I-DEVS: Imprecise Real-Time and Embedded DEVS Modeling

Mohammad M oallemi, Gabriel Wainer
Dept. of Systems and Computer Engineering
Carleton University, Centre of Visualization and Simulation (V-Sim)
1125 Colonel By Dr. Ottawa, ON, Canada.
{moallemi, gwainer}@sce.car leton.ca

Keywords: DEVS, Embedded Systems, Real-Time Sys-able, the execution of the optional part increakespreci-

tems, Model Based Approach

Abstract

The problem of over-running in hard real-time sgseos-
es critical risks to the hardware under controle Thprecise
computation technique offers an effective way oforece
utilization in these cases. We introduce Impre€&a/S (I-
DEVS), a model-driven approach to develop real-tame
embedded applications based on the DEVS (DiscretatE
Systems Specification) formalism. This approach luioes
the dynamic advantages of the imprecise computatioh-
niqgue with the rigor of a formal modeling methodpjo
This framework can be used to develop embeddedcappl
tions incrementally, integrating imprecise modelsthw

hardware components seamlessly. We have defined- str

tural modifications to DEVS in order to allow imgise
model definition.

1. INTRODUCTION

Embedded real-time (RT) software construction reaslly
posed interesting challenges due to the complefitthe
tasks executed. Formal methods have showed pragnisin
sults, in terms of model design, verification, iemplenta-

sion of the result. The system can terminate thiooal part
during transient overloading, producing less pecisults
but on time.

Imprecise computation has been applied to differen
fields, including RT and embedded systddi$5][6], mul-
timedia processin{r][8][9], planning, artificial intelligence
[10][11][12] and databasd43][14]. Despite this, imprecise
computation is not yet widely used in industrialledded
applications. The reason might be related to dtnieoretical
assumptions and the lack of cost-effective suppwthod
that can be easily implemented in embedded systems.

In this work, we introduce Imprecise-DEVS (I-DEVS)

a model-driven framework to develop RT and embedded
systems based on DEVS formali§hb], integrated with the
imprecise computation technique to improve pretitity
under transient overloading. The approach suppapsd
prototyping, and encourages reuse. DEVS has been ex
tended for RT simulation and also for embedded ie@pl
tions [16][17] [18][19][20][21]. Many existing techniques
that have been widely used for the developmentTofaRd
embedded systems are also mapped to DEVS

[22][23][24][25][26]. I-DEVS enables model designers to

tion, testing and maintenance. Also, model-based amssign priorities to the model behavior and baldheeexe-

proaches can be used for formal verificatjdhas well as
virtual-time simulation, which reduces both end tcaad
risk, while enhancing system capabilities and imprg the
quality of the final product. This is a useful apgch, more-
over considering that testing under actual opegationdi-
tions may be impractical and in some cases impleg&p
One critical aspect of hard RT systems is the yctidn
of the outputs before the specified deadline. Hakein
circumstances with system overloads, it might bgassible
to meet the deadlines. As RT and embedded system®oa
deterministic, tasks may enter the system at amg tand
there is no prior knowledge of their occurrenceeimThe
Imprecise Computation technique[3] helps to overcome
these high computation peaks by discarding opticoah-
putations. The main idea is to separate the cortipatanto
mandatory and optional parts (the mandatory péettf the
correctness of the result and the optional affegstquality).
The optional part is executed after the mandateny; @c-
ceptable results are guaranteed, and if resourees\ail-

cution based on the priorities assigned. The nepvcageh
can be easily integrated with previous models. Ten
goal of this contribution is to develop a dynamit REVS
environment capable of managing different high pssing
conditions and integrate that with the RT DEVS argi

2. BACKGROUND AND MOTIVATION

Imprecise computation has been used for minimizing
the errors caused for transient overloads in RTesys.
Many off-line task scheduling algorithms have be®n-
posed based on the imprecise computation technique
[22][28][29]. There is no optimal algorithm that minimizes
the total error in on-line scheduling systems, whdeaasible
schedule exists, because of the lack of a-pricointadge of
the occurrence time of the jolj80]. The mandatory-first
algorithm assigns processing time to mandatorystdis&t,
based on statistics to reduce the total §B8d}{32].

RT-Frontier[4] is a RT operating system that presents A coupled model connects the basic models together
an imprecise computation framework. It decomposes-c order to form a new model. This model can itselfeme-
putations into mandatory, optional and wind up pafthe Ployed as a component in a larger coupled modetetly
wind up part works as a termination function after end of allowing the hierarchical construction of complexdsls.
an optional part, reducing the termination cost ammeas- The coupled model is defined as:
ing portability. It uses a novel scheduling algamit called CM = <X, Y, D, {Mq | dJD}, EIC, EOC, IC,Select>
Slack Stealer for Optional Parts (SS-OP), basetherhree X:is the set of input ports and values,
segment imprecise computation model with smallloead. Y: is the set of output ports and values,

Except for this work, no research has aimed cegiratt- D is the set of the component names,
ing this technique with a formal methodology toused in EIC (BExternal input couplings) connects the input events of
RT and embedded system design and constructionpfthe the coupled model itself to one or more of the in@eents
posed |-DEVS approach, allows the model designateto Of its components,
ploy this technique at the design time, specifyihg op- EOC (External output couplings) connects the output events
tional and mandatory behaviors of the target system of the components to the output events of the ealiplodel

DEVS[15] is a sound formal framework based on ge-itSelf,
neric dynamic systems, including well-defined caugplof IC (Internal coupling) connects the output events of the com-
components, hierarchical, modular constructionpsupfor ~ POnents to the input events of other components,
discrete event approximation of continuous systemd <c/€ct is @ function used to order the processing ofsine

support for repository reuse. A real system modetiti ~ Multaneous events for sequential events.

DEVS is described as a composite of sub-modeld; efic In [19] a RT extension to DEVS formalism was pro-
them being behavioral (atomic) or structural (cedp) that posed based on the parallel DEVS (P-DEYE)] formal-
define a hierarchy of models. Coupled models aspaesi- ism. P-DEVS adds the confluent functidoon (and in-

ble for maintaining the structure of the hierartlyykeeping put/output bags instead of sets) to the definitiératomic

the internal connections between atomic and coupied- model, in order to handle simultaneous events. Sghect

els. A DEVS atomic model is formally defined by: function is eliminated. This RT method integratesdriver
AM = <X, S, Y, 8exty Bin A, 1> object presented if84] to the DEVS model hierarchy to al-

x (5)_ Y (9 low embedded functionality on different hardwarel @oft-

ware platforms. The driver object is a user contfiple

s= SM(S &) — converter of events from external environment ® BEVS
| als) @ model hierarchy and vice versa, which increasetpiity

by separating modeling components from the external
framework, allowing both virtual-time and RT simiiten

for verification and embedded execution on thedarghe
S—(,‘)f"s‘“(s) proposed methodology has been implemented on the

ECD++[18] toolkit, a RT extension of CD+[85] [2].

Figure 1. DEVS atomic model state transitjgh 3. IMPRECISE DEVS
Despite the theoretical advances in imprecise coation,
As informally depicted in Figure 1, an atomic mbde there are few practical projects aiming at prodgaéffec-
AM is an entity which is affected by external inmwent X tive RT tools based on this technique. The main gbthis
and which in turn generates output event Y. Thiestat S work is to integrate imprecise computation techaiquith
represents the set of state variables of the mathe.inter- the DEVS modeling approach to construct a formathoe
nal transition functiord;,, and the external transition func- capable of modeling RT systems, and to build akibol
tion de; compute the next state of the model. When an exbased on this approach. The objective is to prowilém-
ternal event arrives at elapsed time e which is than or precise framework for applications where the johkvaf
equal to ta(s), a new stateis computed by the external times are not known a-priori. The approach triepatance
transition functione,. Then, a new tafsis computed, and the computation when the system is busy and orother
the elapsed time e is set to zero. Otherwise, astatg sis hand not reducing its performance, while keeping rim-
computed by the internal transition functi&p. In this case, time overhead of the implementation as low as pessi

an output specified by the output functianis produced Imprecise DEVS (I-DEVS) is built on top of RT DEVS
based on the stageAs before, a new tajss computed, and presented if19]. The P-DEVS atomic model definition is
the elapsed time e is set to zero. modified by adding a deadline and a mandatory ¢iooal

condition for each state, as follows:

AM =< X, S, Y, 8ext dints Ocon A, ta, d >

rating the imprecise computation concept. We asstirae

Where X, Y,dext, dint, dcon,A and ta are the same as in RT tasksX are always mandatory byl tasks can be optional.

DEVS[19],
S: {(s, ¢) | §Z%; and ¢ {mandatory | optional} }.

The/ subtask of an optionall task can be terminated under
transient overloads. For multiple consecutive omloll

d: S— R'g, is the relative deadline of each state for outpuf@Sks, the entire task can be discarded, excepthéoiast

production.

To prove the closure under coupling for I-DEVSe th
same process is followed as P-DE}S], the only addition
is the d(s) of the resultant I-DEVS coupled modiefined
as follows:

d(s) = minimumé;|[iCD}, where $1S andoi=d(s) — ¢.

3.1. DEVSTask System

The main computations in DEVS occur during stadegi-
tions and message transfers. We use this inform&ionap
the DEVS functions run by abstract algorithms iatdQRT
tasking system. In this way, we obtain a platfortrere im-
precise computation can be applied. Figure 2 shthes
processing tasks in a DEVS-based system.

e 1234578 W RRI
[X] S [x 1]

Figure 2. Processing carried for a statetransition.

>

one (from which we only discard thigortion), as the last
task needs to perform the internal transition.threo words,
during overloads, the model skips optional intertnahsi-
tions and their output functions to save time aesburces
for the mandatory ones. For instance, an autononmst
in a bumpy road with obstacles (flooded with oblstae-
connaissance inputs) can discard unnecessary @skge-
porting). A similar scenario can occur in any RTsteyn
where a sequence of optional outputs can be skitrpalte-
viate the overload situation by keeping the neagseat-
puts produced on-time. Schedulability analysis banap-
plied to this model, based on various available hods

[38], [39].

3.2. Execution Algorithm

Figure 4 shows the execution algorithm of the Imjze
DEVS. The main algorithm is performed in the Roobre
dinator (the top coordinator in the DEVS abstragttime
hierarchy), which takes care of the RT discrepaimcthe
execution of external or internal events.

The external transition<] is mapped into a task that in-

itiates the stat& The task release time is equal to the arfi

val of the input to the model (from the externaliemnment
in the case of the topmost coupled model, or whenout-
put generated on an output port is received inatoenic
model input port). We assume no deadline for theagk.
The outputf) and internal transition taskg @re considered
to execute together (tagk, as outputs in DEVS are always
followed by an internal transition). The releasediof task
Al is equal to the end of the staéeand specified by ta(s)
(indicator T). Its deadline is specified by the function d(s
(indicatord) that we added to the atomic model definition.

1. main()
2. Send | msg to all atomic models
3. tN =closest internal or eventfile event
4. forever for each RT-DEVS Atomic model
5. wait for tN
6. if a RT external input event
7. send x msg;
8. send * msg; //P-DEVS formalism
9. else if tN time out
10. send @ msg
)11, send * msg
12. endif
13. update tN
14. end forever
15. end main

Time 0 1 2 3 4 56 7 8
I T T T T

[XAX2[X3[X4

9 10111213 141516 17 18 19 20
N I [I I [A I ey

>

A2 12[A1 11|24 I4_

Figure 3. Overload scenario

Figure 3 shows an overload scenario where fouutgp
are injected, starting external transitions onedéht atomic
models. As we can se#l, 12 and14 meet their deadlines;

Figure 4. Execution Algorithm of Root Coordinator

We start first by sending an initialization messdQ
and collectingdone messages from each of them (which re-
port the next internal event for each component)eléver
there is an external input, the Root coordinatartes it
through an external messagg {o the destination atomic

howeverA3 andA2 (second instance at time 18) do not. Themodel (which triggers thé., function). Otherwise, it waits
internal transition 2 produces a new state with ta(s) equal tofor the closest internal everitl] to send collect@) and in-

4 time units, which exceeds its deadline at time 17

ternal message$)(to the target atomic model. The collect

In order to execute these models, we extended thmessage executes thefunction on the atomic model and

DEVS atomic model definition by dividing the above-

mentioned tasks into mandatory and optional partsrpo-

the internal message executgs. The atomic model re-
sponds to thég message by executing théunction and re-

turning the output value through an outpgtroessage. The tions. As we can see, the model is initially intest&l (with
atomic model also executég; in response to & message, time advance = infinity) until an input is received on port

and returns its next internal event time kjoae message. InA. In that case, the external transition producesate st
change toA2. The model stays in this state ftr and its
1. Receive X msg(s, e, X) deadline is4t. When the time is consumed, it produces the
2. push x in the @// PDEVS formalism outputy2a and transitions té3 (internal transition). A simi-
3. end external lar scenario can be seen in staf8s A4 and A5, with out-
puts y3a, yd4a andy5a produced respectively. Figure 6.c)

4. Receive * msg(s) and d) show the DEVS Graphs for atomic models B @nd
5. if (internal event) respectively.
6. while (s is optional AND ta(s) <= now) Top
7. Rung;,; function D InB7x0 %
8. end while | e —toutia 1 fowr 2
9. if (s is mandatory) 7 i’ % 5
10. Rurb;, function . % &
11. endif You st
12. else if (external input in Q) W o®
13. Runée,; function a) DEVS Hierrachical structure c) State diagram of atomic
14. else if (both external and internal events) model B
15. Rundn function AT ‘__90,
20 @@
17. send done msg - N Incxe
18. end internal L5 &0
19. Receive @ msg(s) ,u., -
20. if (s is optional AND ta(s) < now OR d(s)<now))
g; elsgnd done msg b) State diagram of atomic d) State diagram of atomic

: . model A model C
23. Runafunction Figure 6. DEVSmodel definition
24, send y msg
25 send done msg We can map the DEVS Graph of atomic model C
26. endif (shown in Figure 6.d) as follows:
27. end collect

Figure 5. Execution Algorithm of the Atomic M odé C=<X, S, Y,8exs Sint: dcons A, 1, d >, where:

Whenever there is more than one internal everiteto x= {(InC, xc)},
serviced, the mandatory ones have priority ovemnibtéeonal S={(C1,mandatory), (C2, mandatory), (C3, optionaBhd
events. If an optional internal event is to be mex later g =1,
than its release time, its output will be discardBuis strat- Y={(OutC, y2c), (OutC, y3c)},
egy helps us save time for later mandatory evédrashave 3ext(C1, €, < InC, xc >) = C2,
not been released yet. Whenever a sequence ofnaptio 8ini(C2) = C3,6;(C3) = C1,
events in an atomic model is delayed, the atomideho § =5 has priority oveby
jumps to the most recent one by executing multgibte MC2) = <OutC, y2c>,
changes in onéy (line 6). This way, we reduce the multi- 3(c3) = <outC, y3c>,
ple internal messages transmitted between the &wmdi- ta(C1) =, ta(C2) = 1t, ta(C3) = 2t,
nator and the atomic model and also multihleexecutions. d(C1) =, d(C2) = 4t, d(C3) = 5t,

Figure 5 shows the execution algorithm for atomaded. The mapping of atomic models A and B are simitat a
Figure 6.a) shows a simple Imprecise DEVS model histrajghtforward.
erarchy where two atomic modddsandC are coupled into In this example, the state durations are consitieeey

put/output ports are used to connect the varioudeisoin tg the execution time of th¥, 1 and1 tasks. In a system
the figure. Figure 6.b) shows the description ofleld\ us- with large number of atomic models, similar ovedazon-

ing DEVS Graph[36]. Note that continuous lines indicate ditions can happen at different points of time, wheultiple
external transitions and dashed lines indicatenaleransi- X, A and1 tasks from different atomic models are very close

to each other. For instance, Figure 7 shows alpessiver- fied in Figure 6.b). The output produced by thenato
load scenario for the DEVS model presented in Eighir modelA (y2a) is translated to an input for the atomic model
without considering imprecise computation technigfe B. Thus, the taskb is executed right afteéi212, causing the
input Xa enters the system from input pdntat time zero. atomic modelB to change fronB1 to B2. The models ad-
Assuming theX task takedlt, at time 1 (i.elt) the atomic vance according to the specifications (provide&igure 6)
model A moves from the initial statAl to A2. The ta(s) of until t=18. At this point, the task&l14 of A, 1313 of C and
stateA2 is 1t, thus at time 2, we run tadR12, producing 1212 (of A, B and C, shown in red) miss their deadlibes
the outputy2a (for simplicity reasons we do not show the cause of the overload condition in the system.

outputs) and the internal transition fra¥@ to A3, (as speci-

B l
B @l@ BE cBEe 2

01234 ¢ el 7.8 910111213141516 17 8192021 2223242526272829303|13|23|33|43|
A AfxaA22 12| A3 3 13] A4 - A5 [ETBAMXe] A2 BB
B B1 xoBi2 12 B3 [313] B4 [ZE B1 B2 [E8 B3
c C1 [Xd c2 (@@ C3 C1 cC2 Bl c3

Figure 7. Exampletransient overload scenario

On Figure 6.b), ¢) and d), we marked the mandatory6 and saved from lateness. The same conditionemagfor
and optional states with an M or an O, respectivBlyap- 13 of B and C. Hence, by discarding three optioh&sks
plying the proposed imprecise DEVS technigieof A is we save the four mandatory tasks and their associat-
skipped (because state A3 is optional a8i8 is executed puts.
after its release timd3a), causingl4l4 to be shifted to time

BE B

Time (I) ‘II l2 ? ‘I‘ ? (? T EIB ?1|01|1 1|2 1|31|4 1|5 1|6 1|7 1|8 1|9210211 2122|32|42|52|6 2|72|8 2|93|0 3|1 3|2 3I33|4 3|5

AATGEATIEE A3 A4 [aHE A5 [B15] A1 A2 @B A3 [@5

B B1 X022 12 B3 B4 [414] B1 [XoB22 12]B3
c C1 [XdC2R2 2] C3 [313] C1 [XJCpziz] C3 C1

Figure 8. Applying imprecise computation to the sample scenario

4. IMPLEMENTATION AND RESULTS The proposed implementation of imprecise DEVS on
We implemented the proposed imprecise DEVS formmlis E-CD++ has been tested with variety of modelinghaces

on E-CD++[18], a toolkit that implements RT DEVS for- and several criteria has been applied for verificabf the

malism proposed if19] on the Xenomai RT framework o8 T8 et e ot tnemEned
[37]. Xenomai provides a RT kernel resting betwdlea

. . to an external input port, connected to a sondaie sen-
hardwar_e and Linux OS, and o_ffer_s several_ pervalsa_xd sor and an output port connected to an electricibmTo
RT Services to user space appllcatlons and is safylin- ensure that the same scenario runs every timeydhees
tegrated ‘.N'th GNU]Lqu environment, we ma]z(gtask; coming from the sensors were the same in all tédtthe
user configurable (|.ep.er|od|.c orape_nodlc), and their main atomic models follow the DEVS Graph diagram in FegA.
Jﬁb Is to run usero-ld(il:lned_ mpRuTt d“‘ff pr?gramssaﬁn EJSEV The model is a synthetical representation of atrabatrol-
they are spawned. A main task imp ef‘nents the & ler, which receives inputs from sensors and basetth® in-
run-time abstract algorithm and takes carédlofasks. This

task is al ible to imol t and 6 ith puts, instructs the motors. We used 20 atomic nsottel
ask 1S also responsiole to impiement an ver|_ﬁy| Pr€ " make it a computation intensive model where ovesitua-
cise DEVS formalism and its execution. The impletaen

: . . X . tion h f tly. The DEVS Graph di i
tion of the imprecise computation on E-CD++ is skems on happens frequenty © rap lagram in

- . - Figure 9 is composed of three optional states dmdet
and backward compatible (i.e. the previous modsis ean mandatory states. Whenever there is an input testa, D
be executed and are considered as precise models). .

E, and F the model transitions to state B. We hiserhodel

to perform comprehensive performance tests, andoaocen
the results of the imprecise execution and presxeeution.
In the case of precise execution, all the statesaasumed
mandatory.

Controller

s
_’%% 8
s

&

_,gé’%

Figure 9. Synthetic robotic model used for verification
The timing for the component models varied for dife
ferent tests, performed. The first test discussethis sec-
tion compared the number of discardednd| tasks versus
processor utilization. The diagram in Figure 10vehdhe
results of this test, for a total execution time6fseconds.

[-+—P=11 @ P=0.05 —+ P=0.1 —+ P=0.01 4 P=05|

Processor Utilization

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of Discarded Transitions

Figure 10. Discarded tasks vs. processor utilization

The test was performed for input period intenadl4 .1,
0.5, 0.1 and 0.001 s. As it is observed from thertchoy in-
creasing the number of discarded tasks (which heppg
tightening the state durations and period of thmuig) the
processor utilization increases linearly. The resi@mon-
strates the integrity and persistency of the imjgletation in
a medium load scenario. In addition, as the sysfets bus-
ier the number of discarded tasks also increades.slope
of the diagram for different period configuratiostsys the
same, showing the integrity of the functionalitytbé algo-
rithm for different levels of load on the processor

—=®— Imprecise —&— Precise
7000

*_
6000 b

5000 Q‘Q.Q o

3000
2000

1000

Average Response Time (micro sec)

0
0 100 200 300 400 500 600

Simulation Time (sec)

Figure 11. Responsetime vs. execution time-heavy load

Figure 11 shows the average response time ohall t
mandatoryll jobs versus the execution time for the same
model using imprecise and precise modes. In trsg,cthe
input period of all X jobs was fixed (2 ms). Thesttevas
performed five times for each instance and the aperre-
sult has been considered. As the chart shows, tbege
response time of the mandatdrjobs drops dramatically in
imprecise mode. In this example, there is a heasay fthat
the system must respond to, which required loniges for
mandatoryl jobs to complete in precise mode. Imprecise
computation discards the optional tasks, thus &spanse
time of the mandatory tasks shortens.

—=— Imprecise —¢— Precise

IS
@
S

IS
S
1<)

w
o
=}

W
=
1<)

N
a
=}

N
=
1<)

Average Response Time (micro sec)
B

o o wu

o o o

[

0 5000 10000 15000 20000

Number of discarded tasks

25000

30000

Figure 12. Number of discarded tasks versus averagere-
sponse timein medium load

Figure 12 shows the average response time of the
model versus the number of discarded tasks fore20rgls
of execution time. The period of inputs is set @onaillisec-
onds, and by varying the state durations, we olutdfarent
number of discarded tasks in imprecise mode. Fohn @&

stance of the imprecise test, the same configuratas
used to run in precise mode and find the averaggoree
time of the corresponding number of discarded taskse-
cise mode. We can see that the average resporsetithe
corresponding precise execution for each instamestightly
higher than the imprecise one in medium load séen@he
chart shows that by increasing the number of ditzhtasks
(i.e. tighter state durations) the average resptinse also
increases. However, that this increase is not smastthe
situations change for different state durations.

Figure 13 depicts the processor utilization verthes
number of discarded tasks in a heavy load scematiothe
input period of 2 milliseconds and 20 seconds et@cu
time. The chart shows steady but higher processlizad
tion for precise execution. The processor util@atior pre-
cise execution in all instances of the test is akmfoll,
therefore as the load increases; the utilizationaias al-
most the same. However, the imprecise procesdaatiton
is instable and decreases as the number of distaad&s
increases. This is due to the instable and vargorglitions
that occur in a very heavy load scenario in imgeecnode.
As the number of the discarded tasks increases plexes-
sor usage is required. This decrease is not smugther
linear, because of the change in conditions in eanhand
admission of more mandatory jobs.

—=— Imprecise —&— Precise

0.96

0.92

0.9

Processor utilization
o o o
¥ 8
'\:

\

\

\

\

\

\

0.82

08 %-\l/ —

0.78

4000 5000 6000 7000 8000 9000 10000

Number of discarded tasks

Figure 13. Discar ded tasks vs. CPU utilization-heavy
load

5. CONCLUSIONS

The development of embedded RT systems with RTo]

constraints has been studied by the software eegime
community in the last 20 years. The novel Impre®&/S
(I-DEVS) formalism we proposed enables model design
to assign priority to the model’s behavior and hatathe
execution burden based on the priorities assighkd.new
approach can be easily integrated with previouseisoglro-
viding RT DEVS environment capable of managing ediff
ent high processing conditions and integrate thith the

RT DEVS engine. The approach provides flexibilibythe
user by prioritizing different behaviors of the e under
control, while achieving the maximum throughputnfréhe
processor. The implementation and results of diffetests
have been presented.

The future work for this research includes incogpion
of Dynamic DEVS formalism with the proposed I-DEVS
formalism to introduce a new imprecise DEVS capaifle
prioritizing different components of the model lies the
behaviors. Schedulability analysis will be applitd the
proposed implementation to measure the possilblitthe
execution of the model on an specific hardwarefqiat.

References

[1] H. Saadawi, G. Wainer. "Verification of Real-Time
DEVS Models". In proceedings of DEVS Symposium, San
Diego, California, USA, 20009.

[2] G. Wainer. "Discrete-event modeling and simulatian;
practitioner's approach”. CRC/Taylor & Francis. 200

[3] K. Lin, S. Natarajan, J.-S. Liu. “Imprecise Results
Utilizing Partial Computations in Real-Time Systémin
proceedings of the IEEE 8th Real-Time Systems Sympo
sium, San Jose, California, USA, 1987.

[4] H. Kobayashi, N. Yamasaki, "RT-Frontier: A Real-
Time Operating System for Practical Imprecise Cotapu
tion”. In proceedings of the 10th IEEE Real-Timed akp-
plications Symposium, Toronto, Canada, 2004.

[5] G. R. Wiedenhoft, A.A. Frohlich. “Using Imprecise
Computation Techniques for Power Management in -Real
Time Embedded Systems”. 6th IFIP Working conf. de-D
tributed and Parallel Embedded Systems, Milanodly.Ita
2008.

[6] J.W.S. Liu, K-J. Lin, R. Bettati, D. Hull, A. Yu.Use

of imprecise computation to enhance dependabifitseal-
time systems”. The International Series in Engiimgeand
Computer Science, 1994, Volume 284, Section 3,18%-1

[71 W. Feng, J. W. S. Liu. “An Extended Imprecise Com-
putation Model for Time-Constrained Speech Proogssi
and Generation” Proceedings of the IEEE Workshop on
Real-Time Applications, New York, NY. USA, 1993.

[8] X. Chen, A. M. K. Cheng. “An Imprecise Algorithm
for Real-Time Compressed Image and Video Transomési
Proceedings of 6th International Conference on Qderp
Communications and Networks, Las Vegas, NV., USA
1997.

X. Huang , A. M. K. Cheng. “Applying Imprecise Al-
gorithms to Real-Time Image and Video Transmission”
Proceedings of Real-Time Technology and Application
Symposium, Chicago, lllinois, USA, 1995.

[10] K. Fujisawa, S. Hayakawa, T. Aoki, T. Suzuki, S.
Okuma. “Real Time Motion Planning for Autonomous -Mo
bile Robot, using Framework of Anytime Algorithmrd?
ceedings of the IEEE International Conference obhd®os

& Automation, Detroit, Michigan, USA, 1999.

[11] G. B. Parker. “Punctuated Anytime Learning for Hex-for fault modeling and simulation” in proceedingk the

apod Gait Generation” Proceedings of IEEE/RSJ tater
tional Conference on Intelligent Robots and Syst&mi-
jing, China, 2002.

[12] S. Zilberstein , S. J. Russel. “Anytime Sensin@gnPI
ning and Action: A Practical Model for Robot ContrBro-
ceedings of the 13th International Joint Conferemterti-
ficial Intelligence, Chambery, France, 1993.

IEEE Systems, Man and Cybernetics Conference, 2003,
1205-1211, Washington, USA, 2003.

[25] C. Jacques, G. Wainer, “Using the CD++ DEVS tool-
kit to develop Petri Nets” In Proceedings of th®2®um-
mer Computer Simulation Conference. San Diego, CA.
USA. 2002.

[26] Tao Zheng, Gabriel A. Wainer, "Implementing finite

[13] M. Amirijoo, J. Hansson, S. H. Son. “Error-Driven state machines using the CD++ toolkit" In Procegsliof
QoS Management in Imprecise Real-Time Databases” Prthe 2005 SCS Summer Computer Simulation Conference

ceedings of the 15th Euromicro Conference on ReakT
Systems, Porto, Portugal, 2003.

(Student Workshop), Montreal, QC. Canada - 2003
[27] W.-K. Shih, J. W. S. Liu, J.-Y. Chung. “Algorithnfigr

[14] J. Hansson, M. Thuresson, S. Son. “Imprecise Taskcheduling Imprecise Computations with Timing Con-
Scheduling and Overload Management using OR-ULD’straints”. SIAM J. Comput., 20(3):537-552, June1.99

Proceedings of the Seventh International Conferemte
Real-Time Computing Systems and Applications, Chgju
land , South Korea, 2000.

[15] B. Zeigler, T. Kim, H. Praehofer. “Theory of Modedj
and Simulation”. Academic Press 2000,
0127784551.

[16] Hong J. S, Song H. H, Kim T. G., Park K. H “A Real-

Time Discrete Event System Specification Formalifem

[28] J.W.S. Liu, W.K. Shih. “Algorithms for Scheduling
Imprecise Computations with Timing Constraints tiniM
mize Maximum Error”. IEEE Trans. Comput., 44(3):466
471, 1995.

ISBN-10:[29] H.Aydin, P.Mejia-Alvarez, R.Melhem, D.Mossé. “Op-

timal Reward-Based Scheduling of Periodic Real-Time
Tasks”. Proceedings of the 20th IEEE Real-Time &yst
Symposium, 1999.

Seamless Real-Time Software Development”, Springef30] W.-K. Shih, J. W. S. Liu. “On-Line Scheduling afi{

Netherlands,1997.

precise Computations to Minimize Error” SIAM J. Cou.,

[17] X. Hu, B. P. Zeigler, J. Couretas, "Devs-On-A-Chip: 5(5):1105-1121, 1996.

Implementing DEVS In Embedded Java On A Tiny Ingrn
Interface For Scalable Factory Automation." Progagsl of
the 2001 IEEE Systems, Man, and Cybernetics Comdere
pp- 3051-3056.

[18] Y. H. Yu, G. Wainer, "eCD++: an engine for execgtin
DEVS models in embedded platforms” Proceedingshef t

[31] S. Baruah, M. Hickey. “Competitive On-Line Schedul-
ing of Imprecise Computations” IEEE Trans. Comput.,
47(9):1027-1032, Sept. 1998.

[32] J.-Y. Chung, J.W. S. Liu, K.-J. Lin. “SchedulingrPe
odic Jobs That Allow Imprecise Results” IEEE Trans.
Comput., 39(9):1156-1174, Sept. 1990.

2007 SCS Summer Computer Simulation Conference, S4B83] Chow A, Kim D, Zeigler B. “Parallel DEVS: A paral-

Diego, CA, USA, pp. 323-330. 2007

lel, hierarchical, modular modeling formalism” Peadings

[19] M. Moallemi, G. Wainer, "Designing an Interface for of Winter Simulation Conference, 1994, Orlando rigla.

Real-Time and Embedded DEVS".
TMS/DEVS Symposium. Orlando, FL. 2010.

Proceedings 0f34] Cho S. M., Kim T. G. “Real-Time DEVS Simulation:

Concurrent, Time-Selective Execution of Combined- RT

[20] Furfaro A., Nigro L. “A development methodology for DEVS Model and Interactive Environment” Proceedofg
embedded systems based on RT-DEVS”, Innovations it998 Summer Simulation Conference, Reno, Nevada.

Systems and Software Engineering, 5(2), pp. 117-2Q09.
[21] Song H., Kim T. “Application of RT-DEVS to analysis
of safety critical embedded control system: raiffcaossing
example” SIMULATION 81(2), pp. 119-136, 2005.

[22] Schulz, T. Ewing, and J.W. Rozenblit, “Discrete Rve

[35] Wainer, G. "CD++: a toolkit to define discrete-even
models". Software, Practice and Experience. W&}, 32,
No.3. pp. 1261-1306. November 2002.

[36] B.P. Zeigler, H. Song, T. Kim, H. Praehofer. "DEVS
Framework for Modelling, Simulation, Analysis, ame-

System Specification (DEVS) and StateMate Statet€harsign of Hybrid Systems". Proceedings of HSAC, LNCS,

Equivalence for Embedded Systems Modeling”, Prothe

Vol. 999. Ithaca, NY. 1995.

IEEE Conference on Engineering of Computer-Basest Sy [37] Xenomai: Real-Time Framework for Linux. Website

tems, pp. 308-316, Edinburgh, Scotland, UK, Apdi0Q.

available atwww.xenomai.orgaccessed March, 2010.

[23] Spencer Borland and Hans Vangheluwe. “Transform{38] C. L. Liu , J. W. Layland, “Scheduling Algorithmerf

ing Statecharts to DEVS.” In proceedings of Sum@em-

Multiprogramming in a Hard Real-Time Environment”.

puter Simulation Conference. Student Workshop, pageJACM, Vol. 20, No. 1, 1973.

S154 - S159. Society for Computer Simulation Inational

(SCS), July 2003. Montréal, Canada.

[24] L. Capocchi, F. Bernardi, D. Federici, P. Bisgarlibig
“Transformation of VHDL descriptions into DEVS mdsle

[39] S. Manolache. “Schedulability Analysis of Real-Time
Systems with Stochastic Task Execution Times”. hitzde
Thesis No. 985, Dept. of Computer and Informatiari S
ence, IDA, Linkoping University, Sweden, Decemhb802

