
Hybrid Modeling of Opto-Electrical Interfaces Using DEVS and Modelica
Victorino Sanz∗, Shafagh Jafer∗∗, Gabriel Wainer∗∗, Gabriela Nicolescu∗∗∗, Alfonso Urquia∗, Sebastian Dormido∗

∗ Dpto. Infomática y Automática, ETSI Informatica, UNED, Madrid, Spain
{vsanz,aurquia,sdormido}@dia.uned.es

∗∗ Dept. Computer Science and Engineering, Carleton University, Ottawa, ON, Canada
{sjafer,gwainer}@sce.carleton.ca

∗∗∗Dépt. Génie Informatique, École Polytechnique de Montréal, Montréal, QC, Canada
gabriela.nicolescu@polymtl.ca

Keywords: Opto-electrical systems, DEVS, CD++, Model-
ica.

Abstract
We discuss two implementations of opto-electrical interfaces,
their characteristics and functionalities using a hybrid M&S
approach. These interfaces consist in a transmitter and a re-
ceiver, composed by electrical and optical parts, that translate
electrical signals into optical impulses and viceversa. The first
implementation, performed using the CD++ modeling envi-
ronment, represents a discrete-event model of the system fol-
lowing the DEVS formalism. The other implementation uses
the Modelica Standard Library to compose the electrical parts
as a continuous-time model, and the Modelica DEVSLib li-
brary to describe the optical part as a discrete-event system.
The obtained simulation results are equivalent in both imple-
mentations. They reproduce translation of a continuous-time
sinusoid electrical signal into discrete optical impulses in the
transmitter, and the opposite process in the receiver. These
approaches simplify the development of multidomain hybrid
systems and the study of ONoC at a high abstraction level.

1. INTRODUCTION
Opto-electrical interfaces, transmitters and receivers, can

be used to translate the information contained in form of elec-
trical current into light and viceversa [2]. These interfaces
constitute the basic components of Optical Networks on Chip
(ONoC) [5]. A transmitter in such interface receives an elec-
trical current and translates it into optical impulses. The re-
ceiver receives the optical impulses and translates them into
electrical current again. ONoC interfaces can be used to sub-
stitute electrical interconnects between processors in digital
integrated circuits [15].

To facilitate the development of such opto-electrical com-
munication systems, several approaches have been proposed
to model and simulate the behavior of the circuits in order
to better understand the phenomena involved. Depending on
the abstraction level used to describe the system, FEM (Fi-
nite Elements Method) and FDTD (Finite-Difference Time-
Domain) methods have been used to describe the optical be-
havior at the physical level [14].

On the behavioral and system levels, several authors use
the VHDL-AMS hardware description language to describe
the components of the system [12, 5, 14]. Also event-driven
approaches have been used to describe components at system
level, like SystemC [7, 6, 13] and OMNet++ [16].

The objective of our work is to develop models of basic
opto-electrical interfaces in CD++ and in Modelica, com-
pare their simulation results and discuss their functionalities.
These models show the possibility to describe Systems on
Chip (SoC), using the DEVS formalism [18], at a higher ab-
straction level than other existing techniques.

The description of each domain (electrical and optical)
with DEVS models simplifies the multi-domain communica-
tion systems. This functionality can be extended in Modelica
by describing the electrical part of the model as a continuous-
time model, using DAE equations, and obtaining a more de-
tailed hybrid model.

CD++ is a modeling tool that was defined using the DEVS
and Cell-DEVS specifications [17]. With CD++, DEVS
Atomic models can be programmed and incorporated onto a
class hierarchy programmed in C++. Coupled models can be
defined using a built-in specification language. CD++ makes
use of the independence between modeling and simulation
provided by DEVS, and different simulation engines have
been defined for the platform.

Modelica is a modeling and simulation language mainly
designed for mathematical modeling of physical systems [3].
It also has functionalities to manage discrete events [11].

The Modelica Standard Library contains several models
from different domains (electrical, mechanical, thermody-
namical, etc.) that can be used in order to build larger mod-
els composed by elements of the library [10]. DEVSLib is a
Modelica library developed by the authors, that implements
the Parallel DEVS formalism allowing the development of
new atomic and coupled DEVS models. Models constructed
using DEVSLib can be combined with any other Modelica
model to compose hybrid continuous-discrete systems. The
Dymola modeling environment has been used to develop the
DEVSLib library and the Modelica models discussed in this
manuscript [1]. The DEVSLib Modelica library is freely dis-
tributed and can be downloaded from the web [9].

A description of the modeled system, the basic opto-
electrical communication system, is given in the next section.
The model constructed using CD++ is described in Section 3.,
and the Modelica model is described in Section 4. At the end,
a discussion of the experiment performed and the results ob-
tained is included, together with some conclusions and ideas
for future work.

2. COMMUNICATION BETWEEN THE
OPTO-ELECTRICAL INTERFACES

The opto-electrical communication system is composed by
a transmitter that sends optical information to the receiver,
which recovers it and generates a current. These components
are shown in Fig. 1.

Figure 1. Basic opto-electrical interfaces.

The transmitter is composed by two components: a driver
and a laser. The driver receives external information with the
form of an electrical current, modulates it, and sends it to the
laser. The laser receives the modulated current and generates
optical impulses.

The receiver model is also defined by two components: a
photodiode and a transimpedance amplifier (TIA). The pho-
todiode receives the optical impulses and translates them into
electrical current. The TIA amplifies the generated current
and translates it into an electrical current.

The behavior of each of these components can be described
using DEVS formalism as shown in [4]. Components are ba-
sically described as processors, that receive a message, per-
form a process to the information contained in the message
and, depending on the defined behavior, send an output mes-
sage containing the information processed. This output will
be received as input signal by the next component. The mod-
els developed and discussed in this manuscript are based in
the mentioned DEVS formalization.

3. CD++ MODEL
Listing 1 describes the coupled model defined for the opto-

electrical communication system using CD++.
The transmitter is modeled as a coupled model composed

by two models, Driver and Laser. The coupled model sim-

[top]
components : Transmitter
components : Receiver
in : indata
out : outdata
Link : indata data1@Transmitter
Link : light@Transmitter light1@Receiver
Link : data2@Receiver outdata
[Transmitter]
components : laser@Laser
components : driver@Driver
out : light
in : data1
Link : data1 data@driver
Link : current@driver current@laser
Link : light@laser light
[Receiver]
components : photodiode@Photodiode
components : aTIA@TIA
in : light1
out : data2
Link : light1 light@photodiode
Link : current@photodiode current@aTIA
Link : data@aTIA data2
[Transmitter]
processingTime : 00:00:02:00
[Receiver]
processingTime : 00:00:02:00
[laser]
processingTime : 00:00:30:00
[photodiode]
processingTime : 00:00:30:00
[aTIA]
processingTime : 00:00:02:00
[driver]
processingTime : 00:00:02:00
.

Listing 1. Transmitter-Receiver model definition file.

ply defines the models that it includes and connects their in-
put/output ports to each other.

The Driver component accepts electrical voltage as input,
performs modulation on it, and sends it out. As shown on
the model definition file (Listing 1) the processing time of
this component is set to 2 time units. This parameter can be
changed easily to reflect different scenarios. In CD++, the in-
put can be read from an ”event” file. The entries of the event
file will be read one by one and inserted into the Driver com-
ponent via its data input port. Once, input is received, it stays
in the component by the time specified as processing time so
that required processing is performed on the data. The mod-
ulation process that is performed by the Driver is varying the
amplitude of the input carrier. The Driver reduces the ampli-
tude of the voltage by dividing it by A to produce a modulated
data that is the electrical current (performed by the output-
Function). After that, the output of the component is sent out
through the ”current” output port. The output will serve as the
input to the Laser component. Listing 2 includes a fragment
of the Driver component.

/***
* Function Name: Driver

* Description: constructor

***/
Driver::Driver(const string &name)
: Atomic(name)
, data(addInputPort("data"))
, current(addOutputPort("current"))
, processingTime (0,0,2,0)
{
string time1(

MainSimulator::Instance().getParameter(
description(), "processingTime"));

if(time1 != "")
processingTime = time1 ;

}
/**
* Function Name: externalFunction

* Description: the Driver receives data

***/
Model &Driver::externalFunction(

const ExternalMessage &msg)
{
if (this->state() == passive){
if (msg.port() == data){

DATA = msg.value();
holdIn(active, processingTime);

}
}
return *this ;

}
/**
* Function Name: internalFunction

***/
Model &Driver::internalFunction(

const InternalMessage &)
{
passivate();
return *this;

}
/**
* Function Name: outputFunction

***/
Model &Driver::outputFunction(

const InternalMessage &msg)
{
//The modulation process.(Reducing the Amplitude)
DATA = DATA / A;
sendOutput(msg.time(),current, DATA);
return *this;

}

Listing 2. Driver component source code.

On the other hand, the Laser component accepts the mod-
ulated current from the Driver as input (by invoking the ex-
ternal transition function), senses the current and generates
impulses as output and sends it out (done by the output func-
tion). The Laser component source code is reflected in List-
ing 3.

Since, DEVS is discrete, the continuous electrical current
is translated into a set of discrete inputs. The Transmitter im-

/***
* Function Name: Laser

* Description: constructor

***/
Laser::Laser(const string &name)
: Atomic(name)
, current(addInputPort("current"))
, light(addOutputPort("light"))
, processingTime (0,0,30,0)
{

string time1(
MainSimulator::Instance().getParameter(

description(), "processingTime"));

if(time1 != "")
processingTime = time1 ;

}
/**
* Function Name: externalFunction

* Description: the Laser receives data

***/
Model &Laser::externalFunction(

const ExternalMessage &msg)
{
if (this->state() == passive){
if (msg.port() == current){

DATA = msg.value();//extract DATA from msg
holdIn(active, processingTime);

}
}
return *this;

}

/***
* Function Name: internalFunction

***/
Model &Laser::internalFunction(

const InternalMessage &)
{
passivate();
return *this;

}
/***
* Function Name: outputFunction

***/
Model &Laser::outputFunction(

const InternalMessage &msg)
{
float temp = 0.94;
if (DATA == temp && I == 0){
I = 1;
sendOutput(msg.time(),light, 2);

} else if (DATA==temp && I==1){
I =0; //filter out the second 0.9
sendOutput(msg.time(),light, 1);

} else sendOutput(msg.time(),light, 1);
return *this;

}

Listing 3. Laser component source code.

plemented in CD++ generates the same results as if it was
built in Modelica. Thus, the event file has discretized informa-
tion of the input to the Transmitter, and the output file presents

00:00:00:00 data 0 00:00:32:000 light 1
00:01:00:00 data 0.17 00:01:32:000 light 1
00:02:00:00 data 0.34 00:02:32:000 light 1
00:03:00:00 data 0.5 00:03:32:000 light 1
00:04:08:00 data 0.64 00:04:40:000 light 1
00:05:00:00 data 0.77 00:05:32:000 light 1
00:06:00:00 data 0.87 00:06:32:000 light 1
00:07:00:00 data 0.94 00:07:32:000 light 2
00:08:00:00 data 0.98 00:08:32:000 light 1

(a) (b)
Table 1. a) Input data of the Transmitter in the form of dis-
crete electric current; b) Output of the Transmitter in the form
of optical impulse.

the optical impulses generated by the Laser component. The
event and output file are presented in Table 1.

As seen in Listing 1, at time 00:07:00:00 an input of 0.94
(cross function value with amplitude of one) is received, it
took 32 time units for the Transmitter to process this input
and translates it into optical impulse via the Laser component.
The second input of 0.94 must be filtered out. This is done in
the source code of the Laser component.

The receiver coupled model is decomposed of two atomic
components: Photodiode and TIAComparator. The Receiver
receives the optical impulses, passes them through the Photo-
diode component where they get translated into current vari-
ation and finally the output of the Receiver appears as current
at the output port of the Receiver. The Photodiode component
receives optical impulses through its input port and translates
them into current for the specific processing time which can
be easily modified. On the other hand, the TIAComparator
receives the output from the Photodiode as its input and am-
plifies this current and generates voltage. The source code as-
sociated with each of these atomic components is reflected in
Listings 4 and 5.

As shown in the source code of the Photodiode model
(Listing 4), the external transition function is invoked when
LIGHT is input is received at the input port of this compo-
nent. Then, a processing time of 30 time units is spent at this
component until the output can be generated. The process of
sensing the optical impulses (the input) and generating the
associated current takes place at the output function where
current is sent out of this component.

The source code of the TIAComparator model (Listing 5)
shows how the external transition function is invoked when
current is received at the input port of the model. After this,
the input is amplified (which takes 2 time units for this ac-
tion to complete), the output is generated and sent out by the
output function. The amplification process is performed by
increasing the amplitude of the input to produce voltage by
multiplying the received current by an amplitude (performed
at the outputFunction). In fact, the TIAComparator does the

/***
* Function Name: Photodiode

* Description: constructor

***/
Photodiode::Photodiode(const string &name)
: Atomic(name)
, light(addInputPort("light"))
, current(addOutputPort("current"))
, processingTime (0,0,30,0)
{
string time1(

MainSimulator::Instance().getParameter(
description(), "processingTime")) ;

if(time1 != "")
processingTime = time1 ;

}
/***
* Function Name: externalFunction

* Description: the Photodiode receives data

***/
Model &Photodiode::externalFunction(

const ExternalMessage &msg)
{
if (this->state() == passive){
if (msg.port() == light){

//extract DATA from msg
LIGHT = static_cast < int > (msg.value());
holdIn(active, processingTime);

}
}
return *this ;

}
/***
* Function Name: internalFunction

***/
Model &Photodiode::internalFunction(

const InternalMessage &)
{
if (I>=0 && I<=8)
holdIn(active, processingTime);

else
passivate();

return *this;
}
/***
* Function Name: outputFunction

***/
Model &Photodiode::outputFunction(

const InternalMessage &msg)
{
if (LIGHT == 1){
I = 10;
sendOutput(msg.time(),current, LIGHT);

}else if (LIGHT == 2){
if (I>=0 && I<=8)

DATA = (10 - (I+1))/10;
else

DATA = 0;
sendOutput(msg.time(),current, DATA);
I++;

}
return *this;

}

Listing 4. Photodiode model definition file.

/**
* Function Name: TIA

* Description: constructor

***/
TIA::TIA(const string &name)
: Atomic(name)
, data(addOutputPort("data"))
, current(addInputPort("current"))
, processingTime (0,0,1,0)
{
string time1(

MainSimulator::Instance().getParameter(
description(), "processingTime"));

if(time1 != "")
processingTime = time1 ;

}
/**
* Function Name: externalFunction

* Description: the TIA receives data

***/
Model &TIA::externalFunction(

const ExternalMessage &msg)
{
if (this->state() == passive){
if (msg.port() == current){

DATA = msg.value();//extract DATA from msg
holdIn(active, processingTime);

}
}
return *this ;

}
/**
* Function Name: internalFunction

***/
Model &TIA::internalFunction(

const InternalMessage &)
{
passivate();
return *this;

}
/**
* Function Name: outputFunction

***/
Model &TIA::outputFunction(

const InternalMessage &msg)
{
//perform amplification by increasing the
//amplitude of the carrier.
DATA = DATA * A;
sendOutput(msg.time(),data, DATA);

return *this;
}

Listing 5. TIAComparator model definition file.

reverse action of the Driver component.

4. MODELICA MODEL
In the Modelica model, the interfaces, the transmitter and

the receiver, are coupled DEVS models constructed using the

DEVSLib Modelica library.
Due to the current Modelica modeling capacities, the elec-

trical components have been modeled with a continuous-time
model, using the electrical components of the Modelica Stan-
dard Library. The system modeled with Modelica is shown in
Fig. 2.

Figure 2. Basic opto-electrical communication system mod-
eled with Modelica.

The transmitter contains the driver and the laser models,
as it is shown in Fig. 3. The current received in the transmit-
ter, through the electrical port, is passed to the driver model.
To simplify the model, the received current is not modified
by the driver. This situation can be easily changed to model
different modulations and polarization of the electrical signal,
including them in the driver model.

Figure 3. Opto-electrical transmitter modeled with Model-
ica

The laser receives the electrical current from the driver.
It is composed by the LaserGen model, which translates the
continuous electrical current into discrete-events, that repre-
sent the optical impulses.

The LaserGen model has been build using the CrossUP
model included in the DEVSLib Modelica library, and shown
in Listing 6. This model receives a continuous-time input sig-
nal(i.e., the electrical current) and a reference value, and gen-
erates a discrete-time event every time the signal crosses the
reference value in upwards direction. This behavior represent
the generation of an optical impulse every time the electrical
current reaches a given value.

Figure 4. Opto-electrical receiver modeled with Modelica

The description of the receiver model is shown in Fig. 4. It

model CrossUP
parameter Real Value = 1

"Cross value";
parameter Real Threshold = 1e-010

"Detection value threshold";
parameter Integer EType = 1

"Type of the event to generate";
Interfaces.outPort outport;
Modelica.Blocks.Interfaces.RealInput u;

protected
stdEvent e;
Real x = der(u);

algorithm
when (u > Value-Threshold) and x > 0

and time > 0 then
e.Type := EType;
e.Value := u;
e.Port := 1;
sendEvent(outport.queue, e);
outport.event := pre(outport.event) + 1;

end when;
end CrossUP;

Listing 6. CrossUP model source code.

model DiCo
Interfaces.inPort inport;
RealOutput y;
BooleanOutput change;

protected
Boolean externalEvent(start = false);
Integer receivedEvents;
Integer eventType;
stdEvent e;
Boolean init(start = true);

algorithm
when initial() and not(time>0) and pre(init) then
inport.queue := CreateQueue();
init := false;

end when;
when pre(externalEvent) then
e := DEVSLib.SRC.getEvent(inport.queue);
y := e.Value;
change := not change;
eventType := e.Type;

end when;
equation
receivedEvents= -integer(inport.event);
externalEvent=(receivedEvents>pre(receivedEvents))

or (receivedEvents<pre(receivedEvents));
end DiCo;

Listing 7. DiCo model source code.

is composed by the photodiode and the TIA amplifier. The op-
tical impulses are received in the optical input port. These im-
pulses are sent to the photoDiode model that translates each
impulse in a current variation. The generated current is sent
to the Tia model, which sends it through the electrical output
port.

The photodiode model is composed by a PDiode that per-
forms the translation from optical impulses into electrical sig-

nals. The Pdiode model has been composed using the DiCo
(Discrete-to-Continuous) model included in the DEVSLib
Modelica library, and shown in Listing 7. The DiCo model
translates series of events into a real piecewise-constant sig-
nal, with values equal to the values of the received events.
Each time the PDiode model receives an optical impulse it
raises the generated current to the value of the received opti-
cal impulse. Bigger optical impulses generate higher current
variations. This action simulates the excitation of the pho-
todiode. After the optical impulse is received, the generated
current decreases, because of the lack of optical excitation in
the photodiode.

In order to simplify the system complexity, the Tia model
does not modify the electrical signal. However, as in the case
of the driver model, the Tia model can be modified using
Modelica components, or equations.

5. EXPERIMENT AND RESULTS
As mentioned before, a simple example of opto-electrical

communication system has been constructed using the pre-
viously described transmitter and receiver models. Since,
DEVS is discrete, in CD++ the continuous electrical cur-
rent is translated into a set of discrete inputs using quan-
tized DEVS models. The input can be read from an external
“event” file, which are transmitted to the driver component
via its data input port. As shown on the model file (Fig. 1) the
processing time of the driver model is set to 2 seconds. This
parameter can be changed easily to reflect different scenarios.

On the other hand, the input of the Modelica model is gen-
erated by a current source, available in the Modelica Standard
Library. This current source generates a continuous-time si-
nusoid current. The sine current activates the optical genera-
tion in the transmitter, generating impulses.

In the Modelica model, the LaserGen has been configured
as a cross-function with value 0.9, because the input current
corresponds to a sine input with amplitude 1. The translation
of the input current into optical impulses is shown in Fig. 5.

These impulses are received by the receiver and translated
into current again. In the Modelica model, the derivate of the
generated current is set to -0.5 to reproduce the lack of ex-
citation. To monitor the generated current in the Modelica
receiver, a current sensor has been included, also from the
Modelica Standard Library. The reception of the optical im-
pulses and its translation into electrical current is shown in
Fig. 6.

The simulation results of the complete system are shown in
Fig. 7. It can be noticed that no communication delays have
been included in the models, but it will be easy to include
them as additional atomic DEVS models.

It can be noticed that the obtained results are very similar
in both models.

a)

b)

Figure 5. Sinusoid electrical current transformed into opti-
cal impulses, modeled with: a) CD++ and; b) Modelica.

6. CONCLUSIONS
The DEVS formalism is suitable to describe multiple kind

of systems, and specially multidomain systems. Two differ-
ent implementations of a basic opto-electrical communication
system, using the DEVS formalism, have been developed,
obtaining equivalent results in both cases. In the case of the
Modelica implementation, it can be noticed that the develop-
ment of hybrid multidomain systems is simplified by the use
of already available libraries of components. The developed
components and models can be reused to implement larger
systems, and study the ONoC at a high abstraction level.

Future work ideas include the development of more acu-
rate models of the opto-electrical interfaces. Also, a library
of opto-electrical components can be developed to simplify
the development and study of this kind of systems.

REFERENCES
[1] Dynasym AB. Dymola Dynamic Modeling Laboratory

User’s Manual. http://www.dymola.com/, 2006.

[2] G. P. Agrawal. Fiber-Optic Communication Systems
(2nd ed.). Wiley-Interscience, New York, NY, USA,
1997.

a)

b)

Figure 6. Optical impulses translated into current by the re-
ceiver, modeled with: a) CD++ and; b) Modelica.

[3] Modelica Association. Modelica Language Specifica-
tion. http://www.modelica.org/documents, 2007.

[4] M. Biere, L. Gheorghe, G. Nicolescu, I. O’Connor, and
G. Wainer. Towards the high-level design of optical
networks-on-chip. formalization of opto-electrical inter-
faces. Electronics, Circuits and Systems, 2007. ICECS
2007. 14th IEEE International Conference on, pages
427–430, Dec. 2007.

[5] M. Brière, L. Carrel, T. Michalke, F. Mieyeville,
I. O’Connor, and F. Gaffiot. Design and behavioral mod-
eling tools for optical network-on-chip. In DATE ’04:
Proceedings of the conference on Design, automation
and test in Europe, page 10738, Washington, DC, USA,
2004. IEEE Computer Society.

[6] M. Brière, B. Girodias, Y. Bouchebaba, G. Nicolescu,
F. Mieyeville, F. Gaffiot, and I. O’Connor. System level
assessment of an optical noc in an mpsoc platform. In
DATE ’07: Proceedings of the conference on Design,
automation and test in Europe, pages 1084–1089, San
Jose, CA, USA, 2007. EDA Consortium.

a)

b)

Figure 7. Opto-electrical communication system, modeled
with: a) CD++ and; b) Modelica.

[7] Matthieu Briere, Emmanuel Drouard, Fabien
Mieyeville, David Navarro, Ian O’Connor, and
Frederic Gaffiot. Heterogeneous modelling of an
optical network-on-chip with systemc. In RSP ’05:
Proceedings of the 16th IEEE International Work-
shop on Rapid System Prototyping, pages 10–16,
Washington, DC, USA, 2005. IEEE Computer Society.

[8] Francois E. Cellier and Ernesto Kofman. Continuous
System Simulation. Springer-Verlag New York, Inc., Se-
caucus, NJ, USA, 2006.

[9] http://www.euclides.dia.uned.es/.

[10] Peter Fritzson. Principles of Object-Oriented Modeling
and Simulation with Modelica 2.1. Wiley-IEEE Com-
puter Society Pr, 2003.

[11] Sven Erik Mattsson, Martin Otter, and Hilding
Elmqvist. Modelica Hybrid Modeling and Efficient

Simulation. In Proceedings of the 38th IEEE Confer-
ence on Decision and Control, pages 3502–3507, 1999.

[12] F. Mieyeville, M. Brière, I. O’Connor, F. Gaffiot, and
G. Jacquemod. A vhdl-ams library of hierarchical opto-
electronic device models. Languages for system speci-
fication: Selected contributions on UML, systemC, sys-
tem Verilog, mixed-signal systems, and property specifi-
cation from FDL’03, pages 183–199, 2004.

[13] I. O’Connor, F. Tissafi-Drissi, D. Navarro,
F. Mieyeville, F. Gaffiot, J. Dambre, M. de Wilde,
D. Stroobandt, and M. Briere. Integrated optical
interconnect for on-chip data transport. Circuits and
Systems, 2006 IEEE North-East Workshop on, pages
209–209, June 2006.

[14] Ian O’Connor. Optical solutions for system-level inter-
connect. In SLIP ’04: Proceedings of the 2004 inter-
national workshop on System level interconnect predic-
tion, pages 79–88, New York, NY, USA, 2004. ACM.

[15] Behzad Razavi. Design of Integrated Circuits for Op-
tical Communications. McGraw-Hill, New York, NY,
USA, 2002.

[16] A. Shacham, K. Bergman, and L.P. Carloni. On the de-
sign of a photonic network-on-chip. Networks-on-Chip,
2007. NOCS 2007. First International Symposium on,
pages 53–64, May 2007.

[17] Gabriel Wainer. CD++: A Toolkit to Develop DEVS
Models. Softw. Pract. Exper., 32(13):1261–1306, 2002.

[18] Bernard P. Zeigler, Tag Gon Kim, and Herbert Prae-
hofer. Theory of Modeling and Simulation. Academic
Press, Inc., Orlando, FL, USA, 2000.

