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Abstract 
 The study of events behavior through real simulations 
could contribute to develop or improve Future Event Set 
(FES) data structures in order to achieve better performance 
on large scale simulations. In this paper we have analyzed 
FES data structures of two discrete event simulators: CD++ 
and NS-2. We have run variety of simulations on each 
simulator to describe a real event behavior by observing 
event timestamps, life times into the FES and firing time 
(event execution time). The goal of this research is to 
present new ideas on how the FES data structures could be 
improved exploiting event behaviors.   
 
1. INTRODUCTION 
 The Future Event Set (FES) is an important component 
of discrete-event simulations, as it handles the future events 
to be executed (or fired) by the simulator core. A poor 
implementation of this data structure could easily degrade 
the overall performance of the simulator. Given that, to 
contribute to the current evaluation framework, this paper 
will attempt to explore event behavior by a CD++ simulator 
instrumentation in order to present some empirical results 
and, eventually, discuss about how events behavior can be 
exploited in order to improve a FES data structure. On the 
other hand, the results are compared to those obtained from 
running similar experiments on NS-2.  
The main part of this research was running simulations on 
CD++ (DEVS and Cell-DEVS hierarchical simulator). This 
was performed by running different DEVS models under 
different circumstances and collecting the data which were 
mainly associated with FES characteristics. Analyzing 
DEVS simulator, CD++, is more complicated compared to 
NS-2 because there is no centralized FES in CD++, so a 
virtual FES has to be computed a posteriori.  Another main 
difference among CD++ and NS-2 is that the first one uses 
“simulation time” as opposed to latter one which uses “real-
time”. This implies that, when for instance, when an event 
has to stay in FES for two seconds, it does actually stay 
there for exactly two seconds in NS-2, while in CD++ it 
only stays in FES for a much shorter time, depending how 

busy the simulator is. More details about the structure of 
CD++ will be provided in the next section. 
2. BACKGROUND 
 The evaluation framework that was used to evaluate the 
FES of NS-2 is the Hold model [1]. According to it, two 
distributions must be chosen: the scheduling distribution (1) 
and the future event set distribution (2). The first one is 
related to the time where new events are enqueued into the 
FES, and the second one is related to how long an event will 
remain into the FES (living time). With these distributions, 
several hold operations are performed: a new event is 
created according (1), and it is scheduled to be fired 
according (2). The process is repeated n times (n Hold 
operations). When one of the already created and scheduled 
event is fired, a new event is created and scheduled 
according (1) and (2), completing the cycle. The 
distributions mostly used to build a hold operation are the 
uniform, triangular, reverse triangular and the camel 
(combination of beta functions [2]).   
 DEVS [3,4] is a formalism for modeling and simulation 
of DEDS (Discrete Events Dynamic Systems) which 
provides a framework for the definition of hierarchical 
models in a modular way by decomposing the real system 
into behavioral (atomic) and structural (coupled) 
components. DEVS theory provides a rigorous methodology 
for representing models, and it does present an abstract way 
of thinking about the world with independence of the 
simulation mechanisms and the underlying hardware and 
middleware. A DEVS atomic model is formally defined by: 
M = <X, Y, S, δint, δext, λ, ta>, 
where 
X = {(p,v) | p ∈ IPorts, v ∈ Xp}             is the set of input 
ports and values; 
Y = {(p,v) | p ∈ OPorts, v ∈ Yp} is the set of output ports 
and values; 
S                               is the set of sequential states; 
δint: S → S               is the internal state transition function; 
δext: Q × X →S      is the external state transition function, 
where 
 Q = {(s,e) | s ∈ S, 0 < ∈ < ta(s)}     is the total state set, e is 
the           time elapsed since the last state transition; 
λ: S →Y                          is the output function; 
ta: S → R+

0,∞                     is the time advance function. 



 The semantics for this definition is given as follows. At 
any time, a DEVS coupled model is in a state s � S. In the 
absence of external events, the model will stay in this state 
for the duration specified by ta(s). When the elapsed time e, 
is equal to ta(s), the state duration expires and the atomic 
model will send the output λ (s) and performs an internal 
transition to a new state specified by δint (s). Transitions that 
occur due to the expiration of ta(s) are called internal 
transitions. However, state transition can also happen due to 
arrival of an external event which will place the model into 
a new state specified by δext(s,e,x); where s is the current 
state, e is the elapsed time, and x is the input value. The 
time advance function ta(s) can take any real value from 0 to 
∞. A state with ta(s) value of zero is called transient state, 
and on the other hand, if ta(s) is equal to ∞ the state is said 
to be passive, in which the system will remain in this state 
until receiving an external event.  
 Cell-DEVS extends DEVS formalism, allowing the 
implementation of cellular models with timing delays. Two 
types of timing delays can be used, namely transport and 
inertial [5]. When transport delay is used, the future value is 
added to queue sorted by output time, allowing the previous 
values that were scheduled for output but have not yet been 
sent to be kept. On the other hand, inertial delays allow a 
preemptive policy at which any previous scheduled output 
value will be deleted and the new value will be scheduled. A 
Cell-DEVS atomic model is defined by [6]:  

TDC = < X, Y, I, S, θ, N, d, δint, δext, τ, λ, D > 
 CD++ [7] is a modeling tool that implements the DEVS 
and Cell-DEVS theories by applying the original 
formalisms. The toolkit includes facilities to build DEVS 
and Cell-DEVS models. DEVS atomic models can be 
programmed and incorporated into a class hierarchy 
programmed in C++. Furthermore, coupled models can be 
defined using a built-in specification language. Therefore, 
coupled and Cell-DEVS models need not to be 
programmed, rather the tool provides a specification 
language that defines the model’s coupling, the initial 
values, the external events, and the local transition rules for 
Cell-DEVS models. 
 
3. DEVS MODELS 
 The experiments on CD++ were carried out by running 
various DEVS models. In this paper two of the models 
namely, Alternating Bit Protocol (ABP) [8], and Discrete 
Event (DE) Controller [8] will be presented in details. The 
following is a brief description for each model. 
3.1. ABP Model 
 ABP (Alternating Bit Protocol) is a communication 
protocol to ensure reliable transmission through unreliable 
network. The sender sends a packet and waits for an 
acknowledgement. If the acknowledgement doesn't arrive 
within a predefined time, the sender re-sends this packet 
until it receives an expected acknowledgement and then 

sends the next packet. In order to distinguish two 
consecutive packets, the sender adds an additional bit on 
each packet (called alternating bit because the sender uses 0 
and 1 alternatively). A DEVS model called “ABP 
Simulator” is created to simulate the behavior of the 
Alternating Bit Protocol.  
The ABP Simulator consists of 3 components: sender, 
network and receiver. The network is decomposed further to 
two subnets corresponding to the sending and receiving 
channel respectively.  
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Figure 1. Structure of ABP 

  
3.2. DEController Model 
 The DEController represents Discrete Event Multiple 
Model Control of a Time Varying Plant. Conventional 
adaptive control using a single identification model, is 
efficient when the initial parameter estimation error is small, 
and plant parameters are slowly varying over time. The use 
of multiple models becomes appropriate, when either of 
these conditions are not satisfied, such as in the case of a 
subsystem failure or a change in the operating environment.  
 Typically, a finite number of models are evaluated by 
an index-of-performance, where, at any instant, the most 
suitable model’s parameterized controller is applied to the 
plant. This approach proves beneficial for maintaining 
control of a plant when there is parameter jumps. Additional 
discussion of multiple model control for continuous or 
discrete time systems is provided in Reference [9]. 
 Multiple model control demands a union of high-level 
decision making with mathematically complex algorithms. 
Implementing such, using discrete-event math is where 
much of this paper’s design is focused. Once the theory and 
testing was performed, was an implementation in CD++ 
modeling language attempted. 
 
4. EXPERIMENTS 
 Every DEVS model created in CD++ consists of a C++ 
header file (name_of_atomic_model.h) and a source file 
(name_of_atomic_model.cpp) per atomic model. Aside, for 
every coupled model including the TOP most model, an MA 
file is required. CD++ provides a virtually real-time –based 
simulation environment which although is not real-time, but 
it appears to be. This is the main difference between CD++ 
and real-time simulators such as NS-2. In NS-2 the 



messaging and waiting times are based on real-time. For 
instance, in CD++ when simulating a model, the run time 
can be specified prior to the simulation, so if for example 
we specify the simulation run time to be 1 hour, it turns out 
to run for a couple of seconds and not 1 hour. However, the 
messages will be presented in a manner that the simulation 
actually took 1 hour. In contrast, NS-2 simulations run 
exactly for a specified real-time. Therefore, in NS-2 the user 
has to wait exactly for that amount of time in order for the 
simulation to end and see the results. While in CD++ the 
user waits for a virtual time although the simulation 
virtually takes “real-time” long. 
 
4.1. CD++ Simulations 
Two sets of experiments were collected for each DEVS 
model:  

1. Using predefined holdIn duration, 
2. Using random holdIn duration. 

The predefined holdIn duration is the normal behavior of 
each DEVS model, meaning that, before simulation begins,  
each atomic model defines the amount of time it will spend 
acting on an input (time spent in holdIn) as a predefined 
time. 
 The reason behind running simulations for both 
predefined and random holdIn times is to avoid getting same 
set of timing behavior. This is due to having predefined 
processing time of atomic models on different inputs, which 
in turn results in having same set of messages to get 
repeated in a cyclic pattern which is not useful information. 
Example of these patterns will be reflected in the following 
section when the simulation results are discussed.  
 As mentioned at the beginning of the paper, the results 
of this research are analysed with respect to those achieved 
from NS-2 simulator. Since NS-2 uses real time simulations, 
we have implemented this feature in part of CD++ to find 
out the exact wait time in holdIn (our virtual FES) in real-
time measures. This was performed by creating a Timer 
class that uses system’s clock ticks and frequency to 
compute the real time duration of holdIn function execution.  
 By implementing this into our atomic models source 
code, we get real-time –based durations spent by each 
atomic model’s done messages (the time the atomic model 
spent in holdIn function). As we pointed out in previous 
sections, out holdIn function serves as a virtual Future Event 
Set which defines the duration for which an atomic model 
was acting on inputs or was passive and waiting for new 
inputs.  
 The real-time is computed as milliseconds and it is 
inserted right before a call is made to holdIn() and right after 
return from this call. Represents adding this computation to 
our existing atomic model’s source code. 
 

4.2. NS-2 Simulations 
   For Ns-2 the simulations were carried on based on 
the following methodology:  
 In order to discover the distribution of event execution 
time and life time into the FES, some tracing code were 
introduced on the NS2 core simulation (scheduler mostly) in 
order to collect information about the event on the FES. A 
Calendar Queue was used as scheduler, in order to evaluate 
big simulations in a reasonable time. The FES event length 
were recorded in fixed intervals, the enqueues and dequeues 
were counted, and also all the event living time into the FES 
(overall process and by snapshots) were traced. With the 
obtained data, using statistical methods, the empirical 
distribution of the FES was built. With that, in addition with 
the enqueue/dequeue patterns (scheduling distribution), 
some interesting information about how the event behaves 
along the simulation time flow can be concluded. 
 The Test bed to collect information about event 
behavior was around 100 simulations from different 
sources, as published papers, NS-2 examples and 
performance tests. 
 
5. RESULTS 
 In this section the results of simulations on both 
simulators, CD++ and NS-2 are presented. The NS-2 
simulations were carried by a research group from INRIA, 
France. 
 
5.1. NS-2 Simulation Results 
 For each simulation, graphics were prepared to show 
the empirical distribution of the Event Fire Time (EFT) and 
the Event Life Time in the FES (ELT), considering all the 
events on a single run [10]. Also, snapshots of the FES were 
taken on regular intervals in order to explore, also, the 
evolution of the EFT and the ELT on the time. Here are the 
most representative graphics of each simulation (and 
replicas). The following graphs represent sample simulation 
results collected from NS-2 simulator under the described 
test-bed. 

 
Figure 2. NS-2 sample simulation result. 



5.2. CD++ Simulation Results 
 The simulations were carried out for each DEVS model 
under two different scenarios: 

1. Random and non real-time holdIn durations, 
2. Random and real-time holdIn durations. 

Then, all the results were combined under real-time, and 
simulated time (non real-time) categories and the following 
statistical results were extracted.  

Avg. simulTime (s) Avg. realTime (ms) 
8.3656 0.00189 

 The above numbers represent the average simulation 
time versus the average real time of all events life time that 
were spent in holdIn (FES) among all DEVS models. The 
total number of calls made to holdIn() was 1265. For each 
case, the data were plotted on a histogram to better analyze 
the distribution. Figure 3 and Figure 4. Correspond to these 
scenarios. 
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Figure 3. Real-time HoldIn durations 
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Figure 4. Simulated-time HoldIn durations 

 
 

6. CONCLUSION 
 In this study, new interesting facts appears, as the event 
clusterization around the same wait times in the FES. This 
fact can be used to create new FES data structure that 
exploits this behavior. However, more simulations and 
experiments are needed to better judge the data. Also, the 
results obtained form CD++ and NS-2 simulators studies 
can be used to study the effect of hierarchical or flat 
architecture on the simulator’s event handling behavior. 
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