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Abstract: recent research efforts focused on the creation of fire spreading models using Cellular models. The 
Cell-DEVS formalism and the CD++ toolkit allow the user to construct their applications using simple and 
more intuitive model specification, which can execute with high efficiency using a discrete event approach. It 
was shown that different environmental applications can be easily faced, allowing the study of complex prob-
lems through simulation. The use of formal base improves the development, checking and maintaining 
phases, facilitating the testing and reuse of their components. The utilization of a discrete event formalism 
such as these ones can provide better precision and performance. We will present the definition of different 
models, focusing on how to define such applications using Cell-DEVS methodology. 
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1. INTRODUCTION 
 
At present, there is increasing interest in monitor-
ing and predicting forest fires, as this phenomenon 
destroys important resources. Many forest fires 
models have been developed to study how the fire 
spreads under different environmental conditions, 
focusing on the need for fire fighters to have means 
for providing rapid and relatively accurate informa-
tion concerning fire position (Muzy et al. [2005]). 
Although the use of computer simulation permitted 
to address this problem to an extent unknown with 
analytical solutions, real-time simulators for fire 
spread are still tricky to elaborate due to both fire 
complexity the volume of data that ecological 
models have. 
 
Here, we show how the Cell-DEVS formalism 
(Wainer et al. [2002]) can help the fire modeler, as 
t his formalism is well suited to solve this kind of 
applications. Cell-DEVS enables defining cell 
spaces with explicit timing delays. Each cell is 
defined as an atomic DEVS model (Zeigler et al. 
[2000]), and a procedure to couple cells is de-
picted. DEVS has been used recently for fire mod-
eling by different teams (Vasconcelos et al. [1995], 
Ntaimo et al. [2004], Muzy et al. [2003], Barros et 
al. [1998]). The result in these efforts showed that 
discrete event methods in general and DEVS in 
particular, present several advantages: 
• Computational time reduction: for a given 

accuracy, the number of calculations decrease 
• Seamless integration with models defined with 

other modeling techniques mapped to DEVS 
• Simulation of discrete time models: seen as 

particular cases of discrete event methods 
• Hybrid systems modeling: the discrete event 

paradigm provides the theory to develop a uni-
form approach to model and simulate systems 
with continuous and discrete components. 

These efforts required complex software solutions 
developed by specialized teams, and the activity of 
the fire modeler during the development of the 
model is thus restricted. We will discuss how we 
have provided better mechanisms for model defini-
tion based on Cell-DEVS, and how environmental 
experts can use the techniques to create fire spread-
ing models. We want to achieve higher precision 
and improved resolution in the results obtained 
when executing these models, while taking the 
advantage of current expertise of the fire experts 
(in Wainer et al. [2001] we reported a gain in de-
velopment times in using this approach for other 
fields of application, due to the fact that the model-
ers can focus in defining smaller portions of a 
problem and in expressing it using simpler equa-
tions, which can be solved easier than the complete 
system, creating a very precise model). The result-
ing cellular models will be able to run asynchro-
nously and in parallel, thus improving precision 
and performance.  
 
2. CELL-DEVS AND CD++ 
 
The Cell-DEVS formalism was defined as an ex-
tension to Cellular Automata (Wolfram [2002]) 
combined with DEVS for specification of discrete-
event models. Cell-DEVS and the CD++ toolkit 
(Wainer [2002]) permit defining asynchronous cell 
spaces with explicit constructions for timing defini-
tion. The DEVS formalism provides a framework 
for the construction of hierarchical modular mod-
els, allowing for model reuse, reducing develop-
ment and testing times. In DEVS, basic models 



(called atomic) are specified as black boxes, and 
several DEVS models can be integrated together 
forming a hierarchical structural model (called 
coupled). In Cell-DEVS, each cell in a cellular 
model is seen as a DEVS atomic model, and a pro-
cedure for coupling cells is defined based on the 
neighborhood relationship. Only the active cells in 
the cell space are triggered, independently from 
any activation period. Each cell of a Cell-DEVS 
model holds a state variable and a computing func-
tion, which updates the cell state by using its pre-
sent state and its neighborhood. Each cell is de-
scribed as: 

 
TDC = < X,Y,?,N,delay,d,dint,dext, t , ?,D>  (1) 

 
X defines the external inputs, Y the external out-
puts of the model. ? is the cell state definition. De-
lay defines the kind of delay for the cell, and d its 
duration. A transport delay can be associated with 
each cell, which defers the outputs for the cell. A 
state change will be discarded if it is not steady 
during an inertial delay. Each cell takes the set of 
inputs to compute its future state using t (N). The 
remaining functions drive the cell’s behavior: dint 
for internal transitions, dext for external transitions, 
? for outputs and D for the state’s duration. A Cell-
DEVS coupled model is defined by: 

 
GCC= < Xlist, Ylist, X,Y,n,{t1,…, tn},N,C,B,Z > (2) 
 
Here, Xlist and Ylist are input/output coupling lists, 
used to define the model interface. X and Y repre-
sent the input/output events. The n value defines 
the dimension of the cell space, {t1,…, tn} is the 
number of cells in each dimension and N is the 
neighborhood set. The cell space is defined by C, 
together with B, the set of border cells, and Z the 
translation function. 
 
A modeler simply has to focus on three basic as-
pects: dimension (size and shape of the cell space), 
influences and behavior (Figure 1). 

 

 
Figure 1.  Definition of a Cell-DEVS Model  
 
CD++ implements both DEVS and Cell-DEVS 
theories. The tool is built as a hierarchy of models, 
each of them related with a simulation entity. A 
specification language allows defining the model's 
coupling. The tool includes an interpreter for a 
specification language that allows describing Cell-

DEVS models, and the models can also be pro-
grammed in C++. The behavior specification of a 
Cell-DEVS atomic model is defined using a set of 
rules with the form: POSTCONDITION ASSIGN-
MENTS DELAY PRECONDITION. These indicate 
that when the PRECONDITION is satisfied, the 
state of the cell changes to the designated POST-
CONDITION, and its output is DELAYed for the 
specified time. If model’s state variables need to be 
modified, the ASSIGNMENTS section can be used 
(optional). Each The local computing function 
evaluates the first rule, and if the precondition does 
not hold, the following rules are evaluated until 
one of them is satisfied or there are no more rules 
(which raise an error condition due to incomplete-
ness of the model). The main operators available to 
define rules and delays include: Boolean, compari-
son, arithmetic, neighborhood values, time, condi-
tionals, angle conversion, pseudo-random numbers, 
error rounding and constants (i.e., gravitation, ac-
celeration, light, Planck, etc.). At present, CD++ is 
able to execute models in single processor, parallel 
or real-time mode.  

 
CD++ simulator uses an array of Πi=1...n di to store 
the states for the cellular model with dimension (d1, 
d2, ..., dn), and in this case (x1, x2,..., xn) occupies 
the position Σi=1...n xi . (Πk=1...i-1 dk). CD++ also 
permits defining zones with differentiated behavior 
in the cell space. Each zone is defined by a set of 
cells determined by the cell range {(x1, x2, ..., 
xn)...(y1, y2, ..., yn)}. Each zone is associated to a 
different set of rules. Using this capability, differ-
ent zones into the same cellular model can present 
different behavior.  
 

 
 

 
Figure 2. Shift mapping to the square lattice. 

 
In many cases, square topologies are not enough 
for defining the behavior of advanced cell spaces. 
Triangular meshes allow covering areas with more 
varied topology, while permitting every cell to 
have a limited number of nearby neighbors. Like-
wise, hexagonal geometries have higher isotropy, 
that is, the capacity to represent equivalent behav-
ior in every possible direction (which is not the 
case for square meshes). This is more natural for 
building the model’s rules, and in some cases it is 
absolutely necessary to simulate the phenomenon 
upon study. The disadvantage is the difficulty to 
represent and visualize the model. CD++ Lattice 
Translator allows defining the cell’s behavior 
based on these topologies, and then they are trans-



lated into square CD++ compatible rules, using the 
mechanism depicted in Figure 2. 
 
The idea for hexagonal meshes is to use a function 
that shifts alternate rows in opposite directions, 
keeping the boundary conditions in the square lat-
tice. The mapping of the triangular lattice is simi-
lar: every second cell has a different orientation, 
and each row of triangles is mapped to one row of 
square depending on the parity of x+y.  
 
3. MODELING FIRE SPREAD 
 
In Muzy et al. [2005], we described a fire model 
using Cell-DEVS. We will use this example to 
show the basic rule definition in CD++. The model 
is based on experimental fires conducted on Pinus 
pinaster litter (composed of earth and plant matter 
meshed uniformly with cells of 1 cm².) in a closed 
room (Balbi et al. [1999]). The energy transferred 
from the cell to the surrounding air is considered 
proportional to the difference between the tempera-
ture of a cell and the ambient temperature. The 
heat transferred between a cell and its neighboring 
cells is represented by a single equivalent diffusion 
term. The physical model is solved by finite differ-
ences:  
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where Tij is the temperature of a grid node. The 
coefficients a, b, c and d depend on the considered 
time step and mesh size. Figure 3 represents the 
specification of this model in CD++.  

 
dim : (100,100,2)       border : nowrapped 
neighbors : (-1,0,0) (0,-1,0) (1,0,0) 
(0,1,0) (0,0,0) (0,0,-1) (0,0,1)  
zone : ti { (0,0,1)..(99,99,1) } 
localTransition : FireBehavior 
 
[ti] 
rule:{ time/100 } 1 { cellpos(2)=1 AND         
         (0,0,-1)>=573 AND (0,0,0) = 1.0 } 
 
[FireBehavior] 
rule: {#unburned} 1 {(0,0,0)<300 AND(0,0,0) 
!=209 AND (#unburned>(0,0,0) OR time<=20)}  
rule: {#burning} 1 {cellpos(2)=0 AND  
 ( (0,0,0)>#burning AND (0,0,0)>333 ) OR  
  (#burning>(0,0,0) AND (0,0,0)>=573)) AND   
    (0,0,0)!=209 } %Burning 
rule: {209} 1 {(0,0,0)<=60 AND  
 (0,0,0)!=209 AND (0,0,0)>#burning} %Burned 
 
#unburned =(0.98689*(0,0,0) + 0.0031*(  
(0,-1,0)+(0,1,0)+(1,0,0)+(-1,0,0))+0.213 ) 
#burning= (0.98689*(0,0,0)+.0031*(  
 (0,-1,0)+(0,1,0)+(1,0,0)+(-1,0,0))+ 2.74 *   
    exp(-.19*((time+1)*.01-(0,0,1)))+.213) 

Figure 3. Fire spread model specification. 
 
We first define the Cell-DEVS coupled model 
(neighborhood, dimension, etc.). Then, the ti rules 
show how to store ignition times: if a cell in plane 
0 starts to burn (cellpos(2)=1), we record the cur-

rent simulation time in plane 1. Then, we show the 
rules used to compute the cells’ temperatures. The 
macros show the rules corresponding to the tem-
perature calculus: cells can be inactive, unburned, 
burning and burned. An unburned cell's tempera-
ture is lower than 573 degrees. A cell starts burning 
at 573 degrees and its temperature increases for a 
while; then it start decreasing as the fuel mass is 
consumed. When the temperature gets lower than 
333 degrees, the cell enters the burned phase (sig-
naled by a constant temperature of 209 degrees). 
The first rule in Figure 3 applies to unburned cells, 
whose temperature in the next step will be higher 
than its current one. The second rule applies to 
burning cells. The third rule sets the burned flag 
(temperature=209 degrees) when a burning cell 
crosses down the 333-degrees threshold, and the 
fourth rule keeps the burned cells constant. 
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Figure 4. Cell’s neighborhood specification  

 
As described in Figure 4, we use two planes to 
representing the model: the first one stores the 
cell’s temperature, and the second one stores the 
ignition time. This model accurately reproduces the 
experimental results obtained in the lab. As we can 
see in Figure 4, we need n x m x 2 cells (double the 
size of the simulated area). This model can be rede-
fined using multiple state variables. In this case, 
the temperature and the ignition time are stored in 
independent a state variables. The model can be 
redefined as follows (López et al. [2004]). 
 
stateVariables: ti       stateValues: 0 

 
[FireBehavior] 
rule : { #unburned } 1 { (0,0)!=209  
   AND (0,0)<573 AND ( time<=20 OR                                
       #unburned>(0,0) ) } 
rule : { #burning } 1 { (0,0)>333 AND     
   ( (0,0)<573 OR $ti != 1.0 ) AND    
       (0,0)>#burning } 
rule : { #burning }{ $ti := if($ti = 1.0, 
time / 100, $ti); } 1    
   { (0,0) >= 573 AND #burning >= (0,0) } 
rule : { #burning } { $ti := time/100; }  
   1 { $ti = 1.0 AND (0,0) >= 573 AND  

#burning < (0,0) } 
rule : { 209 } 100 { (0,0) != 209 AND  
    (0,0)<=333 AND (0,0) > #burning } 

Figure 5. Fire spread model specification. 
 
The first step was to add a state variable ti to re-
move one layer of cells and to replace all the refer-
ences to this layer by references to the state vari-



able. The model does not use multiple planes as in 
the previous case; therefore, we do not need to 
check the plane we are using. Simultaneously, the 
references are always to 2D cells. The ti rule re-
cords the moment when the cell starts burning. In 
this case, we use a new state variable instead of an 
independent plane like in the original model pre-
sented in. As these rules are more compact, we can 
manipulate them to obtain better performance and 
easier understanding.  
 
This problem can also be solved using multiple 
ports to replace the extra plane. When we use mul-
tiple ports we do not need to store internally the 
values, but to transmit them through the ports. So, 
there is not need to set values, but just send them 
out though the corresponding port. In this case, two 
ports are declared: temp and ti. The port temp ex-
ports the cell’s temperature, while the port ti ex-
ports the ignition time.  

 
rule: {~temp:=#burning} 1 { (0,0)~temp>333 
   AND ( (0,0)~temp<573 OR (0,0)~ti!=1 )  
      AND (0,0)~temp > #burning } 
rule: {#burning} 1 {(0,0)>333 AND (0,0)<573  
   OR $ti!=1 AND (0,0)>#burning } 
rule: {#burning} {$ti:=if($ti=1,time/100,  
  $ti)} 1 {(0,0)>=573 AND #burning>=(0,0) } 
rule : {#burning} {$ti:=time/100; } 1 {  
   $ti=1 AND (0,0)>=573 AND #burning<(0,0)} 

 
These two new versions of the model behave ex-
actly the same as the original, but with clear gains 
in the modeling itself, which permits a user to de-
scribe more complex phenomena easily. Likewise, 
the different optimizations presented allowed us to 
obtain gains in execution times of up to 40% by 
just reordering and factoring the rules to execute 
more efficiently using CD++ evaluation mecha-
nism. The following figure shows a 3D version of 
the execution results for this model using 
CD++/Maya (Khan et al. [2005]). These visualiza-
tions can be easily expanded to include terrain and 
climate information, which would be useful for 
training, online visualization and decision making.  
 

 
Figure 6. Visualization in CD++/Maya 

 
Another advantage is that the complexity of this 
physical phenomenon is such that the inclusion of 
other external influences is difficult to be consid-
ered. Cell-DEVS allows including new rules easily, 
allowing evolvability of the model. For instance, 
we also defined an advanced Cell-DEVS fire 
model based on a well known model for fire 
propagation in forests due to Rothermel [1972], in 
which we can see how to make use of the explicit 

time delay functions to improve model definition. 
This model uses environmental and vegetation 
conditions, it computes the ratio of spread and in-
tensity of fire. Three parameter groups determine 
the fire spread ratio: a) vegetation type (caloric 
content, mineral content and density); b) fuel prop-
erties (the vegetation is classified according to its 
size); and c) environmental parameters (wind 
speed, fuel humidity and field slope). When 
Rothermel's rules are applied to a given fuel model 
and environmental parameters, it can determine the 
spread ratio (i.e. the distance and direction the fire 
moves in a minute). The first step is to use the fuel 
model, the speed and direction of the wind, the 
terrain topography and the dimensions of the cellu-
lar space to obtain the spread ratio in every direc-
tion. Instead of using a time-based approach, the 
model uses the delay function to compute fire 
spread. Figure 7 shows the implementation of this 
model using a hexagonal mesh. 
  
dim : (20,20)  delay : inertialneighbors : 
(-1,-1) (-1,0) (-1,1) (0,-1)  (0,0)  (0,1) 
(1,-1)  (1,0)  (1,1) 
 
[FireBehavior] 
rule: {[5]+(15.24/13.680)} {(15.24/13.680)   
   * 60000} {[0]=0 and [5]!=? and [5]>0} 
rule: {[6]+(15.24/5.10)} {(15.24 /5.106 )  
   * 60000} {[0]=0 and [6]!=? and [6]>0} 
rule: {[4]+( 15.24/2.950)} {(15.24/2.950)  
   * 60000} {[0]=0 and [4]!=? and [4]>0} 
rule: {[1]+(15.24/1.630)} {(15.24/ 1.630)  
   * 60000} {[0]=0 and [1]!=? and [1]>0} 
rule: {[3]+(15.24/1.146)} {( 15.24 / 1.146) 
   * 60000} {[0]=0 and [3]!=? and [3]>0} 
rule: {[2]+(15.24/1.040)} {( 15.24/ 1.040)  
   * 60000} {[0]=0 and [2]!=? and [2]>0} 

Figure 7. Rothermel’s fire forest model. 
 

The rules defining the local computing function are 
devoted to detect the presence of fire in the eight 
neighboring cells. For instance, the first rule 
checks if the current cell is not burning ([0]= 0) 
and if the SW neighbor has started to burn ([5]>0). 
If this condition holds, the new value of the cell 
will be [5]+(15.24/13.680), which is the time the 
fire will start in the cell. We use a delay of 
(15.24/13.680) * 60000 ms after which the pre-
sent cell state will spread to the neighbors. The 
remaining rules represent a similar behavior for the 
remaining neighbors. The results of running this 
model are shown below.  
 
As we can see, we use a different notation to repre-
sent each one of the 6 neighbors ([1…6], in counter 
clockwise direction starting at 0°). In the hexagonal 
lattice, the distance between two neighbor cells is 
the same in every direction, so we use a distance of 
15.24m for all of the rules.  
 
Using a triangular lattice, we obtain these rules: 
 
 



[FireBehavior] 
rule: {[3]+(4.40/5.106)} {(4.40/5.106)  
  * 60000} {[0]=0 and [3]!=? and [3]>0 and  
      odd(cellpos(0)+cellpos(1))} 
rule: {[1]+(4.40/2.950)} {(4.40/2.950)  
   * 60000} {[0]=0 and [1]!=? and [1]>0  
      and odd(cellpos(0)+cellpos(1))} 
rule: {[2]+(4.40/1.040)} {(4.40/1.040)  
  * 60000} {[0]=0 and [2]!=? and [2]>0 and  
     odd(cellpos(0)+cellpos(1))} 
rule: {[3]+(4.40/8.573)} {(4.40/ 8.573)   
   * 60000} {[0]=0 and [3]!=? and [3]>0 and  
      even(cellpos(0)+cellpos(1)} 
rule: {[2]+(4.40/1.630)} {(4.40/1.630)  
   * 60000} {[0]=0 and [2]!=? and [2]>0 and  
      even(cellpos(0)+cellpos(1)} 
rule: {[1]+( 4.40/1.146)} {(4.40/1.146)  
   * 60000} {[0]=0 and [1]!=? and [1]>0 and    
      even(cellpos(0)+cellpos(1)} 

Figure 8. Rules using triangular topology  
 
In this case, there are six rules because we need to 
do rules for even triangles and odd triangles. These 
models are translated into a square grid, as showed 
earlier in Figure 8. CD++ can display these topolo-
gies, as showed in the following figure. 
 

                 
 

             

    
Figure 9. Fire propagation results (2 h. period) 

(a) square lattice (b) hexagonal lattice (b) triangular 
lattice 

 
As we can see, the burning time of a cell depends 
on the spread ratio in the direction of the burning 
cell. Changes in the propagation here are related to 
the changes produced by the adjacency properties 
derived from using different topologies. This value 
is used as the delay component for the rules. It is 
important to notice that the cells are updated at 
different times, as set by a rule's delay component. 
This is a clear departure from the classical ap-
proach to cellular automata where all active cells 
are updated at the same time. Cellular Automata 
model these systems with a similar approach than 
the Finite Elements method (Fröier et al. [1974]. 
Instead, with Cell-DEVS, a non burning cell in the 
direction of the fire spread will be updated in a 
shorter period of time than one in the opposite di-
rection. Another advantage is that expressing a 
timing delay is done in a natural fashion, allowing 
the modeler to reduce the development time related 
with timing control programming. 

Fire suppression can be easily implemented. In 
Figure 10, we show the implementation of a rain 
front moving to the SE, extinguishing the fire on 
burning cells. This behavior is implemented in the 
following rules, which were added to the previous 
model. Negative values define the effects of the 
rain. A cell whose value is -1 is a wet cell where no 
fire was presented previously. A value of -2 or -3 
indicates the cell was previously on fire and is now 
cooling down, and a value of -4 means the fire on 
that cell is extinguished. The first rule in the previ-
ous figure defines rain spreading to the SW. The 
second defines the cooling process on a burning 
cell, and the third and fourth ones represent ad-
vance in the cooling process.  

 
rule : -1 {60000*3} {(0,0)=0 and ((-1,0)=-1  
    or (0,1)=-1 or (-1,0)=-2 or (0,1)=-2)}  
rule : -2 {60000*3.5} {(0,0)>0 and ((-1,0)=  
   -1 or (0,1)=-1 or (-1,0)=-2 or (0,1)=-2)  
rule : -3 {60000*4.5} {(0,0)=-2} 
rule : -4 {60000*5}   {(0,0)=-3} 

Figure 10. Forest fire. Rules defining rain. 
 

Figure 11 shows the execution of this model using 
hexagonal topology. The initial behavior is similar 
to the one seen in Figure 9. We then observe the 
advance of rain, which cools the fire areas (light 
gray), and finally we can see how rain extinguished 
fire areas. It is important to notice that if any of the 
cells is scheduled to start burning and it gets wet 
before the fire starts, it will not burn. This was eas-
ily defined by an inertial delay, which preempts 
any scheduled event if a new event from a neighbor 
cell before the scheduled time and the present cell 
gets a different value.  

 

 
Figure 11. Fire evolution with rain. 

 
The following extension allows analyzing fire sup-
pression by firefighters. A negative value is still 
used for wet or cooling cells, a positive value for 
burning cells, but the way in which the water is 
spread has been changed.  In this case, firefighters 
move from north to south spreading water to non 
burning vegetation. Once they reach a burning cell 
they will hold their positions till the fire is extin-
guished, and then they will move towards SW. 

 
rule : -1 60000     {(0,0)=0 and (-1,0)=-1} 
rule : -2 {60000*7} {(0,0)>0 and ((-1,1)=-1  
       or (-1,1)=-4) } 
rule : -3 {60000*9} {(0,0)=-2} 
rule : -4 {60000*9} {(0,0)=-3} 

Figure 12. Rules defining firefighter behavior. 
 



 
Figure 13. Fire evolution with firefighters.  

 
Figure 13 shows how firefighters spread coolant 
from N to S, and while fire spreads (as in figure 9), 
firefighter zones cooled down (light gray), while in 
some areas fire has been extinguished.  

 
The use of varied topologies improves execution 
performance. The following figure shows the num-
ber of messages involved in executing the model 
using the different topologies.  

 

 
Figure 14. Comparing execution performance.  

 
As we can see, the triangular and hexagonal to-
pologies use a smaller size for the neighborhood, 
highly reducing the number of messages needed to 
carry out the simulation, and improving execution. 
 
4. CONCLUSION 
 
We have showed hot to apply the Cell-DEVS for-
malism for the construction of advanced models in 
the field fire spreading. Cell–DEVS allows describ-
ing physical and natural systems using an n-
dimensional cell-based formalism. Complex timing 
behavior for the cells in the space can be defined 
using very simple constructions. CD++ simplifies 
the construction of these models by allowing sim-
ple and intuitive model specification. The use of 
formal base improves the development, checking 
and maintaining phases, facilitating the testing and 
reuse of their components. The evolution of propa-
gation models is eased by the hierarchy description 
of DEVS and the high-level language of Cell-
DEVS. Cell-DEVS discretization allows us to acti-
vate only the most heated cells of the fire front. 
The utilization of a discrete event formalism such 
as this one can provide better precision and per-
formance, while different visualization tools, simu-

lators and an integrated development environment 
can enhance the modeling experience.  
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