

Creating Advanced Fire-Spreading models using the

CD++ toolkit

Gabriel Wainer

Dept. of Systems and Computer Engineering. Carleton University. Ottawa, ON. Canada.
gwainer@sce.carleton.ca

Abstract: recent research efforts focused on the creation of fire spreading models using Cellular models. The
Cell-DEVS formalism and the CD++ toolkit allow the user to construct their applications using simple and
more intuitive model specification, which can execute with high efficiency using a discrete event approach. It
was shown that different environmental applications can be easily faced, allowing the study of complex prob-
lems through simulation. The use of formal base improves the development, checking and maintaining
phases, facilitating the testing and reuse of their components. The utilization of a discrete event formalism
such as these ones can provide better precision and performance. We will present the definition of different
models, focusing on how to define such applications using Cell-DEVS methodology.

Keywords: DEVS, Cell-DEVS, Rothermel model, semiempirical models.

1. INTRODUCTION

At present, there is increasing interest in monitor-
ing and predicting forest fires, as this phenomenon
destroys important resources. Many forest fires
models have been developed to study how the fire
spreads under different environmental conditions,
focusing on the need for fire fighters to have means
for providing rapid and relatively accurate informa-
tion concerning fire position (Muzy et al. [2005]).
Although the use of computer simulation permitted
to address this problem to an extent unknown with
analytical solutions, real-time simulators for fire
spread are still tricky to elaborate due to both fire
complexity the volume of data that ecological
models have.

Here, we show how the Cell-DEVS formalism
(Wainer et al. [2002]) can help the fire modeler, as
t his formalism is well suited to solve this kind of
applications. Cell-DEVS enables defining cell
spaces with explicit timing delays. Each cell is
defined as an atomic DEVS model (Zeigler et al.
[2000]), and a procedure to couple cells is de-
picted. DEVS has been used recently for fire mod-
eling by different teams (Vasconcelos et al. [1995],
Ntaimo et al. [2004], Muzy et al. [2003], Barros et
al. [1998]). The result in these efforts showed that
discrete event methods in general and DEVS in
particular, present several advantages:
• Computational time reduction: for a given

accuracy, the number of calculations decrease
• Seamless integration with models defined with

other modeling techniques mapped to DEVS
• Simulation of discrete time models: seen as

particular cases of discrete event methods
• Hybrid systems modeling: the discrete event

paradigm provides the theory to develop a uni-
form approach to model and simulate systems
with continuous and discrete components.

These efforts required complex software solutions
developed by specialized teams, and the activity of
the fire modeler during the development of the
model is thus restricted. We will discuss how we
have provided better mechanisms for model defini-
tion based on Cell-DEVS, and how environmental
experts can use the techniques to create fire spread-
ing models. We want to achieve higher precision
and improved resolution in the results obtained
when executing these models, while taking the
advantage of current expertise of the fire experts
(in Wainer et al. [2001] we reported a gain in de-
velopment times in using this approach for other
fields of application, due to the fact that the model-
ers can focus in defining smaller portions of a
problem and in expressing it using simpler equa-
tions, which can be solved easier than the complete
system, creating a very precise model). The result-
ing cellular models will be able to run asynchro-
nously and in parallel, thus improving precision
and performance.

2. CELL-DEVS AND CD++

The Cell-DEVS formalism was defined as an ex-
tension to Cellular Automata (Wolfram [2002])
combined with DEVS for specification of discrete-
event models. Cell-DEVS and the CD++ toolkit
(Wainer [2002]) permit defining asynchronous cell
spaces with explicit constructions for timing defini-
tion. The DEVS formalism provides a framework
for the construction of hierarchical modular mod-
els, allowing for model reuse, reducing develop-
ment and testing times. In DEVS, basic models

(called atomic) are specified as black boxes, and
several DEVS models can be integrated together
forming a hierarchical structural model (called
coupled). In Cell-DEVS, each cell in a cellular
model is seen as a DEVS atomic model, and a pro-
cedure for coupling cells is defined based on the
neighborhood relationship. Only the active cells in
the cell space are triggered, independently from
any activation period. Each cell of a Cell-DEVS
model holds a state variable and a computing func-
tion, which updates the cell state by using its pre-
sent state and its neighborhood. Each cell is de-
scribed as:

TDC = < X,Y,?,N,delay,d,dint,dext, t , ?,D> (1)

X defines the external inputs, Y the external out-
puts of the model. ? is the cell state definition. De-
lay defines the kind of delay for the cell, and d its
duration. A transport delay can be associated with
each cell, which defers the outputs for the cell. A
state change will be discarded if it is not steady
during an inertial delay. Each cell takes the set of
inputs to compute its future state using t (N). The
remaining functions drive the cell’s behavior: dint
for internal transitions, dext for external transitions,
? for outputs and D for the state’s duration. A Cell-
DEVS coupled model is defined by:

GCC= < Xlist, Ylist, X,Y,n,{t1,…, tn},N,C,B,Z > (2)

Here, Xlist and Ylist are input/output coupling lists,
used to define the model interface. X and Y repre-
sent the input/output events. The n value defines
the dimension of the cell space, {t1,…, tn} is the
number of cells in each dimension and N is the
neighborhood set. The cell space is defined by C,
together with B, the set of border cells, and Z the
translation function.

A modeler simply has to focus on three basic as-
pects: dimension (size and shape of the cell space),
influences and behavior (Figure 1).

Figure 1. Definition of a Cell-DEVS Model

CD++ implements both DEVS and Cell-DEVS
theories. The tool is built as a hierarchy of models,
each of them related with a simulation entity. A
specification language allows defining the model's
coupling. The tool includes an interpreter for a
specification language that allows describing Cell-

DEVS models, and the models can also be pro-
grammed in C++. The behavior specification of a
Cell-DEVS atomic model is defined using a set of
rules with the form: POSTCONDITION ASSIGN-
MENTS DELAY PRECONDITION. These indicate
that when the PRECONDITION is satisfied, the
state of the cell changes to the designated POST-
CONDITION, and its output is DELAYed for the
specified time. If model’s state variables need to be
modified, the ASSIGNMENTS section can be used
(optional). Each The local computing function
evaluates the first rule, and if the precondition does
not hold, the following rules are evaluated until
one of them is satisfied or there are no more rules
(which raise an error condition due to incomplete-
ness of the model). The main operators available to
define rules and delays include: Boolean, compari-
son, arithmetic, neighborhood values, time, condi-
tionals, angle conversion, pseudo-random numbers,
error rounding and constants (i.e., gravitation, ac-
celeration, light, Planck, etc.). At present, CD++ is
able to execute models in single processor, parallel
or real-time mode.

CD++ simulator uses an array of Πi=1...n di to store
the states for the cellular model with dimension (d1,
d2, ..., dn), and in this case (x1, x2,..., xn) occupies
the position Σi=1...n xi . (Πk=1...i-1 dk). CD++ also
permits defining zones with differentiated behavior
in the cell space. Each zone is defined by a set of
cells determined by the cell range {(x1, x2, ...,
xn)...(y1, y2, ..., yn)}. Each zone is associated to a
different set of rules. Using this capability, differ-
ent zones into the same cellular model can present
different behavior.

Figure 2. Shift mapping to the square lattice.

In many cases, square topologies are not enough
for defining the behavior of advanced cell spaces.
Triangular meshes allow covering areas with more
varied topology, while permitting every cell to
have a limited number of nearby neighbors. Like-
wise, hexagonal geometries have higher isotropy,
that is, the capacity to represent equivalent behav-
ior in every possible direction (which is not the
case for square meshes). This is more natural for
building the model’s rules, and in some cases it is
absolutely necessary to simulate the phenomenon
upon study. The disadvantage is the difficulty to
represent and visualize the model. CD++ Lattice
Translator allows defining the cell’s behavior
based on these topologies, and then they are trans-

lated into square CD++ compatible rules, using the
mechanism depicted in Figure 2.

The idea for hexagonal meshes is to use a function
that shifts alternate rows in opposite directions,
keeping the boundary conditions in the square lat-
tice. The mapping of the triangular lattice is simi-
lar: every second cell has a different orientation,
and each row of triangles is mapped to one row of
square depending on the parity of x+y.

3. MODELING FIRE SPREAD

In Muzy et al. [2005], we described a fire model
using Cell-DEVS. We will use this example to
show the basic rule definition in CD++. The model
is based on experimental fires conducted on Pinus
pinaster litter (composed of earth and plant matter
meshed uniformly with cells of 1 cm².) in a closed
room (Balbi et al. [1999]). The energy transferred
from the cell to the surrounding air is considered
proportional to the difference between the tempera-
ture of a cell and the ambient temperature. The
heat transferred between a cell and its neighboring
cells is represented by a single equivalent diffusion
term. The physical model is solved by finite differ-
ences:

k
ji

k
vk

ji
k
ji

k
ji

k
ji

k
ji dT

t
cQbTbTaTaTT

ji
,

1

1,1,,1,1
1

,
,

+





++++=

+

+−+−
+

∂
∂σ (3)

where Tij is the temperature of a grid node. The
coefficients a, b, c and d depend on the considered
time step and mesh size. Figure 3 represents the
specification of this model in CD++.

dim : (100,100,2) border : nowrapped
neighbors : (-1,0,0) (0,-1,0) (1,0,0)
(0,1,0) (0,0,0) (0,0,-1) (0,0,1)
zone : ti { (0,0,1)..(99,99,1) }
localTransition : FireBehavior

[ti]
rule:{ time/100 } 1 { cellpos(2)=1 AND
 (0,0,-1)>=573 AND (0,0,0) = 1.0 }

[FireBehavior]
rule: {#unburned} 1 {(0,0,0)<300 AND(0,0,0)
!=209 AND (#unburned>(0,0,0) OR time<=20)}
rule: {#burning} 1 {cellpos(2)=0 AND
 ((0,0,0)>#burning AND (0,0,0)>333) OR
 (#burning>(0,0,0) AND (0,0,0)>=573)) AND
 (0,0,0)!=209 } %Burning
rule: {209} 1 {(0,0,0)<=60 AND
 (0,0,0)!=209 AND (0,0,0)>#burning} %Burned

#unburned =(0.98689*(0,0,0) + 0.0031*(
(0,-1,0)+(0,1,0)+(1,0,0)+(-1,0,0))+0.213)
#burning= (0.98689*(0,0,0)+.0031*(
 (0,-1,0)+(0,1,0)+(1,0,0)+(-1,0,0))+ 2.74 *
 exp(-.19*((time+1)*.01-(0,0,1)))+.213)

Figure 3. Fire spread model specification.

We first define the Cell-DEVS coupled model
(neighborhood, dimension, etc.). Then, the ti rules
show how to store ignition times: if a cell in plane
0 starts to burn (cellpos(2)=1), we record the cur-

rent simulation time in plane 1. Then, we show the
rules used to compute the cells’ temperatures. The
macros show the rules corresponding to the tem-
perature calculus: cells can be inactive, unburned,
burning and burned. An unburned cell's tempera-
ture is lower than 573 degrees. A cell starts burning
at 573 degrees and its temperature increases for a
while; then it start decreasing as the fuel mass is
consumed. When the temperature gets lower than
333 degrees, the cell enters the burned phase (sig-
naled by a constant temperature of 209 degrees).
The first rule in Figure 3 applies to unburned cells,
whose temperature in the next step will be higher
than its current one. The second rule applies to
burning cells. The third rule sets the burned flag
(temperature=209 degrees) when a burning cell
crosses down the 333-degrees threshold, and the
fourth rule keeps the burned cells constant.

(0,0,0)

Plane 0

Plane 1

(0,-1,0)

(1,0,0)

(0,1,0)

(-1,0,0)

(0,0,0)

(0,0,1)

Figure 4. Cell’s neighborhood specification

As described in Figure 4, we use two planes to
representing the model: the first one stores the
cell’s temperature, and the second one stores the
ignition time. This model accurately reproduces the
experimental results obtained in the lab. As we can
see in Figure 4, we need n x m x 2 cells (double the
size of the simulated area). This model can be rede-
fined using multiple state variables. In this case,
the temperature and the ignition time are stored in
independent a state variables. The model can be
redefined as follows (López et al. [2004]).

stateVariables: ti stateValues: 0

[FireBehavior]
rule : { #unburned } 1 { (0,0)!=209
 AND (0,0)<573 AND (time<=20 OR
 #unburned>(0,0)) }
rule : { #burning } 1 { (0,0)>333 AND
 ((0,0)<573 OR $ti != 1.0) AND
 (0,0)>#burning }
rule : { #burning }{ $ti := if($ti = 1.0,
time / 100, $ti); } 1
 { (0,0) >= 573 AND #burning >= (0,0) }
rule : { #burning } { $ti := time/100; }
 1 { $ti = 1.0 AND (0,0) >= 573 AND

#burning < (0,0) }
rule : { 209 } 100 { (0,0) != 209 AND
 (0,0)<=333 AND (0,0) > #burning }

Figure 5. Fire spread model specification.

The first step was to add a state variable ti to re-
move one layer of cells and to replace all the refer-
ences to this layer by references to the state vari-

able. The model does not use multiple planes as in
the previous case; therefore, we do not need to
check the plane we are using. Simultaneously, the
references are always to 2D cells. The ti rule re-
cords the moment when the cell starts burning. In
this case, we use a new state variable instead of an
independent plane like in the original model pre-
sented in. As these rules are more compact, we can
manipulate them to obtain better performance and
easier understanding.

This problem can also be solved using multiple
ports to replace the extra plane. When we use mul-
tiple ports we do not need to store internally the
values, but to transmit them through the ports. So,
there is not need to set values, but just send them
out though the corresponding port. In this case, two
ports are declared: temp and ti. The port temp ex-
ports the cell’s temperature, while the port ti ex-
ports the ignition time.

rule: {~temp:=#burning} 1 { (0,0)~temp>333
 AND ((0,0)~temp<573 OR (0,0)~ti!=1)
 AND (0,0)~temp > #burning }
rule: {#burning} 1 {(0,0)>333 AND (0,0)<573
 OR $ti!=1 AND (0,0)>#burning }
rule: {#burning} {$ti:=if($ti=1,time/100,
 $ti)} 1 {(0,0)>=573 AND #burning>=(0,0) }
rule : {#burning} {$ti:=time/100; } 1 {
 $ti=1 AND (0,0)>=573 AND #burning<(0,0)}

These two new versions of the model behave ex-
actly the same as the original, but with clear gains
in the modeling itself, which permits a user to de-
scribe more complex phenomena easily. Likewise,
the different optimizations presented allowed us to
obtain gains in execution times of up to 40% by
just reordering and factoring the rules to execute
more efficiently using CD++ evaluation mecha-
nism. The following figure shows a 3D version of
the execution results for this model using
CD++/Maya (Khan et al. [2005]). These visualiza-
tions can be easily expanded to include terrain and
climate information, which would be useful for
training, online visualization and decision making.

Figure 6. Visualization in CD++/Maya

Another advantage is that the complexity of this
physical phenomenon is such that the inclusion of
other external influences is difficult to be consid-
ered. Cell-DEVS allows including new rules easily,
allowing evolvability of the model. For instance,
we also defined an advanced Cell-DEVS fire
model based on a well known model for fire
propagation in forests due to Rothermel [1972], in
which we can see how to make use of the explicit

time delay functions to improve model definition.
This model uses environmental and vegetation
conditions, it computes the ratio of spread and in-
tensity of fire. Three parameter groups determine
the fire spread ratio: a) vegetation type (caloric
content, mineral content and density); b) fuel prop-
erties (the vegetation is classified according to its
size); and c) environmental parameters (wind
speed, fuel humidity and field slope). When
Rothermel's rules are applied to a given fuel model
and environmental parameters, it can determine the
spread ratio (i.e. the distance and direction the fire
moves in a minute). The first step is to use the fuel
model, the speed and direction of the wind, the
terrain topography and the dimensions of the cellu-
lar space to obtain the spread ratio in every direc-
tion. Instead of using a time-based approach, the
model uses the delay function to compute fire
spread. Figure 7 shows the implementation of this
model using a hexagonal mesh.

dim : (20,20) delay : inertialneighbors :
(-1,-1) (-1,0) (-1,1) (0,-1) (0,0) (0,1)
(1,-1) (1,0) (1,1)

[FireBehavior]
rule: {[5]+(15.24/13.680)} {(15.24/13.680)
 * 60000} {[0]=0 and [5]!=? and [5]>0}
rule: {[6]+(15.24/5.10)} {(15.24 /5.106)
 * 60000} {[0]=0 and [6]!=? and [6]>0}
rule: {[4]+(15.24/2.950)} {(15.24/2.950)
 * 60000} {[0]=0 and [4]!=? and [4]>0}
rule: {[1]+(15.24/1.630)} {(15.24/ 1.630)
 * 60000} {[0]=0 and [1]!=? and [1]>0}
rule: {[3]+(15.24/1.146)} {(15.24 / 1.146)
 * 60000} {[0]=0 and [3]!=? and [3]>0}
rule: {[2]+(15.24/1.040)} {(15.24/ 1.040)
 * 60000} {[0]=0 and [2]!=? and [2]>0}

Figure 7. Rothermel’s fire forest model.

The rules defining the local computing function are
devoted to detect the presence of fire in the eight
neighboring cells. For instance, the first rule
checks if the current cell is not burning ([0]= 0)
and if the SW neighbor has started to burn ([5]>0).
If this condition holds, the new value of the cell
will be [5]+(15.24/13.680), which is the time the
fire will start in the cell. We use a delay of
(15.24/13.680) * 60000 ms after which the pre-
sent cell state will spread to the neighbors. The
remaining rules represent a similar behavior for the
remaining neighbors. The results of running this
model are shown below.

As we can see, we use a different notation to repre-
sent each one of the 6 neighbors ([1…6], in counter
clockwise direction starting at 0°). In the hexagonal
lattice, the distance between two neighbor cells is
the same in every direction, so we use a distance of
15.24m for all of the rules.

Using a triangular lattice, we obtain these rules:

[FireBehavior]
rule: {[3]+(4.40/5.106)} {(4.40/5.106)
 * 60000} {[0]=0 and [3]!=? and [3]>0 and
 odd(cellpos(0)+cellpos(1))}
rule: {[1]+(4.40/2.950)} {(4.40/2.950)
 * 60000} {[0]=0 and [1]!=? and [1]>0
 and odd(cellpos(0)+cellpos(1))}
rule: {[2]+(4.40/1.040)} {(4.40/1.040)
 * 60000} {[0]=0 and [2]!=? and [2]>0 and
 odd(cellpos(0)+cellpos(1))}
rule: {[3]+(4.40/8.573)} {(4.40/ 8.573)
 * 60000} {[0]=0 and [3]!=? and [3]>0 and
 even(cellpos(0)+cellpos(1)}
rule: {[2]+(4.40/1.630)} {(4.40/1.630)
 * 60000} {[0]=0 and [2]!=? and [2]>0 and
 even(cellpos(0)+cellpos(1)}
rule: {[1]+(4.40/1.146)} {(4.40/1.146)
 * 60000} {[0]=0 and [1]!=? and [1]>0 and
 even(cellpos(0)+cellpos(1)}

Figure 8. Rules using triangular topology

In this case, there are six rules because we need to
do rules for even triangles and odd triangles. These
models are translated into a square grid, as showed
earlier in Figure 8. CD++ can display these topolo-
gies, as showed in the following figure.

Figure 9. Fire propagation results (2 h. period)

(a) square lattice (b) hexagonal lattice (b) triangular
lattice

As we can see, the burning time of a cell depends
on the spread ratio in the direction of the burning
cell. Changes in the propagation here are related to
the changes produced by the adjacency properties
derived from using different topologies. This value
is used as the delay component for the rules. It is
important to notice that the cells are updated at
different times, as set by a rule's delay component.
This is a clear departure from the classical ap-
proach to cellular automata where all active cells
are updated at the same time. Cellular Automata
model these systems with a similar approach than
the Finite Elements method (Fröier et al. [1974].
Instead, with Cell-DEVS, a non burning cell in the
direction of the fire spread will be updated in a
shorter period of time than one in the opposite di-
rection. Another advantage is that expressing a
timing delay is done in a natural fashion, allowing
the modeler to reduce the development time related
with timing control programming.

Fire suppression can be easily implemented. In
Figure 10, we show the implementation of a rain
front moving to the SE, extinguishing the fire on
burning cells. This behavior is implemented in the
following rules, which were added to the previous
model. Negative values define the effects of the
rain. A cell whose value is -1 is a wet cell where no
fire was presented previously. A value of -2 or -3
indicates the cell was previously on fire and is now
cooling down, and a value of -4 means the fire on
that cell is extinguished. The first rule in the previ-
ous figure defines rain spreading to the SW. The
second defines the cooling process on a burning
cell, and the third and fourth ones represent ad-
vance in the cooling process.

rule : -1 {60000*3} {(0,0)=0 and ((-1,0)=-1
 or (0,1)=-1 or (-1,0)=-2 or (0,1)=-2)}
rule : -2 {60000*3.5} {(0,0)>0 and ((-1,0)=
 -1 or (0,1)=-1 or (-1,0)=-2 or (0,1)=-2)
rule : -3 {60000*4.5} {(0,0)=-2}
rule : -4 {60000*5} {(0,0)=-3}

Figure 10. Forest fire. Rules defining rain.

Figure 11 shows the execution of this model using
hexagonal topology. The initial behavior is similar
to the one seen in Figure 9. We then observe the
advance of rain, which cools the fire areas (light
gray), and finally we can see how rain extinguished
fire areas. It is important to notice that if any of the
cells is scheduled to start burning and it gets wet
before the fire starts, it will not burn. This was eas-
ily defined by an inertial delay, which preempts
any scheduled event if a new event from a neighbor
cell before the scheduled time and the present cell
gets a different value.

Figure 11. Fire evolution with rain.

The following extension allows analyzing fire sup-
pression by firefighters. A negative value is still
used for wet or cooling cells, a positive value for
burning cells, but the way in which the water is
spread has been changed. In this case, firefighters
move from north to south spreading water to non
burning vegetation. Once they reach a burning cell
they will hold their positions till the fire is extin-
guished, and then they will move towards SW.

rule : -1 60000 {(0,0)=0 and (-1,0)=-1}
rule : -2 {60000*7} {(0,0)>0 and ((-1,1)=-1
 or (-1,1)=-4) }
rule : -3 {60000*9} {(0,0)=-2}
rule : -4 {60000*9} {(0,0)=-3}

Figure 12. Rules defining firefighter behavior.

Figure 13. Fire evolution with firefighters.

Figure 13 shows how firefighters spread coolant
from N to S, and while fire spreads (as in figure 9),
firefighter zones cooled down (light gray), while in
some areas fire has been extinguished.

The use of varied topologies improves execution
performance. The following figure shows the num-
ber of messages involved in executing the model
using the different topologies.

Figure 14. Comparing execution performance.

As we can see, the triangular and hexagonal to-
pologies use a smaller size for the neighborhood,
highly reducing the number of messages needed to
carry out the simulation, and improving execution.

4. CONCLUSION

We have showed hot to apply the Cell-DEVS for-
malism for the construction of advanced models in
the field fire spreading. Cell–DEVS allows describ-
ing physical and natural systems using an n-
dimensional cell-based formalism. Complex timing
behavior for the cells in the space can be defined
using very simple constructions. CD++ simplifies
the construction of these models by allowing sim-
ple and intuitive model specification. The use of
formal base improves the development, checking
and maintaining phases, facilitating the testing and
reuse of their components. The evolution of propa-
gation models is eased by the hierarchy description
of DEVS and the high-level language of Cell-
DEVS. Cell-DEVS discretization allows us to acti-
vate only the most heated cells of the fire front.
The utilization of a discrete event formalism such
as this one can provide better precision and per-
formance, while different visualization tools, simu-

lators and an integrated development environment
can enhance the modeling experience.

REFERENCES

Balbi, J., Santoni, P. and Dupuy, J. Dynamic modelling

of fire spread across a fuel bed. International
Journal of Wasteland Fire. (9), 275-284, 1999.

Barros, F., Ball, G.L. Fire modelling using dynamic
structure cellular automata. III International Con-
ference On Forest Fire Research. 14th Confer-
ence on Fire and Forest Meteorology. Luso, Por-
tugal. 1998.

Fröier, M., Nilsson, L. and Samuelsson, A. The rectan-
gular plane stress element by Turner, Pian and
Wilson. International Journal for Numerical
Methods in Engineering. 8(2), 433-437, 1974.

Khan, A., Venhola, W. and Wainer, G.; Jemtrud, M.
Advanced DEVS model visualization. Proceed-
ings of IMACS World Congress on Scientific
Computation, Applied Mathematics and Simula-
tion 2005. Paris, France. 2005.

López, A. and Wainer, G. Improved Cell-DEVS model
definition in CD++. In Proceedings of Sixth In-
ternational conference on Cellular Automata for
Research and Industry. Amsterdam, Netherlands.
LNCS Vol. 3305. 2004.

Muzy, A., Innocenti, E., Hill, D., Santucci, J.F. Optimi-
sation of cell spaces simulation for the modelling
of fire spreading. Proc. of 36th Annual Simula-
tion Symposium, Orlando, FL. 2003.

Muzy, A., Wainer, G., Innocenti, E., Aiello, A. and San-
tucci, J.F. Cellular Discrete-event modeling and
simulation of fire spreading across a fuel bed.
Simulation: Transactions of the Society for Mod-
eling and Simulation International. (81), 2. 103-
117. 2005.

Ntaimo, L., Khargharia, B., Zeigler, B. and Vasconcelos,
M. Forest fire spread and suppression in DEVS.
Simulation, Transactions of the SCS. (80), 10,
479-500. 2004.

Rothermel, R.C. A Mathematical Model for Predicting
Fire Spread in Wasteland Fuels. USDA Forestry
Service Research Paper, INT-115. 1972.

Vasconcelos, M., Pereira, J. and Zeigler, B. Simulation
of fire growth using discrete event hierarchical
modular models. EARSeL Advances in Remote
Sensing. (4), 3, 54-62. 1995.

Wainer, G. CD++: a toolkit to define discrete-event
models. Software, Practice and Experience. (32),
3, 1261-1306. 2002.

Wainer, G. and Giambiasi, N. Application of the Cell-
DEVS paradigm for cell spaces modeling and
simulation. Simulation (76), 1. 22-39. 2001.

Wainer, G. and Giambiasi, N. N-dimensional Cell-
DEVS. Discrete Events Systems: Theory and
Applications. (12), 1, 135-157. 2002.

Wolfram, S. A New Kind of Science. Wolfram Media.
2002.

Zeigler, B., Kim, T. and Praehofer, H. Theory of Model-
ing and Simulation: Integrating Discrete Event
and Continuous Complex Dynamic Systems.
Academic Press. 2000.

