Aircraft Evacuation DEVS Implementation & Visualization

Patrick Castonguay & Gabriel Wainer
Department of Systemsand Computer Engineering
Carleton University
1125 Colonel By Drive
Ottawa, ON K1S5B6
pcaston3@connect.carleton.ca ; gwainer @sce.carleton.ca

Keywords: Cell-DEVS, CD++, Blender, Visualization

Abstract

Emergency evacuation from new, higher than
normal, aircraft is believed to be affected by avne
variable: passenger’s hesitation at the exit dddiis
paper discusses how a previous simulation studhig
effect was replicated in Cell-DEVS using the CD++
toolkit and how the results were visualized usihg t
Blender Python interface. We will show how one can
relatively easily apply advanced visualization tgghes
to any DEVS simulator results. As well, we notigbdt
the initial design of the model and simulation Gamit the
level of visualization which can be achieved iftthasign
is not intended for visualization in the first ptac

1. INTRODUCTION

With the advent of new twin-decks Very Large Traorsp
Aircraft (VLTA), concerns about the speed at whibky
may be evacuated have emerged [1]. Many factorecom
into play when conducting an aircraft emergency
evacuation [2, 3, 4]. This paper focuses on thesiptes
effects passengers hesitation could have on total
evacuation time when exiting from an abnormallyhhig
elevation [5]. Amos and Wood developed and appéied
model of the emergency exit procedures from thdusr
A380 to study the effect of individual delays ateth
emergency door when exiting a plane [6].

Here, we will show the definition of these modeking
the Cell-DEVS methodology [7]. Cell-DEVS is an an
extension to DEVS [8] (Discrete Event Systems
Specifications) which enables efficient executiof o
cellular models. The approach extends traditioreluGar
models defining each cell as a DEVS atomic model an
the space as a DEVS coupled model, including abflex
way of defining the timing of each cell. The CD-ebkkit

[9] was used to implement the model and generate th
initial results. Then, the Blender toolkit [10] wased to
integrate the simulation results into a 3D vistalian
environment, based on previous experiences inates
[11]. Results from DEVS simulation can be visualize
many different ways. The CD++ toolkit provides

DEVSView as well as the CD++ Modeler add-on. These
tools provide a quick representation of the modad a
simulation behavior in the 2D space. 3D visual@atof
CD++ results have previously been done using VRML,
Atlas, Maya and Blender [12, 13, 14]. We extended
previous results in order to demonstrate the fiéitand
portability of both the CD++ tool kit as well aseBider.

2. BACKGROUND

Emergency evacuations of any aircraft have to meet
certain regulations; all passengers and crew haveet
evacuated within 90 seconds, with only half of the
emergency exits available. In [6], it was arguedt tidue

to the dangerous and expansive nature of the etiaoya
real demonstrations are normally limited to a sngl
instance. As well, for commercial reasons, theltesare
normally kept secret within the company. The effett
the delay at the door was suspected to be of irapoet
due to the nature of the second deck of the A38igtwh
was much higher than other aircraft at the timee Th
model was initially implemented using NetLogo
programming language [6]. Figure 1 represents liwer f
layout of the A380 which was used as a constructife
original work.

R _jwwwwww»».
EEQEEEEIEEEE"
’

Figure 1: A380 upper floor plan

We implemented this agent based cellular automsitegu
Cell-DEVS [7]. A cell grid representing the flootap is
defined. A single cell represents a wall, a passenan
exit or an empty space. Each cell contains infoionat
relative to the nearest exitd(& distance). Each agent
(passenger) has the following attributes:

pi: grid position;

h;: heading;

m;: max speed

S: current spead; and

d:: delay at door.

The system variables needed are defined as:

D: mean passenger door delay; and

O: exit opening time (fixed at 14 seconds).
d is defined as a Poisson-distribution of positiealr
numbers with mean D. Each passenger has a minimum
speed of 0 and a random (poisson-distributed) rmpaerd
between 0.3m/s and 1.05m/s. Furthermore, eacho€ell
the grid is assumed to have a dimension of 0.5n5fM0
When the emergency procedure is activated, the
passengers start heading to the nearest exit atspeed.
They adjust their speed to reflect the passengecttl in
front of them if applicable (i.e. they do not paisey
follow in trail, but they run to catch up). We usttk
same ideas than the ones in the original work, &liee
authors only modeled the second level as they iitkht
that inter-deck travel during emergency evacuaisonot
permitted. As well they only modeled passengershéir
seats.

The evacuation model was implemented using a 3D Cel
DEVS model representing different variables on two
different planes. The first plane is a represeotatf the
seating arrangement. The states of the first plare
presented in table 1. The second plane is usedl¢alate
the distance to the closest emergency exit. Thilme at
initialization only and states are presented iet&h Each
plane needs to access each other in order to dateifm
movement will be allowed to the desired cell. Theed

of travel of passenger is encapsulated in thedesly for
the calculation of the new states. For the initial
development of the system a speed of 1000 ms. sed u
as this represent a one second evaluation intervalach
cell of 0.5m section and therefore a speed of G&mhich
fall in the average selection provided by [6]. Teaflalso
shows the different colours used for 2D visualmatin
the CD++Modeler tool.

The second plane stores information on distancdbeo
nearest functioning emergency exit, therefore keghis
information separate from the configuration of the
aircraft.

Table 1: Dimension 1 State Description

Name Val | Color Description |
Passenger| -2 Blue Occupied (passenger)
Wall -1 Black Wall or Obstruction
Empty 0 White Empty space

Exit 9 Green Emergency exit

Error! Not a valid bookmark self-reference. illustrates
the different states that a cell in the distanametision
can take and Figure 2 shows the visual representati
that dimension after system initialization for ébset of
the aircraft. As the variable under study is theitagon

of passengers at the door, no other factors likeicpa
behavior or secondary routing seeking behavior were
implemented.

Table 2: Dimension 2 State Description

Name Val | Color Description

Wall -1 Black Obstruction

Exit 0 White Empty space
Distance | 1.0 | Green shades Emergency exit

The system initially calculates distances from ¢ixé& on
second plane for each cell. If the correspondirgprfl
plane cell is a wall, assign distance as wall whigh
give information not to allow travel to this cefbne the
system is initialized; each occupied cell will watat
travel toward the next unoccupied cell with smaller
distance to the exit. Priority is given to windoeass and
then to center isle. This means that for the sestdined
for [port seats] the priority will be given to celiraveling
down and for the [starboard exit] the priority isen to
the cells traveling up. In order for a passengantwve it
has to verify that other cells with lower prioritill not

be moving to the same wanted cell. Currently theneo
panic or erratic behavior modeled and when a passen
cannot move, it patiently waits for the cell to bewe
available. The model could be made more interedting
implementing behaviors where passengers would ehoos
alternate routes if the one wanted is not availablbave
erratic movement like jumping over seats or pusioitiger
passengers.

.0 4.0 50 6.0 7.0 8.0 8.0 C =

1.0

Figure2: Distance Test plane.

Once the system is initialized, each occupied w&lll
want to travel toward the next unoccupied cell with
smaller distance to the exit. Priority was giverwiodow
seats and then to center isle. This means thabéosector
defined for [port seats] the priority will be givea cells
traveling down and for the [starboard exit] theopty is
given to the cells traveling up.

CD++ defines behaviors via the description of
mathematical rules which are evaluated sequentisitif

a valid statement is found. Therefore movementripyits
mplemented in the order in which the evaluatiorcel
state is described.

The following is the formal specification for theelG
DEVS model:

AC_EVAC =<X,Y, 1,56, N, d,din, dex T, A, D >

X=Y=0

S=plane 1:{0,-1,-2,9}

/l Empty, Wall or Obstruction, Occupied (passengexjt
plane 2: {-1, 0..inf}

/l Wall, Distance to exit 0 being exit itself

N = neighbors :

% Modified Moore or VonNeuman
(-2,0,0)

(-1,-1,0) (-1,0,0) (-1,1,0) % NW,N,NE
(0,-1,0) (0,0,0) (0,1,0) % W, Orig,E
(1,-1,0) (1,0,0) (1,1,0) % SW, S, SE

(2,0,0)

%Distance plane to access floor plane

(-1,-1,-1)(-1,0,-1)(-1,1,-1) % NW,N,NE
(0,-1,-1)(0,0,-1)(0,1,-1) % W, Orig,E
(1,-1,-1)(1,0,-1)(1,1,-1) % SW, S, SE

Different Zones were defined in order to have dédfe
calculation done by the different planes as welgiagg
different prioritization to the different sectionf dhe
aircraft. The zones are presented below and représe
distance plane as well as the port (left) side stacboard
(right) side of the aircraft.

zone : prt_seats { (1,0,0)..(5,20,0) }

zone :stb_seats { (6,0,0)..(10,20,0)}

zone :dist_plane {(0,0,1)..(11,20,1)}

d = 1000 ms // default delay used to represenspleed 1
second per cell or 0.5m (or 0.5m/s)

type = transport

1. N> S is defined by the different sets of rules introstl
bellow:

The first set of rules calculates the distancéhortearest
exit and stores this information in the second elarhis
is only done at initialization and a zone descigbthe
distance plane had to be defined.

rule:-10{(0,0,-1) =-1}

rule:00{(0,0,-1) =9}
rule : {(1,0,0)+1} 0 { (0,0,0)<0 and

(1,0,0>=0}
rule : {(-1,0,0)+1} 0 { (0,0,0)<0 and
(-1,0,0)>=0}
rule : {(0,1,0)+1} 0 { (0,0,0) < 0 and
(0,1,0)>=0}
rule : {(0,-1,0)+1} 0 { (0,0,0)<0 and
(0,-1,0)>=0}

The second set of rules describes the exiting at th
emergency door condition. When a cell is occupied a
next to an exit the passenger will exit after ataier
random delay. To be true to the initial model [also
added a condition for the simulation time to beatge
than a certain constant (14seconds).

rule : 0 #Macro(DoorDelay) {(0,0,0)=-2
and (1,0,0)=9} %exit down

rule : 0 #Macro(DoorDelay) {(0,0,0)=-2
and (-1,0,0)=9 } %exit up

rule : 0 #Macro(DoorDelay) {(0,0,0)=-2

and (0,1,0)=9} %exit right

rule : 0 #Macro(DoorDelay) {(0,0,0)=-2
and (0,-1,0)=9} %exit left

The DoorDelay Macro represents a random exit datay
the door and returns values (1000, 2000, 3000 000t
has been defined in tlae_eval.inc file as such:

#BeginMacro(DoorDelay)
{1000 + 1000*randInt(4) }
#EndMacro

The third set of rules defines when a cell willrbeeiving
passenger. This example is for the starboard seals
therefore the priority has been given to the de#lseling
down. This will be true for the entire descriptiohthe
rules. As well, for all transition, we have to \fgrihe
desired direction of movement manually. This is enor
complicated than having the direction of movemeter!

in the state but provides higher better flexibility

%Entering cell

rule -2 #Macro(Speed) {(0,0,0)=0 and
(-1,0,0)=-2 and (-1,0,1)>=(0,0,1)}

%receive from up

rule -2 #Macro(Speed) {(0,0,0)=0 and

(1,0,0)=-2 and (1,0,1)>(0,0,1)}

%receive from down

rule -2 #Macro(Speed) {(0,0,0)=0 and
(0,-1,0)=-2 and (0,-1,1)>=(0,0,1)}

%receive from left

rule -2 #Macro(Speed) {(0,0,0)=0 and
(0,1,0)=-2 and (0,1,1)>(0,0,1) and

(0,2,1)>(0,1,1)}
%receive from right

The fourth set of rules describes a passengerngaai
cell. The one traveling down have priority and #fere
the others have to evaluate is a cell with high@oripy

will be moving to its position.

%Leaving down(has priority), up next
rule : 0 #Macro(Speed) {(0,0,0)=-2 and

(1,0,0)=0 and (1,0,1)<=(0,0,1)}
%move down

rule : 0 #Macro(Speed) {(0,0,0)=-2 and
((-1,0,0)=0 and (-1,0,1)<(0,0,1)) and
((-2,0,0)!=-2 or (-2,0,1)<(-1,0,1))}

%move up

%Leaving right giving way to up/down
trafic but not if heading away from

ilse

rule : 0 #Macro(Speed) { #Macro
(WantRight) and ((-1,1,0)!=-2) and
(1,1,0)!=-2}

%move right with give way to down/up

rule : 0 #Macro(Speed) { #Macro
(WantRight) and (1,1,0)!=-2 and
((-1,1,0)=-2 and (-1,1,1)<(0,1,1))}
%Next row right is exit row (moving
up)

rule : 0 #Macro(Speed) { #Macro
(WantRight) and (-1,1,0)!=-2 and
((1,1,0)=-2 and (1,1,1)<(0,1,1))}
%Next row right is exit row (moving
down)

%Leaving left giving way to up/down
trafic but not if heading away from
ilse

rule : 0 #Macro(Speed) { #Macro
(WantLeft) and ((-1,-1,0)!=-2) and
(1,-1,0)!=-2}

%move left; give way to down and up

rule : 0 #Macro(Speed) { #Macro
(WantLeft) and (1,-1,0)!=-2 and
((-1,-1,0)=-2 and (-1,-1,1)<(0,-1,1))}
%Next row left is exit row (moving up)

rule : 0 #Macro(Speed) { #Macro
(WantLeft) and (-1,-1,0)!=-2 and
((1,-1,0)=-2 and (1,-1,1)<(0,-1,1))}
%Next row left is exit row (moving up)

3. EXPERIMENTAL RESULTS

We executed different evacuation scenarios to tiest
simulation model. Figure 3 shows a basic test iiclvall

the seats are taken and the plane is evacuatedh in a
orderly fashion. We used multiple simulation testsd

the model evolved until the basic behavior was ictemed
satisfactory.

Table 3 shows the simulated evacuation time fded#ft
tests varying the door delay. Time for a delay sketond

is close to the results of the original work (takimto
account that the model of the plane was smalleiighvh
expected 54 seconds and got results of 57.9 secuitits

a mean deviation of 1.5 second. One can expectfttiedt
door delay could be set as per the original expamtm
similar results would be obtained. The next stejs wma
reproduce the full size second deck of the A380 ramd
the same type of scenarios. The next step was to
implement a full scale replica of the A380 seatpign
and run simulations with half of the emergency ®xit
disabled. The total simulation time for a full ptalayout
with full load was found to be greater than expécte
(Imin 14sec). This was originally done with a dety
1sec but was adjusted to 500msec in order to atdoun
the propagation delay. This adjustment brought the
simulation time down to 59sec which can be congider
acceptable.

Table 3: Simulation Results (seconds)

Door Delay Evacuation time
0 (no delay) 38

1 56

2 1:14

1+ 1*randint(4)| 1:04

o 1l
| B
N P P Y |
R R 'R Y 'R JE |
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 .0 0.0 0.0 0.0 0.0 0.0 0.0
.0‘0 .00 j .3.0 lm .JO .
00 S0 ! .m .j‘D .:m .
o o B I 3 YF XE TR |
0.0 .00.30'!] lj.olm .10.
0000 00 0.0 0.0 0.0 00 0.0 0.0 0.0 0.0 0.0 .0 0.0 ‘Dmmu‘u.
.nu .a.u .u.a .fm .]D -)ﬂ j .10 .:m .3‘0 .
i 0.0 .n.n .m ‘1 .] .10 .]‘D .JD .
.. HEN -l

Figure 3: Test Simulation Execution

Observing the behavior of the passenger once Haleo
exits have been disabled, it becomes obvious thatder

to have a fully representative simulation, the choof
alternate route for the passengers under certain
circumstances should be added to the system. Qmy o
freely available demonstration of such evacuatices w
found. It was carried out in Europe on the A380 chhi
took 74 seconds to exit 853 passengers and 20 crew
members. A video of the evacuation can be found on
YouTube [15] but no other documentation was foudfl.
note is the interesting fact that no children, peeg
woman, elderly or obese passenger can be seerein th
video. This is of course to be expected as thenairl
company would not want to endanger the life of ¢hes
people, but strengthens the argument that simulatém
give a more complete representation of these gitusmt

4. 3D VISUALIZATION OF THE EVACUATION
PROCESS

We created a 3D visualization model based on pusvio
work, where we used Blender and Maya for creating

advanced visualization engines [8]. Blender ise& fopen
source software 3D content creation suite releaselbr
GPL [7]. It can create 2D or 3D graphics as welirawiie
quality animations. Blender supports Python sariptiis
free, and provides powerful 3D animation capability
Python provides a high-levellynamic object-oriented
programming languagefor this project we have not
made any modifications to Blender itself but hagediits
native support for Python scripting in order todeand
animate the results from CD++. Figure 4 shows the
architecture of the visualization engine. A PytHaaript

in Blender is in charge of integrating the visuatian
engine and the CD++ simulation results. CD++ uses a
model (.MA) file to define the behavior of Cell-DBV
models. In turn this model file can be given varied
initialization data (using a .VAL file) to set thaitial
values of each cell of the model in the simulation.

.ma
.blend
val
CD++ Py Script | [| Blender
Toolkit
. ZEn &
log 0g.txt
\/_

Figure 4: Visualization Architecture

These two files are used at run-time to definebiieavior
of the simulation and a .LOG file is generated aorihg
the state of each cell for every time-advance fog t
simulation. In order for the script to be most fi#e, it
had to be extended to support the existence of4 fife
and login of the script behavior itself. The cqgllase is
represented in Blender by a direct coordinate
transformation of the cell position to a coordinatside
Blender. Therefore the size of the passengerssvealt
seats have to be no more than 1x1, this can beatieat
by scaling the 3D model with the grid shown in Blen

Once loaded, the script will read and parse the A
and look for a .VAL file if needed. The .VAL fileiwbe
processed before the .LOG file in order to adedyate
initialize the simulation behavior. Figure 5 showee
visual representation of our aircraft evacuationuation
after initialization (a full airplane), which rements the
same initialization case than the one showed earie
Figure 3. As Blender provides a Python API thatersv
most of the functionality of the Blender GUI, theript
only has to calculate time and position from thg fibe

provided by the Cell-DEVS simulation in order tontwl
the display of the entities. When parsing the .LGIE,
passengers will be displayed at the appropriatedioate
within Blender. Passengers will appear and disapsea
sequence representing their movement.

Figure5: System I nitialization [15].
A capture of the passengers exiting the airplareeqoeue
and waiting for the passenger in front of them wwvenis
shown in Figure 6.

Figure6: Passenger In Queue

With the basic 3D objects already defined in andléle,
the script simply has to duplicate, link and unlspecific
objects to the scene, in accordance to the callg,sin
order to control the visual flow of the simulatiorhis is
shown with the code excerpt that follows.

if (logValue == -2): # Occupied cell

try:
scn.objects.link(ob)

except:
human = Blender.Object.Get('Human')
Blender.Object.Duplicate()
...set position

elif (logValue == 0): # Empty cell
scn.objects.unlink(ob)

The simulation will execute and passengers will ezpp

and disappear representing their movements ungi th

have all exited the aircraft. Figure 7 shows ther fleasic
3D model elements that were used in the visuatinabi
our results (from left to right): a chair; an emangy exit;
a wall or obstacle; and a passenger. In the exacutf
our simulation on the passengers are dynamic.

Figure7: 3D Models

When the model was first developed, 3D animatios wa
not something the author had in mind. This leddme
decisions at the atomic model level that were later
considered limiting when developing the 3D animatio
script. Having the state of each cell on the filistension
contain limited information (empty, passenger, &

to all motion information being calculated by thdes
within CD++. This increased the complexity of
representing the passengers’ movement in a smooth
transition fashion within the Blender environment.
Having movement information such as direction and
speed available directly within the state of model
considered important when doing 3D animation in
Blender but is not needed for 2D representatioidéns
CD++. This can be seen in Figure 8 where the passsn
travelling to the back of the airplane are actuéflging
forwards. The fact that the basic CD++ toolkit keeach

of the cells independent from one another and ngessa
cannot be passed between them was at the rootref 6b
the limitations motioned previously. There exists a
advanced CD++ toolkit that is more object-oriensedi
permits these types of complexes cellular behavidfs
believe that using this advanced framework coulanjte

a more complete and complex representation of the
behavior of passengers inside an aircraft during an
emergency evacuation scenario.

i

Figure 8: Passengers Travelling Backwar ds

Another important limitation of the current Blender
visualization script is that actual rendering oé tbcenes
as an animation was not possible. During the exatuatf
the script, one can see the passengers movingiosithe
Blender application. Blender allows users to rerntiese
frames to an animation that could be played outsidae
application but only the last state of the systesn i
represented with the passengers. All the other dsam
contain only the walls, chairs and exits (statimis). We
believe this to be due to the way the Python script
allocates the passenger entities to the scene xampme
of a single rendered frame (normally generated §seg
image) is presented at Figure 9. This was achidmed
cheating the script and providing an incomplete €D+
.LOG file leaving some passengers in the aircraft.

Figure 9: Rendered Frame

5. CONCLUSION

This project expanded on a previous implementatioa
CD++ Python script generating 3D animations inside
Blender. We effectively proved that with little aro
expertise in the field of 3D animation, one canilgas
adapt a generic script to support visualizatiorresfults
from a specific CD++ simulation. This was possibtay
due to the flexibility and portability of the CD+t#olkit,
Python and Blender. Further interesting developsént
this area would be to extend the script to enaldepimg
of the statelD to the 3D model so that it can bedu®
visualize results from CD++ without having to madihe
script itself every time. Another interesting aréa
research would be the automatic generation of derea
animation instead of having to view the raw animti
processing inside of Blender.

Some assumptions and limitations were taken into
consideration: no passenger behavior other thakirgge
the closest emergency exit was implemented. Inrciae
broaden the scope and applicability of this projecte
would need to implement behaviors such as the kesrc
alternate valid routing and passenger panic leading

erratic movement. Also because of the original cstme

of the state of each cell, a maximum speed assi¢gmed
each passenger was not implemented. This would be
needed in order to simulate having wide types of
passenger such as elderly, obese, children antdégnant
women. A possible solution would be to have a third
dimension that keeps the max speed informationoor t
have a state on the first dimension encode this
information. Another limitation identified is thatven
though a random generation functions were used, the
outcome was deterministic in that every passengdréh
different delay at the exit but they were identicatween

all runs. This may have been caused by the wayorand
generations of variables in handled in CD++. Ineortb
make this simulation more stochastic, a way to ghahe
seed of the random generation function would belege
within the CD++ toolkit.

Refer ences

[1] Muir H. & Thomas L. "Passenger Safety and Very
Large Transportation Aircraft". Aircraft Engineegin
and Aerospace Technology 76(5), 479-486. 2004.

[2] Muir H.C., Bottomley DM & Marrison C. "Effectsf
Motivation and Cabin Configuration on Emergency
Aircraft Evacuation Behavior and Rates of Egress".
International Journal of Aviation Psychology 6(87-
77.1996.

[3] Galea E.R., Owen M. & Lawrence P.J. "Computer
Modeling of Human Behavior in Aircraft Fire
Accidents". Toxicology 115, 63-78. 1996.

[4] Galea E.R. & Perez Galparsoro J.M. "A Computer-
Based Simulation Model for the Prediction of
Evacuation from Mass-Transport Vehicles". Fire 8afe
Journal 22(4), 341-366. 1994,

[5] Jungermann H. & Gohlert C. "Emergency Evacuatio
from Double-Deck Aircraft". Proceedings of ESREL
2000, 989-982, Rotterdam. 2000.

[6] Amos M. & Woods A. "Effect of Door Delay on
Aircraft Evacuation time". Department of Computer
Science, University of Exeter, Harrison Buildingotth
Park Road, Exeter EX4 4QF, UK. 2005.

[7] Wainer, G. “Discrete-Event Modeling and Simudat
a Practitioner’s approach”. Taylor and Francis.200

[8] B. Zeigler; T. Kim; H. Praehofer: "Theory of
Modeling and Simulation: Integrating Discrete Evand

Continuous Complex Dynamic Systems". Academic

Press, 2000.

[9] Wainer G. "CD++: a Toolkit to Define Discretesgnt
Models". Software, Practice and Experience. 32(3),
1261-1306. November 2002.

[10] Blender Foundation, http://www.blender.org/
Accessed January 2009.

[11] Wainer G., Poliakov E., Hayes J. & Jemtrud M.
Busy Day at the SAT Building". Proceedings of the
International Modeling and Simulation Multiconfeoen
Buenos Aires, Argentina. 2007.

[12] Wainer G. & Chen W. "A Framework for Remote
Execution and Visualization of Cell-DEVS Models".
Simulation. 79, 626-647. November 2003.

[13] Wainer, G. & Liu, Q. "Tools for Graphical
Specification and Visualization of DEVS Models".
Accepted for publication ilsimulation, Transactions of
the SCS (accepted: October 2008)

[14] http://www.youtube.com/watch?v=XlaovilJWyY
A380 Emergency Evacuation test. Accessed: January
2009.

[15] https://sourceforge.net/projects/devsacevacsim/
DEVS Aircraft Evacuation Sim. Accessed: January
2009.

Biographies

PATRICK CASTONGUAY is a student in the
Department of Systems and Computer Engineering at
Carleton University where he is pursuing a M.A.8c.
Technology Innovation Management with specializatio
in Modeling and Simulation. Patrick graduated irf89
from the Royal Military College of Canada with a
Bachelor in Software Engineering. He then worket! un
2000 as a team lead for CAE, maintaining and deedp
the CF-18 fighter aircraft mission computer softavafie
then specialized in Navigation and Communicatiothwi
the Canadian Air Force and was employed with the CP
140 maritime patrol aircraft for six years. Durithgt time

he helped develop, maintain and administer the cdsgua
scheduling and proficiency-management database.

GABRIEL WAINER received the M.Sc. (1993) and
Ph.D. degrees (1998, with highest honors) of the
University of Buenos Aires, Argentina, and Univédsi
d’Aix-Marseille lll, France. In July 2000, he joidethe
Department of Systems and Computer Engineering,
Carleton University (Ottawa, ON, Canada), whereishe
now an Associate Professor. He has held positibiisea
Computer Science Department of the University of
Buenos Aires, and visiting positions in numerouscps,
including the University of Arizona, LSIS (CNRS),
University of Nice and INRIA Sophia-Antipolis (Fres).

He is author of three books and over 190 reseatittes,
and helped organizing over 70 conferences. He éxigp
Issues Editor of the Transactions of the SCS, ded t
International Journal of Simulation and Process
Modeling. He was a member of the Board of Directafrs
the SCS, a chairman of the DEVS standardizatiodystu
group (SISO). He is Director of the Ottawa CentieTloe
McLeod Institute of Simulation Sciences and chéithe
Ottawa M&SNet, and one of the investigators in Erh
Unversity Centre for advanced Simulation and
Visualization (V-Sim).

