
Rational Time-Advance DEVS (RTA-DEVS)

Hesham Saadawi (hsaadawi@connect.carleton.ca)1 Gabriel Wainer (gwainer@sce.carleton.ca)2

1School of Computer Science, Carleton University, Ottawa, ON, CANADA
2Departement of Systems and Computer Engineering, Carleton University, Ottawa, ON, CANADA

Keywords: Discrete event simulation, DEVS, UPPAAL, DEVS verifica-
tion, Timed Automata, model checking.

Abstract
This paper introduces a new extension to the DEVS formalism, called Ra-
tional Time-Advance DEVS. The basic idea of this new formalism is to per-
mit modeling the behavior of systems that can be modeled by classical DEVS;
however, RTA-DEVS models could be formally checked with standard
model-checking algorithms and tools. In order to do so, we introduce a proce-
dure to create Timed Automata models that are behaviorally equivalent to the
original RTA-DEVS models. This therefore, enables the use of the available
TA tools and theories for formal model checking.

I. INTRODUCTION
Real-time embedded systems (RTS) are very advanced com-
puter system applications with hardware and software compo-
nents interacting in a tight fashion. RTS are highly reactive
systems where the decisions taken can lead to catastrophic
consequences for goods or lives; hence, correctness, and the
timing of the executing tasks are critical.

An effective approach in studying such systems is to
model the application by abstracting unnecessary details, ob-
taining a model that closely approximates the behavior of the
real system. The model would then be studied to reason about
the real system. A modeler would select a suitable formalism
and tools depending on the nature of the system under study.
For instance, continuous systems have a long tradition of be-
ing modeled with a algebraic, differential and partial differen-
tial equations, which can faithfully model the systems and
have well-known methodologies and tools available. For dis-
crete-event systems, formal methods can be used to determine
the model’s behavior to reason about the real system. Formal
verification methods allow the model to be rigorously checked
against a specification property, proving if the property is sat-
isfied or not. For instance, Timed Automata (introduced in the
1990's as an extension to finite automata) can be used to
model discrete-event systems and their timing aspects [1].

TA has an established theory of formal verification and
analysis through model-checking [2][3]. This method tests a
model against given specifications or properties using algo-
rithms to formally verify and prove that a model meets a
specification (coded as a logic formula), or if not, it can show
the sequence of events to cause the defect. The main advan-
tage of model-checking is that it is usually very difficult (or
impossible) to test all possible executions of a model to find a
defect. Instead, models checked formally are guaranteed to be
free of errors (as opposed to simulation and testing based solu-
tions, which gives a certain confidence in a model with no ab-
solute guarantee). However, model-checking algorithms suffer
from a state explosion problem, in which total number of
states to be checked grows exponentially with the model size.
Thus, for large size applications, model-checking is impracti-
cal.

In these cases, Modeling and Simulation (M&S) tech-
niques and tools can be used for analyzing varied scenarios. In

M&S based analysis, the model is executed with sample in-
puts, and the outputs are observed and these are compared to
real system behavior. This validation is usually done with the
help of a subject matter expert to check the logical assump-
tions and abstractions in the model to reflect the real system.
Most M&S frameworks are not as robust formal methods due
to their lack of a mathematical foundation (which poses diffi-
culties when trying to prove properties about RTS). Instead,
DEVS (Discrete-EVent Systems specifications) [4], provides a
formal method (based on systems theory) to model and simu-
lates discrete-event systems. DEVS has been widely used
since its inception in the ‘70s to model discrete-event systems,
and numerous DEVS tools have been created. However,
DEVS does yet have a sound theory for formal verification
(thus, DEVS models are mainly studied through simulation).

Both model verification techniques and M&S based meth-
ods need manual work for testing the model in an iterative cy-
cle (an error-prone and expensive task). By enabling simula-
tion models to be formally checked, a modeler can use formal
verification to compose queries about the model behavior and
submit it to a model verifier, which would be able to answer if
the model satisfies these properties. Likewise, the model can
be formally verified against any faults that may be introduced
during model construction, making easier the testing tasks.

Our long-term goal is thus to define a theoretical frame-
work and a practical environment that will combine the advan-
tages of formal methods and simulation for RTS construction.
At this stage, we are exploring methods to convert DEVS to
TA to enable formal DEVS model checking. Converting from
DEVS models to equivalent TA models and vice versa is a
valuable addition to both worlds. TA could be used for DEVS
model validation and verification through model-checking. On
the other hand, TA could be modeled as DEVS to be simu-
lated, complementing model-checking for very large models.

As would be shown in section II, previous work on formal
verification of DEVS models has to work on restricted types
of DEVS. This is because formally checking classic DEVS
has its challenges and limitations. However, by using these re-
stricted types of DEVS, a modeler would lose much of the
modeling power of classic DEVS to model the system at hand.
Ideally, a modeler would like to use some formalism that is as
powerful as DEVS, yet this formalism can be formally veri-
fied. In this paper, we try to achieve this by introducing RTA-
DEVS, a subset of DEVS still powerful for practical modeling
applications. RTA-DEVS can be seen as a relaxation of some
restriction of FD-DEVS [9] (the elapsed time cannot be used
to determine the transition to next state). This makes the ex-
pressiveness of RTA-DEVS closer to classic DEVS, giving
the modeler a more powerful formalism. Also, RTA-DEVS is
defined in a way to make it possible to transform it to an
equivalent TA that can be formally verified. We show a trans-
formation from RTA-DEVS to TA that preserves all proper-

ties of RTA-DEVS models into TA (the resulting TA model is
built to be behaviorally equivalent to the RTA-DEVS model).
This enables complete formal validation and verification of
RTA-DEVS models with available tools and theories. We fi-
nally show an example of RTA-DEVS and its transformation
to TA, and its verification using UPPAAL [1].

II. RELATED WORK

There have been several proposals to verify DEVS models,
ranging from formal model-checking of restricted classes of
DEVS, the generation of traces from DEVS models for test-
ing, the specification of high-level system requirements in TA
(and verifying DEVS model against those requirements), or
introducing clock constructs to DEVS to conform with TA.

In [5], the Real-Time DEVS formalism (RT-DEVS) intro-
duces a time advance function that maps each state to a range
with maximum and minimum time values. In [8], RT-DEVS
was used to model a real-time system of train-gate-controller.
It introduced an algorithm to build a timed reachability tree to
be used for safety analysis. Further work on verifying RT-
DEVS is done in [6][7] using TA and UPPAAL, and a trans-
formation from RT-DEVS to UPPAAL is shown. This trans-
formation allows weak synchronization between components
of TA model as RT-DEVS semantics uses weak synchroniza-
tion. The transformation given did not show formally timed
behavior equivalence between RT-DEVS and TA models.

Other approach [9] was to introduce a subclass of DEVS
(called Finite-Deterministic DEVS) in which the time advance
function is maps states to rational numbers, and the external
transition function cannot use the elapsed time to determine its
result. In [9] the authors introduced verification through reach-
ability analysis similar to TA algorithms and techniques.

In [10], the authors show how to map DEVS models to
TA. The conversion method mapped DEVS model through its
components and its simulator. The approach suggests trace
equivalence as the basis for parallel DEVS and TA model
equivalence. In [11], high-level system specifications are done
in TA and then modeled with DEVS; system requirements are
verified through simulation of the DEVS model.

A result in [12] showed that verification of general DEVS
models through reachability analysis is undecidable. The au-
thors based their deduction on building a DEVS simulation
Turing machine. Since in Turing machines the halting prob-
lem is undecidable (i.e. with analysis only, we cannot know in
which state a Turing machine would be), they concluded that
this is also true for DEVS models: we cannot know if we
reach a particular state starting from initial state, and hence
reachability analysis for general DEVS is impossible. They
argue that reachability analysis maybe possible only for re-
stricted classes of DEVS. This result however was based on
introducing state variables into DEVS formalism with infinite
number of values. In [13], the authors introduced a new class
of DEVS called Time Constrained DEVS (TC-DEVS) that ex-
panded DEVS atomic model definition with the introduction
of multiple clocks incremented independently of other clocks.
Classic DEVS atomic models can be seen as having only one
clock that keeps track of elapsed time in a state, and is reset on
each transition. TC-DEVS also added clock constraints similar
to TA (to function as guards on external and internal transi-
tions). However, it allows clock constraints in states as invari-

ants that contain clock differences. TC-DEVS is then trans-
formed to an UPPAAL TA model. The paper however, did not
explain a transformation of TC-DEVS state invariants to UP-
PAAL TA when the model has invariants with clock differ-
ences.

Other DEVS verification techniques use testing to verify
the DEVS [14][15]. Testing sequences generated from model
specifications are applied against the model implementation to
verify the conformance of implementation to specifications.

Our work differs from the above approaches in that it de-
fines a new class of DEVS, called RTA-DEVS, which is very
close to classic DEVS in semantics and expressive power. We
then define a transformation to obtain a TA that is behavior-
ally equivalent to RTA-DEVS. The advantage of doing so is
that many classic DEVS models would satisfy the semantics
of RTA-DEVS models. Thus, they could be simulated with
any DEVS simulator. Likewise, it can be transformed to TA to
validate desired properties formally. RTA-DEVS has followed
FD-DEVS in restricting the time advance function to nonnega-
tive rational numbers, but also relaxed the restriction of FD-
DEVS on external transition functions. This makes RTA-
DEVS closer to general DEVS and adds expressiveness. How-
ever, RTA-DEVS still restricts the elapsed time in a state used
in the external transition function to be nonnegative rational
number. This restriction translates to having nonnegative ra-
tional constants in guards in the transformed TA model, and
ensures termination of reachability analysis algorithm imple-
mented in UPPAAL [1], as irrational constants in TA guards
renders reachability analysis undecidable [16].

III. RTA-DEVS

As in classical DEVS, we need to define RTA-DEVS atomic
model. RTA-DEVS changes the definitions of time advance
function ta and the external transition function extδ as fol-
lows. The Atomic Rational Time-Advance is defined as:

AMTC = < X, Y, S, δint, δext , λ, ta>
- X : The set of external inputs.
- :Y Set of external outputs.
- S: set of system states.
- δint: S → S is the internal transition function (the same as

in classic DEVS).
− δext: TxX → S with T={(s,e)/s 0≤e≤ta(s), e ∈ Q0,+∞} is

the external transition function (e is the time elapsed since the
last transition, which takes a positive rational value).

- λ: S → Y ∪∅ is the output function.
- ta: S → Q0,+∞ is the time advance function that maps

each state to a positive rational number.
Coupled RTA-DEVS model are defined exactly as in clas-

sic DEVS. Coupled RTA-DEVS models are composed of
atomic or other coupled RTA-DEVS models:

SelectyCxCiMDYXCM ,,},{,,,≡

X: Set of external input events.
Y: Set of external output events.
D: Finite index of sub-components.
{Mi}: The set of sub-components. A sub-component may

be an atomic or coupled. Di ∈ is the index of the component.
Cx: Set of input couplings.
Cy: Set of output couplings.

Select: 2D →D is a tie-breaking function, which defines
how to select an event from asset of simultaneous events.

A coupled RTA-DEVS model M can be simulated with an
equivalent atomic RTA-DEVS model, whose behavior is de-
fined as follows [18]:

M = < X,Y,S,s0,δext,δint,λ,ta >
• X and Y are the input and output event sets, respectively.

X is the set of all input events accepted and Y is the set of all
output events generated by coupled model M.

• iVDiS ∈×= is the model state. It is expressed as the
Cartesian product of all component states, where

iV is the total
state for component i, { })](,0[,|),(istaeitiSiseitisiV ∈∈= .
Here, eit denotes the elapsed time in state is of component i,
and iS is the set of states of component i.

• ivDis 00 ∈×= is the initial system state, with)0,0(0 isiv =

is the initial state of component Di ∈ .
• Τ→Sta : is the time advance function. It is calculated

for the global state Ss ∈ of the coupled model as the minimum
time remaining for any state among all components, formally:

{ }Dieitistasta ∈−= |))((min)(where ()),...,(..., ietiss = is
the global total state of coupled model at some point in time,

is is the state of component i, iet is elapsed time in that state.
• SVXext →×:δ is the external transition function for

the coupled model. Where V is total state of the coupled mod-
el: { })](,0[,|),(staetSsetsV ∈∈= .

• SS →:intδ is the internal transition function of the
coupled model.

• YS →:λ is the output function of the coupled model.

IV. TIMED SAFETY AUTOMATA (TA)
A Timed Automaton can be defined as [19]:

A = (N, lo, E, I)
– N is a finite set of locations (or nodes),
– lo N∈ is the initial location,
– E _ NCN C ××Σ××⊆ 2)(β is the set of edges and
– I: N→β(C) assigns invariants to locations

Here, C is a set of clock variables (with x, y, etc. represent-
ing clock variables from the set C). We use a, b, etc. to repre-
sent actions from a set of finite alphabet Σ. Assume a finite set
of real-valued variables C ranged over by clocks x, y, etc. and
a finite alphabet Σ (with actions a,b, etc.). Let us call a clock
constraint a conjunctive formula of atomic constraints of the
form x ~ n or x-y ~ n where x,y are clock variables, ~ is one of
{≤, <, =, >, ≥} and n is a natural number. Clock constraints
can used on transitions, where they are called a guard; or in a
location (state), were they are called invariant. Invariants are
constraints on the form x ≤ n, or x < n to restrict time spent in
a TA location. β(C) denotes set of clock constraints.

TA are Timed Transition Systems where states are pairs
<L,u>, where L is a location, and u is a clock valuation. We
write ll rag ′ → ,, when Elragl ∈′),,,,(with g a clock con-
straint, a an action and r a set of clocks to be reset to zero. TA
use two types of transitions:

- Delay Transition: >+<→>< duLuL d ,, : the time
passage d causes a transition from the start location, to an end
location.

- Action transition: >′′<→>< uLuL a ,, : an action a
causes A transition from start location, to end location.

V. EQUIVALENCY OF RTA-DEVS AND TA
To verify RTA-DEVS applying existing theory and tools ex-
isting for TA, we need to construct TA models from RTA-
DEVS models that are behaviorally equivalent.

Generally there are two methods to check if two Labeled
Transition Systems (LTS) are behaviorally equivalent, namely
Trace Equivalence and Bisimulation. In [17], it was shown
that, for RTS, trace equivalence is not enough to show the
complete equivalence of two LTS. Although one can show the
trace equivalency of two LTS (based on their acceptance or
the generation of event traces), RTS usually have multiple
concurrent components working together. Those components
may go into a deadlock state in which no external event is ob-
servable. Due to these subtle errors, bisimulation is a better
notion for behavior equivalence, and the same reason is valid
for Timed LTS (TLTS), of which RTA-DEVS and TA are two
examples.

Bisimulation is a relation between two TLTS (e.g., systems
A and B), which establishes a relation between every state in
A, and a corresponding one in B. It also relates every observ-
able transition in A to a corresponding one in B. In [17], the
concepts of strong and weak timed bisimilarity were defined
for behavioral equivalence of systems. In our case, we used
timed weak bisimilarity equivalence, as it is more general in
its application than the conditions for strong bisimulation.

In next sections, we define behavior equivalency based on
timed weak bisimulation. Then following the conditions of
this bisimulation, we construct a TA model for the basic be-
havior elements of RTA-DEVS, namely internal and external
transitions. Then, we deduce the required constant values on
the TA model to complete the bisimulation equivalence.

Definition: Eventual transition relation “ ⇒ ”

In a TLTS with states, s and t, the eventual transition rela-
tion defines a transition from state s to state t that may contain
one or more of direct transitions labeled with non-observable
events to the outside world. If we have an observable action a,
a non-observable action τ, and a transition label α, then, for
any TLTS [17], the eventual transition relation ⇒ between s

and t on action α (written ts
α
⇒) is defined if any of the fol-

lowing conditions is true:

1. ts
τ
⇒ : there is a transition from s to t only composed of

transitions labeled with non-observable actions. E.g., for the
non-observable action α=τ, there is a transition ts *)(→τ (*
defines one or more occurrences of these transitions).

2. t
a

s ⇒ : there is a transition from s to t composed of one
transition labeled with an observable action α=a, and one or

more eventual transitions labeled with non-observable actions.

E.g., tsass
ττ
⇒→⇒ 21 for some states s1 and s2;

3. ts
d

⇒ : there is an eventual transition relation from s to t
with total delay d (called eventual delay transition), which is
composed of one or more direct delay transitions combined
with some non-observable action transitions. This represents a
sequence of transitions with no observable actions whose total
delay amounts to d. E.g., for action 0≥ℜ∈= dα and

ttdstt
d

ss n
n

nn

τττ
⇒→⇒→⇒ −1......

1
1

1
 (with n≥ 0), for

some intermediate states s1…sn, t1… tn and delays d1…dn

with ∑
=

=
n

i idd
1

 (d is the total delay for the eventual transition

from s to t; by convention, d=0 when n= 0).

Definition: weak timed bisimulation.
 The weak timed bisimulation is a binary relation R over a set
of states of a TLTS. For example if we have states s1, s'1, s2
and s'2, then R is a weak timed bisimulation s1 R s2 [17] iff:

• 11
sds ′→ , then there is a transition

22
s

d
s ′⇒ such that s’

1

R s’
2 as shown in Figure 1.

• 11 sas ′→ , then there is a transition 22 ss
a

′⇒ such that

s’
1 R s’

2 as shown in Figure 2.

• 22 sds ′→ , then there is a transition 11 s
d

s ′⇒ such that

s’
1 R s’

2 as shown in Figure 3.
• 22 ss a ′→ , then there is a transition 11 s

a
s ′⇒ such that

s’
1 R s’

2 as shown in Figure 4.

Figure 1: Direct delay transition from s1 to s'1 and corre-
sponding eventual delay transition from s2 to s'2.

We choose the weak bisimulation relation to transform

from RTA-DEVS to TA and vice versa, as this relation allows
two models to be in bisimulation relation even with if one of
them has some different transitions from the other, provided
that these extra transitions are labeled with non-observable ac-
tion τ [17]. This relaxation over strong bisimulation allows
more flexibility to tune the TA model for performance while
keeping the bisimulation relation to the RTA-DEVS model.

Figure 2: Direct action transition from s1 to s'1, and corre-
sponding eventual action transition from s2 to s'2.

Figure 3: Direct delay transition from s2 to s'2 and corre-
sponding eventual delay transition from s1 to s'1.

Figure 4: Direct action transition from s2 to s'2, and corre-
sponding eventual action transition from s1 to s'1.

V. A) RTA-DEVS model internal transition semantics
TA expresses the notion of time through clock variables and
constraints on them, as shown in the previous section. Here,
we present the RTA-DEVS behavior in terms of its transition
functions, and we discuss how to obtain a behaviorally equiva-
lent TA according to the previous definition. In doing so, we
determine the value of the constant in TA invariants and
guards, in order to keep the same behavior of RTA-DEVS.

Figure 5: RTA-DEVS Internal Transition

The RTA-DEVS internal transition semantics is shown as

a DEVS graph in Figure 5, and is defined as:
1.

3),(int 1
ses =δ if Tstae ==)(

1

In RTA-DEVS semantics, this transition means that we
move to state s3 when the elapsed time e in s1 equals the time
advance value of s1. In a TLTS, this can be defined as a time
elapsed transition with delay d with the form:

31 sds → if)1(0 stae <≤ and estad −=)(
1

which means that if we start at s1 with time spent e, we

need to delay d time units before changing to state s3.
2.

11),(int ses =δ if)(0 1stae <≤

 From the RTA-DEVS semantics, this transition means that
we stay in the same state s1 as long as the elapsed time e in
that state does not equal or exceed the time advance value for
s1. This can be defined as a time elapse transition on the form:

11 sds → if)(0 1stae <≤ and estad −<≤)(0 1
which means that if we start at s1 with time spent e, as long

as time delay d is constrained as above, we stay at s1.
From now on, we will use the operational semantics of

UPPAAL for TA as defined in [19]. For the graphs in the rest
of the paper, we will name RTA-DEVS states as si, and the
corresponding TA locations as Li (with i an integer number).

Figure 6: TA model for an Internal RTA-DEVS transition.

The delay transition for the TA in Figure 6 is defined as:

),(),(11 dxclockLdxclockL +=→= for any 0≥d
This defines the RTA-DEVS delay transition above, in

which we stay in the same state with a total delay d less then
time advance of s1. We will show that the TA in Figure 6 is
behaviorally equivalent to the DEVS graph model shown in
Figure 5 through a timed bisimulation relation. To do this, we
will show that the state s1 is bisimilar to location L1, and state
s3 is bisimilar to location L3. This is done showing a weak
timed bisimulation relation (from RTA-DEVS to TA, and also
from TA to RTA-DEVS). We do these in steps 1 and 2 below.

In this model, two locations are defined (L1 and L3), along
with a transition from L1 to L3. L1 has an invariant on clock x
(x<C) that allows the TA to stay in that location as long as the
invariant is true. The transition from L1 to L3 has a guard
(x≥C) that must be true for the transition to be enabled, and C
is a rational number. The transition also has an update rule for
clock variable x to reset it to zero before entering location L3.
We apply the condition above to weak timed bisimulation,
first from RTA-DEVS to TA and then from TA to RTA-
DEVS. In doing so, we determine a value for the constant C to
preserve the bisimulation relation.

1) Step1: from RTA-DEVS to TA
For the bisimulation of the states shown in Figure 5 and

Figure 6, we have the following requirements:
• S1 R L1: This is a delay transition from s1 to itself. If

11 sds → for some value of d where)(0 1stae <≤
and estad −<≤)(0 1 ; then to satisfy the bisimulation relation

we should have:),(),(11
dexLdexL +=→= for the same

value of d. As we have from the invariant of state L1, Cx <
then by substituting for x and d, we get

ta(s1) ≤ C (Rule 1)
• s3 R L3: Bisimilarity between s3 and L3:

For the delay transition from s1 to s3, let us consider the

execution of the DEVS internal transition)0,(),(31
sdes → ,

where)(0 1stae <≤ and estad −=)(
1

by the TA transition

),(),(
31

dexLdexL +=→= , with a reset statement on the
transition x:=0.

In order for these two delay transitions to be equivalent,
they need to start from bisimilar states, and after same delay,
they reach two bisimilar states. To achieve this, we use the
same value of delay d on both transitions, and we deduce the
constant C in the TA clock constraint to give us that condition
above for bisimulation. The TA transition above starts from
location L1, with the clock x equals same value of elapsed time
e at the RTA-DEVS transition above; then after same delay d
of the RTA-DEVS transition, it transitions to L3, and the value
of clock x increases by d.

We apply the conditions for this delay transition on TA
transition above. The TA guard on the transition out of loca-
tion L1: (Cx ≥) with the value of clock x: (dex +=), we
get:

ta(s1) ≥ C (Rule 2)
This rule means that as long we use a constant C in the

guard of the TA transition with value greater or equal to the
time advance value of s1, the previous TA transition executes
the RTA-DEVS transition above.

These two rules give the condition ta(s1) = C for the TA
shown in Figure 6 to execute the DEVS graph as in Figure 5.

This condition guarantees the timed weak simulation rela-
tion from the RTA-DEVS model internal transition of Figure 5
to delay transitions of TA in Figure 6. We would show the
condition of timed weak simulation relation from TA to RTA-
DEVS in step 2 below.

2) Step 2: From TA to RTA-DEVS
To satisfy the other direction of the bisimulation relation,

we convert the TA in Figure 6 with RTA-DEVS in Figure 5.
Case 1: TA delay transition),(),(11 dexLdexL +=→= .
Here, we need the value of clock x to be less than C in or-

der for the L1 invariant to be true and TA to stay in L1, i.e.
e + d < C (Rule 3)

For the RTA-DEVS time delay transition

),(),(11 desdes +→ to stay in s1 after d, we need the sum of
the elapsed time and delay to be less than the lifetime of s1:

e+d < ta(s1) (Rule 4)

Case 2: TA transition)0,(),(31 =→= xLdexL .
We start from location L1 with a clock x equal to some

elapsed time e in L1. After d, we change to L3 and clock x is
reset. To exit from L1, the invariant would be false and the
guard on the TA transition would need to be true, which gives:

e + d = C (Rule 5)

This is defined as in RTA-DEVS as)0,(),(31 ses d→ ,
in which we need elapsed time e in s1 and a delay equal to the
time advance of s1 to trigger the internal transition:

e + d = ta(s1) (Rule 6)

From rules 3 and 4, we determine C=ta(s1). With this val-
ue, we have a timed simulation relation from TA (shown in
Figure 6) to RTA-DEVS (shown in Figure 5). By having a
simulation relation in both directions, the RTA-DEVS internal
transition shown above is timed bisimilar and behaviorally
equivalent to the TA timed transitions shown above if we have
the constant C equal to the lifetime of corresponding state in
RTA-DEVS model. This concludes that s1 R L1 and s3 R L3

by the bisimulation relation R.
When we use the previous method could be used to map

internal transitions from RTA-DEVS model to transitions at a
TA model and vice versa, we guarantee the resulting transi-
tions to be behaviorally equivalent. We will show the same for
RTA-DEVS external transitions in the following section.

V. B) RTA-DEVS external transitions
The RTA-DEVS external transition function is defined as:

SXDVext →×:δ , where: }{)(0,:),(staeSsesDV ≤≤∈=

Figure 7: RTA-DEVS External transitions on action a.

Figure 7 represents the following definitions for the RTA-

DEVS external transition function:
54),,(seasext =δ For 30 << e

64),,(seasext =δ For)(3 4stae <≤
Each of these transitions can be expressed as a time pas-

sage and action transitions as:

1. 44
3 sds  → < and 54 sas →

2. 4
4

4
)(3 sstads  → <≤ and 64 sas →

From these expressions, we can represent the external tran-
sitions as the TA transitions shown in Figure 8.

Figure 8: TA model for RTA-DEVS external transition.

From TA semantics, each of these transitions is expressed
as a time and action transitions, that is:

1.)3,4(3)0,4(= → <= xLdxL and

)0,5()3,4(=→= xLaxL for the first RTA-DEVS transi-

tion. That is, we stay in L4 while elapsed time is less than 3
units, and then with action a, the TA takes transitions to L5.

2.)3,4(
)4(3

)0,4(= →
<≤

= xL
stad

xL and

)0,6(),4(=→ xLaxL for the second RTA-DEVS transi-

tion. That is, if the elapsed time in L4 exceeds 3 units and is
less than lifetime of L4, with action a, the TA transitions to L6.

This gives us the relation R between RTA-DEVS and TA
model states: 4s R 4L , 5s R 5L , and 6s R 6L .

Conversely, we can show the simulation in the other direc-
tion from each of TA transitions and the RTA-DEVS external
transitions above. Hence, this shows a bisimulation relation R
between the corresponding DEVS and TA models above.

VI. OBSERVATIONS: RTA-DEVS TO TA TRANSFORMA-
TION.

The transformation example in the previous section introduces
the methodology to transform RTA-DEVS models to TA
models. The resulting TA models are a subset of deterministic
safety automata used in the UPPAAL model checker. The
transformation methodology can be summarized as follows:

1. Define a clock variable for each atomic RTA-DEVS
model, for example x.

2. Replace every state in RTA-DEVS with a correspond-
ing one in TA, i.e L1 for source s1 and L2 for destination s2.

3. An RTA-DEVS internal transition is modeled in TA as
follows:

• A source state L1 and a destination state L2.
• Reset the clock variable on the entry to each state

(x:=0).
• Put an invariant in the source state derived from the

time advance function for that state as shown above, i.e.
x<ta(s1).

• Define a transition with a guard. This guard should
be the complement to the invariant in the source state as
shown in the example transformation above, i.e. x ≥ ta(s1).

4. The RTA-DEVS external transition is modeled in TA
with the following items:

• A source state and some destination state(s), i.e L1 for
source s1 and L2 for destination s2.

• A clock reset on the entry to each state.
• An invariant in the source state that corresponds to

time advance function for that state, i.e. x<ta(s1).
• For the external transition(s) with guards of clock

constraints, these constraints should be disjoint to obtain a de-
terministic TA model.

• The action label on TA transitions for each RTA-
DEVS input event to source state s1.

By applying the previous steps, we obtain a TA model that
executes every transition defined in the RTA-DEVS model
under study. As we know, the RTA-DEVS behavior is com-
pletely defined by its transition functions, which defines all
transitions in RTA-DEVS model. Thus, the resulting TA mod-
el executes the RTA-DEVS. This gives us a TA model that is
behaviorally equivalent to the RTA-DEVS model and can be
formally verified with tools like UPPAAL to infer properties
about the original RTA-DEVS model. In the following

lowing section, we look into a full example of applying this
methodology.

VII. TRANSFORMATION EXAMPLE
From the previous section, we can see that any RTA-DEVS
model can be transformed to a behaviorally equivalent TA if
we follow the steps shown. To show this process in further de-
tail, we introduce an example of an elevator system [20]. The
system is composed of an elevator and its controller, which in-
teracts with the user to receive button requests from each
floor. Then, it makes the elevator to respond to user requests.
This is an example of a (soft) RTS with safety and bounded
response time requirements. To check for these requirements,
we applied the previous transformation rules to the DEVS
graph models of the elevator system [21].

Figure 9: Elevator RTA-DEVS Model

The elevator DEVS graph model in Figure 9 has 5 external
transitions shown with solid arrows, and three internal transi-
tions shown with dotted arrows. By taking each transition
from the RTA-DEVS model and applying the previous steps,
we get the converted TA model shown in Figure 10. Note that
an external transition is enabled whenever the expression on
that transition evaluates to true in RTA-DEVS model. The ex-
pression Value(mover) evaluates to true whenever the elevator
model receives a value in mover variable equals to 1. This ex-
pression is translated to a channel reception move? as shown
in TA model in Figure 10. In this case, whenever a value is
transmitted on that channel, the transition synchronized on
that channel is enabled.

Also note that time advance values for each state in RTA-
DEVS model, has been substituted with an equivalent clock
invariant in the corresponding state in the TA model, and the
constant in that invariant equals state lifetime as indicated on
the RTA-DEVS model.

Figure 10: Elevator TA model

The elevator a controller is also responsible to interact with

the user and send commands to the elevator to satisfy the user
requests. The controller RTA-DEVS model is shown in Figure
11 and represented in DEVS graphs notation.

Figure 11: Elevator Controller Model as DEVS Graphs.

We applied the transformation steps above to the elevator

controller RTA-DEVS model to obtain TA in Figure 12.

Figure 12: TA Controller model in UPPAAL.

The RTA-DEVS Elevator coupled model is composed of

the elevator atomic model and the Controller model. The cou-
pled Elevator model takes as an input a number between 1 and
3 that represents number of floor with button pressed. During
coupled Elevator model simulation in DEVS simulator input is
read from an input file representing button press.

In [20], we showed how to verify a number of desired
properties for the RTA-DEVS model such as deadlock free-
dom, bounded response time, and safety properties for the ele-
vator coupled model. We used Computational Tree Logic
(CTL) to construct queries with the requirements and submit-
ted it to UPPAAL to get an answer and hence verify that re-
quirement. One such requirement is the freedom of deadlocks
and expressed in CTL as A[] not deadlock. This means for
all paths, there should be no deadlocks.

After running the checker, it shows that this property is
satisfied, i.e. there is no deadlock in the DEVS model:
UPPAAL version 4.0.6 (rev. 2986), March 2007 --
server.
A[] not deadlock
Property is satisfied.

Another important check on correct model semantics is to
check a user request against the model behavior. For example,
if a user presses a specific floor button, the elevator should
move to that floor. This is expressed as follows:

button == 3 --> ElevatorController.cur_floor == 3
Which means if 3rd floor button is pressed; the elevator

would eventually reach that floor. This query returned true and
thus the property is satisfied in our model. However the query

button == 3 --> ElevatorController.cur_floor == 4
was not satisfied as expected for a correct model, as when-

ever 3rd floor button is pressed; our simple model should not
deliver the elevator to the 4th floor.

VIII. CONCLUSION
We introduced some of the problems that prevents general
classic DEVS model from being modeled and verified by TA.
We introduced RTA-DEVS to overcome these problems and
to offer a subset of DEVS that is still expressive enough for
modeling practical problems and that can be transformed to
TA. We then could use the transformed TA to reason about
the original RTA-DEVS model, and hence about the real prob-
lem being modeled. We also showed a methodology to con-
vert RTA-DEVS to TA in a systematic way.

We can compare the expressiveness of RTA-DEVS with
TA. As our transformation showed, the equivalent TA to an
RTA-DEVS has no diagonal clock constraints of the form
x - y <C. This is a limitation of general TA with diagonal con-
straints. However, this does not reduce the expressiveness of
RTA-DEVS from general TA formalism as any TA with di-
agonal constraints can be expressed with a TA without diago-
nal constraints as shown in [22]. However general TA with di-
agonal constraints is more concise as shown in [23] than RTA-
DEVS (as represented by a TA without diagonal constraints).

We envision that this methodology could influence the
M&S in a number of ways, producing models more accurate,
and better simulations with less cost and effort. The validation
and verification of simulation models, which are done cur-
rently in a manual, error-prone procedure and usually needs a
domain expert; this technique can improve such activities.

REFERENCES
[1] R. Alur, D. Dill. “Theory of Timed Automata". Theoretical Computer

Science, volume 126, pg. 183-235, 1994.
[2] R. Alur. "Model Checking: From Tools to Theory", LNCS 5000, pg.

89–106, 2008.
[3] E. Clarke,"The Birth of Model Checking", Book: 25 Years of Model

Checking, pg.1-26 , Springer Berlin / Heidelberg 2008.
[4] BP Zeigler, H. Praehofer, T.G. Kim (2000) Theory of modeling and si-

mulation, 2nd edn. Academic Press, New York.
[5] J.S. Hong, H.S. Song, T.G. Kim, K.H. Park. 1997. “A realtime Discrete

Event System Specification formalism for seamless real-time software
development”. Discrete Event Dynamic Systems 7 (4): 355-75.

[6] A. Furfaro, L. Nigro, "Embedded Control Systems Design based on RT-
DEVS and temporal analysis using UPPAAL", Computer Science and
Information Technology, 20-22 Oct. 2008, IMCSIT 2008, p.601-608.

[7] A. Furfaro, L. Nigro."A development methodology for embedded sys-
tems based on RT-DEVS", Innovations in Systems and Software Engi-
neering, vol 5, P. 117-127, June 2009.

[8] H.S. Song, T.G. Kim, "Application of Real-Time DEVS to Analysis of
safety-Critical Embedded Control Systems: Railroad Crossing Control
Example", SIMULATION, 81(2), February 2005. 119-136.

[9] M.H. Hwang, B. P. Zeigler, "Reachability Graph of Finite and Determi-
nistic DEVS Networks", IEEE Transactions On Automation Science
And Engineering, 6 (3), July 2009.

[10] S. Han, K. Huang. "Equivalent Semantic Translation from Parallel
DEVS Models to Time Automata", ICCS 2007, LNCS 4487, 2007.

[11] N. Giambiasi, J-L. Paillet, F. Châne, "From Timed Automata To DEVS
Models". Proceedings of the 2003 Winter Simulation Conference,.

[12] A. Hernandez, N. Giambiasi, "State Reachability for DEVS Models",
Proc. of Argentine Symposium on Software Engineering (2005),.

[13] H.Dacharry, N.Giambiasi. "Formal Verification Approaches for DEVS".
Proceedings of Summer Computer Simulation Conference. 2007.

[14] K.J. Hong T. G. Kim, "Timed I/O Test Sequences for Discrete Event
Model Verification", AIS 2004, LNAI 3397, pp. 275–284, 2005.

[15] Y.Labiche, G. Wainer. “Towards the Verification and Validation of
DEVS Models”. Proceedings of the 1st Open International Conference
on Modeling & Simulation. Clermont-Ferrand, France. 2005.

[16] J. Miller. "Decidability and complexity results for timed automata and
semi-linear hybrid automata", Hybrid Systems: Computation and Con-
trol, LNCS Vol. 1790, 2000.

[17] L. Aceto, A. Ingólfsdóttir, K. Guldstrand Larsen, J. Srba. “Reactive Sys-
tems: Modelling, Specification and Verification”. Cambridge University
Press 2007.

[18] Wikipedia. DEVS behavior. http://en.wikipedia.org/wiki/ Behav-
ior_of_Coupled_DEVS [Accessed: Aug. 2009].

[19] J. Bengtsson, W. Yi. “Timed Automata: Semantics, Algorithms and
Tools”. Lectures on Concurrency and Petri Nets, Vol. 3098. 2004.

[20] H. Saadawi, G. Wainer. “Verification of Real-Time DEVS Models”,
SpringSim'09, San Diego, CA March 2009.

[21] G. Christen, A. Dobniewski, G. Wainer. "Modeling State-Based DEVS
Models in CD++ ". Proceedings of MGA, Advanced Simulation Tech-
nologies Conference. Arlington, VA. U.S.A. 2004.

[22] B. Bérard, V. Diekert, P. Gastin, A. Petit. “Characterization of the ex-
pressive power of silent transitions in timed automata”, Fundamenta In-
formaticae, vol. 36, num. 2–3, p. 145–182, 1998.

[23] P. Bouyer, F. Chevalier. “On conciseness of extensions of timed auto-
mata”, Journal of Automata, Languages and Combinatorics, vol. 10,
num. 4, p. 393–405, 2005.

