPCDpp)

Used to authenticate the users.

* private boolean compileSource()

Used to compile the source code of the simulator with the code of the added DEVS

models.

* private void copyDirs(java.io.File srcDir, java.io.File destDir)

Used to copy directories during the creation of a new session.

* private void copyFiles(java.io.File srcFile, java.io.File destFile)

Used to copy files during the creation of a new session.

* private static int createNewSession(String userName, boolean isPCDpp)

Used by the authenticate method to create new sessions.

* public static boolean createSlaveSession(int sessionID, String userName):

Used by the master node to initialize slave sessions (when running distributed

simulation).

* public String enableParsingInfo()

135

Enables the parsing debug option in CD++ (used for Cell-DEVS models).

* public String getCurrentSimTime()

Returns the current simulation time by checking the nextChange variable in the Root

coordinator (through the WrapperProxy and CPPWrapper).

* public static int getMachineID(int sessionID)

Returns the machine id by examining the address of the simulation service, and

comparing it with the addresses in the grid configuration file.

* public int getSessionID()

Used to get the session id of the JavaWrapper instance.

* public static JavaWrapper getWrapperInstance(int sessionID)

Used by the server-side stubs to retrieve a JavaWrapper instance corresponding to the

session id (sessionID).

* private boolean initialize()

Used to initialize the message queues to communicate with CD++.

* private boolean initializeSlaveSessions()

Used to initialize slave sessions by sending the model and grid configuration files.

* public void insertExternalEvent(String time_, String port_, double value_)

Used to insert external events while the simulation is running.

* public static boolean isLoggedIn(String userName)

Checks to see if the current user has a running session.

* public boolean isSimRunning()

Used to check if the simulation process is still running.

* public static boolean isValidSession(int sessionID)

Checks to see if the sessionID matches a valid session.

 * private static boolean isValidUser(String userName, String password)

Checks if the user is a valid one.

* public JavaWrapper(boolean isPCDpp)

The constructor is used to distinguish between DCD++ and PCD++ services.

* public void killSimulation ()

Used to kill the simulation process.

136

* public static boolean logOff(int sessionID)

Used to log off a user and to invalidate his session.

* public static int machineForModel(int sessionID, String modelName)

Returns the machine id that is executing the model (modelName).

* public void receiveRemoteMessage(int msgType, String msgTime, int srcProcId,

String nextChange, int PortId, double value, int senderModelId, boolean isFromSlave, int

destProcId)

Used to receive a remote message sent as SOAP (when running distributed simulation).

* private boolean registerDEVS()

Used to modify the register.cpp file (part of CD++) to add a DEVS model(s).

* public String retrieveLogArchiveName()

Used by the server-side stubs to retrieve the name of the log archive to be sent to the user.

* public String retrieveOutputFileName()

Used by the server-side stubs to retrieve the name of the output file to be sent to the user.

* public String retrieveParsingInfoFileName()

Used by the server-side stubs to retrieve the name of the parsing information file to be

sent to the user.

* public String retrieveSessionLogFileName()

Used by the server-side stubs to retrieve the name of the session log file to be sent to the

user.

* private boolean retrieveSlaveLogFiles()

Used to retrieve the slave log files at the end of a distributed simulation session.

* public void run()

This method is required by the Runnable interface; it is responsible for streaming the

simulator output into the session log file and for starting the message monitor (used to

monitor the message queues).

* public static void sendRemoteMessage(int sessionID, int msgType, String msgTime,

int srcProcId, String nextChange, int portId, double value, int senderModelId, boolean

isFromSlave, int machineId, int destProcId)

Used to send a remote message using SOAP (when running distributed simulation).

137

* public String setDEVSModel(String cppFileName,DataHandler dhCPPFile,String

hFileName, DataHandler dhHFile)

Used to set DEVS header and implementation files.

* public String setEventFile (String eventFileName,DataHandler dhEventFile)

Used to set the external events file by the user.

* private void setFilePerms()

Used to set the file permissions of the CD++ executable during the creation of a new

session.

* public String setGridConfigFile(String gcFileName, DataHandler dhGCFile)

Used to set the grid configuration file by the user.

* public String setMAFile(String maFileName, DataHandler dhMAFile)

Used to set the model definition file (.ma) by the user.

* public String setNumberOfNodes(int noNodes)

Sets the number of nodes used by the cluster (when integrating DCD++ and PCD++).

* public String setPartitionFile(String partitionFileName, DataHandler dhPartitionFile)

Used to set the partition file by the user (used for the PCD++ service).

* public String setSimulationTime(String simTime)

Sets the execution time.

* public String setSupportFile (String supportFileName, DataHandler dhSupportFile))

Used to set the initial values file (for Cell-DEVS models).

* public String startSimulationService()

Used to start the simulator.

* public void stopSimulation()

Used to stop the simulation in the slave nodes (when running distributed simulation).

* private boolean stopSlaveSessions()

Used to stop the slave sessions at the end of a distributed simulation session.

* public boolean updateMakeFile()

Used to update the make file to incorporate the added DEVS model(s).

138

CDppPortType:

The CDppPortType interface defines the main methods offered by the simulation service.

The functionality of each method is the same as the one provided for the JavaWrapper

class except for the log and output file retrieval methods; since they return the actual files

instead of the file names. Those methods are:

public static int authenticate(String username, String password, Boolean isPCDpp)

public static boolean createSlaveSession(int sessionID, String userName)

public String enableParsingInfo()

public String getCurrentSimTime()

public void insertExternalEvent(String time_, String port_, double value_)

public boolean isSimRunning()

public void killSimulation ()

public static boolean logOff(int sessionID)

public void receiveRemoteMessage(int msgType, String msgTime, int srcProcId, String

nextChange, int PortId, double value, int senderModelId, boolean isFromSlave, int

destProcId)

public String retrieveLogArchive()

public String retrieveOutputFile()

public String retrieveParsingInfoFile()

public String retrieveSessionLogFile()

public String setDEVSModel(String cppFileName,DataHandler dhCPPFile,String

hFileName, DataHandler dhHFile)

public String setEventFile(String eventFileName,DataHandler dhEventFile)

public String setGridConfigFile(String gcFileName, DataHandler dhGCFile)

public String setMAFile(String maFileName, DataHandler dhMAFile)

public String setSimulationTime(String simTime)

public String setSupportFile(String supportFileName, DataHandler dhSupportFile)

public String startSimulationService()

public void stopSimulation()

139

CDppPortTypeSoapBindingImpl:

It is a server-side stub class that implements the CDppPortType interface and is deployed

in Axis as part of the service deployment process. The class is generated by the Axis

tools as a skeleton class that is filled with the implementation by the web service

designer/programmer. The methods implemented in the class are exactly the same as the

ones described for the CDppPortType interface.

CDppPortTypeSoapBindingStub:

This is the client-side stub that is used to access the simulation service. It implements the

CDppPortType in order to create the SOAP requests and responses for the interface

methods.

CDppPortTypeService:

It is an interface that defines the methods necessary to locate the web service given its

URL. It defines two methods:

* public CDppPortType getCDppPortType()

It returns a stub class implementing the CDppPortType interface using the local host

address as the address of the web service.

* public CDppPortType getCDppPortType(java.net.URL)

It returns a stub class implementing the CDppPortType interface using the URL provided

as the address of the web service.

CDppPortTypeServiceLocator:

It is a class implementing the CDppPortTypeService interface and is used as the starting

point to locate and access the web service.

140

Parser:

It is the main class used for parsing XML documents in the simulation service. Those

documents include: the users file, and grid configuration file. The methods implemented

in the class are:

* public static void parseUsers()

It is used to parse the users file; the users file contains the usernames, passwords, and

roles of all the users authorized to use the simulation service.

* public static void parseGridConfig(int sessionID, String fileName)

It is used to parse the grid configuration file, which contains the addresses of the

machines participating in the simulation in addition to the model partition.

MyContentHandler:

This class implements the methods defined in the ContentHandler interface that gets

called by a SAXParser when parsing XML documents. The methods implemented in the

class are:

* public void registerSessionID(int sessionID)

This method is called by the JavaWrapper class in order to set the session id before

parsing the grid configuration file.

* public void startElement(String namespaceURI, String localName, String rawName,

Attributes atts)

This method is called by the SAXParser at the beginning of each element in the XML

document.

public void endElement(String namespace, String localName, String rawName)

This method is called by the SAXParser at the end of each element in the XML

document.

public void characters(char[] ch, int start, int length)

* This method is called by the SAXParser between the start and end of each element in

the XML document with a char array (ch) containing the element contents.

