
425

chapter seventeen

Web-based simulation
using Cell-DEVS modeling
and GIS visualization
Sixuan Wang and Gabriel Wainer

Contents

Introduction... 426
Related work.. 429

Integration of M&S using DEVS/Cell-DEVS... 430
Categories of Web-based simulation... 431

Local simulation.. 431
Remote simulation.. 432
Distributed simulation.. 434
Online model/documentation repository... 436

Integration of GIS and M&S... 436
Integration of modeling and simulation and geographic
information system visualization.. 437

Architecture... 438
Cell-DEVS modeling... 440
GIS data collection.. 441

GIS and GeoTIFF.. 441
Class diagram... 443
Data collection process.. 443

Step 1: Dataset Reading.. 444
Step 2: Pixel2Cell... 445
Step 3: Init Data Building... 445

Web-based simulation.. 445
DCD++ simulator in RESTful Interoperability Simulation
Environment... 447

DCD++ simulator configuration... 447
DCD++ simulation synchronization algorithm............................... 449

426 Modeling and simulation-based systems engineering handbook

Introduction
System engineering is an interdisciplinary engineering that consists of
an integrated, life-cycle-balanced set of system solutions that satisfy cus-
tomer requirements (ANSI/EIA-632 1999). System engineering is the art
and science of creating optimal solutions to complex issues and prob-
lems, focusing on designing and managing complex engineering projects
over their life cycles, and handling their work processes, optimization
methods, and risk management tools (Hitchins 2008). On the one hand,
system engineering allows the collaborative development that unifies
all the contributors into one team, following a structured development
process that transforms needs into a set of system product descriptions,
generates information for planners, and provides input for the next level
of development (Leonard 1999). On the other hand, system engineering
facilitates the design phase of projects with a vast amount of data and vari-
ables, aiming at the integration of all aspects of the system into a whole.

System engineering encourages the use of modeling and simulation
(M&S) to validate assumptions on systems, handle the interactions within
them, and manage their complexity (Sage and Olson 2001). M&S has been
playing increasingly important roles for analyzing and designing com-
plex systems in system engineering. A model is a physical, mathematical,
or logical abstract representation of a system entity, while a simulation is
the implementation of a model over time that brings the corresponding
model to life (Leonard 2001). It is useful for testing and analyzing the sys-
tem design before the real project has begun. The other benefits of using

CD++ v3.0 simulator in RESTful Interoperability Simulation
Environment... 450

CD++ v3.0 simulator configuration.. 450
CD++ v3.0 simulator features.. 451

Visualization in Google Earth... 452
KML introduction... 453
Class diagram of Visualization tool... 454
Visualization process... 455

Step 1: Results parser.. 456
Step 2: Cell Merger.. 456
Step 3: Coordinate converter... 457
Step 4: KML generator.. 457

Applications... 459
Fire Spread... 459
Monkey Pathogen Transmission.. 461

Conclusion... 464
Acknowledgments.. 464
References... 465

D
ow

nl
oa

de
d

by
 [

C
ar

le
to

n
U

ni
ve

rs
ity

 L
ib

ra
ry

],
 [

G
ab

ri
el

 W
ai

ne
r]

 a
t 1

1:
04

 1
2

Ja
nu

ar
y

20
15

427Chapter seventeen:  Web-based simulation using Cell-DEVS and GIS

M&S are as follows: it is cheaper and safer than the real case; it is more
realistic than traditional experiments; and it is faster than doing it in the
real time (Tolk 2010).

Especially in the design phase of the life cycle of a system engineering
project, M&S can be used to evaluate the performances of a new prod-
uct concept, verify design specifications, or suggest improvements for a
product. This kind of simulation-based design enables designers in dif-
ferent fields to test whether design specifications are met. It can provide
the designer with immediate feedback of different design alternatives and
facilitate decision making for optimal performance (Sinha et al. 2001).

For simulation-based design, modeling languages and simulators
must take into account the special characteristics of the design process. The
modeling language should allow models to be updated and reused easily,
and simulators should be well integrated with the design tools for col-
laborative developments of designers. Among different M&S approaches,
discrete event systems specifications (DEVSs) (Zeigler et al. 2000) and
Cell-DEVS (Wainer 2009) are two of the most well-defined formal M&S
methodologies. DEVS responses to external events based on continuous
timing, composed of behavioral (atomic) and structural (coupled) com-
ponents. Cell-DEVS extends DEVS to the field of Cellular Automata (CA),
allowing modeling complex spatial problems.

In recent years, web-based simulation has received increasing atten-
tion in the simulation community, which has resulted in the birth of the
area of web-based simulation (WBS). WBS is the integration of the Web
with the field of simulation, by invocating computer simulation services
through the World Wide Web. It has drawn much attention in the simu-
lation community and has been growing for recent years (Huang et al.
2005). It can be defined as the use of resources and technologies provided
by the Web with interaction of client and server M&S tools, supported
by a browser for graphical interface interaction (Bencomo 2004). We can
gain numerous benefits in this way: (1) Users can reproduce the execution
of simulation online easily instead of installing complicated configura-
tion of required simulation software. (2) Users can reuse and share sim-
ulation resources on site without worrying about the capability of their
local machine CPU or memory. (3) With the help of advanced distributed
simulation technologies, the simulation can be executed on distributed
computers via communication networks, which can further improve
interoperability and speed up the execution time. (4) Simulation results
can be retrieved or visualized by the emergency crews on site, which can
crease the emergency response success.

This chapter presents an effort toward integrating four specific
components: geographic information systems (GISs), modeling, simula-
tion, and visualization, to support the simulation-based design process
in system engineering. The focus of this chapter is to use WBS and GIS

D
ow

nl
oa

de
d

by
 [

C
ar

le
to

n
U

ni
ve

rs
ity

 L
ib

ra
ry

],
 [

G
ab

ri
el

 W
ai

ne
r]

 a
t 1

1:
04

 1
2

Ja
nu

ar
y

20
15

428 Modeling and simulation-based systems engineering handbook

visualization techniques to deal with this kind of integration. The objec-
tive is to develop an integration method that enables designers, decision
makers, and planners in multidisciplinary fields to easily run simula-
tion models for testing the performance of design and visualize simu-
lated results faster for making fast decision. The basic idea is to provide a
general method to extract information from GIS, model with Cell-DEVS
theory, run WBS, and visualize results back in Google Earth. To do so, we
will discuss the challenges and address the advantages of this integration
method, as well as different ways to realize it, and real application case
studies.

A GIS is an environmental system that combines hardware, software,
and data for managing, analyzing, and displaying all forms of geographi-
cally referenced information. Currently, GIS is widely used to manage
large spatial databases, to perform statistical analyses, and to produce
effective visual data representations. GIS applications have been used to
quickly and reliably process spatially referenced data as a decision sup-
port tool (Badard and Richard 2001).

The generation of M&S of environmental systems can be traced back
to the early days of computer simulation (Botkin et al. 1972). These simula-
tions have been combined with GIS (Band 1986; Desmet and Govers 1995;
Van Derknijff et al. 2010; Wang 2005) since the 1980s. M&S in GIS is for
characterizing and understanding environmental patterns and processes,
and estimating the effects of environmental changes. Many GISs already
contain embedded simulation capabilities; however, it usually focuses on
specific simulation that is limited by the power of simulator and poor for
scaling up. On the other hand, simulating advanced environmental simu-
lation models separated from GIS tools is complex (Zapatero et al. 2011).
Therefore, there are growing interests in the potential for integrating GIS
technology and environmental simulation models. Several works have
been done in the efforts to integrate GIS and DEVS M&S for environmen-
tal systems (Gimblett et al. 1995; Hu et al. 2011; Wainer 2006; Zapatero et al.
2011), trying to transform the GIS information into a DEVS/Cell-DEVS
model and to visualize simulation results in Google Earth. Although
designers use GIS, M&S, and visualization in various projects, the integra-
tive uses between them are still at an elementary stage. Furthermore, most
M&S methods and applications run on single-user workstations, which
normally cost too much time for installation and configuration of all the
software and dependencies needed by the simulation. It is better to have
remote access to the simulation resources with Web service (WS) inter-
faces, improving data accessibility, interoperability, and user experience.

Visualizing large amounts of information interactively is one of the most
useful capabilities of GIS. Ware (2000) points out that visualization helps to
present mass data, identify patterns or the problems with data, and facili-
tate understanding of data. Visualizing data using the current computing

D
ow

nl
oa

de
d

by
 [

C
ar

le
to

n
U

ni
ve

rs
ity

 L
ib

ra
ry

],
 [

G
ab

ri
el

 W
ai

ne
r]

 a
t 1

1:
04

 1
2

Ja
nu

ar
y

20
15

429Chapter seventeen:  Web-based simulation using Cell-DEVS and GIS

technology and interactive GIS can create multiple perspectives, enhancing
a designer’s abilities to better understand the studying phenomenon. On
the other hand, visualization of simulation results are usually accompanied
by high-fidelity graphics or vivid animation, which can provide a number
of benefits: to compare a simulated result to the expected effect, to provide
interactive environment to verify models, and to easily refine their solutions
with different scenarios. In system engineering, the visualization features
can present data views of the present and future. Usually, the visualization
provides a graphic user interface to support interactions between the system
and the users.

The contributions of this chapter are mainly as follows: (1) It proposes
a new integrated framework that combines GIS data collection, Cell-DEVS
modeling, WBS, and GIS visualization, which allows users to choose the
best available technologies to analyze GIS system behaviors and predict
future scenarios. The parts in this framework are loosely coupled and easy
to scale up. (2) It introduces details of modeling using Cell-DEVS formal-
ism for analyzing a GIS system in the simulation-based design phase of
system engineering. (3) It provides a prototype with different case studies
that is implemented based on the RESTful simulation services middleware
for WBS and GIS systems with Google Earth visualization. The simulation
engines are stored on a server and can be run remotely using our RESTful
Interoperability Simulation Environment (RISE) middleware. DEVS is a
universal abstract formalism, separating M&S, and RISE middleware sep-
arates simulator implementation and underling hardware; therefore, they
make it perfect for deployment online remotely.

The rest of the chapter is organized as follows. The Section “Related
work” reviews the issues of current approaches for integrating Cell-DEVS
modeling, Web-based simulation, and GIS visualization. Then, the Section
“Architecture” presents a novel architecture to solve these issues, followed
by details in the Sections “Cell-DEVS modeling,” “GIS data collection,”
“Web-based simulation,” and “Visualization in Google Earth.” Finally, the
Section “Applications” shows real cases to demonstrate the advantages of
the proposed integration architecture.

Related work
In an integrated system of GIS, M&S, and visualization, each component
contributes to the system with distinctive features. GIS provides the func-
tions to manage spatial information between entities. M&S allows repre-
senting the dynamic relationships among studying entities and predicting
the behaviors in the following period. WBS eases the implementation of
simulation in a much easier way using web technologies. Visualization
is to represent simulation results in an intuitive and vivid way for fast
decision making. In this section, we are going to review the different

D
ow

nl
oa

de
d

by
 [

C
ar

le
to

n
U

ni
ve

rs
ity

 L
ib

ra
ry

],
 [

G
ab

ri
el

 W
ai

ne
r]

 a
t 1

1:
04

 1
2

Ja
nu

ar
y

20
15

430 Modeling and simulation-based systems engineering handbook

integration aspects of these three components. First, we will review the
M&S method architecture using DEVS in system engineering. We will not
only discuss the advantages of using Cell-DEVS for modeling environ-
mental system problems but also review the different categories of WBS
for the model execution.

Integration of M&S using DEVS/Cell-DEVS

Many M&S methods can be used to simulate environmental GIS mod-
els. DEVS (Zeigler et al. 2000) is a mathematical formalism for specifying
discrete events systems using a modular description. DEVS is a perfect
option for M&S to system engineering due to many reasons. DEVS is very
easy to reuse and integrate with other components. DEVS has been suc-
cessfully used in this area due to its ease of modeling, the varied ways
to combine existing models, and the efficiency of the simulation engines.
Other benefits are coupling of components, hierarchical structure, and
modularity construction.

Figure 17.1 shows the layered DEVS M&S architecture for system
engineering. From bottom to top, it goes from infrastructure hardware,
software implementation to conceptual abstraction. DEVS models are
closed under coupling, which means a coupled model can be viewed as an
atomic one, allowing reusing and integrating to other DEVS models with-
out changes. Each model can be associated with an experimental frame-
work, allowing the individual simulation executing and testing easier.
Similarly, WBS, including simulators and supporting middleware, is also
independent of the modeling framework, which allows different simula-
tors of particular or customized purposes and a layered view of M&S.

DEVS models are composed of behavioral (atomic) and structural
(coupled) components. Cell-DEVS (Wainer 2009) extends DEVS by sup-
porting cellular models in a spatial lattice. Cell-DEVS defines a cell as a
DEVS atomic model and a cell space as a coupled model. Each cell holds
a state variable and a computing function that updates the cell state
based on its present state and its neighborhoods. CD++ (Wainer 2002) is
an open-source environment capable of executing DEVS and Cell-DEVS

Applications

Models (DEVS/Cell-DEVS)

Simulators (CD++ variations)

Middleware (remote/distributed)

Infrastructure (CPU/memory/IO)

Web-based simulation

Figure 17.1  A layered DEVS M&S architecture for system engineering.

D
ow

nl
oa

de
d

by
 [

C
ar

le
to

n
U

ni
ve

rs
ity

 L
ib

ra
ry

],
 [

G
ab

ri
el

 W
ai

ne
r]

 a
t 1

1:
04

 1
2

Ja
nu

ar
y

20
15

431Chapter seventeen:  Web-based simulation using Cell-DEVS and GIS

models, supporting different variations for stand-alone, parallel, or other
improved simulators. RISE (Al-Zoubi and Wainer 2011) is a simulation
middleware to support RESTful WSs for web-based CD++ simulation.
Because DEVS strictly separates models from simulators, and WBS based
on RISE Middleware strictly separates simulation from the supporting
hardware, each part is loosely coupled and easy to scale up.

The Cell-DEVS formalism combines both CA and DEVS (Zeigler et al.
2000). Cell-DEVS has been widely used in many complex system engi-
neering projects, not to mention GIS system. The advantages of using Cell-
DEVS for GIS system are as follows: (1) the inheritance of DEVS, (2) the
spatial rule-based features, (3) the event-driven asynchronous execution,
and (4) the input or output (I/O) ports for easy integration with each other.

Categories of Web-based simulation

From previous discussion, we have known that WBS gains a lot of benefits
for implementing the models: executing repeatedly without complicated
installation, resources reuse on site regardless the local hardware constrains,
and support for distributed simulation to speed up the execution time. The
WBS is one of the focuses of this chapter; now let us see its main categories.

Early WBS efforts began in 1995, as old as the Web itself. However, the
area of WBS is still in its infancy with many issues to study (Byrne et al.
2010); besides, the number of real applications and tools for WBS are still
very small (Wiedemann 2001). Many authors classified WBS, like Byrne
et al. (2010), Myers (2004), and Page (1999). The classification could be devel-
oped architecturally and summarized as the following four categories.

Local simulation
Local simulation is where the simulation engine is downloaded directly
by the client to the user’s local computer. The simulation engine executes
the model completely in the client, usually with the capacity to visualize
simulation results in a 2D or 3D way. Local simulation makes the server
as a central distributor, but it does not do any real work (Bencomo 2004).
The common approaches of using this local simulation are through Java
applets or executable files. Usually, the user opens a browser and navi-
gates a web page via a uniform resource identifier (URI), which contains
an applet or executable file for downloading. After the downloading
phase, the user can run the simulation engine within the applet or execut-
able file. Figure 17.2 gives the basic local simulation architecture after this
downloading phase. Originally, the simulation engine usually runs on a
single local processor (LP). However, as the demand is for larger and more
complex models, a single processor becomes very time-consuming. This
results in the emergence of parallel simulation, distributing simulation
over a set of LPs that are geographically close to each other (e.g., clusters),

D
ow

nl
oa

de
d

by
 [

C
ar

le
to

n
U

ni
ve

rs
ity

 L
ib

ra
ry

],
 [

G
ab

ri
el

 W
ai

ne
r]

 a
t 1

1:
04

 1
2

Ja
nu

ar
y

20
15

432 Modeling and simulation-based systems engineering handbook

to reduce the simulation time (Page 1999). Parallel simulation also handles
simulation protocols and synchronization management.

Remote simulation
In remote simulation, the simulation engine is located and executed
remotely on the server side (Bencomo 2004). User accesses the simula-
tion engines through a browser on the client side. Users can submit their
requests (with specified message/parameters) to the simulation engine
through the Web server, then simulation will run remotely, and results
are returned to the user once the simulation has finished. The commu-
nication and manipulation between the client browser and the simula-
tion engine in the server could be performed by many ways. Following
the history of the development of the Web, the means include Common
Gateway Interfaces, Java remote method invocation, Common Object
Request Broker Architecture (CORBA), remote procedure call (RPC), and
WSs (Bencomo 2004). The user opens a browser and navigates to a Web
page via a specific URI, follows interface of the Web server operations,
communicates to server with message protocol, and then waits for the
response from the server on this URI.

In recent years, WSs are increasingly used for remote simulation,
improving data accessibility, interoperability, and user experience. WSs are
mainly categorized into two classes: RESTful WSs (Richardson and Ruby
2008) (to manipulate Extensible Markup Language [XML] representations of
Web resources using a uniform set of stateless operations), and arbitrary WSs
(Ribault and Wainer 2012) (such as Simple Object Access Protocol [SOAP]-
based WS, in which the service exposes an arbitrary set of operations).
RESTful WSs imitate the web interoperability style. The major RESTful WSs
interoperability principles are universally accepted standards, resource-
oriented, uniform channels, message-oriented, and implementation hiding.
Figure 17.3 gives the basic RESTful remote simulation architecture. RESTful
WSs expose all services as resources with uniform channels where messages
are transferred between those resources through those uniform channels.
We can access RESTful WS through web resources (URIs) and XML mes-
sages using hypertext transfer protocol (HTTP) methods (GET, PUT, POST,
and DELETE). RESTful WS is simple, efficient, and scalable. Its strengths of

Internet

ServerClient

Simulation engine

LP LP
or

LP

LP

...

Figure 17.2  Basic local simulation architecture.

D
ow

nl
oa

de
d

by
 [

C
ar

le
to

n
U

ni
ve

rs
ity

 L
ib

ra
ry

],
 [

G
ab

ri
el

 W
ai

ne
r]

 a
t 1

1:
04

 1
2

Ja
nu

ar
y

20
15

http://HTTP)

433Chapter seventeen:  Web-based simulation using Cell-DEVS and GIS

simplicity, efficiency, and scalability make RESTful WS an excellent candi-
date to perform remote simulation. On the basis of these ideas, in Al-Zoubi
and Wainer (2011), the authors presented the first existing RISE middleware.
The main objective of RISE is to support interoperability and mash-up of dis-
tributed simulations regardless of the model formalisms, model languages,
or simulation engines. The details of SOAP-based WS and the comparison
between SOAP-based WS and RESTful-WS will be discussed later in Section
“Distributed simulation.”

Remote simulation enables larger simulations to be run on powerful
computers in terms of processing, memory, and networks so that users
can get the results from any low-end computer with a browser, or any
other personal-aided devices (e.g., smartphone, tablet). By this way, thin
client is achieved. Another advantage is that the user can reuse the simu-
lation engine that is already available on the server, without worrying
about simulation environment setup and other software dependencies
issue. Besides, using a familiar interface that separates model and simula-
tor, the user can focus on their model, making maintenance easier and
promoting productivity. Some disadvantages of remote simulation are
network latency, standardization, and dynamic interaction with simula-
tion (Myers 2004).

Regarding whether the location of visualization/animation engine is
on the server side, together with the simulation engine, remote simulation
can further be classified into pure remote simulation and hybrid simula-
tion (Byrne 2010).

Note that remote simulation does not specify the number of simula-
tion engines or underling machines. Remote simulation focuses on the
user’s point of view, providing a way for user to access simulation services
easily and efficiently. Conceptually, there is one simulation engine located
on a single machine. However, if the simulation runs on various machines
located remotely, the simulation is said to be distributed. This topic is dis-
cussed in the Section “Distributed simulation.”

Client

HTTP Client Internet

Server
Uniform channels

Messages (e.g. XML)

Service resource

Simulation engineURI

Figure 17.3  Basic remote simulation architecture with RESTful Web service.

D
ow

nl
oa

de
d

by
 [

C
ar

le
to

n
U

ni
ve

rs
ity

 L
ib

ra
ry

],
 [

G
ab

ri
el

 W
ai

ne
r]

 a
t 1

1:
04

 1
2

Ja
nu

ar
y

20
15

434 Modeling and simulation-based systems engineering handbook

Distributed simulation
Distributed simulation is created to execute simulations on distributed
computer systems (i.e., on multiple processors connected via commu-
nication networks) (Fujimoto 2000). Figure 17.4 shows the basic distrib-
uted simulation architecture. Its main objective is to interface different
simulation resources, allowing synchronization for the same simulation
run through different simulation engines across a distributed network,
to interoperate heterogeneous simulators or geographically distributed
models. The other benefits of using distributed simulation include model
reuse, reducing execution time, interoperating different simulation tool-
kits, and providing fault tolerance and information hiding (Boer et al.
2009; Fujimoto 2000).

By its nature, all of WBS can be described as distributed simulation
(Alfonseca et al. 2001; Page et al. 1998). Indeed, Page et al. (1998) classifies
distributed simulation as a category of WBS. Web technologies and dis-
tributed simulation technologies have grown up largely independently,
and influenced each other. The difference of distributed simulation with
remote simulation is that distributed simulation aims to speed up sim-
ulation time by partitioning of models, focusing on the message trans-
mission between simulation engines that are heterogeneously located
and geographically distributed, whereas remote simulation is aiming to
provide easy and efficient way for the user to access simulation services.
Therefore, we separate them here into two categories for clearance.

The defense sector is one of the main users of distributed simulation
technology, providing virtual distributed training environment, relying
on the high level architecture (HLA) for simulation interoperability (Khul
et al. 1999). Besides, Strassburger et al. (2008) predict the bright future of
distributed simulation in the nonmilitary area in the gaming industry, the
high-tech industry (e.g., auto, manufacturing, and working training), and
emergency and security management. To make distributed simulation
more attractive to the industrial community, Boer et al. (2009) suggested
that we need a lightweight commercial-off-the-shelf product to interoper-
ate different parts efficiently, effortlessly, and quickly. This demand leads
the nonmilitary distributed simulation community reaching out to other

Client

Internet

Server

Simulation engine 3

Simulation engine 2

Simulation engine 1

Figure 17.4  Basic distributed simulation architecture.

D
ow

nl
oa

de
d

by
 [

C
ar

le
to

n
U

ni
ve

rs
ity

 L
ib

ra
ry

],
 [

G
ab

ri
el

 W
ai

ne
r]

 a
t 1

1:
04

 1
2

Ja
nu

ar
y

20
15

435Chapter seventeen:  Web-based simulation using Cell-DEVS and GIS

communication technologies in the Web to overcome HLA shortcom-
ings (e.g., standards complexity, high dependency, and poor scalability).
CORBA was used during the 1990s to interoperate heterogeneous simula-
tions, using RPCs style. Those procedures glue different objects opera-
tions together, giving the impression that an operation invoked remotely
as a local procedure call. The distributed simulation community has also
turned to WSs since its birth in year 2000 to provide interoperability
between geographically located simulation engines.

As discussed previously, the most widely adopted arbitrary WSs
technology is SOAP-based. SOAP-based WSs (Papazoglou 2007) provides
a similar way to CORBA RPC-style (see Figure 17.5). It exposes services
that encapsulate various procedures on the server side. These services are
addressed using URIs and described in XML Web Services Description
Language (WSDL) documents. The client side can compile WSDL into
procedures stubs. Assume two simulation engines want to interact with
each other; the one that starts the request is in the role of the client, while
the other that receives the message is the server, and vice versa. Note that
these simulation engines will change the roles of client/server during
their interactions. At runtime, the client converts the RPC into an SOAP
message (XML-based), wraps the SOAP messages in an HTTP message,
and POST (HTTP method) to the server. On receiving the HTTP message,
the server will extract it reversely into the appropriate procedure call and
respond to the client in the same way.

Another popular WS technique for distributed simulation is RESTful WS
(Richardson and Ruby 2008), which exposes all services as resources with
uniform channels, and messages are transferred between those resources
through those uniform channels. Heterogeneous simulation engines can be
located on different distributed machines. As shown in Figure 17.6, we can
access RESTful WS through the main Web resource (URI) via XML messages

Internet

Service

Stub

Simulation engine

Simulator 2Simulator 1

HTTP client

SOAP layer

HTTP client

SOAP layer

Stub

Service

RPC API

Procedure parameters

RPC API

Simulation engine

Figure 17.5  Distributed simulation SOAP-based Web service architecture.

D
ow

nl
oa

de
d

by
 [

C
ar

le
to

n
U

ni
ve

rs
ity

 L
ib

ra
ry

],
 [

G
ab

ri
el

 W
ai

ne
r]

 a
t 1

1:
04

 1
2

Ja
nu

ar
y

20
15

436 Modeling and simulation-based systems engineering handbook

using HTTP methods (GET, PUT, POST, and DELETE), and this main Web
resource (URI) acts as manager to coordinate with other simulation engines
though uniform channels by their URIs. After simulation finishes, the main
Web resource collects all simulation results and forwards them to the client.

In Al-Zoubi and Wainer (2011), the authors identify the shortcomings
of using SOAP-based WS comparing with RESTful WS: (1) SOAP-based WS
communicates simulation information in the form of procedure param-
eters that are actually the application programming interface (API) of the
simulation component, whereas REST defines them directly as XML mes-
sage that hides internal implementation. (2) SOAP-based WS transmits
all SOAP messages only using HTTP POST channel, while REST uses all
HTTP channels for universal interfaces and clear manipulation semantics.
(3) SOAP-based WS clients need to have a stub that needs to be written,
integrated with existing software and compilers, whereas REST does not
require this process. (4) SOAP-based WS groups all services as procedures
and exposes them via a port, whereas REST exposes them as resources that
are easier to manage and maintain. Therefore, we are using RESTful WS in
RISE to interoperate heterogeneous simulators for distributed simulation.

Online model/documentation repository
Another type of Web-based simulation uses online repositories for mod-
els or related documentation. This kind of repository aims to use a server-
based centralized repository that can be used to store retrieval simulation
models (Miller et al. 2000) or online documentation to existing simulations
(Narayanan 2000). User can share their work with others, just as a Web docu-
ment that is hyperlinked to server, improving collaboration and cooperation.
Besides, Ribault and Wainer (2012) provide a method using myExperiment
(Goble et al. 2010), an online social networking environment, to find, share,
and reuse workflows that formulate and automate simulation-based WSs.

Integration of GIS and M&S

Researchers have categorized the integration of GIS and simulation mod-
els as loose and deep coupling (Bell et al. 2000). The loose coupling category

Service resources
Server

Simulation engine 3

Client

HTTP client Internet

Uniform channels

Messages (e.g., XML)

URI

URI

URI

Simulation engine 2

Simulation engine 1

Figure 17.6  Distributed simulation RESTful Web service architecture.

D
ow

nl
oa

de
d

by
 [

C
ar

le
to

n
U

ni
ve

rs
ity

 L
ib

ra
ry

],
 [

G
ab

ri
el

 W
ai

ne
r]

 a
t 1

1:
04

 1
2

Ja
nu

ar
y

20
15

437Chapter seventeen:  Web-based simulation using Cell-DEVS and GIS

consists of most integration efforts through exchanging data files. This
approach often needs human interaction, which hinders the automatic
operation. The deep coupling approach links GIS and M&S with a friendly
user interface, which has drawn much attention in recent years. Some
GISs allow getting information from outside using public APIs to sup-
port this kind of deep coupling approach. Geographic Resources Analysis
Support System (GRASS) (GRASS GIS 2013) is a popular GIS project of the
Open Source Geospatial Foundation. GeoTIFF (OSGeo Foundation 2013)
is an open standard to establish a TIFF-based interchange format for geo-
referenced raster images.

Many of the environmental simulation models use GISs (Gimblett
et al. 1995; Hu et al. 2011; Wainer 2006b; Zapatero et al. 2011), which allows
manipulating georeferenced information and performing different oper-
ations with maps (Longley et al. 2005). However, there is limited data
sharing between these GIS system and M&S. Normally, the models for
simulation do not use GIS data directly or save model output into a GIS
database (Wang 2005). Besides, Ribault and Wainer (2012) state that few of
the current solutions can distribute the varied simulation engines based
on WBS, and formalize the workflow-like and scalable way to extract data
and visualize the results on Google Earth.

GIS is usually organized in multiple data layers, centralizing all the
environmental data available and making it accessible in several forms
(maps, digital maps, or raw data files). Whatever format is chosen, it is
necessary to transform GIS data into a format compatible with the simu-
lation software. In particular, in Wainer (2006), we showed how to simu-
late environmental systems efficiently using DEVS and Cell-DEVS. Those
studies used the CD++ M&S environment (Wainer 2009), and this soft-
ware stack was recently expanded to allow GIS data to be transformed
into CD++ simulation engine (Zapatero et al. 2011). This method relies on
the GeoTIFF standard file format, which is supported by most GIS.

Integration of modeling and simulation and
geographic information system visualization

We have discussed the benefits of visualization of GIS and simulation
results in the Section “Introduction.” Here, let us review some literatures
of the integration efforts between simulation results and GIS visualization.

Combining the M&S and GIS visualization can significantly increase
the representation and understanding of simulation results in an envi-
ronmental project. This kind of integration goes through system engi-
neering process from separated fields into a whole one. For example,
Bishop and Gimblett (2000) present an example of prediction of visi-
tor location and movement patterns in recreational areas. However,
as noted by Wang (2005), the integration effort between M&S and GIS

D
ow

nl
oa

de
d

by
 [

C
ar

le
to

n
U

ni
ve

rs
ity

 L
ib

ra
ry

],
 [

G
ab

ri
el

 W
ai

ne
r]

 a
t 1

1:
04

 1
2

Ja
nu

ar
y

20
15

438 Modeling and simulation-based systems engineering handbook

visualization is at a preliminary level. An operator often creates visu-
alization and animations separately for simulation results of specific
projects.

The limitations of GIS visualization are mainly the quality of pre-
sentation and the level of interaction/flexibility of the animation. Many
studies have shown the effort to combine the GIS and visualization. Pullar
and Tidey (2001) use a 3D GIS for visual impact assessment. Among these
efforts, Google Earth (Google 2013) is one of the most popular and massively
used for both scientific and generic purposes. Google Earth uses Keyhole
Markup Language (KML) (OGC 2013), an XML-based language focused
on geographic visualization that includes annotation of maps and images.
Its file format can be used to display geographic data in Earth browsers
(such as Google Earth), using a tag-based structure with nested elements
and attributes. The geographic visualization needs to include not only the
presentation of graphical data but also the control of the user’s navigation.
Once a KML file is created, it can be imported into Google Earth, allowing
the visualization of the simulated results on a customized layer impressed
over the standard layers (e.g., satellite views and street maps). Google Earth
provides mechanisms to make layers evolve forward and backward in time,
which is useful to analyze the progress of a simulation interactively (Google
2013). In Zapatero et al. (2011), we adapted Google Earth (Google 2013) as the
geospatial visualization system. Here, we will expand our previous work
with more advanced WBS techniques and advanced visualization methods
of Google Earth.

Architecture
A simulation-based design system in GIS using system engineering
enhances the collaboration among stakeholders and interoperability of mul-
tidisciplinary experts. This kind of system can facilitate agreement of differ-
ent kinds of people on the proper alternatives. The integration of GIS, M&S,
WBS, and visualization is expected to enhance the analyzing and evaluating
process of such a GIS-based decision-making system. Figure 17.7 illustrates
the general WBS architecture using Cell-DEVS and GIS. The basic idea is to
get data from GIS, model with Cell-DEVS theory, run simulation remotely,
and visualize simulation results in Google Earth. The overall approach
includes the following four subsystems: Data Collection, Cell-DEVS model-
ing, WBS, and Visualization. The significance of this integration is to use
the best available technologies to analyze GIS system behaviors and predict
future scenarios.

	 1.	Data Collection: It is done automatically, generating initial data
files from GIS into the Cell-DEVS model. This includes a Dataset
Reader for selecting georeferenced raster data from open standard

D
ow

nl
oa

de
d

by
 [

C
ar

le
to

n
U

ni
ve

rs
ity

 L
ib

ra
ry

],
 [

G
ab

ri
el

 W
ai

ne
r]

 a
t 1

1:
04

 1
2

Ja
nu

ar
y

20
15

439Chapter seventeen:  Web-based simulation using Cell-DEVS and GIS

GeoTIFF file, and a Pixel2Cell for approximating of collected data
into the scale that can be used in Cell-DEVS. Then the Init Data
Builder builds initial states of cells and necessary attributes for
Cell-DEVS model. The Section “GIS data collection” discusses the
details.

	 2.	Cell-DEVS Modeling: It builds a Cell-DEVS environmental
model according to the collected data. It defines the cell space size,
neighborhood, and rules of the model behaviors using CD++ mod-
eling tool. More details can be seen in the Section “Cell-DEVS
modeling.”

	 3.	WBS: It submits Cell-DEVS models to RESTful simulation services
URI, executes the simulation remotely, and then gets the simula-
tion results. Different simulation engines with CD++ variations
are stored on the server and can be run remotely using the RISE
middleware. DEVS is a universal abstract formalism separating
M&S, and RISE middleware separates the simulator implementation
and underling hardware. The Section “Web-based simulation” gives
more details.

	 4.	Visualization: It visualizes the simulation results in Google Earth,
providing an intuitive and interactive way for analysis. Once simula-
tion results are retrieved from RISE, it parses the simulation log file,
optimizes the cells with Cell Merger, and converts the coordinate sys-
tem into the way used in Google Earth. Then it generates a KML file
that can be imported into Google Earth, allowing the visualization

GIS (Grass) Google Earth

Visualization
Results parser

Cell-DEVS
modeling

Web-based simulation (RISE)

DCD++ CD++3.0

*.ti�

*.info
*.Kml

*.val,
*.inc

*.xml,
*.ma *.log

*.ma

Coordinate
converter

Cell Merger

KML generator

Data collection
DataSet
Reader

Pixel2cell

Init Data
Builder

Figure 17.7  Web-based simulation architecture using Cell-DEVS and geographic
information system.

D
ow

nl
oa

de
d

by
 [

C
ar

le
to

n
U

ni
ve

rs
ity

 L
ib

ra
ry

],
 [

G
ab

ri
el

 W
ai

ne
r]

 a
t 1

1:
04

 1
2

Ja
nu

ar
y

20
15

440 Modeling and simulation-based systems engineering handbook

of the simulated results on a customized layer impressed over the
standard layers. The Section “Applications” illustrates the details of
this subsystem.

In the following sections, we will use a simple land use change exam-
ple as a prototype to illustrate each step in the proposed WBS architec-
ture. We will first show how to model it using Cell-DEVS, and then show
the remaining steps in the process: GIS data collection, WBS, and Google
Earth visualization for the model.

Cell-DEVS modeling
Simulation models in GIS are abstract representation for characterizing
and understanding environmental patterns and processes. Recent atten-
tion has focused on the land surface process models for meteorological
study. Changes for land use have drawn much attention in urban plan-
ning, engineering, geography, urban economics, and related fields. Some
other networks, such as transportation, population, and soil distribution,
can play a strong influence on land use pattern changes; on the other hand,
new land use patterns can affect the developments of these networks. In
this section, we will introduce the Cell-DEVS mechanism and CD++ tool,
with a land use changes example to show how to model it.

The Cell-DEVS formalism (Wainer 2006) is defined as an extension to
CA combined with DEVS (Zeigler et al. 2000), a formalism for specification
of discrete-event models. In DEVS, atomic models describe model behaviors,
specified as black boxes, and several DEVS models can integrate together
forming coupled models (hierarchical structural models). Cell-DEVS defines
a cell as a DEVS atomic model and a cell space as a coupled model. Each cell
holds a state variable and a computing function that updates the cell state
based on its present state and its neighborhoods. As DEVS models are closed
under coupling, the independent and black box-like simulation mechanisms
allow these models to communicate each other in single processor, parallel,
or distributed simulators without too many changes, which makes it possible
for WBS in terms of message transmission and synchronization.

CD++ (Wainer 2002) is a tool for the simulation of DEVS and Cell-DEVS
models, and has been widely used to study a variety of models, includ-
ing architecture, traffic, environmental, emergency, biological, and chemi-
cal. The behaviors of a Cell-DEVS atomic model are defined using a set of
rules. Each rule indicates the future value of the cell’s state if a precondition
is satisfied. The precondition is usually checked around the neighborhood
of the current cell; Figure 17.8 shows some of the most widely used neigh-
borhoods. Moore’s neighborhood contains the origin and its eight adjacent
cells; Von Neumann’s neighborhood includes the ones to the up, down, left,
and right of center. The hexagonal’s neighborhood is useful because of the

D
ow

nl
oa

de
d

by
 [

C
ar

le
to

n
U

ni
ve

rs
ity

 L
ib

ra
ry

],
 [

G
ab

ri
el

 W
ai

ne
r]

 a
t 1

1:
04

 1
2

Ja
nu

ar
y

20
15

441Chapter seventeen:  Web-based simulation using Cell-DEVS and GIS

equivalent behavior in every direction, while the triangular neighborhood
can cover more varied topology. The local computing function evaluates
rules in order, until one of them is satisfied or no more rules. Each rule
follows the form: VALUE DELAY {CONDITION}, which means when the
CONDITION is satisfied, the state of the cell will change to the designated
VALUE, and its output is DELAYed for the specified time.

To forecast land use changes, we use Cell-DEVS theory to model
related behaviors. To simulate interaction between land use types and
population, we put information into two layers: land use (retrieved from
GIS data collection part) and population (predefined data from other sys-
tem). Figure 17.9 shows the formal specification for this land use model in
CD++ (Wang and Chen 2012).

As we can see from Figure 17 .9, it defines the size of the cell space
(20 × 40), neighbors (extended Moore neighborhood with two layers),
and the rules (simple local computing function). We can also notice that
there are two zones each with specified rules. The basic idea of the rules
is that as the time goes on, the land use pattern will increase/decrease
of its intensity according to its neighbors. Take the first rule for example,
it means whenever a cell state is 2 and more than one neighbor has the
state value of 1, the cell state changes to 1. This state change spreads to the
neighbors after 100 milliseconds.

GIS data collection
We have seen how to model using Cell-DEVS theory; now let us deal with
how to get information from GIS system, and to link GIS with Cell-DEVS
models. The subsystem of GIS Data Collection is responsible for extracting
data from GIS and transforming it into inputs used in the Cell-DEVS model.

GIS and GeoTIFF

In Cell-DEVS, the model is always characterized in a specific spatial area
that is composed of a set of cells. To integrate GIS and Cell-DEVS model-
ing, we need to build the initial files (e.g., the layout of studying area) for

(a) (b) (c) (d)

Figure 17.8  Widely used neighborhoods: (a) Moore, (b) Von Neumann, (c) hexago-
nal topology, and (d) triangular topology.

D
ow

nl
oa

de
d

by
 [

C
ar

le
to

n
U

ni
ve

rs
ity

 L
ib

ra
ry

],
 [

G
ab

ri
el

 W
ai

ne
r]

 a
t 1

1:
04

 1
2

Ja
nu

ar
y

20
15

442 Modeling and simulation-based systems engineering handbook

Cell-DEVS based on the data extracted from GIS file. The general idea of
this GIS Data Collection subsystem is that we are trying to map the geoin-
formation from real-world geo-ordinates to cell space ordinates, separates
the whole region into cells, and stores them as the initial file (*.val file) for
CD++. Besides, we also can get a property variable (*.inc) and an informa-
tion file (*.info) where global geographical references are kept.

In GIS, a geographic dataset always includes a comprehensive collec-
tion of vector, or raster, or imagery data covering some parts on Earth. For
vector dataset, it often includes hydrographic maps, geological maps, soils,
administrative boundaries, and others; for raster dataset, it often includes
elevation, slope, aspect, land use, and geology; for imagery dataset, it often
includes 1 m resolution orthophoto, land scenes, and daily surface tem-
perature time series (GRASS GIS 2013). GRASS is one of the most popular
GIS and can handle with raster, topological vector, image processing, and
graphic data. GRASS GIS use Geospatial Data Abstraction Library (GDAL)
(GDAL 2013) for raster/vector import and export. Geographic information
could be read from raster maps based on the data model of GDAL, such as
coordinate system, affine geotransform, and raster band stored information.

Because of the popularity and wide use of GIS, to improve interoper-
ability, a standard file format that is compatible and exchanges well with
other different GIS formats is needed. We choose GeoTIFF as the stan-
dard file format, as it is supported by most GIS, including GRASS (OSGeo
Foundation 2013).

Figure 17.9  Land use change model in CD++. (Wang, Y. and Chen, P. 2012. A
Cell-DEVS Geographic Visualization Framework Using Google Earth, Internal Report,
Department of Systems and Computer Engineering, Carleton University, Ottawa,
Canada. December 2012.)

D
ow

nl
oa

de
d

by
 [

C
ar

le
to

n
U

ni
ve

rs
ity

 L
ib

ra
ry

],
 [

G
ab

ri
el

 W
ai

ne
r]

 a
t 1

1:
04

 1
2

Ja
nu

ar
y

20
15

443Chapter seventeen:  Web-based simulation using Cell-DEVS and GIS

Class diagram

Figure 17.10 shows the implementation class diagram of this part, upgraded
from Mariano (2011) and Wang and Chen (2012). AbstractGeoReader
implements the general logic of the data input composing of two
subclasses: MetadataReader (to obtain geographical references) and
DataReader (to get data on each of the pixel). These classes provide an
interface through abstract methods, and they can be extended to par-
ticular subclasses. Though other systems may have data in various for-
mats, the main logic of this data collection for simulation model does
not change. The GeoTiffReader class extends the AbstractGeoReader
class, implementing these abstract methods to obtain information from
georeferenced files in GeoTIFF format; the GrassReader class retrieves
data through the GRASS API. GeoTiffReader implements these opera-
tions through the GDAL (GDAL 2013) library for raster geospatial data
formats, with ability for efficient handling of large files. GeoInfo is a
convenience class for storing geographic contextual data such as coor-
dinates and the resolution of the area (*.info), which is used in visu-
alization part for Google Earth. Pixel2Cell is to approximate the most
common value covered in an area that contains multiple pixels, which
contains ValWriter class for generating the cell’s initial values file (*.val).
IncWriter is for generating necessary attributes for Cell-DEVS models
from data obtained.

Data collection process

As we have seen the general process and class diagram of this data collec-
tion process, now let us go deeper to see the three subprocesses depicted
in Figure 17.7.

MetadataReader

AbstractGeoReader

GrassReader GeoTiffReader

DataReader
GeoInfo

Pixel2Cell

ValWriter

IncWriter

Figure 17.10  Class diagram of geographic information system data collection.

D
ow

nl
oa

de
d

by
 [

C
ar

le
to

n
U

ni
ve

rs
ity

 L
ib

ra
ry

],
 [

G
ab

ri
el

 W
ai

ne
r]

 a
t 1

1:
04

 1
2

Ja
nu

ar
y

20
15

444 Modeling and simulation-based systems engineering handbook

Step 1: Dataset Reading
Now we use a simple land use changes example to show how this Data
Collection subsystem works. The first step is called Dataset Reading. We
choose a sample raster dataset named North Carolina (NC, USA) in GeoTIFF
format provided by GRASS. This dataset offers raster, vector, LiDAR, and
satellite data. We choose the raster format in this GeoTIFF dataset that
includes geographic layers of land use, elevation, slope, aspect, watershed
basins, and geology. Raster dataset groups different layers into raster bands
that contain common information. Each raster band contains the map size,
GDAL data types, and a color table for mapping color and land use type val-
ues (see Figure 17.11). Each raster band consists of several blocks for efficient
access chunk size in GDAL, and each block consists of several pixels. The
following pseudo-code shows the algorithm to retrieve data from a raster
dataset (Wang and Chen 2012). The general idea of this algorithm is to look
through the studying dataset to get each pixel information.

For the given “landuse.tiff” dataset:
 For each raster band in this dataset:
 Get this raster band information: Xsize, Ysize, BlockSize.
 For each block in this band:
 Get block information: valid block size, stored block data;
 Output each pixel data in this block.

For the example shown in Figure 17.11, the land use of the studied
area has one raster band that contains four blocks, separated in total by
179 × 165 pixels.

Color Landuse type

High intensity developed 1
2
4
7
15
18
20

Low intensity developed
Managed herbaceous cover
Evergreen shrubland

Southern yellow pine
Mixed hardwoods/conifers
Water bodies

State value

Figure 17.11  Studied area of Landuse map and corresponding states. (Wang, Y.
and Chen, P. 2012. A Cell-DEVS Geographic Visualization Framework Using Google
Earth, Internal Report, Department of Systems and Computer Engineering, Carleton
University, Ottawa, Canada. December 2012.)

D
ow

nl
oa

de
d

by
 [

C
ar

le
to

n
U

ni
ve

rs
ity

 L
ib

ra
ry

],
 [

G
ab

ri
el

 W
ai

ne
r]

 a
t 1

1:
04

 1
2

Ja
nu

ar
y

20
15

445Chapter seventeen:  Web-based simulation using Cell-DEVS and GIS

Step 2: Pixel2Cell
The second step is Pixel2Cell, reading the block data of the raster band of
landuse.tiff. We need to get the color value of each pixel and generate the
initial value of the corresponding cell in Cell-DEVS. Ideally, we can match
each pixel to an exact single cell in Cell-DEVS model. However, this is not
always the case. In fact, the model behaviors in Cell-DEVS are relatively
large (e.g., fire spread in a large forest); therefore, each cell size in Cell-
DEVS usually covers multiple pixels that are scaled with minimum unit
of a geographical map. Here we add an approximate method to solve this
problem, implemented in Pixel2Cell. The idea is to maintain a queue for
each cell, sort the pixels shown in this cell according to their colors, and
choose the most common color in the queue as the representative value.
Figure 17.12 shows an example for this case, in which the cells with state
15 appeared four times in total, more than the other cells (i.e., state 1 and
state 7), so state 15 becomes the corresponding cell state value for the Cell-
DEVS model.

Step 3: Init Data Building
The third step is Init Data Building. After approximating cell values from
the pixels, for this land use change example, we get a Cell-DEVS model
with the size of 20 × 20. We store them into an initial information file (*.val)
for Cell-DEVS model, along with *.inc (necessary attributes for Cell-DEVS
model) from data obtained and *.info (geographic contextual data such as
coordinates and the resolution of the area).

Web-based simulation
So far, as we have modeled the rules and extracted the layout from GIS
system, the Cell-DEVS land use change model is ready. Now we move to
the next step of WBS to execute the model. We use RESTful WS to do so,
implemented in RISE. RISE is accessed through web resources (URIs) and
XML messages using HTTP methods. Implementations can be hidden in
resources, which are represented only via URIs. Users can run multiple
instances as needed, which are persistent and repeatable by specific URIs.
The HTTP methods are typically four types: GET (to read a resource or get

1 7 7

1 15 7

15 15 15

Figure 17.12  Approximate cell state value from multiple pixels.

D
ow

nl
oa

de
d

by
 [

C
ar

le
to

n
U

ni
ve

rs
ity

 L
ib

ra
ry

],
 [

G
ab

ri
el

 W
ai

ne
r]

 a
t 1

1:
04

 1
2

Ja
nu

ar
y

20
15

446 Modeling and simulation-based systems engineering handbook

its status), PUT (to create or update a resource), POST (to append data to a
resource), and DELETE (to remove a resource). An interface between RISE
and different CD++ versions, DCD++ (Al-Zoubi and Wainer 2011) for dis-
tributed simulation or CD++ v3.0 (Lopez and Wainer 2004) for improved
multiple state variables/ports version, allows running DEVS/Cell-DEVS
distributed simulations. RISE API likes a classic website URL http://www.
example.com/lopez/sim/workspaces, attached by the following services,
and the full RISE design and API described in Al-Zoubi and Wainer (2011):

•	 ../{userworkspace} contains all simulation services for a given user.
•	 ../{userworkspace}/{servicetype} contains all frameworks for a given

user and simulation engine type (e.g., DCD++ for distributed simu-
lation or CD++ v3.0 for improved CD++ features).

•	 ../{userworkspace}/{servicetype}/{framework} allows interacting
with a framework (including the simulation’s initial files, configu-
ration, and source code). The POST channel under this API is used
to submit files; PUT is to create a framework or update simulation
configuration settings; DELETE is to remove a framework; and GET
is to retrieve a framework state.

•	 ../{userworkspace}/{servicetype}{framework}/simulation interacts
with the simulator execution. By calling the Get channel, simulation
dedicated to this framework will run. Since RISE supports different
servicetypes (simulation engines), in DCD++, this URI is the mod-
eler’s single entry to a simulation experiment. It will initialize and
communicate with other URIs (e.g., on different machines) to per-
form distributed simulation, handling synchronization messages.

•	 ../{userworkspace}/{servicetype}/{framework}/results contains the
simulation outputs.

•	 ../{userworkspace}/{servicetype}/{framework}/debug contains the
model-debugging files.

We have two types of servicetype of simulation engines (DCDpp and
CD++ v3.0). Figure 17.13 shows an example of having multiple simulation
engines at the same time. Requests to …/DCDpp/landuse are sent to lan-
duse framework of DCDpp simulator, while requests to …/lopez/landuse
are sent to landuse framework of CD++ v3.0 simulator.

For a specific simulation, we can realize the remote simulation by
using these URIs with HTTP methods. For example, after getting ini-
tial model and configuration files for simulation, we use PUT to create a
framework with the configuration file and POST to upload these initial
model files to this framework. Then, this newly created simulation envi-
ronment can be executed by using PUT to {framework}/simulation, then
we wait for the simulation to finish and GET the simulation results files
from {framework}/results.

D
ow

nl
oa

de
d

by
 [

C
ar

le
to

n
U

ni
ve

rs
ity

 L
ib

ra
ry

],
 [

G
ab

ri
el

 W
ai

ne
r]

 a
t 1

1:
04

 1
2

Ja
nu

ar
y

20
15

http://www.example.com
http://www.example.com

447Chapter seventeen:  Web-based simulation using Cell-DEVS and GIS

In each HTTP response (no matter from which URI), the Response
Status is very informative. Normally, it means the request is successful
if it returns 200 (OK) and 201 (Created); otherwise, some errors or unex-
pected exceptions would have happened, such as 400 (bad request), 401
(unauthorized), 403 (forbidden), 404 (not found), 406 (not acceptable), and
501 (not implemented).

In RISE, there are various available CD++ versions, including DCDpp
for distributed simulation and CD++ v3.0 for improved CD++ version
with different state variables/ports.

DCD++ simulator in RESTful Interoperability
Simulation Environment

DCD++ simulator configuration
In RISE, different machines need to coordinate and exchange simulation
HTTP messages to perform the distributed simulation. The simulation
model is split and assigned into one of these machines. Each physi-
cal machine needs to have at least one instance of the RISE middleware
(each contains one CD++ engine). DCD++ instances (CD++ Engine on
different machines) act as peers to each other. Simulation manager takes
responsibility to transmit XML messages and handle synchronization
issues between these DCD++ instances, enabling each of them simulat-
ing its portion of the model (see Figure 17.14).

Concrete services (e.g., DCD++) are wrapped and accessed through
URIs at the middleware level, allowing the middleware to be independent
of any specific service. The middleware routes a received request to its
appropriate destination resource and apply the required HTTP method
on that resource. This middleware design allows additional services

http://www.example.com:8080/cdpp

/sim
/workspaces

/Tom
/Bob

/Iopez /DCDpp/DCDpp

/landuse /landuse /landuse /landuse

/Iopez

Figure 17.13  RESTful Interoperability Simulation Environment uniform resource
identifier example with multiple simulation engines.

D
ow

nl
oa

de
d

by
 [

C
ar

le
to

n
U

ni
ve

rs
ity

 L
ib

ra
ry

],
 [

G
ab

ri
el

 W
ai

ne
r]

 a
t 1

1:
04

 1
2

Ja
nu

ar
y

20
15

448 Modeling and simulation-based systems engineering handbook

(e.g., CD++ v3.0 for improved CD++ features) to be plugged into the mid-
dleware without affecting other existing services.

The DCD++ is constructed based on the partitioned model under
simulation between different machines. The code below shows an exam-
ple of a part of DCD++ XML configuration information for a Cell-DEVS
model. This model-partitioning document describes each cells zone loca-
tion. Each partition will run the simulation session in dedicated CD++
engine that is located in the belonging machine with the IP and port
specified in this document. Note that DCD++ also supports the standard
DEVS model, which allows the modeler to customize the partition to an
atomic model or coupled model.

<ConfigFramework>
	 <Doc> This model Simulates Life using Cell-Devs. </Doc>
	 <Files>
		 <File ftype = "ma">life.ma</File> …
	 </Files> …
	 <DCDpp>
		 <Servers>
			 <Server IP = "10.0.40.162" PORT = "8080">
				 <Zone>fire (0,0)..(14,29)</Zone>
			 </Server>
		 </Servers>
		 <Servers>
			 <Server IP = "10.0.40.175" PORT = "8080">
				 <Zone>fire (15,0)..(29,29)</Zone>
			 </Server>
	 </Servers>
	 </DCDpp>
</ConfigFramework>

Model

CD++engine
Simulation manager

Model

CD++engine
Simulation manager

RISE middleware

URI

RISE middleware

Simulation Ps

XML messages

HTTP messages

URI

Modeler

Figure 17.14  RESTful Interoperability Simulation Environment distributed
simulation session. (From Al-Zoubi, K. and Wainer, G., Intelligence-Based Systems
Engineering, 10, 129–157, 2011.)

D
ow

nl
oa

de
d

by
 [

C
ar

le
to

n
U

ni
ve

rs
ity

 L
ib

ra
ry

],
 [

G
ab

ri
el

 W
ai

ne
r]

 a
t 1

1:
04

 1
2

Ja
nu

ar
y

20
15

449Chapter seventeen:  Web-based simulation using Cell-DEVS and GIS

DCD++ simulation synchronization algorithm
We have discussed that how to configure the model partitions into differ-
ent DCD++ engines that are located on different machines; it is the time to
introduce the synchronization algorithms of DCD++. Figure 17.15a gives
a simplified DEVS coupled model that consists of three atomic models.
Now suppose that this model is partitioned between two LPs. DCD++
would simulate this model hierarchy as shown in Figure 17.5b (Al-Zoubi
and Wainer 2009). The simulator processor simulates an atomic model
(e.g., Simulator 1 for Atomic 1 and Simulator 2 for Atomic 2), and the coor-
dinator processor simulates a coupled model. DCD++ uses head/proxy
structure to reduce the number of remote messages. In this case, messages
exchanged between Simulator 2 and Simulator 3 are handled locally by
the proxy coordinator that is responsible for grouping messages, commu-
nicating with the Head coordinator if necessary.

Note that this example is a simplified version, but it also shows suf-
ficiently the way DEVS/Cell-DEVS model assigned to this head/proxy
structure. Thanks to the coupling closure characteristic of DEVS models,
each atomic model can be expended into a complicated coupled model.
Also in Cell-DEVS model, each partition zone can be viewed as a coupled
model and each cell can be viewed as an atomic model.

Simulation messages (shown in Figure 17.16) for synchroniza-
tion among processors hierarchy can be grouped into two categories:
(1) Content messages represent events generated by a model. There are
External messages (X) and Output messages (Y). (2) Synchronization
messages for forward simulation phase and time advancing. There are
Initialize message (I) to start the initialization phase, Internal message (*)
to start the transition phase, Collect message (@) to start collection phase,
and Done message (D) to mark the end of a simulation phase.

DCD++ LPs follow the conservative algorithm approach, which guar-
antees the safe timestamp ordered and always satisfied the local causality
constraint. The simulation cycles in phases where LPs are synchronized

Top-Coupled model LP-1 LP-2

Atomic 1 Atomic 2 Root Top head
coordinator

Top proxy
coordinator

Simulator 1
(for atomic 1)

Simulator 2
(for atomic 2)

Simulator 3
(for atomic 3)

Atomic 3

(a) (b)

Figure 17.15  Head/Proxy Modeling Structure. (a) Coupled model defined. (b) Model
hierarchy during simulation. (Al-Zoubi, K. and Wainer, G., Performing distributed
simulation with RESTful Web-services, Proceedings of the 2009 Winter Simulation
Conference, Austin, TX, © 2009 IEEE.)

D
ow

nl
oa

de
d

by
 [

C
ar

le
to

n
U

ni
ve

rs
ity

 L
ib

ra
ry

],
 [

G
ab

ri
el

 W
ai

ne
r]

 a
t 1

1:
04

 1
2

Ja
nu

ar
y

20
15

450 Modeling and simulation-based systems engineering handbook

at the beginning of each phase. Each LP (which is a CD++ engine) has its
own unprocessed event queue. In this case, after initialization of every
atomic model, the Root Coordinator (see Figure 17.17) starts the collection
phase by passing a simulation message (@) to the topmost Coordinator
(including Top Head/Proxy Coordinator) in the hierarchy, as shown in
Figure 17.17. This message is propagated downward in the hierarchy. Next,
a DONE message is propagated upward in the hierarchy until it reaches
the Root Coordinator. Each model processor uses this DONE message to
insert the time of its next change (i.e., an output message to another model,
or an internal event message) before passing it to its parent coordinator.
A coordinator always passes to its parent the least time change received
from its children. Once the Root Coordinator receives a DONE message,
it calculates the minimum next change, advances the clock, and starts the
Transition phase by passing a simulation message (*). All the collected
external messages are executed along with simultaneous internal events.
Then, the Root receives a DONE message and starts another cycle again.

CD++ v3.0 simulator in RESTful Interoperability
Simulation Environment

CD++ v3.0 simulator configuration
Because of the plug-and-play and scalable resource-oriented design
characteristic of RISE middleware, simulation services are wrapped and

Initialization

Collection

[I]

[end]

[D]/@

[D]/@

[D]/*

[D], [internal event]/*

Transition

Figure 17.17  Root Coordinator Phases state diagram. (From Al-Zoubi, K. and
Wainer, G., Intelligence-Based Systems Engineering, 10, 129–157, 2011.)

Coupled modelCoordinator

Simulator

I D * @

Atomic model
(δint) (δext)(λ)

Figure 17.16  Message exchange in a simulation cycle. (From Al-Zoubi, K. and
Wainer, G., Intelligence-Based Systems Engineering, 10, 129–157, 2011.)

D
ow

nl
oa

de
d

by
 [

C
ar

le
to

n
U

ni
ve

rs
ity

 L
ib

ra
ry

],
 [

G
ab

ri
el

 W
ai

ne
r]

 a
t 1

1:
04

 1
2

Ja
nu

ar
y

20
15

451Chapter seventeen:  Web-based simulation using Cell-DEVS and GIS

accessed through their URIs, allowing the middleware independent to
any specific simulation engine. Adding a new simulation engine is easy
and straightforward in RISE, basically two steps are needed: adding a
new CD++ service name in {ServiceName} for RESTful WS URI pattern to
recognize it, then adding the path for the new CD++ engine source code
directory. In our case, CD++ v3.0 with improved functionality of CD++
is stand-alone version, not geographically distributed, so it can be viewed
as single simulation engine. Simulation Manager is enough for manipu-
lation of its execution. From a user’s point of view, the modeler manipu-
lates the entire active simulation via HTTP message via framework’s URI
(including its children’s URIs), for example, uploading configuration files,
executing simulation, and retrieving results. Figure 17.18 shows the mes-
sage path when RISE gets other simulation events (e.g., external events),
as the following: (1) It passes the simulation event (in XML message) to
dedicated simulation manager. (2) Simulation Manager parses the XML
message and passes it to Inter Process Communication queue through
the local operation system. (3) The CD++ simulation engine (e.g., CD++
v3.0 in our case) executes it properly. Likewise, the RISE gets informa-
tion from the simulation engine through the reverse way, which is in fact
used in DCD++ between two LPs.

The XML configuration file of the CD++ v3.0 is similar as the one
in DCD++. Besides multistate variables/ports, it has some other new
optional features, like the <OnlyYMsgOP> for allowing to show only Y
output messages in log files, and <DrawLog> for viewing 2D visualiza-
tion results in *.drw file.

CD++ v3.0 simulator features
CD++ is a tool for the simulation of DEVS and Cell-DEVS models, and
has been widely used to study a variety of models. CD++ v3.0 (Lopez
and Wainer 2004) is an improved CD++ version for Cell-DEVS to allow

Simulation manger

RISE middleware

URI

IPC
queues

CD++v3.0 Simulation LPs

XML messages

HTTP messages

Modeler

PUT : create
DELETE : abort
POST : manipulate
GET : read

Figure 17.18  CD++ v3.0 execution session.

D
ow

nl
oa

de
d

by
 [

C
ar

le
to

n
U

ni
ve

rs
ity

 L
ib

ra
ry

],
 [

G
ab

ri
el

 W
ai

ne
r]

 a
t 1

1:
04

 1
2

Ja
nu

ar
y

20
15

452 Modeling and simulation-based systems engineering handbook

the cells to use multiple state variables and multiple ports for intercell
communication, overcoming some limitations existing in original CD++
implementation, making CD++ more powerful.

One limitation of the original CD++ is that it only supports one state
variable in each cell. CD++ v3.0 allows modelers that want to define
multiple state variables per cell, avoiding creating extra planes to define
as many layers as state variables needed before. Using CD++ v3.0, com-
plex models can be easily integrated and written more clearly, reducing
the development time. The format of definition of state variables is as
follows:

StateVariables: pend temp vol
StateValues: 3.4 22 -5.2
InitialVariablesValue: init.var

The first line declares the list of state variables for every cell. The sec-
ond line indicates the default initial values for each state variable. The last
line gives the name of a file that stores some initial values for particular
cells. State variables can be referred within the rules, by using “$” fol-
lowed by its name. The identifier “: = ” is used to assign values to state
variables in a new section in the rules.

Rule: {(0,0) + $pend} {$temp : = $vol/2;} 10 {(0,0) > 4.5 and $vol < 22}

A second limitation is that original CD++ only uses one port for
inputs (neighborChange) and one for outputs (out). Different I/O ports
can provide a more flexible definition of the cell behavior. CD++ v3.0 sup-
ports the use of multiple I/O ports. The format of definition of that is as
follows:

NeighborPorts: alarm weight number

The input and output ports share the names, and are generated auto-
matically. An output port from a cell will influence exclusively the input
port with that name in each cell of its neighborhood. I/O port can be
referred by “~,” and similarly, the assignment of a port is using“: = ,” for
example, as this:

Rule: {~weight : = 1;} 100 {(0,1)~alarm ! = 0}

Visualization in Google Earth
After we got the simulation results retrieved from the WBS, we want to
visualize them back in the GIS system. Here, we discuss the visualization
framework for this purpose, with a particular implementation based on
Google Earth using the KML files.

In general, as mentioned in Figure 17.7, this Visualization subsystem
has the following four steps:

D
ow

nl
oa

de
d

by
 [

C
ar

le
to

n
U

ni
ve

rs
ity

 L
ib

ra
ry

],
 [

G
ab

ri
el

 W
ai

ne
r]

 a
t 1

1:
04

 1
2

Ja
nu

ar
y

20
15

453Chapter seventeen:  Web-based simulation using Cell-DEVS and GIS

	 1.	Results parser: it parses the simulation results preserving only output
messages for visualization purposes, because the changes informa-
tion of the cell values in the simulation results are stored in output
messages.

	 2.	Coordinate converter: the cells with the same state in an adjacent
area can be merged together, to reduce the data size to be visualized.

	 3.	Cell Merger: because coordinates systems used between GIS (infor-
mation depicted in *.info) and Google Earth are different, to visual-
ize the results, geography references conversion is needed.

	 4.	KML generator: it generates processed simulated results into the desi
red visualization format (KML).

Once the KML file is created, it can be imported into Google Earth allow-
ing the visualization of the simulated results evolving on a layer impressed
over standard layers (e.g., satellite views, and street maps). In Google Earth,
we can pause at any point and view layers forward and backward in time,
which provides an interactive way to analyze the progress of a simulation.

In the Section “KML introduction,” we will briefly introduce KML
characteristics. Then we will present the class diagram of developed tool,
followed by the details of each step mentioned previously. At last, we will
show some results of the studied land use change example.

KML introduction

Google Earth (Google 2013) is a powerful visualization system support-
ing KML elements (place, marks, images, polygons, 3D models, textual
descriptions, etc.) to manage 3D geographic data. Visualization using
KML in Google Earth can enhance the communication of results of non-
technical users and provide instantaneous access to layered information.
KML (OGC 2013) is based on the XML standard.

We analyzed KML structure in Wang and Chen (2012). KML uses
the tags and its attributes to descript the geography information. In
our implementation, we use a subset of the elements defined in KML,
including <Document>, <Style>, <Folder>, <Placemark>, <Polygon>,
and <Timestamp>. The following file segment shows an example. Line
1 is an XML header. Line 2 is a KML namespace declaration. Lines 3–24
state the <Document>, which is our Cell-DEVS simulation unit shown
in Google Earth. Lines 5–7 state a Style, which descript a polygon style.
We can define different colors for different cell states. Lines 8–23 rep-
resent a <Folder> element, which stands for a layer in our Cell-DEVS
model. If the model has more than one layer, <Folder> and </Folder>
pairs will also appear many times. The <Folder> element contains
many <Placemark> elements (lines 9–21). In our design, a <Placemark>
element depicts a cell region, which could be a square or irregular

D
ow

nl
oa

de
d

by
 [

C
ar

le
to

n
U

ni
ve

rs
ity

 L
ib

ra
ry

],
 [

G
ab

ri
el

 W
ai

ne
r]

 a
t 1

1:
04

 1
2

Ja
nu

ar
y

20
15

454 Modeling and simulation-based systems engineering handbook

polygon. Because the <Polygon> element should have a closed loop, the
first coordinate is the same as the last one specification (see lines 15 and
17). In addition, the <Placemark> element contains the <Timestamp>
(line 22) element that indicates the <Placemark> showing-up time.

It is worth to note that the corresponding <Placemark> element will
appear on Google Earth until either at the end of the simulation or part of
the region covered by another <Placemark> element at a later stamp time,
which is explained in Figure 17.19. Therefore, when a cell state changes,
we only need to put that <Placemark> element with the corresponding
style at that specific time. It will stay in that style until next change occurs.

Class diagram of Visualization tool

Figure 17.20 shows the class diagram of this Visualization part, updated
from Wang and Chen (2012) and Zapatero et al. (2011). First, LogParser
parses the data generated by the simulator preserving output messages
that represent state changes. Parsed results store in the supporting struc-
ture class LogInfo. The LogInfo will facilitate and keep changing in further

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

23
24
25

<?xml version = ”1.0” encoding = ”UTF-8”?>
<Kml xmlns = ”http://www.opengis.net/kml/2.2”>
	 <Document>
		 <Name>Visualization</Name>
		 <Style id = "CellState">
			 <PolyStyle> <Color>aabbggrr</Color> </PolyStyle>
		 </Style>
		 <Folder id = ”#id layer”> <Name>#id layer </Name>
			 <Placemark>
				 <Name>cell name</name>
				 <StyleURL>#CellState</StyleURL>
				 <Polygon>…
					 <OuterBoundaryIs> <LinearRing>
						 <Coordinates>
						  78.7707183652255, 35.809591457038, 0
						  78.770717636844, 35.8098483367093, 0…
						  78.7707183652255, 35.809591457038, 0
						 </Coordinates>
					 </LinearRing> </OuterBoundaryIs>
				 </Polygon>
			 </Placemark>
			 <TimeStamp> <When> 2013-01-01 … </When>
</TimeStamp>
		 </Folder>
	 </Document>
</Kml>

D
ow

nl
oa

de
d

by
 [

C
ar

le
to

n
U

ni
ve

rs
ity

 L
ib

ra
ry

],
 [

G
ab

ri
el

 W
ai

ne
r]

 a
t 1

1:
04

 1
2

Ja
nu

ar
y

20
15

http://www.opengis.net

455Chapter seventeen:  Web-based simulation using Cell-DEVS and GIS

processing. Then Cell Merger will merge the cells with same state in adja-
cent area in LogInfo, to reduce the data needed to be visualized, using
presented merging algorithm (see details in the Section “Visualization
process”). Note that the Cell Merger can be extended for other merging
algorithms in the future. Next, CoordinateConverter changes the coor-
dinate in LogInfo into the required way in the output visualization sys-
tem, an abstract class providing an interface; in our case, its subclass
GoogleEarthConverter specifies this step. Finally, AbstractGeoWriter
translates LogInfo into the desired output visualization format. Similarly,
AbstractGeoWriter is an abstract class providing an interface to transla-
tion methods. Here, we focus on the generation of KML files by means
of the KMLGenerator class. KMLGenerator takes LogInfo information
and the *.info file with the georeferences, processes them, and generates a
KML file with georeferenced and timed representation of each simulated
cell state change. The process consists of translating each output message
into KML tags.

Visualization process

As we have seen the general process and class diagram of this GIS visual-
ization process, now let us go deeper to see its four subprocesses depicted
in Figure 17.7.

Time

Figure 17.19  A placemark is covered by a later appearance of another one. (Wang,
Y. and Chen, P. 2012. A Cell-DEVS Geographic Visualization Framework Using
Google Earth, Internal Report, Department of Systems and Computer Engineering,
Carleton University, Ottawa, Canada. December 2012.)

LogInfo GeoInfo

CoordinateConvertor GoogleEarthConverter

KMLGeneratorAbstractGeoWriter

LogParser Cell Merger

Figure 17.20  Visualization Class diagram.

D
ow

nl
oa

de
d

by
 [

C
ar

le
to

n
U

ni
ve

rs
ity

 L
ib

ra
ry

],
 [

G
ab

ri
el

 W
ai

ne
r]

 a
t 1

1:
04

 1
2

Ja
nu

ar
y

20
15

456 Modeling and simulation-based systems engineering handbook

Step 1: Results parser
As mentioned previously, the changes information of the cell values in
the simulation results are stored in output messages. For the visualization
purpose, we need to parse the simulation results preserving only output
messages, and transfer them into the proper format defined in LogInfo.
Figure 17.21 shows the format of the matched message. The message
always begins with Mensaje Y followed by the timing and cell position
information. A new state value is after the/out/substring.

Step 2: Cell Merger
In each parsed message, each cell uses four positions to descript its geog-
raphy information, thus we need to record all the four corners for future
operation. Besides, each cell requires one <placemark> element in the
KML, which makes the KML file size very big and highly redundant,
resulting in a long time to render the file when loading to Google Earth.
Therefore, it is important to reduce the number of KML elements to be
generated. Cell Merger is responsible for solving this issue. The idea is try
to merge the cells with same value in adjacent area together as much as
possible. Figure 17.22 shows an example, instead of using 16 placemarks
(Figure 17.22a) to represent every cell respectively, we could merge the
cell with the same state value together and only need to use 4 placemarks
(Figure 17.22b), and generate new polygons.

(a) (b)

Easting

(0,0) (1,0)

(1,1)

(1,2)

(1,3)

(2,0)

(2,1)

(2,2)

(2,3)

(3,0)

(3,1)

(3,2)

(3,3)

(0,1)

(0,2)

(0,3)

N
or
th
in
g

Easting

N
or
th
in
g

Figure 17.22  Merge cells with the same state into irregular polygons. (a) Before
cells merging. (b) After cells merging. (Wang, Y. and Chen, P. 2012. A Cell-DEVS
Geographic Visualization Framework Using Google Earth, Internal Report, Department
of Systems and Computer Engineering, Carleton University, Ottawa, Canada.
December 2012.)

Time Cell position New
stateMessage

Mensaje Y / 00:00:00:100/ urbangrowth(4,4,1)(172) / out / 3.00000 para urbangrowth(02)

Figure 17.21  The output message format in simulation results (CD++ log file).

D
ow

nl
oa

de
d

by
 [

C
ar

le
to

n
U

ni
ve

rs
ity

 L
ib

ra
ry

],
 [

G
ab

ri
el

 W
ai

ne
r]

 a
t 1

1:
04

 1
2

Ja
nu

ar
y

20
15

457Chapter seventeen:  Web-based simulation using Cell-DEVS and GIS

Different merging rules can be applied. Ideally, we can find all the
adjacent cells for each cell; however, this kind of algorithm is time-
consuming, hard to implement, and hard to retrieve the coordinate infor-
mation. Therefore, we want to merge the cells with the same states as
much as possible. In our implementation, we use a heuristic way to design
the merging rules. The merging algorithm is shown as follows:

If (the current cell has the same state as its left neighbor)
      Merge into its left geometry;
Else if (the current cell has the same state as its upper
neighbor)
      Merge into its upper neighbor;
Else
      Create a new merging geometry;

Step 3: Coordinate converter
As we know, the land use change model is sensitive to georeferenced
information and its initial data is got from GIS (GRASS), also geo.info
stores the geographic information of the studied area. With this infor-
mation, the geographic visualization could be achieved. The geo.info
retrieved from GRASS uses Lambert Conformal Conic geography proj-
ect system (LCCGPS) (GRASS GIS 2013), and this plane size is fixed by
the coordinates of upper left, lower left, upper right, and lower right.
Nevertheless, Google Earth uses a different kind of geography refer-
ence system called World Geodetic System 1984 (WGS84) (Google 2013).
WGS84 uses longitude and latitude pairs to define the unique position
on the Earth. So to visualize the simulation results on Google Earth,
the geography information along with the initial parameters stored in
geo.info has to be converted to longitude and latitude pairs required in
Google Earth for each cell.

In the implementation, each cell has four corners with position of
(East; North) (see Figure 17.23), and after cells merging step, we only need
to know the corners points of all the boundaries in a merged geometry.
We use the formulation mentioned in Ghilani (2010) to transform the coor-
dinates from LCCGPS to WGS84.

Step 4: KML generator
After knowing the information needed for each <Placemark> element
(all the coordinates of the merged polygon boundaries, Timestamp), we
can generate KML file. Basically, this generation step will (1) generate the
KML header, (2) write the KML body, and (3) conclude the KML. In the
KML header, the state style (state values and associated colors) defined
in the Cell-DEVS model is rewritten as polygon style used to paint each

D
ow

nl
oa

de
d

by
 [

C
ar

le
to

n
U

ni
ve

rs
ity

 L
ib

ra
ry

],
 [

G
ab

ri
el

 W
ai

ne
r]

 a
t 1

1:
04

 1
2

Ja
nu

ar
y

20
15

458 Modeling and simulation-based systems engineering handbook

<Placemark> element. For the body of KML, following simulation time,
each <Placemark> element of the merged cells will list all the coordinates
of its polygons; and a <Timestamp> element will be inserted to specify
the showing-up time of that <Placemark> element. A <Placemark> ele-
ment with a later <Timestamp> will cover fully or partially of the one in
an early <Timestamp>.

Finally, the whole procedure generates geographical areas that emu-
late simulation in cellular spaces of a Cell-DEVS model. Now we get the
KML file for our land use change example. Google Earth version 7.0.1 is
used to validate our idea. After using the cell merging, 1157 geometries
are needed, instead of 1787 original geometries. Figures 17.24 and 17.25
show some results obtained in Google Earth visualization.

(a) (b)

Figure 17.24  Google Earth visualization for layer 0 (land use). (a) Initial simulation
time. (b) Middle simulation time. (Wang, Y. and Chen, P. 2012. A Cell-DEVS Geographic
Visualization Framework Using Google Earth, Internal Report, Department of Systems
and Computer Engineering, Carleton University, Ottawa, Canada. December 2012.)

(0,0) (1,0)

(1,1)

(1,2)

(1,3)

(2,0)

(2,1)

(2,2)

(2,3)

(3,0)

(3,1)

(3,2)

(3,3)

(0,1)

(0,2)

(0,3)

N
or
th
in
g

Easting

Figure 17.23  The square points of a cell in Cell-DEVS. (Wang, Y. and Chen, P.
2012. A Cell-DEVS Geographic Visualization Framework Using Google Earth, Internal
Report, Department of Systems and Computer Engineering, Carleton University,
Ottawa, Canada. December 2012.)

D
ow

nl
oa

de
d

by
 [

C
ar

le
to

n
U

ni
ve

rs
ity

 L
ib

ra
ry

],
 [

G
ab

ri
el

 W
ai

ne
r]

 a
t 1

1:
04

 1
2

Ja
nu

ar
y

20
15

459Chapter seventeen:  Web-based simulation using Cell-DEVS and GIS

Applications
The Section “Architecture” presented the architecture we used to inte-
grate GIS and Cell-DEVS model using WBS, followed by detailed expla-
nation of each steps in the Sections “Cell-DEVS modeling,” “Geographic
information system data collection,” “Web-based simulation,” and
“Visualization in Google Earth.” In this section, we will show two real
case studies associated with more complex Cell-DEVS models (Fire
Spread and Monkey Pathogen Transmission) in two different engineering
fields (environmental engineering and biomedicine engineering) for test-
ing our architecture and show its feasibility and flexibility for the M&S of
environmental systems.

Fire Spread

Fire Spread is a 30 × 30 Cell-DEVS model used to study the spreading of
fires in forests (Wainer 2006). This model allows foreseeing the propaga-
tion and intensity of the fire, which help us to imitate phases of the actual
behavior of forest parcels in response to external events (e.g., heat, wind
on the area), along with other external parameters. Different parameters
affect the fire spread; in this model the following are taken into consid-
eration in terms of the ratio of spread: (1) particles properties (amount of
heat, minerals, and density), (2) type of fuel (includes the size of the vegeta-
tion), and (3) values involved with the natural environment (wind speed,
territory inclination, and humidity). The behavior of each cell depends on
its current state whose value is determined by a set of rules after satisfy-
ing a precondition of his neighborhood.

(b)(a)

Figure 17.25  Google Earth visualization for layer 1 (population). (a) Initial simu-
lation time. (b) Final simulation time. (Wang, Y. and Chen, P. 2012. A Cell-DEVS
Geographic Visualization Framework Using Google Earth, Internal Report, Department
of Systems and Computer Engineering, Carleton University, Ottawa, Canada.
December 2012.)

D
ow

nl
oa

de
d

by
 [

C
ar

le
to

n
U

ni
ve

rs
ity

 L
ib

ra
ry

],
 [

G
ab

ri
el

 W
ai

ne
r]

 a
t 1

1:
04

 1
2

Ja
nu

ar
y

20
15

460 Modeling and simulation-based systems engineering handbook

For GIS data collection, we chose the sample dataset North Carolina,
USA from the GRASS GIS, which is a dataset readily available with the
standard file GeoTIFF. Because of two water surfaces surrounded by flam-
mable land, a section of the landuse96_28m map is chosen. This is use-
ful to observe the differences in fire propagation according to the type
of surface, giving us how the model sensitive to the land use informa-
tion provided by GRASS. The propagation of fire is supposed to spread
through the land but over water. Figure 17.26 shows the initial map and
the selected subarea for simulation (Zapatero et al. 2011).

The simulation of this fire spread model is executed through WBS over
RISE middleware. To realize interacting heterogeneous simulators and dis-
tributed models, we choose DCD++ for remote/distributed simulation. We
first use the PUT method to create a new framework …dcdpp/firespread
using distributed simulation engines under an authorized userworkspace
in our RISE server, and we use the POST method to upload the initial files
(*.xml with partition configuration, *.val with initial values of each cell, *.ma
of Cell-DEVS fire spread model, etc.). Then we can run this simulation by
using PUT to …/dcdpp/firespread/simulation. We wait for the simulation
to finish, then GET simulation results files from …dcdpp/firespread/results.
For distributed simulation, DCD++ allows to divide the model into differ-
ent partitions to be executed on heterogeneous simulations. The model par-
tition configuration can be specified easily in an XML file uploaded at the
same time of other initial files POSTed to …dcdpp/firespread.

After retrieving the simulation log from RISE WBS middleware, we can
import it into the developed GIS Visualization tool, generating a KML output
file. This KML file is then loaded into Google Earth showing the following

Land use map Selected subarea

Managed herbaceous cover
Not occupied

Evergreen shrubland

Southern yellow pine
Mixed hardwoods/conifers

Mixed hardwoods

Water bodies

Figure 17.26  Selected subarea of land use map for fire spread simulation.
(Zapatero, M. et al., Architecture for integrated modeling, simulation and visu-
alization of environmental systems using GIS and Cell-DEVS, Proceedings of the
2011 Winter Simulation Conference, Phoenix, AZ, © 2011 IEEE.)

D
ow

nl
oa

de
d

by
 [

C
ar

le
to

n
U

ni
ve

rs
ity

 L
ib

ra
ry

],
 [

G
ab

ri
el

 W
ai

ne
r]

 a
t 1

1:
04

 1
2

Ja
nu

ar
y

20
15

461Chapter seventeen:  Web-based simulation using Cell-DEVS and GIS

results shown in Figure 17.27, following the simulation time during 01:00:00
(Zapatero et al. 2011). It tells us that fire spreads around the lakes as expected,
effected by the land use information obtained from GIS. It can also be seen
that with the wind direction information extracted from GIS, the large
urbanized areas (see the bottom right of Figure 17.27) are not impacted.

Monkey Pathogen Transmission

Besides the environmental system, GIS with advanced M&S techniques has
also significantly influenced and improved the field of biomedicine. With
the existence of several serious contagious diseases that may cause death,
social panic, or even a national crisis, it is becoming essential to study infec-
tion transmission to prevent these outbreaks (Kennedy et al. 2009).

Monkey Pathogen Transmission (Wang 2012) is a Cell-DEVS model to
study pathogen transmission for Macaques (a kind of monkey) in the region
of Bali, Indonesia, by simulating their movement behaviors. Macaques on
the island are known to carry a specific pathogen that is transmissible
to neighbor macaques. Every monkey is able to host the pathogen that
follows the life cycle (susceptible, latent infection, symptomatic infection,

(a)

(c) (d)

(b)

Figure 17.27  Fire model simulation results shown in Google Earth. Snapshots
taken at times (a) 00:15:00, (b) 00:30:00, (c) 00:45:00, and (d) 01:00:00. (Zapatero, M.
et al., Architecture for integrated modeling, simulation and visualization of
environmental systems using GIS and Cell-DEVS, Proceedings of the 2011 Winter
Simulation Conference, Phoenix, AZ, © 2011 IEEE.)

D
ow

nl
oa

de
d

by
 [

C
ar

le
to

n
U

ni
ve

rs
ity

 L
ib

ra
ry

],
 [

G
ab

ri
el

 W
ai

ne
r]

 a
t 1

1:
04

 1
2

Ja
nu

ar
y

20
15

462 Modeling and simulation-based systems engineering handbook

and acquired immunity). Their movement, sex, and surrounding environ-
ment effect how the pathogen is passed between each other. For exam-
ple, macaques move at random, but tend to pass through waterways less
frequently than forests, and female monkeys are unable to leave their
birth temples, which have been present in the forests of Bali for centuries
(Kennedy et al. 2009). This model is implemented in CD++ v3.0 specifica-
tion with different state variables per cell (landscape, temple, sex, move-
ment, and pathogen). It uses different phases in each movement cycle
(intent, grant, constraint, and move). The state of each cell is determined
by the values of its neighborhood followed by a set of rules (where the
behavior of each cell is implemented).

This model can monitor the speed of progression and explore the
effect of numerous variables on the pattern of disease transmission,
allowing scientists understand the behavior of a disease and its move-
ment from one subject to another. This model is sensitive to the land-
scape geographic information from GIS, requiring the river, coast, and
forest information of the island Bali. In the implementation, we get the
river and coast datasets for the region of Bali from an open-source web-
site Cloudmade (Cloudmade 2013), and the forest dataset from Carleton
University’s Library GIS department (Carleton University 2013). Then, we
combine the two datasets together using the GRASS GIS raster map cal-
culator, and using our developed tool to get the landscape values form the
map for our model. After data collection from GIS, we get the initial file
*.val for the following processes. Figure 17.28 shows the initial map of Bali,
Indonesia, with initial cell values for simulation (Al-Disi et al. 2013).

Figure 17.28  Initial cell values of Bali, Indonesia, after geographic information
system data collection. (From Al-Disi, E. et al., Visualizing Models for Biomedical
Applications: Disease Transmission, Internal Report, Department of Systems and
Computer Engineering, Carleton University, Ottawa, Canada, April 2013.)

D
ow

nl
oa

de
d

by
 [

C
ar

le
to

n
U

ni
ve

rs
ity

 L
ib

ra
ry

],
 [

G
ab

ri
el

 W
ai

ne
r]

 a
t 1

1:
04

 1
2

Ja
nu

ar
y

20
15

463Chapter seventeen:  Web-based simulation using Cell-DEVS and GIS

The simulation of this pathogen transmission model is executed
through WBS over RISE middleware. To use multistate variables and
multiports, we use CD++ v3.0 for our simulation engine. We first use the
PUT method to create a new framework …lopez/pathogen using distrib-
uted simulation engines under an authorized userworkspace in our RISE
server, and we use the POST method to upload the initial files (*.xml with
model configuration, *.val with initial values of each cell, *.ma of Cell-
DEVS model, etc.). Then we can run this simulation by using PUT to …
lopez/pathogen/simulation. We wait until the simulation finishes, then
GET simulation results files from …/lopez/pathogen/results.

After retrieving the simulation log from RISE WBS middleware, we
can see the simulation results in CD++ in a 2D way. Different tests have
been performed with various parameters to show the effects of landscape,
monkey occupancy, sex, river cross probability, and initial infection ratio on
transmission patterns (see Figure 17.29). In each test, the right-most figure
shows the changes of the pathogen (i.e., uninfected monkey, latent infection,
symptomatic, and acquired immunity) with the movement of the monkeys.
Generally, if a cell is uninfected and more than one of its neighbor is not
uninfected, this cell will be infected in the next time.

We also can visualize simulation results in Google Earth. This time,
we narrow down the scale of our model to a small region to verify our
model scalability. Figure 17.30a shows the whole Bali Island, the small
white square on the map is the region that was used to test the pathogen
transmission. We reuse the previous steps easily, collecting information
from GIS and retrieving the log file from RISE. Then we import the log file
into our GIS Visualization tool, generating a KML output file. Finally, we
load this KML file in Google Earth. The visualization results can be seen
in Figure 17.30b.

Figure 17.29  Three simulation results of Monkey Pathogen Transmission under
different monkey occupancy (top with 10%, middle with 20%, bottom with 30%).
(From Al-Disi, E. et al., Visualizing Models for Biomedical Applications: Disease
Transmission, Internal Report, Department of Systems and Computer Engineering,
Carleton University, Ottawa, Canada, April 2013.)

D
ow

nl
oa

de
d

by
 [

C
ar

le
to

n
U

ni
ve

rs
ity

 L
ib

ra
ry

],
 [

G
ab

ri
el

 W
ai

ne
r]

 a
t 1

1:
04

 1
2

Ja
nu

ar
y

20
15

464 Modeling and simulation-based systems engineering handbook

Conclusion
We proposed a general WBS architecture by integrating Cell-DEVS mod-
eling and GIS visualization to study environmental phenomena. We
presented a workflow-like process with a land use change prototype to
demonstrate the way to extract information from GIS (GRASS), run sim-
ulation remotely, and visualize results in Google Earth. The WBS is run
on the WSs middleware of RISE, supporting different simulation engines.
We also discussed the distributed simulation mechanism (DCD++) using
RISE middleware, executing heterogeneous simulations on distributed
computer systems. Two applications as case studies applying this pro-
posed architecture were demonstrated: the wildfire spreading in the envi-
ronmental engineering field and the monkey pathogen transmission in the
biomedical engineering field. These applications verified and highlighted
the flexibility of the proposed WBS architecture. Some future work may
focus on the following aspects: (1) to expand this work with more standard
DEVS protocol for distributed simulation synchronization algorithm, (2) to
investigate efficient way to interface different components in the proposed
architecture and apply related cloud computing technologies, and (3) to
develop more applications adapting this architecture in other fields and
perform more data and statistical analysis.

Acknowledgments
This chapter is the result of the recent efforts of many students and col-
laborators, including Mariano Zapatero and Rodrigo Castro (integration
of GIS, Cell-DEVS and KLM), Yu Wang, and Peiwen Chen (designing a
geographic visualization framework and a land use model), and Eman
Al Disi, Joanna Lostracco, and Myriam Younan (implementing monkey
pathogen transmission into the proposed architecture).

(a) (b)

Figure 17.30  (a) Bali and (b) Visualization results in Google Earth. (From Al-Disi, E.
et al., Visualizing Models for Biomedical Applications: Disease Transmission, Internal
Report, Department of Systems and Computer Engineering, Carleton University,
Ottawa, Canada, April 2013.)

D
ow

nl
oa

de
d

by
 [

C
ar

le
to

n
U

ni
ve

rs
ity

 L
ib

ra
ry

],
 [

G
ab

ri
el

 W
ai

ne
r]

 a
t 1

1:
04

 1
2

Ja
nu

ar
y

20
15

465Chapter seventeen:  Web-based simulation using Cell-DEVS and GIS

References
Al-Disi, E., Lostracco, J., and Younan, M. 2013. Visualizing Models for Biomedical

Applications: Disease Transmission. Internal Report. Department of Systems and
Computer Engineering, Carleton University, Ottawa, Canada. April 2013.

Alfonseca, M., De Lara, J., and Vangheluwe, H. 2001. Web II: web-based simulation
of systems described by partial differential equations. In Proceedings of the
2001 Winter Simulation Conference, Arlington, VA. IEEE.

Al-Zoubi, K. and Wainer, G. 2009. Performing distributed simulation with RESTful
Web-services. In Proceedings of the 2009 Winter Simulation Conference, Austin,
TX. IEEE.

Al-Zoubi, K. and Wainer, G. 2011. Distributed simulation using RESTful interoper-
ability simulation environment (rise) middleware. Intelligence-Based Systems
Engineering 10, 129–157, Berlin/Heidelberg, Germany, Springer.

ANSI/EIA-632. 1999. Process for Engineering a System. Electronic Industry Association,
Arlington, VA.

Badard, T. and Richard, D. 2001. Using XML for the exchange of updating informa-
tion between geographical information systems. Computers, Environment and
Urban Systems, 25(1), 17–31.

Band, L. 1986. Topographic partition of watersheds with digital elevation models.
Water Resources Research, 22(1), 15–24.

Bencomo, S. D. 2004. Control learning: present and future. Annual Reviews in
Control, 28(1), 115–136.

Bell, M., Dean, C., and Blake, M. 2000. Forecasting the pattern of urban growth with
PUP: a web-based model interfaced with GIS and 3D animation. Computers,
Environment and Urban Systems, 24, 559–581.

Bishop, I. D., and Gimblett, H. R. 2000. Management of recreational areas: GIS,
autonomous agents, and virtual reality. Environment and Planning B, 27(3),
423–436.

Boer C., A. Bruin, and A. Verbraeck. 2009. A survey on distributed simulation in
industry. Journal of Simulation, 3(1): 3–16.

Botkin, D. B., Janak, J. F., and Wallis, J. R. 1972. Some ecological consequences of a
computer model of forest growth. The Journal of Ecology, 60(3), 849–872.

Byrne, J., Heavey, C., and Byrne, P. J. 2010. A review of web-based simulation and
supporting tools. Simulation Modelling Practice and Theory, 18(3), 253–276.

Carleton University. 2013. Carleton University’s Library GIS department. Available
at http://www.library.carleton.ca/find/gis; accessed April 2013.

CloudMade. 2013. CloudMade. Available at http://cloudmade.com; accessed April
2013.

Desmet, P. J. J. and Govers, G. 1995. GIS-based simulation of erosion and deposi-
tion patterns in an agricultural landscape: A comparison of model results
with soil map information. Catena, 25(1–4), 389–401.

Fujimoto, R. M. 2000. Parallel and Distribution Simulation Systems. New York, John
Wiley & Sons.

Gimblett, R., Ball, G., Lopes, V., Zeigler, B., Sanders, B., and Marefat, M. 1995.
Massively parallel simulations of complex, large scale, high resolution eco-
system models. Complexity International, 2, ISSN: 1320–0682.

GDAL. 2013. Geospatial Data Abstraction Library. Available at http://www.gdal
.org/; accessed April 2013.

D
ow

nl
oa

de
d

by
 [

C
ar

le
to

n
U

ni
ve

rs
ity

 L
ib

ra
ry

],
 [

G
ab

ri
el

 W
ai

ne
r]

 a
t 1

1:
04

 1
2

Ja
nu

ar
y

20
15

http://www.library.carleton.ca
http://cloudmade.com;
http://www.gdal

466 Modeling and simulation-based systems engineering handbook

Ghilani, C. D. 2010. Adjustment Computations: Spatial Data Analysis. New Jersey,
John Wiley & Sons.

Goble, C. A., Bhagat, J., Aleksejevs, S., Cruickshank, D., Michaelides, D., Newman,
D., Borkum, et al. 2010. myExperiment: A repository and social network for
the sharing of bioinformatics workflows. Nucleic Acids Research, 38, Web
Server issue (July 2010), W677–82.

Google, Inc. 2013. Google Earth. Available at http://earth.google.com; accessed
April 2013.

GRASS GIS. 2013. Geographic Resources Analysis Support System. Available at
http://grass.fbk.eu/; accessed April 2013.

Hitchins, D. K. 2008. Systems Engineering: A 21st Century Systems Methodology. West
Sussex, United Kingdom, John Wiley & Sons.

Hu, X., Sun, Y., and Ntaimo, L. 2011. DEVS-FIRE: Design and application of for-
mal discrete event wildfire spread and suppression models. Simulation. 88(3),
259–279, March 2012. doi: 10.1177/0037549711414592.

Huang, Y. and Madey, G. 2005, April. Autonomic web-based simulation. In
Proceedings of the 38th Annual Simulation Symposium (pp. 160–167). IEEE
Computer Society.

Kennedy, R. C., Lane, K. E., Arifin, S. N., Fuentes, A., Hollocher, H., and Madey, G. R.
2009. A GIS aware agent-based model of pathogen transmission. International
Journal of Intelligent Control and Systems, 14(1), 51–61.

Khul, F., R. Weatherly, J. Dahmann. 1999. Creating Computer Simulation Systems: An
Introduction to High Level Architecture. Upper Saddle River, NJ, Prentice Hall.

Leonard, J. 1999. Systems Engineering Fundamentals: Supplementary Text. Darby, PA,
DIANE Publishing.

Longley, P. A, Goodchild, M. F., Maguire, D. J., and Rhind, D. W. 2005. Geographic
Information Systems and Science. West Sussex, United Kingdom, John Wiley &
Sons.

Lopez, A. and Wainer, G. 2004. Improved Cell-DEVS model definition in CD++. In
Cellular Automata. Berlin/Heidelberg, Germany, Springer, 803–812.

Miller, J. A., Seila, A. F., and Xiang, X. 2000. The JSIM web-based simulation envi-
ronment. Future Generation Computer Systems, 17(2), 119–133.

Myers, D. S. 2004. An extensible component-based architecture for web-based
simulation using standards-based web browsers. Master’s thesis, Virginia
Polytechnic Institute and State University.

Narayanan, S. 2000. Web-based modeling and simulation. In Proceedings of the 2000
Winter Simulation Conference, Orlando, FL. IEEE.

OGC. 2013. KML. Available at http://www.opengeospatial.org/standards/kml/;
accessed April 2013.

OSGeo Foundation. 2013. Geotiff format specification. Available at http://trac
.osgeo.org/geotiff/; accessed April 2013.

Page, E. H. 1999. Beyond speedup: PADS, the HLA and web-based simulation.
In Proceedings of the Thirteenth Workshop on Parallel and Distributed Simulation
(pp. 2–9), Atlanta, GA. IEEE Computer Society.

Page, E. H., Griffin, S. P., and Rother, L. S. (1998). Providing conceptual framework
support for distributed web-based simulation within the high level archi-
tecture. In Proceedings of SPIE: Enabling Technologies for Simulation Science II.

Papazoglou, M. 2007. Web Services: Principles and Technology. Upper Saddle River,
NJ, Prentice Hall.

D
ow

nl
oa

de
d

by
 [

C
ar

le
to

n
U

ni
ve

rs
ity

 L
ib

ra
ry

],
 [

G
ab

ri
el

 W
ai

ne
r]

 a
t 1

1:
04

 1
2

Ja
nu

ar
y

20
15

http://earth.google.com;
http://grass.fbk.eu
http://www.opengeospatial.org
http://trac

467Chapter seventeen:  Web-based simulation using Cell-DEVS and GIS

Pullar, D. V. and Tidey, M. E. 2001. Coupling 3D visualisation to qualitative assess-
ment of built environment designs. Landscape and Urban Planning, 55(1),
29–40.

Ribault, J. and Wainer, G. 2012. Simulation Processes in The Cloud for Emergency
Planning. In Proceedings of the 2012 12th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (ccgrid 2012), 886–891. IEEE Computer
Society.

Richardson, L. and Ruby, S. 2008. RESTful Web Services. Sebastopol, CA, O’Reilly
Media, Inc.

Sage, A. P., and Olson, S. R. 2001. Modeling and simulation in systems engineer-
ing: Whither Simulation based acquisition? Simulation, 76(2), 90–91.

Sinha, R., Paredis, C. J., Liang, V. C., and Khosla, P. K. 2001. Modeling and simu-
lation methods for design of engineering systems. Journal of Computing and
Information Science in Engineering, 1(1), 84–91.

Strassburger, S., Schulze, T., and Fujimoto, R. 2008. Future trends in distributed
simulation and distributed virtual environments: results of a peer study.
In Proceedings of the 2008 Winter Simulation Conference, Austin, TX, eds.
S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler, 777–785.
Piscataway, NJ, Institute of Electrical and Electronics Engineers, Inc.

Tolk, A. 2010. Engineering management challenges for applying simulation as a
green technology. In Proceedings of the 31st Annual National Conference of the
American Society for Engineering Management (ASEM), 137–147.

Van Der Knijff, J. M., Younis, J., and De Roo, A. P. J. 2010. LISFLOOD: A GIS-based
distributed model for river basin scale water balance and flood simulation.
International Journal of Geographical Information Science, 24(2), 189–212.

Wainer, G. 2002. CD++: A Toolkit to Develop DEVS Models. Software: Practice and
Experience, 32(13), 1261–1306.

Wainer, G. 2006. Applying Cell-DEVS Methodology for Modeling the Environ
ment. Simulation. 82(10), 635–660.

Wainer, G. 2009. Discrete-Event Modeling and Simulation: A Practitioner’s Approach.
Boca Raton, FL, CRC Press, Taylor & Francis Group.

Wang, S. 2012. Macaque Pathogen Transmission using Cell-DEVS. Internal Report.
Department of Systems and Computer Engineering, Carleton University,
Ottawa, Canada. December 2012.

Wang, X. 2005. Integrating GIS, simulation models, and visualization in traffic
impact analysis. Computers, Environment and Urban Systems, 29(4), 471–496.

Wang, Y. and Chen, P. 2012. A Cell-DEVS Geographic Visualization Framework
Using Google Earth. Internal Report. Department of Systems and Computer
Engineering, Carleton University, Ottawa, Canada. December 2012.

Ware, C. 2000. Information visualization: Perception for design. San Francisco, CA,
Morgan Kaufmann Publishers.

Wiedemann, T. 2001. Simulation application service providing (SIM-ASP). In
Proceedings of the 2001 Winter Simulation Conference, Arlington, VA. IEEE.

Zapatero, M., Castro, R., Wainer, G., and Hussein, M. 2011. Architecture for
integrated modeling, simulation and visualization of environmental sys-
tems using GIS and Cell-DEVS. In Proceedings of the 2011 Winter Simulation
Conference, Phoenix, AZ. IEEE.

Zeigler, B. P., Praehofer, H., and Kim, T. G. 2000. Theory of Modeling and Simulation,
2nd Edition. Academic Press, San Diego, CA.

D
ow

nl
oa

de
d

by
 [

C
ar

le
to

n
U

ni
ve

rs
ity

 L
ib

ra
ry

],
 [

G
ab

ri
el

 W
ai

ne
r]

 a
t 1

1:
04

 1
2

Ja
nu

ar
y

20
15

D
ow

nl
oa

de
d

by
 [

C
ar

le
to

n
U

ni
ve

rs
ity

 L
ib

ra
ry

],
 [

G
ab

ri
el

 W
ai

ne
r]

 a
t 1

1:
04

 1
2

Ja
nu

ar
y

20
15

	Web-based simulation using Cell-DEVS modeling and GIS visualization
	Introduction
	Related work
	Integration of M&S using DEVS/Cell-DEVS
	Categories of Web-based simulation
	Integration of GIS and M&S
	Integration of modeling and simulation and geographic information system visualization

	Architecture
	Cell-DEVS modeling
	GIS data collection
	GIS and GeoTIFF
	Class diagram
	Data collection process

	Web-based simulation
	DCD++ simulator in RESTful Interoperability Simulation Environment
	CD++ v3.0 simulator in RESTful Interoperability Simulation Environment

	Visualization in Google Earth
	KML introduction
	Class diagram of Visualization tool
	Visualization process

	Applications
	Fire Spread
	Monkey Pathogen Transmission

	Conclusion
	Acknowledgments
	References

