
I-DEVS: Imprecise Real-Time and Embedded DEVS Modeling

Mohammad Moallemi, Gabriel Wainer
Dept. of Systems and Computer Engineering

Carleton University, Centre of Visualization and Simulation (V-Sim)
 1125 Colonel By Dr. Ottawa, ON, Canada.

{moallemi, gwainer}@sce.carleton.ca

Keywords: DEVS, Embedded Systems, Real-Time Sys-
tems, Model Based Approach

Abstract
The problem of over-running in hard real-time systems pos-
es critical risks to the hardware under control. The imprecise
computation technique offers an effective way of resource
utilization in these cases. We introduce Imprecise-DEVS (I-
DEVS), a model-driven approach to develop real-time and
embedded applications based on the DEVS (Discrete Event
Systems Specification) formalism. This approach combines
the dynamic advantages of the imprecise computation tech-
nique with the rigor of a formal modeling methodology.
This framework can be used to develop embedded applica-
tions incrementally, integrating imprecise models with
hardware components seamlessly. We have defined struc-
tural modifications to DEVS in order to allow imprecise
model definition.

1. INTRODUCTION
Embedded real-time (RT) software construction has usually
posed interesting challenges due to the complexity of the
tasks executed. Formal methods have showed promising re-
sults, in terms of model design, verification, implementa-
tion, testing and maintenance. Also, model-based ap-
proaches can be used for formal verification [1] as well as
virtual-time simulation, which reduces both end cost and
risk, while enhancing system capabilities and improving the
quality of the final product. This is a useful approach, more-
over considering that testing under actual operating condi-
tions may be impractical and in some cases impossible [2].
 One critical aspect of hard RT systems is the production
of the outputs before the specified deadline. However, in
circumstances with system overloads, it might be impossible
to meet the deadlines. As RT and embedded systems are not
deterministic, tasks may enter the system at any time and
there is no prior knowledge of their occurrence times. The
Imprecise Computation technique [3] helps to overcome
these high computation peaks by discarding optional com-
putations. The main idea is to separate the computation into
mandatory and optional parts (the mandatory part affects the
correctness of the result and the optional affects its quality).
The optional part is executed after the mandatory part; ac-
ceptable results are guaranteed, and if resources are avail-

able, the execution of the optional part increases the preci-
sion of the result. The system can terminate the optional part
during transient overloading, producing less precise results
but on time.
 Imprecise computation has been applied to different
fields, including RT and embedded systems [4] [5] [6], mul-
timedia processing [7] [8] [9], planning, artificial intelligence
 [10] [11] [12] and databases [13] [14]. Despite this, imprecise
computation is not yet widely used in industrial embedded
applications. The reason might be related to strict theoretical
assumptions and the lack of cost-effective support method
that can be easily implemented in embedded systems.
 In this work, we introduce Imprecise-DEVS (I-DEVS),
a model-driven framework to develop RT and embedded
systems based on DEVS formalism [15], integrated with the
imprecise computation technique to improve predictability
under transient overloading. The approach supports rapid
prototyping, and encourages reuse. DEVS has been ex-
tended for RT simulation and also for embedded applica-
tions [16] [17] [18] [19] [20] [21]. Many existing techniques
that have been widely used for the development of RT and
embedded systems are also mapped to DEVS
 [22] [23] [24] [25] [26]. I-DEVS enables model designers to
assign priorities to the model behavior and balance the exe-
cution based on the priorities assigned. The new approach
can be easily integrated with previous models. The main
goal of this contribution is to develop a dynamic RT DEVS
environment capable of managing different high processing
conditions and integrate that with the RT DEVS engine.

2. BACKGROUND AND MOTIVATION
 Imprecise computation has been used for minimizing
the errors caused for transient overloads in RT systems.
Many off-line task scheduling algorithms have been pro-
posed based on the imprecise computation technique
 [22] [28] [29]. There is no optimal algorithm that minimizes
the total error in on-line scheduling systems, when a feasible
schedule exists, because of the lack of a-priori knowledge of
the occurrence time of the jobs [30]. The mandatory-first
algorithm assigns processing time to mandatory tasks first,
based on statistics to reduce the total error [31] [32].

 RT-Frontier [4] is a RT operating system that presents
an imprecise computation framework. It decomposes com-
putations into mandatory, optional and wind up parts. The
wind up part works as a termination function after the end of
an optional part, reducing the termination cost and increas-
ing portability. It uses a novel scheduling algorithm called
Slack Stealer for Optional Parts (SS-OP), based on the three
segment imprecise computation model with small overhead.
 Except for this work, no research has aimed on integrat-
ing this technique with a formal methodology to be used in
RT and embedded system design and construction. The pro-
posed I-DEVS approach, allows the model designer to de-
ploy this technique at the design time, specifying the op-
tional and mandatory behaviors of the target system.
 DEVS [15] is a sound formal framework based on ge-
neric dynamic systems, including well-defined coupling of
components, hierarchical, modular construction, support for
discrete event approximation of continuous systems and
support for repository reuse. A real system modeled with
DEVS is described as a composite of sub-models, each of
them being behavioral (atomic) or structural (coupled), that
define a hierarchy of models. Coupled models are responsi-
ble for maintaining the structure of the hierarchy by keeping
the internal connections between atomic and coupled mod-
els. A DEVS atomic model is formally defined by:

AM = < X, S, Y, δext, δint, λ, ta >

Figure 1. DEVS atomic model state transition [2]

 As informally depicted in Figure 1, an atomic model
AM is an entity which is affected by external input event X
and which in turn generates output event Y. The state set S
represents the set of state variables of the model. The inter-
nal transition function δint and the external transition func-
tion δext compute the next state of the model. When an ex-
ternal event arrives at elapsed time e which is less than or
equal to ta(s), a new state s′ is computed by the external
transition function δext. Then, a new ta(s′) is computed, and
the elapsed time e is set to zero. Otherwise, a new state s′ is
computed by the internal transition function δint. In this case,
an output specified by the output function λ is produced
based on the state s. As before, a new ta(s′) is computed, and
the elapsed time e is set to zero.

 A coupled model connects the basic models together in
order to form a new model. This model can itself be em-
ployed as a component in a larger coupled model, thereby
allowing the hierarchical construction of complex models.
The coupled model is defined as:
CM = <X, Y, D, {Md | d∈D}, EIC, EOC, IC, Select>
X: is the set of input ports and values,
Y: is the set of output ports and values,
D: is the set of the component names,
EIC (External input couplings) connects the input events of
the coupled model itself to one or more of the input events
of its components,
EOC (External output couplings) connects the output events
of the components to the output events of the coupled model
itself,
IC (Internal coupling) connects the output events of the com-
ponents to the input events of other components,
Select is a function used to order the processing of the si-
multaneous events for sequential events.
 In [19] a RT extension to DEVS formalism was pro-
posed based on the parallel DEVS (P-DEVS) [33] formal-
ism. P-DEVS adds the confluent function δcon (and in-
put/output bags instead of sets) to the definition of atomic
model, in order to handle simultaneous events. The Select
function is eliminated. This RT method integrates the driver
object presented in [34] to the DEVS model hierarchy to al-
low embedded functionality on different hardware and soft-
ware platforms. The driver object is a user configurable
converter of events from external environment to the DEVS
model hierarchy and vice versa, which increases portability
by separating modeling components from the external
framework, allowing both virtual-time and RT simulation
for verification and embedded execution on the target. The
proposed methodology has been implemented on the
ECD++ [18] toolkit, a RT extension of CD++ [35] [2].

3. IMPRECISE DEVS
Despite the theoretical advances in imprecise computation,
there are few practical projects aiming at producing effec-
tive RT tools based on this technique. The main goal of this
work is to integrate imprecise computation technique with
the DEVS modeling approach to construct a formal method
capable of modeling RT systems, and to build a toolkit
based on this approach. The objective is to provide an im-
precise framework for applications where the job arrival
times are not known a-priori. The approach tries to balance
the computation when the system is busy and on the other
hand not reducing its performance, while keeping the run-
time overhead of the implementation as low as possible.
 Imprecise DEVS (I-DEVS) is built on top of RT DEVS
presented in [19]. The P-DEVS atomic model definition is
modified by adding a deadline and a mandatory or optional
condition for each state, as follows:

AM = < X, S, Y, δext, δint, δcon, λ, ta, d >
Where X, Y, δext, δint, δcon, λ and ta are the same as in RT
DEVS [19],
S: {(s, c) | s∈Z+

0 and c ∈ {mandatory | optional} }.
d: S → R+

0,∞, is the relative deadline of each state for output
production.
 To prove the closure under coupling for I-DEVS, the
same process is followed as P-DEVS [33], the only addition
is the d(s) of the resultant I-DEVS coupled model, defined
as follows:
 d(s) = minimum{σi|i∈D}, where s∈S and σi=d(s) – ei .

3.1. DEVS Task System
The main computations in DEVS occur during state transi-
tions and message transfers. We use this information to map
the DEVS functions run by abstract algorithms into a RT
tasking system. In this way, we obtain a platform where im-
precise computation can be applied. Figure 2 shows the
processing tasks in a DEVS-based system.

Figure 2. Processing carried for a state transition.

 The external transition (X) is mapped into a task that in-
itiates the state S. The task release time is equal to the arri-
val of the input to the model (from the external environment
in the case of the topmost coupled model, or when the out-
put generated on an output port is received in the atomic
model input port). We assume no deadline for the X task.
The output (λ) and internal transition tasks (I) are considered
to execute together (task λI, as outputs in DEVS are always
followed by an internal transition). The release time of task
λI is equal to the end of the state S and specified by ta(s)
(indicator T). Its deadline is specified by the function d(s)
(indicator d) that we added to the atomic model definition.

Figure 3. Overload scenario

 Figure 3 shows an overload scenario where four inputs
are injected, starting external transitions on different atomic
models. As we can see, λ1, λ2 and λ4 meet their deadlines;
however, λ3 and λ2 (second instance at time 18) do not. The
internal transition I2 produces a new state with ta(s) equal to
4 time units, which exceeds its deadline at time 17.
 In order to execute these models, we extended the
DEVS atomic model definition by dividing the above-
mentioned tasks into mandatory and optional parts, incorpo-

rating the imprecise computation concept. We assume that
tasks X are always mandatory but λ1 tasks can be optional.
The λ subtask of an optional λ1 task can be terminated under
transient overloads. For multiple consecutive optional λ1
tasks, the entire task can be discarded, except for the last
one (from which we only discard the λ portion), as the last 1
task needs to perform the internal transition. In other words,
during overloads, the model skips optional internal transi-
tions and their output functions to save time and resources
for the mandatory ones. For instance, an autonomous robot
in a bumpy road with obstacles (flooded with obstacle re-
connaissance inputs) can discard unnecessary tasks (e.g. re-
porting). A similar scenario can occur in any RT system
where a sequence of optional outputs can be skipped to alle-
viate the overload situation by keeping the necessary out-
puts produced on-time. Schedulability analysis can be ap-
plied to this model, based on various available methods
 [38], [39].

3.2. Execution Algorithm
Figure 4 shows the execution algorithm of the Imprecise
DEVS. The main algorithm is performed in the Root coor-
dinator (the top coordinator in the DEVS abstract runtime
hierarchy), which takes care of the RT discrepancy in the
execution of external or internal events.

1. main()
2. Send I msg to all atomic models
3. tN = closest internal or eventfile event
4. forever for each RT-DEVS Atomic model
5. wait for tN
6. if a RT external input event
7. send x msg;
8. send * msg; //P-DEVS formalism
9. else if tN time out
10. send @ msg
11. send * msg
12. end if
13. update tN
14. end forever
15. end main

Figure 4. Execution Algorithm of Root Coordinator

 We start first by sending an initialization message (I)
and collecting done messages from each of them (which re-
port the next internal event for each component). Whenever
there is an external input, the Root coordinator routes it
through an external message (x) to the destination atomic
model (which triggers the δext function). Otherwise, it waits
for the closest internal event (λ1) to send collect (@) and in-
ternal messages (*) to the target atomic model. The collect
message executes the λ function on the atomic model and
the internal message executes δint. The atomic model re-
sponds to the @ message by executing the λ function and re-

turning the output value through an output (y) message. The
atomic model also executes δint in response to a * message,
and returns its next internal event time by a done message.

1. Receive X msg(s, e, x)
2. push x in the Qext // PDEVS formalism
3. end external

4. Receive * msg(s)
5. if (internal event)
6. while (s is optional AND ta(s) <= now)
7. Run δint function
8. end while
9. if (s is mandatory)
10. Run δint function
11. end if
12. else if (external input in Qext)
13. Run δext function
14. else if (both external and internal events)
15. Run δcon function
16. end if
17. send done msg
18. end internal

19. Receive @ msg(s)
20. if (s is optional AND ta(s) < now OR d(s)<now)
21. send done msg
22. else
23. Run λ function
24. send y msg
25. send done msg
26. end if
27. end collect

Figure 5. Execution Algorithm of the Atomic Model

 Whenever there is more than one internal event to be
serviced, the mandatory ones have priority over the optional
events. If an optional internal event is to be serviced later
than its release time, its output will be discarded. This strat-
egy helps us save time for later mandatory events that have
not been released yet. Whenever a sequence of optional
events in an atomic model is delayed, the atomic model
jumps to the most recent one by executing multiple state
changes in one δint (line 6). This way, we reduce the multi-
ple internal messages transmitted between the Root coordi-
nator and the atomic model and also multiple δint executions.
Figure 5 shows the execution algorithm for atomic model.
 Figure 6.a) shows a simple Imprecise DEVS model hi-
erarchy where two atomic models B and C are coupled into
D, which is itself coupled with atomic model A. Various in-
put/output ports are used to connect the various models in
the figure. Figure 6.b) shows the description of model A us-
ing DEVS Graph [36]. Note that continuous lines indicate
external transitions and dashed lines indicate internal transi-

tions. As we can see, the model is initially in state A1 (with
time advance = infinity) until an input xa is received on port
InA. In that case, the external transition produces a state
change to A2. The model stays in this state for 1t and its
deadline is 4t. When the time is consumed, it produces the
output y2a and transitions to A3 (internal transition). A simi-
lar scenario can be seen in states A3, A4 and A5, with out-
puts y3a, y4a and y5a produced respectively. Figure 6.c)
and d) show the DEVS Graphs for atomic models B and C,
respectively.

A1

Inf
M

A2

1t-4t

M

A3

4t-7t

O

InA?xa

A4

6t-9t

M

A5

2t-6t

O

C

O
ut1A

 ! y2a

Ou
t2A
 ! y
3a

Out2A! y4a

O
u
t1
A
 !
 y
5
a

BA

Top

D

In Out1InA Out1A

a) DEVS Hierrachical structure

b) State diagram of atomic

model A

B1

Inf
M

B2

1t-3t

M

B3

7t-11t

O

InB?xb

B4

4t-8t

M

O
u
tB
 ! y
2
b

Ou
tB
 ! y
3b

O
u
t B
! y
4
b

c) State diagram of atomic

model B

C1

Inf
M

C2

1t-4t

M

C3

2t-5t

O

InC?xc

O
u
tC
 !
 y
2
c

O
utC
 ! y3c

d) State diagram of atomic

model C

Out2A

Out2

InA?xa

Figure 6. DEVS model definition

 We can map the DEVS Graph of atomic model C
(shown in Figure 6.d) as follows:

C=< X, S, Y, δext, δint, δcon, λ, ta, d >, where:

X= {(InC, xc)},
S={(C1,mandatory), (C2, mandatory), (C3, optional)}, and
S0 = C1,
Y={(OutC, y2c), (OutC, y3c)},
δext (C1, e, < InC, xc >) = C2,
δint(C2) = C3, δint(C3) = C1,
δcon = δext has priority over δint
λ(C2) = <OutC, y2c>,
λ(C3) = <OutC, y3c>,
ta(C1) = ∞, ta(C2) = 1t, ta(C3) = 2t,
d(C1) = ∞, d(C2) = 4t, d(C3) = 5t,
 The mapping of atomic models A and B are similar and
straightforward.
 In this example, the state durations are considered very
small; however, in reality they are usually longer, compared
to the execution time of the X, λ and 1 tasks. In a system
with large number of atomic models, similar overload con-
ditions can happen at different points of time, when multiple
X, λ and 1 tasks from different atomic models are very close

to each other. For instance, Figure 7 shows a possible over-
load scenario for the DEVS model presented in Figure 6
without considering imprecise computation technique. An
input Xa enters the system from input port In at time zero.
Assuming the X task takes 1t, at time 1 (i.e. 1t) the atomic
model A moves from the initial state A1 to A2. The ta(s) of
state A2 is 1t, thus at time 2, we run task λ212, producing
the output y2a (for simplicity reasons we do not show the
outputs) and the internal transition from A2 to A3, (as speci-

fied in Figure 6.b). The output produced by the atomic
model A (y2a) is translated to an input for the atomic model
B. Thus, the task Xb is executed right after λ212, causing the
atomic model B to change from B1 to B2. The models ad-
vance according to the specifications (provided in Figure 6)
until t=18. At this point, the tasks λ414 of A, λ313 of C and
λ212 (of A, B and C, shown in red) miss their deadlines be-
cause of the overload condition in the system.

Figure 7. Example transient overload scenario

 On Figure 6.b), c) and d), we marked the mandatory
and optional states with an M or an O, respectively. By ap-
plying the proposed imprecise DEVS technique, λ3 of A is
skipped (because state A3 is optional and λ3I3 is executed
after its release time, T3a), causing λ4I4 to be shifted to time

16 and saved from lateness. The same condition happens for
λ3 of B and C. Hence, by discarding three optional λ tasks
we save the four mandatory tasks and their associated out-
puts.

Figure 8. Applying imprecise computation to the sample scenario

4. IMPLEMENTATION AND RESULTS
We implemented the proposed imprecise DEVS formalism
on E-CD++ [18], a toolkit that implements RT DEVS for-
malism proposed in [19] on the Xenomai RT framework
 [37]. Xenomai provides a RT kernel resting between the
hardware and Linux OS, and offers several pervasive hard
RT services to user space applications and is seamlessly in-
tegrated with GNU/Linux environment. We made X tasks
user configurable (i.e. periodic or aperiodic), and their main
job is to run user-defined input driver programs as soon as
they are spawned. A main RT task implements the DEVS
run-time abstract algorithm and takes care of λI tasks. This
task is also responsible to implement and verify the impre-
cise DEVS formalism and its execution. The implementa-
tion of the imprecise computation on E-CD++ is seamless
and backward compatible (i.e. the previous models also can
be executed and are considered as precise models).

 The proposed implementation of imprecise DEVS on
E-CD++ has been tested with variety of modeling scenarios
and several criteria has been applied for verification of the
final implementation. For instance, we used a synthetic ro-
botic model with 20 atomic models, each of them connected
to an external input port, connected to a sonar distance sen-
sor and an output port connected to an electrical motor. To
ensure that the same scenario runs every time, the values
coming from the sensors were the same in all tests. All the
atomic models follow the DEVS Graph diagram in Figure 9.
The model is a synthetical representation of a robot control-
ler, which receives inputs from sensors and based on the in-
puts, instructs the motors. We used 20 atomic models to
make it a computation intensive model where overrun situa-
tion happens frequently. The DEVS Graph diagram in
Figure 9 is composed of three optional states and three
mandatory states. Whenever there is an input in states C, D,
E, and F the model transitions to state B. We use this model

to perform comprehensive performance tests, and compare
the results of the imprecise execution and precise execution.
In the case of precise execution, all the states are assumed
mandatory.

Figure 9. Synthetic robotic model used for verification

 The timing for the component models varied for the dif-
ferent tests, performed. The first test discussed in this sec-
tion compared the number of discarded λ and I tasks versus
processor utilization. The diagram in Figure 10 shows the
results of this test, for a total execution time of 20 seconds.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Number of Discarded Transitions

P
ro

ce
ss

o
r

U
ti

li
za

ti
o

n

P=1.1 P=0.05 P=0.1 P=0.01 P=0.5

Figure 10. Discarded tasks vs. processor utilization

 The test was performed for input period intervals of 1.1,
0.5, 0.1 and 0.001 s. As it is observed from the chart, by in-
creasing the number of discarded tasks (which happens by
tightening the state durations and period of the inputs) the
processor utilization increases linearly. The result demon-
strates the integrity and persistency of the implementation in
a medium load scenario. In addition, as the system gets bus-
ier the number of discarded tasks also increases. The slope
of the diagram for different period configurations stays the
same, showing the integrity of the functionality of the algo-
rithm for different levels of load on the processor.

0

1000

2000

3000

4000

5000

6000

7000

0 100 200 300 400 500 600

Simulation Time (sec)

A
ve

ra
g

e
R

es
p

o
n

se
 T

im
e

(m
ic

ro
 s

ec
)

Imprecise Precise

Figure 11. Response time vs. execution time-heavy load

 Figure 11 shows the average response time of all the
mandatory λI jobs versus the execution time for the same
model using imprecise and precise modes. In this case, the
input period of all X jobs was fixed (2 ms). The test was
performed five times for each instance and the average re-
sult has been considered. As the chart shows, the average
response time of the mandatory λ jobs drops dramatically in
imprecise mode. In this example, there is a heavy load that
the system must respond to, which required longer time for
mandatory λ jobs to complete in precise mode. Imprecise
computation discards the optional tasks, thus the response
time of the mandatory tasks shortens.

0

50

100

150

200

250

300

350

400

450

500

0 5000 10000 15000 20000 25000 30000

Number of discarded tasks

A
ve

ra
g

e
R

es
p

o
n

se
 T

im
e

(m
ic

ro
 s

ec
)

Imprecise Precise

Figure 12. Number of discarded tasks versus average re-

sponse time in medium load

 Figure 12 shows the average response time of the
model versus the number of discarded tasks for 20 seconds
of execution time. The period of inputs is set to 50 millisec-
onds, and by varying the state durations, we obtain different
number of discarded tasks in imprecise mode. For each in-

stance of the imprecise test, the same configuration was
used to run in precise mode and find the average response
time of the corresponding number of discarded tasks in pre-
cise mode. We can see that the average response time of the
corresponding precise execution for each instance is slightly
higher than the imprecise one in medium load scenario. The
chart shows that by increasing the number of discarded tasks
(i.e. tighter state durations) the average response time also
increases. However, that this increase is not smooth as the
situations change for different state durations.
 Figure 13 depicts the processor utilization versus the
number of discarded tasks in a heavy load scenario with the
input period of 2 milliseconds and 20 seconds execution
time. The chart shows steady but higher processor utiliza-
tion for precise execution. The processor utilization for pre-
cise execution in all instances of the test is almost full,
therefore as the load increases; the utilization remains al-
most the same. However, the imprecise processor utilization
is instable and decreases as the number of discarded tasks
increases. This is due to the instable and varying conditions
that occur in a very heavy load scenario in imprecise mode.
As the number of the discarded tasks increases, less proces-
sor usage is required. This decrease is not smooth neither
linear, because of the change in conditions in each run, and
admission of more mandatory jobs.

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

4000 5000 6000 7000 8000 9000 10000

Number of discarded tasks

P
ro

ce
ss

o
r

u
ti

li
za

ti
o

n

Imprecise Precise

Figure 13. Discarded tasks vs. CPU utilization-heavy

load

5. CONCLUSIONS
 The development of embedded RT systems with RT
constraints has been studied by the software engineering
community in the last 20 years. The novel Imprecise DEVS
(I-DEVS) formalism we proposed enables model designers
to assign priority to the model’s behavior and balance the
execution burden based on the priorities assigned. The new
approach can be easily integrated with previous models pro-
viding RT DEVS environment capable of managing differ-
ent high processing conditions and integrate that with the

RT DEVS engine. The approach provides flexibility to the
user by prioritizing different behaviors of the system under
control, while achieving the maximum throughput from the
processor. The implementation and results of different tests
have been presented.
 The future work for this research includes incorporation
of Dynamic DEVS formalism with the proposed I-DEVS
formalism to introduce a new imprecise DEVS capable of
prioritizing different components of the model besides the
behaviors. Schedulability analysis will be applied to the
proposed implementation to measure the possibility of the
execution of the model on an specific hardware platform.

References
[1] H. Saadawi, G. Wainer. "Verification of Real-Time
DEVS Models". In proceedings of DEVS Symposium, San
Diego, California, USA, 2009.
[2] G. Wainer. "Discrete-event modeling and simulation; a
practitioner's approach”. CRC/Taylor & Francis. 2009.
[3] K. Lin, S. Natarajan, J.-S. Liu. “Imprecise Results:
Utilizing Partial Computations in Real-Time Systems”. In
proceedings of the IEEE 8th Real-Time Systems Sympo-
sium, San Jose, California, USA, 1987.
[4] H. Kobayashi, N. Yamasaki, ”RT-Frontier: A Real-
Time Operating System for Practical Imprecise Computa-
tion”. In proceedings of the 10th IEEE Real-Time and Ap-
plications Symposium, Toronto, Canada, 2004.
[5] G. R. Wiedenhoft, A.A. Fröhlich. “Using Imprecise
Computation Techniques for Power Management in Real-
Time Embedded Systems”. 6th IFIP Working conf. on Dis-
tributed and Parallel Embedded Systems, Milano, Italy.
2008.
[6] J.W.S. Liu, K-J. Lin, R. Bettati, D. Hull, A. Yu. “Use
of imprecise computation to enhance dependability of real-
time systems”. The International Series in Engineering and
Computer Science, 1994, Volume 284, Section 3,157-182.
[7] W. Feng , J. W. S. Liu. “An Extended Imprecise Com-
putation Model for Time-Constrained Speech Processing
and Generation” Proceedings of the IEEE Workshop on
Real-Time Applications, New York, NY. USA, 1993.
[8] X. Chen, A. M. K. Cheng. “An Imprecise Algorithm
for Real-Time Compressed Image and Video Transmission”
Proceedings of 6th International Conference on Computer
Communications and Networks, Las Vegas, NV., USA
1997.
[9] X. Huang , A. M. K. Cheng. “Applying Imprecise Al-
gorithms to Real-Time Image and Video Transmission”
Proceedings of Real-Time Technology and Applications
Symposium, Chicago, Illinois, USA, 1995.
[10] K. Fujisawa, S. Hayakawa, T. Aoki, T. Suzuki, S.
Okuma. “Real Time Motion Planning for Autonomous Mo-
bile Robot, using Framework of Anytime Algorithm” Pro-
ceedings of the IEEE International Conference on Robotics
& Automation, Detroit, Michigan, USA, 1999.

[11] G. B. Parker. “Punctuated Anytime Learning for Hex-
apod Gait Generation” Proceedings of IEEE/RSJ Interna-
tional Conference on Intelligent Robots and System, Bei-
jing, China, 2002.
[12] S. Zilberstein , S. J. Russel. “Anytime Sensing, Plan-
ning and Action: A Practical Model for Robot Control” Pro-
ceedings of the 13th International Joint Conference on Arti-
ficial Intelligence, Chambery, France, 1993.
[13] M. Amirijoo, J. Hansson, S. H. Son. “Error-Driven
QoS Management in Imprecise Real-Time Databases” Pro-
ceedings of the 15th Euromicro Conference on Real-Time
Systems, Porto, Portugal, 2003.
[14] J. Hansson, M. Thuresson, S. Son. “Imprecise Task
Scheduling and Overload Management using OR-ULD”
Proceedings of the Seventh International Conference on
Real-Time Computing Systems and Applications, Cheju Is-
land , South Korea, 2000.
[15] B. Zeigler, T. Kim, H. Praehofer. “Theory of Modeling
and Simulation”. Academic Press 2000, ISBN-10:
0127784551.
[16] Hong J. S, Song H. H, Kim T. G., Park K. H “A Real-
Time Discrete Event System Specification Formalism for
Seamless Real-Time Software Development”, Springer,
Netherlands,1997.
[17] X. Hu, B. P. Zeigler, J. Couretas, "Devs-On-A-Chip:
Implementing DEVS In Embedded Java On A Tiny Internet
Interface For Scalable Factory Automation." Proceedings of
the 2001 IEEE Systems, Man, and Cybernetics Conference,
pp. 3051-3056.
[18] Y. H. Yu, G. Wainer, "eCD++: an engine for executing
DEVS models in embedded platforms" Proceedings of the
2007 SCS Summer Computer Simulation Conference, San
Diego, CA, USA, pp. 323-330. 2007
[19] M. Moallemi, G. Wainer, "Designing an Interface for
Real-Time and Embedded DEVS”. Proceedings of
TMS/DEVS Symposium. Orlando, FL. 2010.
[20] Furfaro A., Nigro L. “A development methodology for
embedded systems based on RT-DEVS”, Innovations in
Systems and Software Engineering, 5(2), pp. 117-127, 2009.
[21] Song H., Kim T. “Application of RT-DEVS to analysis
of safety critical embedded control system: railroad crossing
example” SIMULATION 81(2), pp. 119-136, 2005.
[22] Schulz, T. Ewing, and J.W. Rozenblit, “Discrete Event
System Specification (DEVS) and StateMate StateCharts
Equivalence for Embedded Systems Modeling”, Proc. of the
IEEE Conference on Engineering of Computer-Based Sys-
tems, pp. 308-316, Edinburgh, Scotland, UK, April 2000.
[23] Spencer Borland and Hans Vangheluwe. “Transform-
ing Statecharts to DEVS.” In proceedings of Summer Com-
puter Simulation Conference. Student Workshop, pages
S154 - S159. Society for Computer Simulation International
(SCS), July 2003. Montréal, Canada.
[24] L. Capocchi, F. Bernardi, D. Federici, P. Bisgambiglia,
“Transformation of VHDL descriptions into DEVS models

for fault modeling and simulation” in proceedings of the
IEEE Systems, Man and Cybernetics Conference, 2003, pp.
1205-1211, Washington, USA, 2003.
[25] C. Jacques, G. Wainer, “Using the CD++ DEVS tool-
kit to develop Petri Nets” In Proceedings of the 2002 Sum-
mer Computer Simulation Conference. San Diego, CA.
USA. 2002.
[26] Tao Zheng, Gabriel A. Wainer, "Implementing finite
state machines using the CD++ toolkit" In Proceedings of
the 2005 SCS Summer Computer Simulation Conference
(Student Workshop), Montreal, QC. Canada - 2003
[27] W.-K. Shih, J. W. S. Liu, J.-Y. Chung. “Algorithms for
Scheduling Imprecise Computations with Timing Con-
straints”. SIAM J. Comput., 20(3):537–552, June 1991.
[28] J.W.S. Liu, W.K. Shih. “Algorithms for Scheduling
Imprecise Computations with Timing Constraints to Mini-
mize Maximum Error”. IEEE Trans. Comput., 44(3):466–
471, 1995.
[29] H.Aydin, P.Mejia-Alvarez, R.Melhem, D.Mossé. “Op-
timal Reward-Based Scheduling of Periodic Real-Time
Tasks”. Proceedings of the 20th IEEE Real-Time Systems
Symposium, 1999.
[30] W.-K. Shih , J. W. S. Liu. “On-Line Scheduling of Im-
precise Computations to Minimize Error” SIAM J. Comput.,
5(5):1105–1121, 1996.
[31] S. Baruah, M. Hickey. “Competitive On-Line Schedul-
ing of Imprecise Computations” IEEE Trans. Comput.,
47(9):1027–1032, Sept. 1998.
[32] J.-Y. Chung, J.W. S. Liu, K.-J. Lin. “Scheduling Peri-
odic Jobs That Allow Imprecise Results” IEEE Trans.
Comput., 39(9):1156–1174, Sept. 1990.
[33] Chow A, Kim D, Zeigler B. “Parallel DEVS: A paral-
lel, hierarchical, modular modeling formalism” Proceedings
of Winter Simulation Conference, 1994, Orlando, Florida.
[34] Cho S. M. , Kim T. G. “Real-Time DEVS Simulation:
Concurrent, Time-Selective Execution of Combined RT-
DEVS Model and Interactive Environment” Proceeding of
1998 Summer Simulation Conference, Reno, Nevada.
[35] Wainer, G. "CD++: a toolkit to define discrete-event
models". Software, Practice and Experience. Wiley. Vol. 32,
No.3. pp. 1261-1306. November 2002.
[36] B.P. Zeigler, H. Song, T. Kim, H. Praehofer. "DEVS
Framework for Modelling, Simulation, Analysis, and De-
sign of Hybrid Systems". Proceedings of HSAC, LNCS,
Vol. 999. Ithaca, NY. 1995.
[37] Xenomai: Real-Time Framework for Linux. Website
available at: www.xenomai.org. accessed March, 2010.
[38] C. L. Liu , J. W. Layland, “Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment”.
JACM, Vol. 20, No. 1, 1973.
[39] S. Manolache. “Schedulability Analysis of Real-Time
Systems with Stochastic Task Execution Times”. Licentiate
Thesis No. 985, Dept. of Computer and Information Sci-
ence, IDA, Linkoping University, Sweden, December 2002

