
Aircraft Evacuation DEVS Implementation & Visualization

Patrick Castonguay & Gabriel Wainer
Department of Systems and Computer Engineering

Carleton University
1125 Colonel By Drive
Ottawa, ON K1S 5B6

pcaston3@connect.carleton.ca ; gwainer@sce.carleton.ca

Keywords: Cell-DEVS, CD++, Blender, Visualization

Abstract
 Emergency evacuation from new, higher than
normal, aircraft is believed to be affected by a new
variable: passenger’s hesitation at the exit door. This
paper discusses how a previous simulation studying this
effect was replicated in Cell-DEVS using the CD++
toolkit and how the results were visualized using the
Blender Python interface. We will show how one can
relatively easily apply advanced visualization techniques
to any DEVS simulator results. As well, we noticed that
the initial design of the model and simulation can limit the
level of visualization which can be achieved if that design
is not intended for visualization in the first place.

1. INTRODUCTION

With the advent of new twin-decks Very Large Transport
Aircraft (VLTA), concerns about the speed at which they
may be evacuated have emerged [1]. Many factors come
into play when conducting an aircraft emergency
evacuation [2, 3, 4]. This paper focuses on the possible
effects passengers hesitation could have on total
evacuation time when exiting from an abnormally high
elevation [5]. Amos and Wood developed and applied a
model of the emergency exit procedures from the Airbus
A380 to study the effect of individual delays at the
emergency door when exiting a plane [6].

Here, we will show the definition of these models using
the Cell-DEVS methodology [7]. Cell-DEVS is an an
extension to DEVS [8] (Discrete Event Systems
Specifications) which enables efficient execution of
cellular models. The approach extends traditional Cellular
models defining each cell as a DEVS atomic model and
the space as a DEVS coupled model, including a flexible
way of defining the timing of each cell. The CD++ toolkit
[9] was used to implement the model and generate the
initial results. Then, the Blender toolkit [10] was used to
integrate the simulation results into a 3D visualization
environment, based on previous experiences in this area
[11]. Results from DEVS simulation can be visualized in
many different ways. The CD++ toolkit provides

DEVSView as well as the CD++ Modeler add-on. These
tools provide a quick representation of the model and
simulation behavior in the 2D space. 3D visualization of
CD++ results have previously been done using VRML,
Atlas, Maya and Blender [12, 13, 14]. We extended
previous results in order to demonstrate the flexibility and
portability of both the CD++ tool kit as well as Blender.

2. BACKGROUND

Emergency evacuations of any aircraft have to meet
certain regulations; all passengers and crew have to be
evacuated within 90 seconds, with only half of the
emergency exits available. In [6], it was argued that, due
to the dangerous and expansive nature of the evacuation,
real demonstrations are normally limited to a single
instance. As well, for commercial reasons, the results are
normally kept secret within the company. The effect of
the delay at the door was suspected to be of importance
due to the nature of the second deck of the A380 which
was much higher than other aircraft at the time. The
model was initially implemented using NetLogo
programming language [6]. Figure 1 represents the floor
layout of the A380 which was used as a construct for the
original work.

Figure 1: A380 upper floor plan

We implemented this agent based cellular automata using
Cell-DEVS [7]. A cell grid representing the floor plan is
defined. A single cell represents a wall, a passenger, an
exit or an empty space. Each cell contains information
relative to the nearest exit (id & distance). Each agent
(passenger) has the following attributes:

pi: grid position;
hi: heading;
mi: max speed
si: current spead; and
di: delay at door.

The system variables needed are defined as:
D: mean passenger door delay; and
O: exit opening time (fixed at 14 seconds).

di is defined as a Poisson-distribution of positive real
numbers with mean D. Each passenger has a minimum
speed of 0 and a random (poisson-distributed) max speed
between 0.3m/s and 1.05m/s. Furthermore, each cell of
the grid is assumed to have a dimension of 0.5m * 0.5m.

When the emergency procedure is activated, the
passengers start heading to the nearest exit at max speed.
They adjust their speed to reflect the passenger directly in
front of them if applicable (i.e. they do not pass, they
follow in trail, but they run to catch up). We used the
same ideas than the ones in the original work, where the
authors only modeled the second level as they identified
that inter-deck travel during emergency evacuation is not
permitted. As well they only modeled passengers in their
seats.

The evacuation model was implemented using a 3D Cell-
DEVS model representing different variables on two
different planes. The first plane is a representation of the
seating arrangement. The states of the first plane are
presented in table 1. The second plane is used to calculate
the distance to the closest emergency exit. This is done at
initialization only and states are presented in table 2. Each
plane needs to access each other in order to determine if
movement will be allowed to the desired cell. The speed
of travel of passenger is encapsulated in the cell delay for
the calculation of the new states. For the initial
development of the system a speed of 1000 ms. was used
as this represent a one second evaluation interval on each
cell of 0.5m section and therefore a speed of 0.5m/s which
fall in the average selection provided by [6]. Table 1 also
shows the different colours used for 2D visualization in
the CD++Modeler tool.

The second plane stores information on distances to the
nearest functioning emergency exit, therefore keeping this
information separate from the configuration of the
aircraft.

Table 1: Dimension 1 State Description

Name Val Color Description
Passenger -2 Blue Occupied (passenger)
Wall -1 Black Wall or Obstruction
Empty 0 White Empty space
Exit 9 Green Emergency exit

Error! Not a valid bookmark self-reference. illustrates
the different states that a cell in the distance dimension
can take and Figure 2 shows the visual representation of
that dimension after system initialization for a subset of
the aircraft. As the variable under study is the hesitation

of passengers at the door, no other factors like panic
behavior or secondary routing seeking behavior were
implemented.

Table 2: Dimension 2 State Description

Name Val Color Description
Wall -1 Black Obstruction
Exit 0 White Empty space
Distance 1..∞ Green shades Emergency exit

The system initially calculates distances from the exit on
second plane for each cell. If the corresponding floor
plane cell is a wall, assign distance as wall which will
give information not to allow travel to this cell. One the
system is initialized; each occupied cell will want to
travel toward the next unoccupied cell with smaller
distance to the exit. Priority is given to window seats and
then to center isle. This means that for the sector defined
for [port seats] the priority will be given to cells traveling
down and for the [starboard exit] the priority is given to
the cells traveling up. In order for a passenger to move it
has to verify that other cells with lower priority will not
be moving to the same wanted cell. Currently there is no
panic or erratic behavior modeled and when a passenger
cannot move, it patiently waits for the cell to become
available. The model could be made more interesting by
implementing behaviors where passengers would choose
alternate routes if the one wanted is not available or have
erratic movement like jumping over seats or pushing other
passengers.

Figure 2: Distance Test plane.

Once the system is initialized, each occupied cell will
want to travel toward the next unoccupied cell with
smaller distance to the exit. Priority was given to window
seats and then to center isle. This means that for the sector
defined for [port seats] the priority will be given to cells
traveling down and for the [starboard exit] the priority is
given to the cells traveling up.

CD++ defines behaviors via the description of
mathematical rules which are evaluated sequentially until

a valid statement is found. Therefore movement priority is
mplemented in the order in which the evaluation of cell
state is described.

The following is the formal specification for the Cell-
DEVS model:

AC_EVAC = < X, Y, I, S, θ, N, d, δint, δext, τ, λ, D >

X = Y = Ø

S = plane 1: { 0, -1, -2, 9 }
// Empty, Wall or Obstruction, Occupied (passenger), Exit
 plane 2: { -1, 0..inf }
// Wall, Distance to exit 0 being exit itself

N = neighbors :

% Modified Moore or VonNeuman
 (-2,0,0)
(-1,-1,0) (-1,0,0) (-1,1,0) % NW,N,NE
(0,-1,0) (0,0,0) (0,1,0) % W, Orig,E
(1,-1,0) (1,0,0) (1,1,0) % SW, S, SE
 (2,0,0)

%Distance plane to access floor plane
(-1,-1,-1)(-1,0,-1)(-1,1,-1) % NW,N,NE
(0,-1,-1)(0,0,-1)(0,1,-1) % W, Orig,E
(1,-1,-1)(1,0,-1)(1,1,-1) % SW, S, SE

Different Zones were defined in order to have different
calculation done by the different planes as well as giving
different prioritization to the different section of the
aircraft. The zones are presented below and represent the
distance plane as well as the port (left) side and starboard
(right) side of the aircraft.
zone : prt_seats { (1,0,0)..(5,20,0) }
zone : stb_seats { (6,0,0)..(10,20,0)}
zone : dist_plane {(0,0,1)..(11,20,1)}

d = 1000 ms // default delay used to represent the speed 1
second per cell or 0.5m (or 0.5m/s)

type = transport

τ: N�S is defined by the different sets of rules introduced
bellow:

The first set of rules calculates the distance to the nearest
exit and stores this information in the second plane. This
is only done at initialization and a zone describing the
distance plane had to be defined.

rule: -1 0 { (0,0,-1) = -1 }

rule : 0 0 { (0,0,-1) = 9 }
rule : {(1,0,0)+1} 0 { (0,0,0)<0 and

(1,0,0)>= 0 }
rule : {(-1,0,0)+1} 0 { (0,0,0)<0 and

(-1,0,0)>=0 }
rule : {(0,1,0)+1} 0 { (0,0,0) < 0 and

(0,1,0) >= 0 }
rule : {(0,-1,0)+1} 0 { (0,0,0)<0 and

(0,-1,0)>=0 }

The second set of rules describes the exiting at the
emergency door condition. When a cell is occupied and
next to an exit the passenger will exit after a certain
random delay. To be true to the initial model [6], also
added a condition for the simulation time to be greater
than a certain constant (14seconds).

rule : 0 #Macro(DoorDelay) {(0,0,0)=-2

 and (1,0,0)=9 } %exit down
rule : 0 #Macro(DoorDelay) {(0,0,0)=-2
 and (-1,0,0)=9 } %exit up
rule : 0 #Macro(DoorDelay) {(0,0,0)=-2
 and (0,1,0)=9 } %exit right
rule : 0 #Macro(DoorDelay) {(0,0,0)=-2

and (0,-1,0)=9} %exit left

The DoorDelay Macro represents a random exit delay at
the door and returns values (1000, 2000, 3000 or 4000). It
has been defined in the ac_eval.inc file as such:

#BeginMacro(DoorDelay)
 { 1000 + 1000*randInt(4) }
#EndMacro

The third set of rules defines when a cell will be receiving
passenger. This example is for the starboard seats and
therefore the priority has been given to the cells traveling
down. This will be true for the entire description of the
rules. As well, for all transition, we have to verify the
desired direction of movement manually. This is more
complicated than having the direction of movement coded
in the state but provides higher better flexibility.

%Entering cell
rule : -2 #Macro(Speed) {(0,0,0)=0 and
 (-1,0,0)=-2 and (-1,0,1)>=(0,0,1)}
%receive from up
rule : -2 #Macro(Speed) {(0,0,0)=0 and
 (1,0,0)=-2 and (1,0,1)>(0,0,1)}
%receive from down
rule : -2 #Macro(Speed) {(0,0,0)=0 and
 (0,-1,0)=-2 and (0,-1,1)>=(0,0,1)}
%receive from left
rule : -2 #Macro(Speed) {(0,0,0)=0 and
 (0,1,0)=-2 and (0,1,1)>(0,0,1) and

 (0,2,1)>(0,1,1)}
%receive from right

The fourth set of rules describes a passenger leaving a
cell. The one traveling down have priority and therefore
the others have to evaluate is a cell with higher priority
will be moving to its position.

%Leaving down(has priority), up next
rule : 0 #Macro(Speed) {(0,0,0)=-2 and
 (1,0,0)=0 and (1,0,1)<=(0,0,1)}
%move down

rule : 0 #Macro(Speed) {(0,0,0)=-2 and
((-1,0,0)=0 and (-1,0,1)<(0,0,1)) and
((-2,0,0)!=-2 or (-2,0,1)<(-1,0,1))}
%move up

%Leaving right giving way to up/down
trafic but not if heading away from
ilse
rule : 0 #Macro(Speed) { #Macro
(WantRight) and ((-1,1,0)!=-2) and
(1,1,0)!=-2}
%move right with give way to down/up

rule : 0 #Macro(Speed) { #Macro
(WantRight) and (1,1,0)!=-2 and
((-1,1,0)=-2 and (-1,1,1)<(0,1,1))}
%Next row right is exit row (moving
up)

rule : 0 #Macro(Speed) { #Macro
(WantRight) and (-1,1,0)!=-2 and
((1,1,0)=-2 and (1,1,1)<(0,1,1))}
%Next row right is exit row (moving
down)
%Leaving left giving way to up/down
trafic but not if heading away from
ilse

rule : 0 #Macro(Speed) { #Macro
(WantLeft) and ((-1,-1,0)!=-2) and
(1,-1,0)!=-2}
%move left; give way to down and up

rule : 0 #Macro(Speed) { #Macro
(WantLeft) and (1,-1,0)!=-2 and
((-1,-1,0)=-2 and (-1,-1,1)<(0,-1,1))}
%Next row left is exit row (moving up)

rule : 0 #Macro(Speed) { #Macro
(WantLeft) and (-1,-1,0)!=-2 and
((1,-1,0)=-2 and (1,-1,1)<(0,-1,1))}
%Next row left is exit row (moving up)

3. EXPERIMENTAL RESULTS

We executed different evacuation scenarios to test the
simulation model. Figure 3 shows a basic test in which all
the seats are taken and the plane is evacuated in an
orderly fashion. We used multiple simulation tests, and
the model evolved until the basic behavior was considered
satisfactory.

Table 3 shows the simulated evacuation time for different
tests varying the door delay. Time for a delay of 1 second
is close to the results of the original work (taking into
account that the model of the plane was smaller) which
expected 54 seconds and got results of 57.9 seconds with
a mean deviation of 1.5 second. One can expect that if the
door delay could be set as per the original experiment,
similar results would be obtained. The next step was to
reproduce the full size second deck of the A380 and run
the same type of scenarios. The next step was to
implement a full scale replica of the A380 seating plan
and run simulations with half of the emergency exits
disabled. The total simulation time for a full plane layout
with full load was found to be greater than expected
(1min 14sec). This was originally done with a delay of
1sec but was adjusted to 500msec in order to account for
the propagation delay. This adjustment brought the
simulation time down to 59sec which can be considered
acceptable.

Table 3: Simulation Results (seconds)

Door Delay Evacuation time
0 (no delay) 38
1 56
2 1:14
1 + 1*randInt(4) 1:04

Figure 3: Test Simulation Execution

Observing the behavior of the passenger once half of the
exits have been disabled, it becomes obvious that in order
to have a fully representative simulation, the choice of
alternate route for the passengers under certain
circumstances should be added to the system. Only one
freely available demonstration of such evacuation was
found. It was carried out in Europe on the A380 which
took 74 seconds to exit 853 passengers and 20 crew
members. A video of the evacuation can be found on
YouTube [15] but no other documentation was found. Of
note is the interesting fact that no children, pregnant
woman, elderly or obese passenger can be seen in the
video. This is of course to be expected as the airline
company would not want to endanger the life of these
people, but strengthens the argument that simulation can
give a more complete representation of these situations.

4. 3D VISUALIZATION OF THE EVACUATION

PROCESS

We created a 3D visualization model based on previous
work, where we used Blender and Maya for creating

advanced visualization engines [8]. Blender is a free open
source software 3D content creation suite released under
GPL [7]. It can create 2D or 3D graphics as well as movie
quality animations. Blender supports Python scripting, is
free, and provides powerful 3D animation capability.
Python provides a high-level dynamic object-oriented
programming language. For this project we have not
made any modifications to Blender itself but have used its
native support for Python scripting in order to read and
animate the results from CD++. Figure 4 shows the
architecture of the visualization engine. A Python Script
in Blender is in charge of integrating the visualization
engine and the CD++ simulation results. CD++ uses a
model (.MA) file to define the behavior of Cell-DEVS
models. In turn this model file can be given varied
initialization data (using a .VAL file) to set the initial
values of each cell of the model in the simulation.

Figure 4: Visualization Architecture

These two files are used at run-time to define the behavior
of the simulation and a .LOG file is generated containing
the state of each cell for every time-advance for the
simulation. In order for the script to be most flexible, it
had to be extended to support the existence of a .VAL file
and login of the script behavior itself. The cell space is
represented in Blender by a direct coordinate
transformation of the cell position to a coordinate inside
Blender. Therefore the size of the passengers, walls and
seats have to be no more than 1x1, this can be controlled
by scaling the 3D model with the grid shown in Blender.

Once loaded, the script will read and parse the .MA file
and look for a .VAL file if needed. The .VAL file will be
processed before the .LOG file in order to adequately
initialize the simulation behavior. Figure 5 shows the
visual representation of our aircraft evacuation simulation
after initialization (a full airplane), which represents the
same initialization case than the one showed earlier in
Figure 3. As Blender provides a Python API that covers
most of the functionality of the Blender GUI, the script
only has to calculate time and position from the log file

CD++
Toolkit

.ma

.val

.log

Py Script Blender

.blend

.py
log.txt

provided by the Cell-DEVS simulation in order to control
the display of the entities. When parsing the .LOG file,
passengers will be displayed at the appropriate coordinate
within Blender. Passengers will appear and disappear is
sequence representing their movement.

Figure 5: System Initialization [15].
A capture of the passengers exiting the airplane in a queue
and waiting for the passenger in front of them to move is
shown in Figure 6.

Figure 6: Passenger In Queue

With the basic 3D objects already defined in a .blend file,
the script simply has to duplicate, link and unlink specific
objects to the scene, in accordance to the cells state, in
order to control the visual flow of the simulation. This is
shown with the code excerpt that follows.

if (logValue == -2): # Occupied cell
try:
 scn.objects.link(ob)
except:
 human = Blender.Object.Get('Human')
 Blender.Object.Duplicate()
 …set position
elif (logValue == 0): # Empty cell
 scn.objects.unlink(ob)

The simulation will execute and passengers will appear
and disappear representing their movements until they
have all exited the aircraft. Figure 7 shows the four basic
3D model elements that were used in the visualization of
our results (from left to right): a chair; an emergency exit;
a wall or obstacle; and a passenger. In the execution of
our simulation on the passengers are dynamic.

Figure 7: 3D Models

When the model was first developed, 3D animation was
not something the author had in mind. This led to some
decisions at the atomic model level that were later
considered limiting when developing the 3D animation
script. Having the state of each cell on the first dimension
contain limited information (empty, passenger, wall) led
to all motion information being calculated by the rules
within CD++. This increased the complexity of
representing the passengers’ movement in a smooth
transition fashion within the Blender environment.
Having movement information such as direction and
speed available directly within the state of model is
considered important when doing 3D animation in
Blender but is not needed for 2D representation inside
CD++. This can be seen in Figure 8 where the passengers
travelling to the back of the airplane are actually facing
forwards. The fact that the basic CD++ toolkit keeps each
of the cells independent from one another and messages
cannot be passed between them was at the root of some of
the limitations motioned previously. There exists an
advanced CD++ toolkit that is more object-oriented and
permits these types of complexes cellular behaviors. We
believe that using this advanced framework could permit
a more complete and complex representation of the
behavior of passengers inside an aircraft during an
emergency evacuation scenario.

Figure 8: Passengers Travelling Backwards

Another important limitation of the current Blender
visualization script is that actual rendering of the scenes
as an animation was not possible. During the execution of
the script, one can see the passengers moving inside of the
Blender application. Blender allows users to render these
frames to an animation that could be played outside of the
application but only the last state of the system is
represented with the passengers. All the other frames
contain only the walls, chairs and exits (static items). We
believe this to be due to the way the Python script
allocates the passenger entities to the scene. An example
of a single rendered frame (normally generated as a .jpeg
image) is presented at Figure 9. This was achieved by
cheating the script and providing an incomplete CD++
.LOG file leaving some passengers in the aircraft.

Figure 9: Rendered Frame

5. CONCLUSION

This project expanded on a previous implementation of a
CD++ Python script generating 3D animations inside
Blender. We effectively proved that with little or no
expertise in the field of 3D animation, one can easily
adapt a generic script to support visualization of results
from a specific CD++ simulation. This was possible only
due to the flexibility and portability of the CD++ toolkit,
Python and Blender. Further interesting developments in
this area would be to extend the script to enable mapping
of the stateID to the 3D model so that it can be used to
visualize results from CD++ without having to modify the
script itself every time. Another interesting area to
research would be the automatic generation of a rendered
animation instead of having to view the raw animation
processing inside of Blender.

Some assumptions and limitations were taken into
consideration: no passenger behavior other than seeking
the closest emergency exit was implemented. In order to
broaden the scope and applicability of this project, one
would need to implement behaviors such as the search of
alternate valid routing and passenger panic leading to

erratic movement. Also because of the original structure
of the state of each cell, a maximum speed assigned to
each passenger was not implemented. This would be
needed in order to simulate having wide types of
passenger such as elderly, obese, children and/or pregnant
women. A possible solution would be to have a third
dimension that keeps the max speed information or to
have a state on the first dimension encode this
information. Another limitation identified is that even
though a random generation functions were used, the
outcome was deterministic in that every passenger had a
different delay at the exit but they were identical between
all runs. This may have been caused by the way random
generations of variables in handled in CD++. In order to
make this simulation more stochastic, a way to change the
seed of the random generation function would be needed
within the CD++ toolkit.

References

[1] Muir H. & Thomas L. "Passenger Safety and Very

Large Transportation Aircraft". Aircraft Engineering
and Aerospace Technology 76(5), 479-486. 2004.

[2] Muir H.C., Bottomley DM & Marrison C. "Effects of

Motivation and Cabin Configuration on Emergency
Aircraft Evacuation Behavior and Rates of Egress".
International Journal of Aviation Psychology 6(1), 57-
77. 1996.

[3] Galea E.R., Owen M. & Lawrence P.J. "Computer

Modeling of Human Behavior in Aircraft Fire
Accidents". Toxicology 115, 63-78. 1996.

[4] Galea E.R. & Perez Galparsoro J.M. "A Computer-

Based Simulation Model for the Prediction of
Evacuation from Mass-Transport Vehicles". Fire Safety
Journal 22(4), 341-366. 1994.

[5] Jungermann H. & Gohlert C. "Emergency Evacuation

from Double-Deck Aircraft". Proceedings of ESREL
2000, 989-982, Rotterdam. 2000.

[6] Amos M. & Woods A. "Effect of Door Delay on

Aircraft Evacuation time". Department of Computer
Science, University of Exeter, Harrison Building, North
Park Road, Exeter EX4 4QF, UK. 2005.

[7] Wainer, G. “Discrete-Event Modeling and Simulation:

a Practitioner’s approach”. Taylor and Francis. 2009.

[8] B. Zeigler; T. Kim; H. Praehofer: "Theory of
Modeling and Simulation: Integrating Discrete Event and

Continuous Complex Dynamic Systems". Academic
Press, 2000.

[9] Wainer G. "CD++: a Toolkit to Define Discrete-Event

Models". Software, Practice and Experience. 32(3),
1261-1306. November 2002.

[10] Blender Foundation, http://www.blender.org/.

Accessed January 2009.

[11] Wainer G., Poliakov E., Hayes J. & Jemtrud M. "A

Busy Day at the SAT Building". Proceedings of the
International Modeling and Simulation Multiconference
Buenos Aires, Argentina. 2007.

[12] Wainer G. & Chen W. "A Framework for Remote

Execution and Visualization of Cell-DEVS Models".
Simulation. 79, 626-647. November 2003.

[13] Wainer, G. & Liu, Q. "Tools for Graphical

Specification and Visualization of DEVS Models".
Accepted for publication in Simulation, Transactions of
the SCS (accepted: October 2008)

[14] http://www.youtube.com/watch?v=XIaovi1JWyY.

A380 Emergency Evacuation test. Accessed: January
2009.

[15] https://sourceforge.net/projects/devsacevacsim/.

DEVS Aircraft Evacuation Sim. Accessed: January
2009.

Biographies

PATRICK CASTONGUAY is a student in the
Department of Systems and Computer Engineering at
Carleton University where he is pursuing a M.A.Sc. in
Technology Innovation Management with specialization
in Modeling and Simulation. Patrick graduated in 1998
from the Royal Military College of Canada with a
Bachelor in Software Engineering. He then worked until
2000 as a team lead for CAE, maintaining and developing
the CF-18 fighter aircraft mission computer software. He
then specialized in Navigation and Communication with
the Canadian Air Force and was employed with the CP-
140 maritime patrol aircraft for six years. During that time
he helped develop, maintain and administer the squadron
scheduling and proficiency-management database.

GABRIEL WAINER received the M.Sc. (1993) and
Ph.D. degrees (1998, with highest honors) of the
University of Buenos Aires, Argentina, and Université
d’Aix-Marseille III, France. In July 2000, he joined the
Department of Systems and Computer Engineering,
Carleton University (Ottawa, ON, Canada), where he is
now an Associate Professor. He has held positions at the
Computer Science Department of the University of
Buenos Aires, and visiting positions in numerous places,
including the University of Arizona, LSIS (CNRS),
University of Nice and INRIA Sophia-Antipolis (France).
He is author of three books and over 190 research articles,
and helped organizing over 70 conferences. He is Special
Issues Editor of the Transactions of the SCS, and the
International Journal of Simulation and Process
Modeling. He was a member of the Board of Directors of
the SCS, a chairman of the DEVS standardization study
group (SISO). He is Director of the Ottawa Center of The
McLeod Institute of Simulation Sciences and chair of the
Ottawa M&SNet, and one of the investigators in Carleton
Unversity Centre for advanced Simulation and
Visualization (V-Sim).

