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Abstract 
This paper introduces a new extension to the DEVS formalism, called Ra-
tional Time-Advance DEVS. The basic idea of this new formalism is to per-
mit modeling the behavior of systems that can be modeled by classical DEVS; 
however, RTA-DEVS models could be formally checked with standard 
model-checking algorithms and tools. In order to do so, we introduce a proce-
dure to create Timed Automata models that are behaviorally equivalent to the 
original RTA-DEVS models. This therefore, enables the use of the available 
TA tools and theories for formal model checking. 

I. INTRODUCTION 
Real-time embedded systems (RTS) are very advanced com-
puter system applications with hardware and software compo-
nents interacting in a tight fashion. RTS are highly reactive 
systems where the decisions taken can lead to catastrophic 
consequences for goods or lives; hence, correctness, and the 
timing of the executing tasks are critical.  

An effective approach in studying such systems is to 
model the application by abstracting unnecessary details, ob-
taining a model that closely approximates the behavior of the 
real system. The model would then be studied to reason about 
the real system. A modeler would select a suitable formalism 
and tools depending on the nature of the system under study. 
For instance, continuous systems have a long tradition of be-
ing modeled with a algebraic, differential and partial differen-
tial equations, which can faithfully model the systems and 
have well-known methodologies and tools available. For dis-
crete-event systems, formal methods can be used to determine 
the model’s behavior to reason about the real system. Formal 
verification methods allow the model to be rigorously checked 
against a specification property, proving if the property is sat-
isfied or not. For instance, Timed Automata (introduced in the 
1990's as an extension to finite automata) can be used to 
model discrete-event systems and their timing aspects [1].  

TA has an established theory of formal verification and 
analysis through model-checking [2][3]. This method tests a 
model against given specifications or properties using algo-
rithms to formally verify and prove that a model meets a 
specification (coded as a logic formula), or if not, it can show 
the sequence of events to cause the defect. The main advan-
tage of model-checking is that it is usually very difficult (or 
impossible) to test all possible executions of a model to find a 
defect. Instead, models checked formally are guaranteed to be 
free of errors (as opposed to simulation and testing based solu-
tions, which gives a certain confidence in a model with no ab-
solute guarantee). However, model-checking algorithms suffer 
from a state explosion problem, in which total number of 
states to be checked grows exponentially with the model size. 
Thus, for large size applications, model-checking is impracti-
cal. 

In these cases, Modeling and Simulation (M&S) tech-
niques and tools can be used for analyzing varied scenarios. In 

M&S based analysis, the model is executed with sample in-
puts, and the outputs are observed and these are compared to 
real system behavior. This validation is usually done with the 
help of a subject matter expert to check the logical assump-
tions and abstractions in the model to reflect the real system. 
Most M&S frameworks are not as robust formal methods due 
to their lack of a mathematical foundation (which poses diffi-
culties when trying to prove properties about RTS). Instead, 
DEVS (Discrete-EVent Systems specifications) [4], provides a 
formal method (based on systems theory) to model and simu-
lates discrete-event systems. DEVS has been widely used 
since its inception in the ‘70s to model discrete-event systems, 
and numerous DEVS tools have been created. However, 
DEVS does yet have a sound theory for formal verification 
(thus, DEVS models are mainly studied through simulation). 

Both model verification techniques and M&S based meth-
ods need manual work for testing the model in an iterative cy-
cle (an error-prone and expensive task). By enabling simula-
tion models to be formally checked, a modeler can use formal 
verification to compose queries about the model behavior and 
submit it to a model verifier, which would be able to answer if 
the model satisfies these properties. Likewise, the model can 
be formally verified against any faults that may be introduced 
during model construction, making easier the testing tasks.  

Our long-term goal is thus to define a theoretical frame-
work and a practical environment that will combine the advan-
tages of formal methods and simulation for RTS construction. 
At this stage, we are exploring methods to convert DEVS to 
TA to enable formal DEVS model checking. Converting from 
DEVS models to equivalent TA models and vice versa is a 
valuable addition to both worlds. TA could be used for DEVS 
model validation and verification through model-checking. On 
the other hand, TA could be modeled as DEVS to be simu-
lated, complementing model-checking for very large models. 

As would be shown in section II, previous work on formal 
verification of DEVS models has to work on restricted types 
of DEVS. This is because formally checking classic DEVS 
has its challenges and limitations. However, by using these re-
stricted types of DEVS, a modeler would lose much of the 
modeling power of classic DEVS to model the system at hand. 
Ideally, a modeler would like to use some formalism that is as 
powerful as DEVS, yet this formalism can be formally veri-
fied. In this paper, we try to achieve this by introducing RTA-
DEVS, a subset of DEVS still powerful for practical modeling 
applications. RTA-DEVS can be seen as a relaxation of some 
restriction of FD-DEVS [9] (the elapsed time cannot be used 
to determine the transition to next state). This makes the ex-
pressiveness of RTA-DEVS closer to classic DEVS, giving 
the modeler a more powerful formalism. Also, RTA-DEVS is 
defined in a way to make it possible to transform it to an 
equivalent TA that can be formally verified. We show a trans-
formation from RTA-DEVS to TA that preserves all proper-



ties of RTA-DEVS models into TA (the resulting TA model is 
built to be behaviorally equivalent to the RTA-DEVS model). 
This enables complete formal validation and verification of 
RTA-DEVS models with available tools and theories. We fi-
nally show an example of RTA-DEVS and its transformation 
to TA, and its verification using UPPAAL [1]. 

 
II. RELATED WORK 

There have been several proposals to verify DEVS models, 
ranging from formal model-checking of restricted classes of 
DEVS, the generation of traces from DEVS models for test-
ing, the specification of high-level system requirements in TA 
(and verifying DEVS model against those requirements), or 
introducing clock constructs to DEVS to conform with TA. 

In [5], the Real-Time DEVS formalism (RT-DEVS) intro-
duces a time advance function that maps each state to a range 
with maximum and minimum time values. In [8], RT-DEVS 
was used to model a real-time system of train-gate-controller. 
It introduced an algorithm to build a timed reachability tree to 
be used for safety analysis. Further work on verifying RT-
DEVS is done in [6][7] using TA and UPPAAL, and a trans-
formation from RT-DEVS to UPPAAL is shown. This trans-
formation allows weak synchronization between components 
of TA model as RT-DEVS semantics uses weak synchroniza-
tion. The transformation given did not show formally timed 
behavior equivalence between RT-DEVS and TA models.  

Other approach [9] was to introduce a subclass of DEVS 
(called Finite-Deterministic DEVS) in which the time advance 
function is maps states to rational numbers, and the external 
transition function cannot use the elapsed time to determine its 
result. In [9] the authors introduced verification through reach-
ability analysis similar to TA algorithms and techniques. 

In [10], the authors show how to map DEVS models to 
TA. The conversion method mapped DEVS model through its 
components and its simulator. The approach suggests trace 
equivalence as the basis for parallel DEVS and TA model 
equivalence. In [11], high-level system specifications are done 
in TA and then modeled with DEVS; system requirements are 
verified through simulation of the DEVS model. 

A result in [12] showed that verification of general DEVS 
models through reachability analysis is undecidable. The au-
thors based their deduction on building a DEVS simulation 
Turing machine. Since in Turing machines the halting prob-
lem is undecidable (i.e. with analysis only, we cannot know in 
which state a Turing machine would be), they concluded that 
this is also true for DEVS models: we cannot know if we 
reach a particular state starting from initial state, and hence 
reachability analysis for general DEVS is impossible. They 
argue that reachability analysis maybe possible only for re-
stricted classes of DEVS. This result however was based on 
introducing state variables into DEVS formalism with infinite 
number of values. In [13], the authors introduced a new class 
of DEVS called Time Constrained DEVS (TC-DEVS) that ex-
panded DEVS atomic model definition with the introduction 
of multiple clocks incremented independently of other clocks. 
Classic DEVS atomic models can be seen as having only one 
clock that keeps track of elapsed time in a state, and is reset on 
each transition. TC-DEVS also added clock constraints similar 
to TA (to function as guards on external and internal transi-
tions). However, it allows clock constraints in states as invari-

ants that contain clock differences. TC-DEVS is then trans-
formed to an UPPAAL TA model. The paper however, did not 
explain a transformation of TC-DEVS state invariants to UP-
PAAL TA when the model has invariants with clock differ-
ences.  

Other DEVS verification techniques use testing to verify 
the DEVS [14][15]. Testing sequences generated from model 
specifications are applied against the model implementation to 
verify the conformance of implementation to specifications. 

Our work differs from the above approaches in that it de-
fines a new class of DEVS, called RTA-DEVS, which is very 
close to classic DEVS in semantics and expressive power. We 
then define a transformation to obtain a TA that is behavior-
ally equivalent to RTA-DEVS. The advantage of doing so is 
that many classic DEVS models would satisfy the semantics 
of RTA-DEVS models. Thus, they could be simulated with 
any DEVS simulator. Likewise, it can be transformed to TA to 
validate desired properties formally. RTA-DEVS has followed 
FD-DEVS in restricting the time advance function to nonnega-
tive rational numbers, but also relaxed the restriction of FD-
DEVS on external transition functions. This makes RTA-
DEVS closer to general DEVS and adds expressiveness. How-
ever, RTA-DEVS still restricts the elapsed time in a state used 
in the external transition function to be nonnegative rational 
number. This restriction translates to having nonnegative ra-
tional constants in guards in the transformed TA model, and 
ensures termination of reachability analysis algorithm imple-
mented in UPPAAL [1], as irrational constants in TA guards 
renders reachability analysis undecidable [16]. 

 
III. RTA-DEVS 

As in classical DEVS, we need to define RTA-DEVS atomic 
model. RTA-DEVS changes the definitions of time advance 
function ta and the external transition function extδ  as fol-
lows. The Atomic Rational Time-Advance is defined as: 

AMTC = < X, Y, S, δint, δext , λ, ta> 
- X : The set of external inputs. 
- :Y  Set of external outputs. 
- S: set of system states.  
- δint: S → S is the internal transition function (the same as 

in classic DEVS). 
− δext: TxX → S with T={(s,e)/s 0≤e≤ta(s), e ∈ Q0,+∞} is 

the external transition function (e is the time elapsed since the 
last transition, which takes a positive rational value). 

- λ: S → Y ∪∅ is the output function. 
- ta: S → Q0,+∞ is the time advance function that maps 

each state to a positive rational number. 
Coupled RTA-DEVS model are defined exactly as in clas-

sic DEVS. Coupled RTA-DEVS models are composed of 
atomic or other coupled RTA-DEVS models: 

SelectyCxCiMDYXCM ,,},{,,,≡  

X: Set of external input events. 
Y: Set of external output events. 
D: Finite index of sub-components. 
{Mi}: The set of sub-components. A sub-component may 

be an atomic or coupled. Di ∈  is the index of the component. 
Cx: Set of input couplings. 
Cy: Set of output couplings. 



Select: 2D →D is a tie-breaking function, which defines 
how to select an event from asset of simultaneous events. 

A coupled RTA-DEVS model M can be simulated with an 
equivalent atomic RTA-DEVS model, whose behavior is de-
fined as follows [18]: 

M = < X,Y,S,s0,δext,δint,λ,ta > 
• X and Y are the input and output event sets, respectively. 

X is the set of all input events accepted and Y is the set of all 
output events generated by coupled model M. 

• iVDiS ∈×=  is the model state. It is expressed as the 
Cartesian product of all component states, where 

iV  is the total 
state for component i, { })](,0[,|),( istaeitiSiseitisiV ∈∈= . 
Here, eit denotes the elapsed time in state is  of component i, 
and iS  is the set of states of component i. 

• ivDis 00 ∈×= is the initial system state, with )0,0(0 isiv =  

is the initial state of component Di ∈ . 
• Τ→Sta : is the time advance function. It is calculated 

for the global state Ss ∈ of the coupled model as the minimum 
time remaining for any state among all components, formally: 

{ }Dieitistasta ∈−= |))((min)(  where ( )),...,(..., ietiss =  is 
the global total state of coupled model at some point in time, 

is  is the state of component i, iet  is elapsed time in that state. 
• SVXext →×:δ  is the external transition function for 

the coupled model. Where V is total state of the coupled mod-
el: { })](,0[,|),( staetSsetsV ∈∈= . 

• SS →:intδ  is the internal transition function of the 
coupled model. 

• YS →:λ  is the output function of the coupled model. 

IV. TIMED SAFETY AUTOMATA (TA) 
A Timed Automaton can be defined as [19]:  

A  = (N, lo, E, I) 
– N    is a finite set of locations (or nodes), 
– lo N∈  is the initial location, 
– E   _ NCN C ××Σ××⊆ 2)(β  is the set of edges and 
–  I: N→β( C )  assigns invariants to locations 

Here, C is a set of clock variables (with x, y, etc. represent-
ing clock variables from the set C). We use a, b, etc. to repre-
sent actions from a set of finite alphabet Σ. Assume a finite set 
of real-valued variables C ranged over by clocks x, y, etc. and 
a finite alphabet Σ (with actions a,b, etc.). Let us call a clock 
constraint a conjunctive formula of atomic constraints of the 
form x ~ n or x-y ~ n where x,y are clock variables, ~ is one of 
{≤, <, =, >, ≥} and n is a natural number. Clock constraints 
can used on transitions, where they are called a guard; or in a 
location (state), were they are called invariant. Invariants are 
constraints on the form x ≤ n, or x < n to restrict time spent in 
a TA location. β(C) denotes set of clock constraints. 

TA are Timed Transition Systems where states are pairs 
<L,u>, where L is a location, and u is a clock valuation. We 
write ll rag ′ → ,, when Elragl ∈′),,,,( with g a clock con-
straint, a  an action and r a set of clocks to be reset to zero. TA 
use two types of transitions:  

- Delay Transition: >+<→>< duLuL d ,, : the time 
passage d causes a transition from the start location, to an end 
location. 

- Action transition: >′′<→>< uLuL a ,, : an action a 
causes A transition from start location, to end location. 
 

V. EQUIVALENCY OF RTA-DEVS AND TA 
To verify RTA-DEVS applying existing theory and tools ex-
isting for TA, we need to construct TA models from RTA-
DEVS models that are behaviorally equivalent.  

Generally there are two methods to check if two Labeled 
Transition Systems (LTS) are behaviorally equivalent, namely 
Trace Equivalence and Bisimulation. In [17], it was shown 
that, for RTS, trace equivalence is not enough to show the 
complete equivalence of two LTS. Although one can show the 
trace equivalency of two LTS (based on their acceptance or 
the generation of event traces), RTS usually have multiple 
concurrent components working together. Those components 
may go into a deadlock state in which no external event is ob-
servable. Due to these subtle errors, bisimulation is a better 
notion for behavior equivalence, and the same reason is valid 
for Timed LTS (TLTS), of which RTA-DEVS and TA are two 
examples.  

Bisimulation is a relation between two TLTS (e.g., systems 
A and B), which establishes a relation between every state in 
A, and a corresponding one in B. It also relates every observ-
able transition in A to a corresponding one in B. In [17], the 
concepts of strong and weak timed bisimilarity were defined 
for behavioral equivalence of systems. In our case, we used 
timed weak bisimilarity equivalence, as it is more general in 
its application than the conditions for strong bisimulation. 

In next sections, we define behavior equivalency based on 
timed weak bisimulation. Then following the conditions of 
this bisimulation, we construct a TA model for the basic be-
havior elements of RTA-DEVS, namely internal and external 
transitions. Then, we deduce the required constant values on 
the TA model to complete the bisimulation equivalence.  

 
Definition: Eventual transition relation “ ⇒ ” 

In a TLTS with states, s and t, the eventual transition rela-
tion defines a transition from state s to state t that may contain 
one or more of direct transitions labeled with non-observable 
events to the outside world. If we have an observable action a, 
a non-observable action τ, and a transition label α, then, for 
any TLTS [17], the eventual transition relation ⇒  between s 

and t on action α  (written ts
α
⇒ ) is defined if any of the fol-

lowing conditions is true:  

1. ts
τ
⇒ : there is a transition from s to t only composed of 

transitions labeled with non-observable actions. E.g., for the 
non-observable action α=τ, there is a transition ts *)( →τ  (* 
defines one or more occurrences of these transitions). 

2. t
a

s ⇒ : there is a transition from s to t composed of one 
transition labeled with an observable action α=a, and one or 



more eventual transitions labeled with non-observable actions. 

E.g., tsass
ττ
⇒→⇒ 21  for some states s1 and s2; 

3. ts
d

⇒ : there is an eventual transition relation from s to t 
with total delay d (called eventual delay transition), which is 
composed of one or more direct delay transitions combined 
with some non-observable action transitions. This represents a 
sequence of transitions with no observable actions whose total 
delay amounts to d. E.g., for action 0≥ℜ∈= dα  and 

ttdstt
d

ss n
n

nn

τττ
⇒→⇒→⇒ −1......

1
1

1
 (with n≥ 0), for 

some intermediate states s1…sn, t1… tn and delays d1…dn 

with ∑
=

=
n

i idd
1

 (d is the total delay for the eventual transition 

from s to t; by convention, d=0 when n= 0). 
 

Definition: weak timed bisimulation. 
 The weak timed bisimulation is a binary relation R over a set 
of states of a TLTS. For example if we have states s1, s'1, s2 
and s'2, then R is a weak timed bisimulation s1 R s2 [17] iff: 

• 11
sds ′→ , then there is a transition 

22
s

d
s ′⇒ such that s’

1 

R s’
2 as shown in Figure 1. 

• 11 sas ′→ , then there is a transition 22 ss
a

′⇒ such that 

s’
1 R s’

2 as shown in Figure 2. 

• 22 sds ′→ , then there is a transition 11 s
d

s ′⇒ such that 

s’
1 R s’

2 as shown in Figure 3. 
• 22 ss a ′→ , then there is a transition 11 s

a
s ′⇒ such that 

s’
1 R s’

2 as shown in Figure 4. 

       

 
Figure 1: Direct delay transition from s1 to s'1 and corre-
sponding eventual delay transition from s2 to s'2. 

 
We choose the weak bisimulation relation to transform 

from RTA-DEVS to TA and vice versa, as this relation allows 
two models to be in bisimulation relation even with if one of 
them has some different transitions from the other, provided 
that these extra transitions are labeled with non-observable ac-
tion τ  [17]. This relaxation over strong bisimulation allows 
more flexibility to tune the TA model for performance while 
keeping the bisimulation relation to the RTA-DEVS model. 

 

                 
Figure 2: Direct action transition from s1 to s'1, and corre-
sponding eventual action transition from s2 to s'2. 

                 

                  
Figure 3: Direct delay transition from s2 to s'2 and corre-
sponding eventual delay transition from s1 to s'1. 

                  

                   
Figure 4: Direct action transition from s2 to s'2, and corre-
sponding eventual action transition from s1 to s'1. 

 

V. A) RTA-DEVS model internal transition semantics 
TA expresses the notion of time through clock variables and 
constraints on them, as shown in the previous section. Here, 
we present the RTA-DEVS behavior in terms of its transition 
functions, and we discuss how to obtain a behaviorally equiva-
lent TA according to the previous definition. In doing so, we 
determine the value of the constant in TA invariants and 
guards, in order to keep the same behavior of RTA-DEVS. 

 
Figure 5: RTA-DEVS Internal Transition 

 
The RTA-DEVS internal transition semantics is shown as 

a DEVS graph in Figure 5, and is defined as: 
1. 

3),(int 1
ses =δ   if  Tstae == )(

1
  

In RTA-DEVS semantics, this transition means that we 
move to state s3 when the elapsed time e in s1 equals the time 
advance value of s1. In a TLTS, this can be defined as a time 
elapsed transition with delay d with the form: 

31 sds →  if )1(0 stae <≤  and estad −= )(
1

 
which means that if we start at s1 with time spent e, we 



need to delay d time units before changing to state s3. 
2. 

11 ),(int ses =δ   if  )(0 1stae <≤   

     From the RTA-DEVS semantics, this transition means that 
we stay in the same state s1 as long as the elapsed time e in 
that state does not equal or exceed the time advance value for 
s1. This can be defined as a time elapse transition on the form: 

11 sds →  if )(0 1stae <≤  and estad −<≤ )(0 1  
which means that if we start at s1 with time spent e, as long 

as time delay d is constrained as above, we stay at s1. 
From now on, we will use the operational semantics of 

UPPAAL for TA as defined in [19]. For the graphs in the rest 
of the paper, we will name RTA-DEVS states as si, and the 
corresponding TA locations as Li (with i an integer number).  

 
Figure 6: TA model for an Internal RTA-DEVS transition. 

 
The delay transition for the TA in Figure 6 is defined as: 

),(),( 11 dxclockLdxclockL +=→=  for any 0≥d  
This defines the RTA-DEVS delay transition above, in 

which we stay in the same state with a total delay d less then 
time advance of s1. We will show that the TA in Figure 6 is 
behaviorally equivalent to the DEVS graph model shown in 
Figure 5 through a timed bisimulation relation. To do this, we 
will show that the state s1 is bisimilar to location L1, and state 
s3 is bisimilar to location L3. This is done showing a weak 
timed bisimulation relation (from RTA-DEVS to TA, and also 
from TA to RTA-DEVS). We do these in steps 1 and 2 below.  

In this model, two locations are defined (L1 and L3), along 
with a transition from L1 to L3. L1 has an invariant on clock x 
(x<C) that allows the TA to stay in that location as long as the 
invariant is true. The transition from L1 to L3 has a guard 
(x≥C) that must be true for the transition to be enabled, and C 
is a rational number. The transition also has an update rule for 
clock variable x to reset it to zero before entering location L3. 
We apply the condition above to weak timed bisimulation, 
first from RTA-DEVS to TA and then from TA to RTA-
DEVS. In doing so, we determine a value for the constant C to 
preserve the bisimulation relation. 

 
1) Step1: from RTA-DEVS to TA  
For the bisimulation of the states shown in Figure 5 and 

Figure 6, we have the following requirements: 
• S1 R L1: This is a delay transition from s1 to itself. If 

11 sds → for some value of d where )(0 1stae <≤  
and estad −<≤ )(0 1 ; then to satisfy the bisimulation relation 

we should have: ),(),( 11
dexLdexL +=→=  for the same 

value of d. As we have from the invariant of state L1, Cx <  
then by substituting for x and d, we get 

ta(s1) ≤ C          (Rule 1) 
• s3 R L3: Bisimilarity between s3 and L3:  

For the delay transition from s1 to s3, let us consider the 

execution of the DEVS internal transition )0,(),( 31
sdes → , 

where )(0 1stae <≤ and estad −= )(
1

by the TA transition 

),(),(
31

dexLdexL +=→= , with a reset statement on the 
transition x:=0.  

In order for these two delay transitions to be equivalent, 
they need to start from bisimilar states, and after same delay, 
they reach two bisimilar states. To achieve this, we use the 
same value of delay d on both transitions, and we deduce the 
constant C in the TA clock constraint to give us that condition 
above for bisimulation. The TA transition above starts from 
location L1, with the clock x equals same value of elapsed time 
e at the RTA-DEVS transition above; then after same delay d 
of the RTA-DEVS transition, it transitions to L3, and the value 
of clock x increases by d.  

We apply the conditions for this delay transition on TA 
transition above. The TA guard on the transition out of loca-
tion L1:  ( Cx ≥ ) with the value of clock x: ( dex += ), we 
get:  

ta(s1) ≥ C         (Rule 2) 
This rule means that as long we use a constant C in the 

guard of the TA transition with value greater or equal to the 
time advance value of s1, the previous TA transition executes 
the RTA-DEVS transition above.  

These two rules give the condition ta(s1) = C for the TA 
shown in Figure 6 to execute the DEVS graph as in Figure 5. 

This condition guarantees the timed weak simulation rela-
tion from the RTA-DEVS model internal transition of Figure 5 
to delay transitions of TA in Figure 6. We would show the 
condition of timed weak simulation relation from TA to RTA-
DEVS in step 2 below. 

 
2) Step 2: From TA to RTA-DEVS  
To satisfy the other direction of the bisimulation relation, 

we convert the TA in Figure 6 with RTA-DEVS in Figure 5. 
Case 1: TA delay transition ),(),( 11 dexLdexL +=→= . 
Here, we need the value of clock x to be less than C in or-

der for the L1 invariant to be true and TA to stay in L1, i.e. 
e + d < C          (Rule 3) 

For the RTA-DEVS time delay transition 

),(),( 11 desdes +→  to stay in s1 after d, we need the sum of 
the elapsed time and delay to be less than the lifetime of s1: 

e+d < ta(s1)       (Rule 4) 

Case 2: TA transition )0,(),( 31 =→= xLdexL .  
We start from location L1 with a clock x equal to some 

elapsed time e in L1. After d, we change to L3 and clock x is 
reset. To exit from L1, the invariant would be false and the 
guard on the TA transition would need to be true, which gives: 

e + d = C          (Rule 5) 

This is defined as in RTA-DEVS as )0,(),( 31 ses d→ ,  
in which we need elapsed time e in s1 and a delay equal to the 
time advance of s1 to trigger the internal transition: 

e + d = ta(s1)       (Rule 6) 



From rules 3 and 4, we determine C=ta(s1). With this val-
ue, we have a timed simulation relation from TA (shown in 
Figure 6) to RTA-DEVS (shown in Figure 5). By having a 
simulation relation in both directions, the RTA-DEVS internal 
transition shown above is timed bisimilar and behaviorally 
equivalent to the TA timed transitions shown above if we have 
the constant C equal to the lifetime of corresponding state in 
RTA-DEVS model. This concludes that s1 R L1 and s3 R L3 

by the bisimulation relation R. 
When we use the previous method could be used to map 

internal transitions from RTA-DEVS model to transitions at a 
TA model and vice versa, we guarantee the resulting transi-
tions to be behaviorally equivalent. We will show the same for 
RTA-DEVS external transitions in the following section. 

 
V. B) RTA-DEVS external transitions  
The RTA-DEVS external transition function is defined as: 

SXDVext →×:δ  , where: }{ )(0,:),( staeSsesDV ≤≤∈=  
 

 
Figure 7: RTA-DEVS External transitions on action a. 

 
Figure 7 represents the following definitions for the RTA-

DEVS external transition function: 
54 ),,( seasext =δ   For 30 << e  

64 ),,( seasext =δ   For )(3 4stae <≤  
Each of these transitions can be expressed as a time pas-

sage and action transitions as: 

1. 44
3 sds  → <  and 54 sas →    

2. 4
4

4
)(3 sstads  → <≤  and 64 sas →  

From these expressions, we can represent the external tran-
sitions as the TA transitions shown in Figure 8.  

 
Figure 8: TA model for RTA-DEVS external transition. 
 

From TA semantics, each of these transitions is expressed 
as a time and action transitions, that is:  

1. )3,4(3)0,4( = → <= xLdxL   and 

)0,5()3,4( =→= xLaxL  for the first RTA-DEVS transi-

tion. That is, we stay in L4 while elapsed time is less than 3 
units, and then with action a, the TA takes transitions to L5. 

2. )3,4(
)4(3

)0,4( = →
<≤

= xL
stad

xL  and 

)0,6(),4( =→ xLaxL   for the second RTA-DEVS transi-

tion. That is, if the elapsed time in L4 exceeds 3 units and is 
less than lifetime of L4, with action a, the TA transitions to L6.  

This gives us the relation R between RTA-DEVS and TA 
model states: 4s  R 4L , 5s R 5L , and 6s R 6L .  

Conversely, we can show the simulation in the other direc-
tion from each of TA transitions and the RTA-DEVS external 
transitions above. Hence, this shows a bisimulation relation R 
between the corresponding DEVS and TA models above. 

VI. OBSERVATIONS: RTA-DEVS TO TA TRANSFORMA-
TION. 

The transformation example in the previous section introduces 
the methodology to transform RTA-DEVS models to TA 
models. The resulting TA models are a subset of deterministic 
safety automata used in the UPPAAL model checker. The 
transformation methodology can be summarized as follows: 

1. Define a clock variable for each atomic RTA-DEVS 
model, for example x. 

2.  Replace every state in RTA-DEVS with a correspond-
ing one in TA, i.e L1 for source s1 and L2 for destination s2. 

3. An RTA-DEVS internal transition is modeled in TA as 
follows:   

•  A source state L1 and a destination state L2. 
• Reset the clock variable on the entry to each state 

(x:=0). 
• Put an invariant in the source state derived from the 

time advance function for that state as shown above, i.e. 
x<ta(s1). 

• Define a transition with a guard. This guard should 
be the complement to the invariant in the source state as 
shown in the example transformation above, i.e. x ≥ ta(s1). 

4. The RTA-DEVS external transition is modeled in TA 
with the following items:   

• A source state and some destination state(s), i.e L1 for 
source s1 and L2 for destination s2. 

• A clock reset on the entry to each state. 
• An invariant in the source state that corresponds to 

time advance function for that state, i.e. x<ta(s1). 
• For the external transition(s) with guards of clock 

constraints, these constraints should be disjoint to obtain a de-
terministic TA model. 

• The action label on TA transitions for each RTA-
DEVS input event to source state s1. 

By applying the previous steps, we obtain a TA model that 
executes every transition defined in the RTA-DEVS model 
under study. As we know, the RTA-DEVS behavior is com-
pletely defined by its transition functions, which defines all 
transitions in RTA-DEVS model. Thus, the resulting TA mod-
el executes the RTA-DEVS. This gives us a TA model that is 
behaviorally equivalent to the RTA-DEVS model and can be 
formally verified with tools like UPPAAL to infer properties 
about the original RTA-DEVS model. In the following 



lowing section, we look into a full example of applying this 
methodology. 

VII. TRANSFORMATION EXAMPLE 
From the previous section, we can see that any RTA-DEVS 
model can be transformed to a behaviorally equivalent TA if 
we follow the steps shown. To show this process in further de-
tail, we introduce an example of an elevator system [20]. The 
system is composed of an elevator and its controller, which in-
teracts with the user to receive button requests from each 
floor. Then, it makes the elevator to respond to user requests. 
This is an example of a (soft) RTS with safety and bounded 
response time requirements. To check for these requirements, 
we applied the previous transformation rules to the DEVS 
graph models of the elevator system [21]. 
 

 
Figure 9: Elevator RTA-DEVS Model 
 

The elevator DEVS graph model in Figure 9 has 5 external 
transitions shown with solid arrows, and three internal transi-
tions shown with dotted arrows. By taking each transition 
from the RTA-DEVS model and applying the previous steps, 
we get the converted TA model shown in Figure 10. Note that 
an external transition is enabled whenever the expression on 
that transition evaluates to true in RTA-DEVS model. The ex-
pression Value(mover) evaluates to true whenever the elevator 
model receives a value in mover variable equals to 1. This ex-
pression is translated to a channel reception move? as shown 
in TA model in Figure 10. In this case, whenever a value is 
transmitted on that channel, the transition synchronized on 
that channel is enabled. 

Also note that time advance values for each state in RTA-
DEVS model, has been substituted with an equivalent clock 
invariant in the corresponding state in the TA model, and the 
constant in that invariant equals state lifetime as indicated on 
the RTA-DEVS model. 

 

 
Figure 10: Elevator TA model 

 
The elevator a controller is also responsible to interact with 

the user and send commands to the elevator to satisfy the user 
requests. The controller RTA-DEVS model is shown in Figure 
11 and represented in DEVS graphs notation.  

 
Figure 11: Elevator Controller Model as DEVS Graphs. 

 
We applied the transformation steps above to the elevator 

controller RTA-DEVS model to obtain TA in Figure 12. 
 

 
Figure 12: TA Controller model in UPPAAL. 



 
The RTA-DEVS Elevator coupled model is composed of 

the elevator atomic model and the Controller model. The cou-
pled Elevator model takes as an input a number between 1 and 
3 that represents number of floor with button pressed. During 
coupled Elevator model simulation in DEVS simulator input is 
read from an input file representing button press. 

In [20], we showed how to verify a number of desired 
properties for the RTA-DEVS model such as deadlock free-
dom, bounded response time, and safety properties for the ele-
vator coupled model. We used Computational Tree Logic 
(CTL) to construct queries with the requirements and submit-
ted it to UPPAAL to get an answer and hence verify that re-
quirement. One such requirement is the freedom of deadlocks 
and expressed in CTL as A[] not deadlock. This means for 
all paths, there should be no deadlocks. 

After running the checker, it shows that this property is 
satisfied, i.e. there is no deadlock in the DEVS model: 
UPPAAL version 4.0.6 (rev. 2986), March 2007 -- 
server. 
A[] not deadlock 
Property is satisfied. 

Another important check on correct model semantics is to 
check a user request against the model behavior. For example, 
if a user presses a specific floor button, the elevator should 
move to that floor. This is expressed as follows:  

button == 3 --> ElevatorController.cur_floor == 3 
Which means if 3rd floor button is pressed; the elevator 

would eventually reach that floor. This query returned true and 
thus the property is satisfied in our model. However the query 

button == 3 --> ElevatorController.cur_floor == 4 
was not satisfied as expected for a correct model, as when-

ever 3rd floor button is pressed; our simple model should not 
deliver the elevator to the 4th floor. 

VIII. CONCLUSION 
We introduced some of the problems that prevents general 
classic DEVS model from being modeled and verified by TA. 
We introduced RTA-DEVS to overcome these problems and 
to offer a subset of DEVS that is still expressive enough for 
modeling practical problems and that can be transformed to 
TA. We then could use the transformed TA to reason about 
the original RTA-DEVS model, and hence about the real prob-
lem being modeled. We also showed a methodology to con-
vert RTA-DEVS to TA in a systematic way. 

We can compare the expressiveness of RTA-DEVS with 
TA. As our transformation showed, the equivalent TA to an 
RTA-DEVS has no diagonal clock constraints of the form       
x - y <C. This is a limitation of general TA with diagonal con-
straints. However, this does not reduce the expressiveness of 
RTA-DEVS from general TA formalism as any TA with di-
agonal constraints can be expressed with a TA without diago-
nal constraints as shown in [22]. However general TA with di-
agonal constraints is more concise as shown in [23] than RTA-
DEVS (as represented by a TA without diagonal constraints). 

We envision that this methodology could influence the 
M&S in a number of ways, producing models more accurate, 
and better simulations with less cost and effort. The validation 
and verification of simulation models, which are done cur-
rently in a manual, error-prone procedure and usually needs a 
domain expert; this technique can improve such activities.  
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