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Abstract

One of the key areas that are being paid special attention to is known as red biotech-

nology (i.e. biotechnology used in the medical field). An example of this is ‘The

Artificial Pancreas’ specifically for diabetes mellitus. The device would be composed

of a continuous glucose sensor that senses the user’s sugar level, an insulin infusion

pump that secretes insulin into the user’s body when required; and an algorithm

that regulates the insulin based on the glucose levels obtained from the sensor. In

the past recent years, there have been significant developments in technology that

are very specific to the artificial pancreas. Although these devices show promise of

future device developments, it currently faces a lot of error and criticism. In order

to minimize cost and time to build and verify such a complex system, one must first

model and simulate the system. This methodology in turn provides risk-free testing

environments and can also be tested with different scenarios.

This thesis will focus on modelling and simulating the artificial pancreas using Dis-

crete EVent System Specification in Real-Time (DEVSRT).This is accomplished by

simulating both a meal model and a control algorithm to control the insulin pump

based of the data provided by the continuous glucose monitor. The meal model sim-

ulation will validate the control algorithm model. The results indicate that the meal

model was successfully modelled and validated via comparison to literature. While

the control algorithm implemented is not effective when large meals are ingested.
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Chapter 1

Introduction

A control system is a device, or set of devices to manage, command, direct or regulate

the behaviour of other device(s) or system(s). By this definition one can easily see how

many, if not all, biological systems can be thought of as control systems. However,

even though this link has been established for a number of years (dating back to 1865

[1]), it was only in the past recent years that there has been any significant impact

in the biological realm.

Biotechnology can be further broken down into four different fields - red, blue, white

and green biotechnology. Red biotechnology, which this thesis will focus on, is biotech-

nology that is used in the medical field, often referred to as biomedical. Blue biotech-

nology refers to application in aquatics. Whereas white biotechnology refers to in-

dustrial application and green biotechnology refers to agriculture and plant usage.

There are two main reasons why red biotechnology is quite different from other areas

that utilise control systems:

• It has a greater and more direct impact to human life than any other

field; and,

• It is a far less mature and less established field than any of the other fields

such chemical, aerospace, electrical, etc.

1
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Despite these barriers, there has been significant developments in the recent years in

the areas of cardiovascular and endocrinology. More specifically it is the development

of the artificial pancreas that this thesis focuses on.

Regardless of the application, in order for something to be developed and used espe-

cially where human life is concerned, it has to be thoroughly tested and verified. An

effective, reliable and cost effective way to develop and test designs of these devices is

via Modelling and Simulation (M&S). More specifically computer-based M&S proves

to be an effective tool due to its efficient analysis, design, optimisation and verifica-

tion of systems. Furthermore, the use of M&S in software engineering reduces costs,

risks and allows different aspects of the system to be closely examined if necessary.

Formal M&S is a specific branch of M&S that defines models using formal specifi-

cation tools. There are a number of different formal specifications that are used for

various systems. With respect to biomedical devices the most common and commer-

cial specifications include but are not limited to SMBL, Matlab, Mathematica, and

Modelica. However, for this thesis a more unconventional modelling formalism was

used - Discrete EVent System Specification. DEVS was chosen over the other mod-

elling techniques mainly because it has been time and again proven to be successful

and easily used when modelling complex applications. This is mainly due its ability

to reuse models, fast prototyping and incremental development of models [2].

1.1 Motivation

In the year 2012, it was estimated that approximately 382 million of the adult world

population was affected with diabetes mellitus. In addition to this, there are ap-

proximately 316 million with impaired glucose tolerance and are at high risk of being

diagnosed with diabetes mellitus. This number is said to grow to a estimated 471
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a CGM device; a Control Algorithm Device (CAD); and, an insulin pump (see Figure

1) [4]. The CGM is an invasive subcutaneous device that is used to continuously

measure the glucose concentrations in a patient’s cells. The CAD then receives the

readings from the CGM and uses a predefined algorithm to calculate the concentra-

tion of insulin that needs to be pumped into the patient’s body. It then sends the

calculated value to the insulin pump. The insulin pump automatically dispenses the

correct dosage of insulin as instructed by the CAD.

In 2006, the Juvenile Diabetes Research Foundation (JDRF) [5] recognised the need

for the above mentioned closed loop strategy to be implemented. This provided a way

to what is now known as the Artificial Pancreas Project (APP) Research. The launch

of this project solved the first problem - i.e. the availability of a subcutaneous glucose

sensing device. This device was key because it was not only invasive but it needed

to sense and actuate intravenously such that it minimises discomfort to the patient.

However, this resulted in a second problem - an added delay within the closed loop

circuit that would result in more challenges when considering the development of the

control algorithm.

1.2 Thesis Goals

As described in section 1.1, currently there isn’t a single system that can gracefully

act as an artificial pancreas. There are major building blocks that do exist; but, the

integral part - the control algorithm device does not yet exist in its entirety. The

goal of this thesis is to tackle the problem by developing a meal model simulator

and a control algorithm in DEVS. This is achieved by first evaluating the various

meal model simulators and control algorithms that have currently been developed for

completeness and accuracy. Thus in turn establishing a gold standard for both the

meal model simulation and the control algorithm.
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The next step would be develop the meal model simulator in a hierarchical format

in DEVS and to test it by comparing it to the expected outputs for a given input.

It is important to note that a hierarchical structure is crucial to the development of

a meal model simulator because one can add or omit certain aspects of the human

body as needed. This would then result in validating both complex problems as well

as simpler problems. Lastly, this thesis aims to develop a control algorithm that is

based in DEVS and test it against the meal model simulator previously built to assess

for its effectiveness.

1.3 Thesis Organization

The first two chapters provide an introduction to the thesis itself; where, chapter

2 provides insight on previous research conducted including DEVS formalism. In

addition, it provides a background on the disorder modelled, Diabetes Mellitus; and,

discusses the various models that describe the relationship between glucose and insulin

in the human body. It concludes by stating the problem statement of this thesis.

The next chapter discusses how the problem posed in the introductory chapters was

tackled. This is accomplished by describing how the model chosen in chapter 2 was

implemented into DEVS, followed by description of the simulation results.

The next section of the thesis discusses the project itself and possible future work;

including how the work presented in this thesis can be extrapolated to model some

other organs using the DEVS formalism. This is done in two chapters where chapter 4

presents the discussion and chapter 5 presents the conclusion and insight into possible

future work.

The thesis concludes with an annex that provides in depth insights into the disease

itself.



Chapter 2

Review of the State of the Art

As the title suggests, this chapter reviews the state of the art. It is broken into four

different sections. The first serves as an introduction to the simulation side of the

thesis. The second serves as an introduction to the disease Diabetes Mellitus. This

is followed by a literature overview of the available control algorithms. The chapter

concludes by defining the problem statement.

2.1 Simulation

This first section which serves as an introduction to the simulation side of the thesis

is outlined as follows: Sub-section 2.1.1 provides an introduction to the realm of

biological systems from the perspective of simulation. Following which, the system

specification used to simulate the biological system of interest will be briefly discussed.

The section then moves onto discussing how the two above mentioned sub-sections

connect together (sub-section 2.1.1 & sub-section 2.1.2). Lastly, the section concludes

by giving a brief overview of how the algorithms are integrated in previous research.

6
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2.1.1 Simulation of Biological Systems

Many times, the words model and simulation are interchanged in everyday conversa-

tion. However, in the M&S community the term ‘model’ is referred to the particular

aspect of the real-world system that is closely examined. The word ‘simulation’, is

used to describe the process used to imitate the system through a particular model.

Additionally, the term ‘simulator’ refers to a program that is designed for the sole

purpose of running simulations. That being said, it should be noted that a model

can be described by a number of methods; some of which are informally based and

some are formal descriptions widely used. The formal descriptions generally involve a

number of techniques including but are not limited to: equation, diagrams and prose

[6]. However, when referring to formal description, this document will for the most

part only examine mathematical formulas. Similarly, when this document refers to

simulating a system, it only includes the design of the formal model and the use of

a technology to calculate the outcomes of certain situations based on the formulas

described in the model.

Simulating biological systems poses many technical challenges that are often not

present in other real systems. This is mainly due to the fact that biological systems

are governed by the laws of physics as well as chemistry whose interactions by itself

are not well understood and documented [7]. This difficulty mainly has two reasons

behind it. First, even the most basic system in the biological realm is very complex to

understand due to its many inter-dependencies on other systems. Thus, when medical

researchers try to model this complex system it tends to become even more complex

due to several limitations including the modelling framework itself. Secondly, in order

to simulate something realistically, most biological systems require many complex

algorithms to be integrated together failing which, one or more key behaviours of the

system would be undefined. For example, with respect to modelling a pancreas, not
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only does one have to develop and implement an algorithm for blood sugar regulation,

but also for muscle and adipose tissue absorption, enzymes from the liver, etc. This

in turn increases the scope of the project immensely.

However, in [8] the authors note that many of these complex large systems can be

broken down into smaller subsystems by conceptually modularising the entire system

in an analogous manner. Many real systems today have been modelled and simulated

by adopting this approach. The Discrete EVent System Specification (DEVS) is one

such formalism that allows one to break a model into smaller components with ease

[6, 9]. This is mainly done by the brilliance of the DEVS simulation program itself.

It allows the user to model any into simpler sub-models. These sub-models can then

be further divided into sub-models of its own. This can be done repeatedly as many

times as the user wants to create a complex yet fully defined hierarchical structure.

There is a small downside to this methodology and that is the fact that extra code

must be written to define the hierarchical structure. But, this is a small cost to pay

considering that each sub-model must be designed independently and can be reused

at any time to aid in other simulations.

An example of a hierarchical model is depicted below in Figure 2. The upper most

level of the hierarchical model represents the entire meal system with respect to it’s

interactions with the entire human body that is relevant to the production of insulin.

The nodes in the lower level represent the different components involved. The arrows

indicate the direction in which the signals are sent from one component to the next.

It should be noted that the figure is just an illustration and by no means represents

an entire meal system.
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Figure 2: Illustration of a hypothetical, hierarchical model a meal system.

2.1.2 Discrete EVent System Specification (DEVS)

In 1976, Bernard Zeigler invented the Discrete EVent System Specification (DEVS)

mainly because he was convinced there was a need for a novel theory in the realm

of discrete event simulation. DEVS is a general formalism that defines a number of

conventions to formally describe a wide range of systems that vary with time [10].

There are many key distinguishing factors that DEVS formalises. These include but

are not limited to the distinction between system and constant states, the design of

hierarchical models and the separation between simulators and models. Ever since

its first proposal and implementation, DEVS has been used as a basis for many other

variant formalisms that are widely used today.

It should be noted that while many of the real world systems change continuously

with time, the states in a discrete event simulation changes only at discrete times.

However, DEVS compensates for this disadvantage by introducing a ‘system state’ - a

state that represents the real world system and distinct from the ‘constant state’ that

is handled by the computer. The system state is comprised of two main components:

the constant state and the time elapsed since the previous event. Unlike the constant

state, the system state is continuously changing because the elapsed time is not
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constant. The DEVS transition function then calculates the new constant states

based on the current system state [11]. For the purposes of this document, the term

‘constant state’ will henceforth be referred to as ‘state’.

In section 2.1.1 it was stated that simply put, a model is a description of a system.

More specifically, a DEVS model is a formalised description of a system that is driven

with a set of mathematical functions. It was also stated that DEVS uses a hierarchical

structure to build a model. The smallest component of this structure is called an

‘atomic model’ and is defined:

< X, Y, S, δext, δint, λ, ta > (1)

Where:

X refers to the input values of the DEVS atomic model;

Y refers to the output values of the DEVS atomic model;

S refers to the states associated by the DEVS atomic model;

δext refers to the external transition function;

δint refers to the internal transition function;

λ refers to the output function; and,

ta refers to the time advance function.

One of the advantages of using DEVS is that although formally one has to define

δext, δint, λ; and, ta; they do not need to need to worry about explicitly calling them.

This is because the fore mentioned functions are handled by the simulator itself (Note:

the simulator and the model itself are separate). The first three parameters on the

other hand need to be defined and explicitly called by the model. This leads into

another advantage of DEVS, which is, that the simulator itself is not model specific.

Thus, any well-defined DEVS model, regardless of what the model represents can be

simulated with ease [2].
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The way a simulator executes an atomic model is as follows: The simulator initially

has the DEVS model in its initial state (defined by the parameter S). After any event,

the simulator then evaluates the time advance function (defined by ta) in order to

determine when the next internal transition should occur. Once this time has elapsed,

the output function (defined as λ) is executed and the output values (defined as Y )

are determined. Upon completion of these events, the model is now in a new state.

However, before the time advance function elapses, if the simulator is interrupted with

an input value (defined as X), the simulator applies the external function (defined as

δext) to transition into it’s new state. Thus, the internal transition function, δint, has

only one input argument - the state, S and thus effectively is a function of the system

state for a guaranteed elapsed time of ta(s). The external transition function, δext,

has three input arguments - the current state, S; the elapsed time, ∆telapsed; and,

the input value X. The external transition function is by definition a function of the

system state because it contains both arguments - s and ∆telapsed [2].

The other type of model that DEVS uses is called a ‘coupled model’. These models

are comprised of a number of sub-models which themselves can be atomic or coupled

models. Note that due to DEVS’ hierarchical model it allows coupled models to be

nested in each other. A coupled model structure is defined as:

< X, Y,D, {MD | d ε D}, EIC,EOC, IC, Select > (2)

Where:

X refers to the input values of the DEVS coupled model;

Y refers to the output values of the DEVS coupled model;

D refers to the model identifiers of the DEVS model;

{MD | d ε D} refers to the model identifiers that are specific to this DEVS coupled

model;
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EIC refers to the external input coupling;

EOC refers to the external output coupling;

IC refers to the internal coupling; and,

Select refers to the function that determines which sub-model needs to undergo an

internal transition in the event of a tie.

The best way to explain how a coupled model works is through example. Suppose

the meal system model depicted in Figure 2 is considered as a coupled model. The

four atomic models are Liver; Muscle and Adipose Tissue; Gastrointestinal Tract;

and, Beta cell. X would be defined as the input values, i.e. the meal ingested itself;

and Y would be the output values, i.e. The Glucose utilisation by the body and the

Insulin Secretion. The variable D would be defined by the set of model identifiers,

i.e. the atomic model involved (in this case Liver; Muscle and Adipose Tissue; Gas-

trointestinal Tract; and, Beta cell). The tuples of the four atomic models would be

included in {MD | d ε D}. The external input coupling set EIC is represented by

the arrow leading into the meal system itself (i.e. the meal to the Gastrointestinal

Tract). Similarly, the external output coupling set EOC is represented by the arrows

leading out of the meal system (i.e. the arrow from the Muscle ad Adipose tissue

to Glucose utilisation; and, from the Beta Cell to the Insulin Secretion). Messages

between the atomic models are passed through the internal coupling set IC, which is

represented by the arrows between the four atomic models (i.e Glucose Production;

Plasma Glucose; Glucose Rate of Appearance; and, Plasma Insulin). Last but not the

least, a Select function is defined in order to determine which atomic model undergoes

an internal transition first in the event of a tie.

Over the years, DEVS has been applied to a number of different types of models.

One of such applications is the Cellular Discrete Event Specification (Cell-DEVS)

which applies DEVS to cellular models [12]. The advantage of Cell-DEVS is that



13

the variables in equations 1 and 2 do not have to be explicitly defined. However,

for every Cell-DEVS coupled model the modeller can opt to either define a DEVS

coupled model; or, define a cell-space. The communication between cells are based on

its own current state and the state of its neighbours. This proves to be a lot simpler

than defining messages between systems or cells. Another advantage of Cell-DEVS

as described in [12] is updating particular or all the cell states asynchronously as

opposed to the traditional way (nested loops that update at a specified regular time

interval). Last but not the least the advantage of integration. The modeller can chose

to define the entire system in Cell-DEVS or define certain components in Cell-DEVS

and the rest in DEVS. Having this flexibility proves to be extremely useful in terms

of reusing a part of past models or in its entirety.

Applications of continuous space models in DEVS however are an extremely rare find.

An example of such a case would be the forest fire model that is described in [13]. This

particular example integrates a variation of DEVS designed in particular for dynamic

structures [14]. The model itself describes a forest fire front that is represented by

a set of points connected to each other. Each point on this from is described by a

particular DEVS atomic model and as the simulation continues, the fire grows (new

sets of connected points are added). Like everything, a model like this has its own

advantages and disadvantages. The advantage lies in the fact that continuous-space

is easily handled by the use of vectors and cellular models that distinguishes one

cell from another. The disadvantage of such a system would be the multiple nested

boundary system that is needed to accurately describe the temperature variations in

the different cells [15].
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decides if the RNA polymerase can bind to it or not. The non-spatial aspect of this

particular model comes into play because of the positions of the RNA polymerase

and the various other biological structures are not stored and used.

Theoretically, continuous space biological models could be easily designed in DEVS.

One could take the pre-existing models such as the forest fire described in [15] and

used vectors to track chemicals, enzymes, etc. that are in the blood stream. How-

ever, a literature search resulted in minimal continuous space DEVS models that

involve biological systems that can be found in living organisms. The most promi-

nent one is described in [6], where an impulse-based method for simulating dynamics

of deformable structures such as a presynaptic nerve terminal model.

When considering simulating a particular model with a given formalism such as

DEVS, one must first put forth the question: is it possible to use a formalism at

all and if sub models can be chosen effectively to exploit its biggest advantage - hier-

archical structure definition. Theoretically, it is quite possible to represent an entire

complex biological system in one single atomic model. If this is the case, the mod-

eller might not chose not to describe the model in the DEVS formalism since the

only advantage they will gain is the separation between the simulator and the model

itself. One the other hand, internal and external transition (δint and δext respectively)

functions might potentially contain various looks and data structures that are way

more complicated than necessary. Thus, the only way to fully ensure that the true

benefit of DEVS is utilised is to use coupled models that are further subdivided into

simpler sub models which in turn leads into simpler and smaller internal and external

transition functions (δint and δext respectively).

Although the above mentioned proposition sounds easy, designing an effective hier-

archical structure poses a huge challenge. This is particularly true when examining

biological systems that contain many interdependent components. DEVS formalism
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basically has three alternatives when it comes to hierarchical modelling. These are

stochastic petri nets; stochastic π-Calculus; and, state charts [19]. The University

of Rostock tackles the problem of designing a hierarchical structure for biological

systems by representing biological entities (such as cell components including but

not limiting to the cell membrane and nucleas) as coupled models. The interactions

between the entities are then handled in accordance to the DEVS formalism. The

problem lies in the fact that DEVS passes messages between related models (cou-

pled or atomic) independently of one another. Because of this many people claim

that DEVS is unsuitable for the modelling interactions that involve more than two

entities [19].

However, one should note that this problem is not unique to DEVS. It manifests

itself in every biological model that is bases model hierarchies on biological entities [6].

Although this deficiency is not solved in its entirety, there are many other extensions of

DEVS that improve its efficiency. Three such examples include but are not limited to

DYNDEVS [9], ρ-DEVS [20] and ml-DEVS [21]. DYNDEVS extends the traditional

formalism of DEVS by allowing the model’s description to change its own state and

behaviour pattern as needed. This allows the model transitions to generate a sequence

of successive models. The idea behind this is that a system is more likely to change

its composition; behavioural pattern; or, it’s interaction structure rather than the

interface to its environment [9]. ρ-DEVS is an extension of DYNDEVS. The difference

with this extension however lies in the fact that the interface to its environment is

not necessarily static and can change based on its input and output ports (and hence

multi-coupling was introduced) [20]. Lastly, ml-DEVS takes it one step further, by

introducing coupled models with its own state and behaviour; and, the formalism

explicitly defines how the macro-level and micro-level affect each other [21]. As seen

in the above descriptions, as DEVS is modified to aid in the simplification of biological
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systems, the formalism itself becomes exponentially complicated and difficult to learn.

2.1.4 Biological Simulation Algorithm Integration

One of the best examples of a biological algorithm integration in DEVS is described

in [6]. This work applies DEVS formalism to biological models with continuous space

by performing a dynamic simulation of deformable biological structures, namely vesi-

cle synapsis in a nerve terminal. This is done by using a method called tethered

particle system (TPS) to simulate the deformable structures. The TPS methodol-

ogy has a special unique way to capture the gradual deformation of a deformable

object using instantaneous impulses that occur when two or more particles collide.

Additionally, there are many other biological models that simulate the diffusion of

chemical, computational fluid dynamics [22], etc.

However, there is a huge desire to integrate biological algorithms that are described

within different formalisms. This is due to the belief that it would ease the modelling

and simulation process, a modeller must take advantage of the different formalisms

that are available. Furthermore, certain sub-components of the model might be al-

ready available in the M&S community and thus having a way to model something

using ‘multi-formalism modelling’ proves to be ideal. This ideology provided a way

to the framework James II which combines both the stochastic and spatial variants

of the π-Calculus with different variants of DEVS. This formalism is now called Beta

Binders and is described in [23].

2.1.5 Dynamic Simulation of Chemicals

The phrase ‘dynamic simulation’ is often used to describe a simulation of something

in motion using the laws of classic dynamics. This section in particular reviews the

various applications that simulate chemicals using classic dynamic principles. There
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are many models that simulate chemicals and how they react within a certain system.

An application of this can be seen in [24] which presents a Cellular Dynamic Simulator

(CDS) for simulating the diffusion and chemical reactions within a crowded molecular

environment. The interesting thing that this work presents is that the simulator is

event-driven and is based on a common language Systems Biology Markup Language

(SMBL). However, it is constrained by the space in which the simulation can take

place. The human body, though definite in space, has a large number of chemicals

which are used though out the body and is best represented by a continuous-space

model.

2.1.6 Dynamic Simulation of Cells

The human body is made up of cells, tissues and organs. According to [25], cells are

defined as the basic structural building block of a living organism. Tissues are made

up of unique specialised cells. For example only a nerve cell can make up nerve tissue

(also known as ganglia). In essence one can think of tissues as a large group of cells,

that perform the same function in the human body. Organs are made up of a group

of tissues that work together to perform one or more specific tasks. For example eyes

are considered an organ in the human body because it is made up of nerve tissue,

lens tissue, blood vessel tissue, muscle tissue, etc. All these various types of tissues

work together to allow a person to see.

There are many applications of dynamic simulation of cells around the world. One

noted application makes use of Computational Fluid Dynamics (CFD). Traditionally,

CFDs were solved using various numerical methods that would attempt to provide

an accurate approximation [26]. However, recently a novel approach using DEVS

formalism was used to analytically solve a CFD problem. The approach was used to
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2.1.7 Dynamic Simulation of Organs

As explained in section 2.1.6, an organ is a group of tissues that work together to

perform one or more functions. Due to its complexity, there are a limited number of

models that exist that are modelled in continuous-space and using the laws of classical

dynamics. One such example is documented in [6]; which simulated a pre-synaptic

nerve terminal. The key to the dynamic simulation outlined in this work is the use of

the Tethered Particle System (TPS) method which makes use of the particle collision

theory. The impulses generated by each particle collision is then used to dynamically

simulate impulse of deformable structures. However, this work focuses on simulating

biological systems at a low level and is more applicable to simulating chemicals and

particles as opposed to entire organ.

2.2 Diabetes Mellitus

Diabetes Mellitus (DM) has plagued the world to a point where it imposes high social,

economic and human costs around the world. The international diabetes federation

estimates that 382 million people around the world are affected with diabetes and

this number is estimated to rise to approximately 592 million in less than 25 years.

They also expect 175 million people are afflicted with the disease and are either

under diagnosed or not diagnosed at all. As it stands, these alarming numbers only

suggest that the world is losing the battle to conquer the disease which in turn can

be viewed as a major threat to global development. This section aims to provide only

a brief overview on the definition of the disease; classification of the common types

of diabetes; and, the current techniques available to treat and monitor the disease.

Note: Refer to Annex A for additional information on the disease.

To begin one must first understand what exactly the disease entails. A person is said
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to be diagnosed with DM when their body (specifically the pancreas) cannot produce

the hormone insulin, or, their body cannot use insulin effectively. Insulin, a hormone

produced in the pancreas of the human body, is what triggers all the cells in the

human body to absorb glucose from the food ingested. The cells are then responsible

for transforming the glucose into energy (ATP) which is then utilised by various

tissues and muscles to perform their day to day tasks. A person who is afflicted with

this disease cannot absorb glucose properly for various reasons. This means that the

glucose absorbed by the body circulates the blood stream and damages the body’s

tissues and muscles over time. These damages can result in enormous life threatening

complications. There are three major types of diabetes (see Figure 5):

• Type 1 Diabetes Mellitus (T1DM)

• Type 2 Diabetes Mellitus (T2DM); and,

• Gestational Diabetes Mellitus (GDM)

T1DM is an autoimmune disease which often times occurs suddenly. It is occurs in

humans where the pancreas (an organ responsible for the production of insulin) no

longer produces the hormone because the body’s defence system attacks it β-cells

(cells located in the pancreas which produces insulin). This in turn does not permit

glucose from entering into the cells which then cannot produce energy for it’s survival.

In order to prevent hyperglycemia (a condition when high concentrations of glucose in

the blood stream), the person must inject himself/herself with the insulin hormone.

Failure of which will lead to the slow deterioration of organs which in turn then leads

to death. On the bright side, studies have shown that people afflicted with DM can

survive if their glucose levels are closely monitored.

The pancreas of patients afflicted with T2DM and GDM on the other hand produce

insulin. However, the cells in the body are resistant the insulin hormone; or, the
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Due to a limitation on the thesis scope, the following section will only discuss the

current treatment options for T1DM. Treatment options for other types of DM can

be found in Annex A of this document. As explained previously, due to the lack of

production of the peptide hormone insulin, a patient afflicted with T1DM needs to

inject themselves with insulin on a regular basis. However, the infusion of insulin

has to be rigorously monitored since the over-infusion can cause hypoglycemia (a

condition when low concentrations of glucose in the blood stream) and under infusion

can cause hyperglycemia. Due to this, when manual insulin therapy (via injections)

is used, the dosage is based off a blood glucose reading that is taken manually via the

finger stick method or automatically via a continuous glucose monitor (CGM). Annex

A gives more insights as to how the manual and automatic blood glucose readings

are obtained.

In the 1980s however, a novel innovation led to the commercial use of continuous

subcutaneous insulin infusion (CSII) pump. This medical device is considered more

like a tool, and only delivers exogenous insulin when commanded to or as per a given

schedule. In other words, this device is an open-loop control device that facilitates

the delivery of insulin but still requires human input.

In order for a patient afflicted with T1DM to treat themselves with insulin therapy,

they must first determine their current blood sugar level. It should be noted that,

due to physiological reasons, there is no way to know what the exact blood sugar level

is at any given time in the whole body. A person can only measure the instantaneous

blood sugar level at that particular location in their body. That being said, a person’s

blood sugar level does not drastically change from one instant to the next unless

something with high glucose concentrations is absorbed by the body in between the

two instances. Nevertheless, there are currently two methods that are used to measure

glucose - continuous glucose monitor (CGM) or a finger prick test. Both methods are
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explained in detail in Annex A.

The CGM is relevant to this thesis as it aids in the development of the ‘artificial

pancreas’. The CGM is a small intravenous device that is often placed on the abdomen

of the patient (preferably as close to the pancreas as possible1). It’s sole function is to

measure the blood glucose concentrations continuously. This is to ensure the patient

is aware of his/her glucose concentrations and can inject themselves with insulin or

ingest something with a high glucose concentration as necessary to maintain their

blood glucose levels in the normal range.

2.3 Literature Overview

This section is responsible for reviewing some of the current literature that is pub-

lished and is related to the problem at hand. This section is broken into two main

parts: first a physiological model is needed to model a patient with T1DM used to

validate the Control Algorithm Device (CAD). Second, is a control algorithm which

would be deployed on the CAD as a part of the entire ‘artificial pancreas’.

2.3.1 Metabolic models

In recent years, due to the huge strive put forth by the research community, a number

of metabolic models have been developed and published in literature to capture the

dynamics of the insulin-glucose system in the human body. For ease of understanding

the models presented in literature currently fall into three groups: empirical models;

semi-empirical models; and, physiologically-based models.

1The blood glucose level can vary at different sites of the body. It is best to measure the blood
glucose level where the body naturally measures it (near the pancreas for DM). In addition that
manufacturers recommend that the site of monitoring is best where the body does not come in a
lot of contact (including natural bending such as a joint or sites that can causes irritation such as
the belt line) during regular activity. This is to ensure the CGM stays in adequate contact with the
body and thus enhancing its performance [27].
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The first group of models, empirical models, is best understood in the realm of com-

puting; engineering; and, science, as black box models. It’s sole purpose is to evaluate

and capture the transfer characteristics also known as the input and output (glucose-

insulin dynamics) of the system without any consideration for the internal workings

(physiology of the human body) of the system [28–31]. The development of these

models requires the identification of structures and parameters that are much simpler

than the latter two types of models. Thus, the development and synthesis of these

models can also be a lot shorter. Since these empirical models are an important step

to the development stage of the ‘ultimate’ controller algorithm design, a number of

these well designed empirical models are developed to employ dynamic techniques

[32]. These models however cannot be used directly to interface between the CGM

and insulin pump in the AP because they pose a number of disadvantages. For exam-

ple, models that are pure empirical models do not take into consideration any sort of

biology. This makes it extremely difficult to distinguish and separate any give specific

physiological effects caused by metabolic substrates that occur in any tissue and/or

organs. In addition, like any black box system, the models do not provide details into

the dynamics of the given system. Lastly, like many biological systems, the dynamics

of a glucose-insulin system are non-linear and can vary tremendously given different

conditions. Needless to say, these models that depict simple linear insulin-glucose

dynamic relationships only provide a good basis to further extend it in order to use

it for a control model that would entail more realistic perturbations such as exercise;

and, meal intake [28].

Semi-empirical models take it one step further than empirical models. Semi-empirical

models still for the most part takes the black box approach to modelling; however, it

includes physiology dynamics that are directly related with the system [33–40]. They

do this by including many macroscopic metabolic parameters. For example, when
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attempting to design a semi-empirical model for insulin-glucose dynamics one would

include parameters such as sensitivity of both insulin and glucose, effectiveness of both

insulin and glucose in accordance with tissues that are extra-hepatic (i.e. tissues

that are situated outside the liver) [41]. The disadvantage of these models is that

they are complex enough to distinguish and separate any give specific physiological

effects caused by metabolic substrates that occur at various levels in the human body

(i.e. organs vs. tissues vs. cells). This again, is simply due to the fact that the

very definition of a semi-empirical model is to depict major physiological interactions

while still preserving the simple structure that empirical models are well known for.

Hence, these models can be used directly when designing a preliminary CAD that is

only capable of maintaining glucose homeostasis without any perturbations such as

exercise; and, meal intake.

Lastly, physiologically-based models are the current gold standard when it comes

to models pertaining to biological systems. It is the most detailed and complex in

terms of the number of parameters, equations and general structure. Different mod-

els vary in the depth of physiology that they consider and include sufficient detailed

description of the physiology behind the various metabolic interaction involved in the

system under consideration2 [42–45]. All physiological models capture the metabolic

substrate at various levels of the body - from organs, tissues to intracellular levels. It

should be noted that for a model to be considered a valid physiologically-based model

it needs to describe the dynamics of the system in measurable quantities and correctly

predict all the other variables relevant to the system that cannot be measured quan-

titatively. Thus, these models are extremely useful as they provides sufficient insight

into the inner workings of the system. The disadvantage of developing such a complex

2Many a times newer models are more complex and accurate. A few times newer models are less
complex as the authors are able to prove a certain metabolic interaction is not related to the glucose
insulin interactions in the human body.
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model is that it is time intensive; and, thus often developed by researchers in collab-

oration over numerous years. Due to the model’s complexity and the given nature of

biological systems, these physiologically-based models are designed with non-linear

equations with numerous parameters.

2.3.1.1 Empirical Models

As mentioned in section 2.3.1 of this document, empirical models are considered to

be black box models which only consider the input and output of the system, it does

not consider any of the transfer characteristics (in this case physiology) of the system.

There are many empirical models that have been developed over the years. However,

it is not the aim of this document to discuss the advantages and disadvantages of all

of them. Hence, only a handful key empirical models that have revolutionised the

development of metabolic models will be discussed.

Using the Volterra-Wiener approach of modelling, a non-parametric model that depict

the insulin-glucose interactions was developed in [46]. Using the Laguerre-Volterra

Network (LVN) methodology and black box data generated from a parametric model

outlined in [33], the first and second order kernels of the Volterra-Wiener model

were estimated. This entire model and simulation indicated that it was feasible

to develop an accurate nonlinear black box model from insulin-glucose data that

resulted from a parametric model. The results from [46] also proved two key things: a

Volterra-Wiener modelling approach is robust even in the presence of additive noise;

and, similar models can be easily used in the development of a CAD considering

that it accommodates its enhancement to include both adaptive and patient specific

estimation.

Bremer and Gough in [28] proposed a linear black box model for glucose predictions

that is solely based on recent blood glucose measurements. They do this by identifying
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a model structure based on an auto-correlation function (ACF) that estimates blood

glucose levels at fixed time intervals. This in turn provides a statistical coefficient

of the dependency between each individual measurement of a process at different

times. Additionally, the simulation data analysed in [28] demonstrates that blood

glucose in not random and actually can be predicted well given frequent sampling.

The disadvantage of this model was that it did not permit the prediction of blood

glucose for more than 30 minutes.

Finan et al. in [30] developed several empirical models using ARX and Box-Jenkins

(BJ) techniques to help evaluate ’infinite step ahead’ blood glucose predictions. These

models were described in the semi-empirical model that was described by Hovorka

et. al in [40]. High accuracy of these models were achieved by higher order and lower

order ARX and BJ models under normal operating conditions. However, when trying

to simulate a change in parameters such as insulin sensitivity all models were highly

inaccurate, especially the low-order models.

A control empirical model that can be used to predict the blood glucose level of a

critically ill patients in the intensive care unit (ICU) was developed by [31] by using

real clinical insulin-glucose data from an ICU. The following variables were used to

predict blood glucose concentrations using an auto regressive exogenous input (ARX)

model: adrenalin level; beta-blockers level; body temperature; dobutamine level;

dopamine level; glucocorticoids level; insulin infusion rate; total CHO calorie intake;

and, total fat calorie intake. Although the model coefficients proved to have significant

relevance to blood glucose, insulin, insulin resistance and CHO calories; further data

is required to enhance the model to ensure it is more patient specific especially since

ICU patients often have periodic insulin resistance. Another drawback is that this

model requires the use of parameters that cannot be measured continuously and

without non-invasive methods.
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With the use of blood glucose concentrations from subcutaneous glucose sensors and

subcutaneous insulin infusion pumps a nonlinear neural network (NN) model was

developed by Trajonski et al. [47]. This system consists of: the model is based on

a nonlinear auto-regressive with exogenous input (NARX) representation; the regu-

larisation approach for constructing radial basis function NNs; and, finally methods

of validation include those pertinent to nonlinear systems. Although the closed loop

simulation showed that large noise levels did not prevent the system from achieving

stable control, rapid insulin control actions did not result in a stable control such as

in the OGTT described in section A.4.

Yet another linear black box step response system was developed by Parker et. al

in [29]. This model filters the impulse response coefficients through projection onto

Laguerre basis and in turn models a step-response effect of insulin in the system.

Even though the model does capture a dynamic behaviour of the system; it does not

include all the gain information a typical diabetic patient would undergo. It also

stated that its failure to capture any steady state condition did not influence the

performance of the model. In another study outlined in [48], empirical Volterra series

models of insulin-glucose behaviour based on data generated from a physiologically

based model [45]. This model accurately predicted data in the absence of noise.

However when using an additive Gaussian distributed noise, the coefficient estimates

were significantly corrupted. By projecting the Volterra models onto the Laguerre

basis functions, considerable amount of noise was filtered. The best performance was

achieved by a MPC that filters noise effect after a significant amount of tuning.

Predicting blood glucose levels in T1DM patients using qualitative modelling tech-

niques with fuzzy logical systems has also been proposed by Bellazzi et al. [49]. Prior

structural knowledge of the system is used to initialise a fuzzy inference procedure.

This procedure predicts a patient’s future blood glucose level by approximating the
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system dynamics using the experimental data. Although this methodology can be

used accurately and efficiently, the initialisation based on priori knowledge of a qual-

itative model. Any error in the approximation of this mode could degrade the entire

empirical system.

The last empirical model that is considered in this document is that proposed by

Bleckert et al. in [50]. This model, defined in n terms of biological parameters

and noise parameters, uses a mixed graphical techniques stochastic linear differential

equations to model blood glucose levels in a patient afflicted with DM. In order to

handle noise gracefully the model uses density estimates of the unknown parameters

which were obtained from the input-output data by using the exact inference algo-

rithm. These density estimates convey much more information about the unknown

parameters than a point estimate.

2.3.1.2 Semi-Empirical Models

As mentioned in section 2.3.1, semi-empirical models are the next step up from em-

pirical models. They include only the necessary transfer characteristics of the system.

In a biological system this means only the necessary physiological characteristics that

directly affect the system. Although there are many semi-empirical models that have

been developed over the years; it is not the aim of this document to discuss the ad-

vantages and disadvantages of all of them. Thus, only a handful of key semi-empirical

models developed by pioneers with be discussed.

The first model that will be outlined was published in 1961 by Boile. This work

modelled the insulin-glucose kinetics as a two dimensional model consisting of two

Ordinary Differential Equations (ODEs)[34]. One ODE depicted glucose kinetics,

while the other depicted insulin. The model also consisted of five parameters that

were estimated from various published data. In 1965, Ackerman et al. published a
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similar model. This model took into consideration that both glucose and insulin are in

fact interdependent on each other and thus should be modelled in that fashion. A few

years later, Serge et al. developed another model that consisted of linear ODEs. This

model was said to illustrate insulin-glucose kinetics specifically in obese patients that

were diagnosed with T1DM [51]. The main disadvantage with all these preliminary

semi-empirical models is the simplification of key physiological effects between glucose

and insulin.

The most notable model that resulted in a breakthrough in terms of modelling insulin-

glucose kinetics was the minimal model that was developed by Bergman et al. [33,

52]. This model used three ODEs that represented plasma glucose dynamics, plasma

insulin dynamics; and, insulin concentration. This model was widely used in over

500 studies [53] mainly because it was the first model to accurately model the major

physiological metabolic effects of insulin-glucose kinetics. The accuracy of the model

parameters during an intravenous glucose tolerance test (IVGTT) was remarkable

given its simplicity. However, there are a number of concerns regarding this model

that were raised by the research community such as the overestimation of glucose and

underestimation of incremental insulin secretion; or, the question as to whether the

minimal model itself be too minimal [38, 54, 55].

Another key group that has developed a number of metabolic models capturing vari-

ous levels of physiological phenomena is Cobelli et al. [36,37,39,41,56,57]. One of the

early models developed by this group tackled one of key disadvantages of the model

suggested by Bergman - the separation of glucose utilisation and production. The

next notable publication included the most sought after solution at the time. One

that solved the argument of overestimation of glucose and underestimation of insulin

in the Bergman model. The next series of publication improved the models by adding

two key hormones that directly affect the insulin-glucose system in the human body -
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insulin and glucagon (a hormone secreted by the α-cells of the pancreas that encour-

ages the liver to increase the production of glucose). Hovorka et al. then extended this

model by adding separate insulin components. This new compartmentalised model

consisted of a plasma insulin; two glucose sub-systems; and, three separate remote

insulin compartments which captured other various physiological effects. The biggest

issue with this model was the absence of steady state functions which failed to predict

cases of high insulin ingestion [40].

The next model under consideration is one described in [58]. This particular model

is best known for its simulation of insulin-glucose dynamics after a subcutaneous

insulin injection. The simulation can accurately predict a change in plasma glucose

concentrations due to small meal intakes (i.e. CHO) or insulin absorption. It does

this with the help of a pharmacodynamics model with parameters from literature.

However, the limitations of the model were clearly seen when it attempted to examine

the effects of a big meal intake.

A biological relevant model describing the in vivio insulin-glucose physiological system

in T1DM was developed by Salzsieder et. al in [59]. It consisted of four state variables

that served as: glucose; insulin; net endogenous glucose balance; and, peripheral

insulin-dependent glucose uptake. The model validation was published in [59–61] and

proved that the slow dynamics and steady state glucose dynamics were accurately

represented. There are two major disadvantages of this model. The first, is the

limitation in linearity which focuses on the high glucose levels as opposed to the

frequent low blood glucose levels seen in T1DM patients. The second is the absence

to examine the slow insulin dynamics.

A semi-empirical insulin-glucose model was also proposed by Boroujerdi et al. and

is documented in [62]. This models breaks down the glucose utilisation into two pro-

cesses (insulin dependent and independent) which is different from that of previously
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discussed models. This five compartmentalised model (insulin insensitivity, insulin

sensitivity, plasma glucose, glucose interstitial space; and, glucose transporter with a

limited metabolism compartment for each of the interstitial space) proved that hyper-

glycemia in DM patients is caused by the saturation of the glucose transport mech-

anism. This remarkable discovery ensured the modelling and simulation community

gained a lot of headway. When it comes to accurately modelling the insulin-glucose

kinetics it also proved that most models do not tackle the behaviour of insulin on

endogenous glucose production when tissue saturation occurs in the human body.

Another glucose-insulin modelling effort can be seen in the published works of Lehman

and Deutsch [63].The problem that was tackled in this work was simulating insulin

response (both plasma and glycemic) for 24 hours in order to evaluate patients af-

flicted with T1DM. It accomplishes this by simulating glucose entering the system via

hepatic glucose production and intestinal absorption. Glucose leaves the system only

under three conditions: glucose utilisation in red blood cells (insulin independent);

glucose utilisation through the rest of the cells in the body (insulin dependent); and,

excretion of glucose through the renal system in the human body. Since its publi-

cation, this model has been widely used to assist in designing treatment options for

patients afflicted with T1DM [64]. The biggest limitation of this model was discussed

by Steil et al. in [65] who argues that the model cannot accurately predict glucose

dynamics during steady state insulin infusions.

A semi-empirical capable of capturing insulin-glucose dynamics and regulation based

insulin pulsating secretion was captured by Tolic et al. in [66]. It includes a feedback

look that consists of four components: pancreatic insulin secretions based on glucose

stimulation; glucose uptake based on insulin stimulation; suppression of hepatic glu-

cose production; and, glucose uptake based on its own enhancement. Another key
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aspect of this model is the incorporation of delays which mimic the physiological de-

lays seen in humans when examining the insulin-glucose dynamics. However, as the

authors acknowledged, at the time of publication, the model was in its early stages of

development and needs to be refined quite a bit in order to incorporate a more real-

istic simulation of the various states the human body goes through especially during

the time delay aspect of the model. In addition, the model only takes into account the

effect on insulin receptors on the upward cycle of the pulsating insulin secretion. It

does not take into account the effect the downward cycle has on the insulin receptors.

Another limitation with Bergman’s minimal model was that it was developed with the

intent of capturing insulin-glucose dynamics only of a single individual [33]. However,

since these metabolic models are often used to develop a CAD, it is important that

these models are able to accurately depict an entire population. In order to tackle

this limitation Vicini and Cobelli proposed a population-based minimal model that

used the Bayesian approach in [67]. Using the IVGTT data from sixteen individuals

who were not afflicted with the disease, they examined the distribution of insulin

sensitivity; and, glucose effectiveness for a population. With this approach, the model

could estimate both the insulin sensitivity; and, glucose effectiveness accurately even

in a small sample size. The issue with this model is its simplicity - modelling only

glucose dynamics of the system is not nearly enough. Andersen and Hojbjerre in [68]

employed a very similar stochastic minimal model which included both insulin and

glucose kinetics. The advantage of this method was that it accounted for a lot of

error in both the measurement and dynamics processing. They did this by employing

a Markov chain Monte Carlo approach to estimate the parameters using the Bayesian

technique.

Using two delayed differential equation (DDE) for modelling insulin-glucose dynamics

of a patient connected to an exogenous insulin delivery system was developed by
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Engelborghs et. al in [69]. The model incorporated two delays: the physiological

delay which accounted for the delay that insulin had on the production of glucose in

the human body; and, the delay associated with the exogenous insulin delivery system.

The analysis of this work proved that the two major types of diabetic patients (T1DM

and T2DM) had very different efficiencies when it came to insulin delivery.

Another semi-empirical model effort was demonstrated by Kraegen and Chisholm

in [70] which modelled the continuous subcutaneous insulin infusion using a kinetic

model. This two compartmental model demonstrated a key aspect of insulin infusion

therapy: subcutaneous insulin absorption in extremely low. A three compartmental

model directly linking the insulin dosage level and blood insulin levels was then de-

veloped by Puckett and Lightfoot in [71]. A study comparing the two fore mentioned

models revealed that data extracted from DM patients’ data was better fitted by the

results from the latter model. The study also proved that there was a significant

improvement in the results from the three compartmental model when analyzing the

results for variability with respect to a patient’s response to insulin over time (inter-

patient variability) and intra-patient variability.

The last semi-empirical model that will be considered is the one proposed by Wach

et al. in [72]. Using partial differential equation (PDE), this model was developed

with the intent of depicting three aspects: the diffusion of soluble insulin on the

human body; the steady state dynamics between monomeric and dimeric insulin;

and, the absorption of monomeric insulin molecules. The PDEs were solved using

various numerical methods and division of subcutaneous regions into smaller spherical

spaces to account for the space distribution in cells. The model results did fit with

experimental data and could be used in a clinical setup.
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2.3.1.3 Physiological Models

Just like the previous two sections, this section will only describe a handful of relevant

physiological models. A physiological model as described in section 2.3.1 is one that

takes into account a number of different parameters, equations and the structure of

the human body. The first model that will be considered was proposed in the mid-

70s but Tiran et al. [42, 73]. Dubbed as the circulation model, it is often accredited

as the first physiological model to accurately depict insulin-glucose kinetics in the

human body. It consisted of a number of different compartments that represented

major organs and tissues in the human body; with each compartment divided into

two sub-compartments: one representing the capillaries and the other representing

the interstitial space. Additionally, the model also took into account the non-linearity

of glucose metabolism in the human body. This model in particular performed quite

well when tested in response to glucose ingested in small boluses. However, any

glucose intake that is greater than 30 grams was over-predicted. This preliminary

model also did not take into account any metabolic behaviour near the thresholds.

Cobelli et al. in [44] also proposed a semi-physiological non-linear model that depicted

insulin-glucose dynamics. The model consisted of functions that captured insulin

degradation; insulin secretion; glucose absorption as a result of a meal intake; glucose

consumption by peripheral organs and tissues; hepatic glucose production and utilisa-

tion; and, renal glucose excretion. The incorporation of delay with respect to glucose

regulation and the effect of insulin on glucose also contributed to successful depiction

of a normal human body after a meal was ingested. The model however lacked taking

into account the distribution of glucose in many major glucose-consuming organs.

Based on a model by Guyton et al. [74], a physiologically-based metabolic model was

developed by Sorensen [45]. The model described the insulin-glucose dynamics by

utilising 19 differential equations: eleven of which were used to describe the glucose
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system, seven described the insulin system and one described the glucagon system.

The glucose sub-model consisted of various compartments that represented various

parts of the body’s organs and tissues. Some of these compartments were further

divided to account for capillary and interstitial spaces which accounted for the re-

sistance of the human body with respect to the glucose transport mechanism. In

addition, metabolic sinks were represented throughout the model to account for the

glucose uptake of various tissues and organs. The insulin sub-system was modelled

in a similar fashion with one key difference - insulin had only one sub-compartment

in the brain and this was to account for the physiological phenomena of insulin not

entering the brain capillaries [33]. Various studies have been conducted to validate

the model. All these studies have concluded that this model accurately predicts the

concentrations of plasma glucose level in the human body after IVGTT.

Another physiologically based model was developed by Kim et al. [75]. This metabolic

model also captured the whole body homeostasis during exercise. The model is also

a compartmentalized model that divided the body into adipose tissue (AT); gastroin-

testinal tract; heart; liver; muscle; and, other tissue. This was achieved by using

two aspects which were modelled for each compartment: dynamic mass balance and

cellular metabolic processes. The model was then validated with experimental data

in which normal healthy individuals were asked to perform moderate intensity exer-

cises for an hour. This physiological model accurately captured the insulin-glucose

dynamics. This novel approach can now be used to model and study the effects of

hormone control and metabolic concentrations in various tissues of the human body.

However, the model lacked in validating the same effects on patients afflicted with

DM.

All the models discussed so far span approximately five decades and only take into

account the dynamics between insulin and glucose on the human body. However the
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effect of free fatty acid (FFA) and exercise on this system have been for the most

part disregarded. In order to combine both high quality and robustness of a biologi-

cal model based on a human body, it is essential that the models takes into account

disturbances such as a mixed meal ingestion and various levels of exercise. However,

to this day there are but a few models that accurately describe this behaviour in a

physiologically accurate method. Considering all this, the best known model that is

used widely to validate many CAD is known as the Dalla Man model. As its name

suggests, the model was proposed by Dalla Man et al. in a paper titled “Meal sim-

ulation model of the glucose-insulin system” [76]. It is currently the gold standard

for validating CDA without conducting pre-clinical animal trials that is accepted by

the FDA [77]. This model not only presented information such as the concentrations

of insulin and glucose in the plasma; but also; endogenous glucose production; glu-

cose utilisation; glucose rate of appearance and, insulin secretion. The model was

validated by monitoring a large population (204 healthy individuals and 14 individ-

uals afflicted with DM). The model parameters included were in two sets: the first

included parameters for healthy individuals and the second included parameters for

patients with DM. During validation of the model the meal ingested was labelled with

radioactive materials such that the flow of glucose through the gastrointestinal tract

could be accurately measured. Additionally, upon ingestion, two other tracers were

injected intravenously, the data then used to estimate model parameters as explained

in [78]. Using this triple tracer meal protocol, the following four fluid flows were

estimated: rate of appearance (Ra); endogenous glucose production (EGP); glucose

utilisation; and, insulin secretion.

2.3.2 Control Algorithm Devices (CAD)

As discussed in section 2.2, an artificial pancreas would ideally be the ‘cure’ for

diabetes mellitus. Klonoff in [79] defined the artificial pancreas as one that consisted
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of three components: a CGM; an insulin pump; and, a CAD. This methodology of

monitoring glucose; accurate determination of insulin dose by the CAD and delivery

of insulin dosage by the insulin pump could result in a patient with DM always having

normal physiological glycemic levels.

In 1964, Kadish was accredited with the first closed loop insulin delivery system - a

simple on-off system [80]. This system was designed to measure blood glucose levels

every 15 seconds and based on its results would deliver glucagon (blood glucose levels

are too low - i.e. ≤ 50 mg

dL
) or, insulin (blood glucose levels are too high - i.e. ≥ 150

mg

dL
). As a result the blood glucose of the individual always remained in the range

of 50-150 mg

dL
. Due to the lack of technological advances, this device was as big as a

backpack and the lack of computational power severely limited the performance of

this device.

Another likely candidate for the AP was developed by Albisser et al. and documented

in [81, 82]. This two channel device (one containing dextrose insulin and the other

used for the infusion of insulin into the human body) included a CGM and control

algorithm which were both deployed on a microcomputer. This device posed two

major problems: the control algorithm required several specific highly dependent

patient parameters and the response to a glucose spike (i.e. meal ingestion) was

gradual.

The development of the AP known as the Biostator was developed by Miles Labo-

ratory and was commercially available in 1977 for a period of time [83]. The CAD

included in this device employed a non-linear proportional derivative (PD) control

algorithm that regulated both dextrose and insulin infusions in order to maintain

homeostasis. The controller injected insulin based on the regular measurement of

plasma glucose concentrations. Noise of this measurement was filtered using a five
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point moving average. However, this device was soon pulled out from the commer-

cial market because it required the individual to constantly monitor it. Additionally,

other disadvantages included but are not limited to it’s size; and, parameter individ-

ualization.

Based on the work of Albisser et al.[42] several other control algorithms were proposed.

These included, but are not limited to: Botz [84]; Kragen et al. [85]; and, Marliss [86].

All these models attempted to reduce the hyperglycemic event caused by the initial

model after ingestion of a meal; or, the hypoglycemic event caused after exercise.

However, Broekhuyse in [87] reviewed all these models and concluded that neither

were even close in accuracy nor should not be implemented in a commercially available

AP.

The extensive studies carried out over a number of year by Fischer et al. [60] led to

the development of three different control strategies to control blood glucose levels in

patients afflicted with T1DM. This was the direct result of initially concluding that an

adaptive algorithm would guarantee an optimal feedback methodology for controlling

blood glucose levels. Their models were tested on diabetic dogs who were maintained

at rest (i.e. no exercise to reduce blood glucose levels). The first control algorithm

was implemented by an adaptive control algorithm that was sampled at 1 minute

intervals. The effects were observed on an insulin-glucose system for four hours. The

second control algorithm employed a fixed command control that was initialized by

estimates. Lastly, the third control algorithm, a modification to the second, was also a

fixed command control algorithm that was individualized. The estimates and control

constants that this algorithm used as modified based on prior knowledge and tests

conducted on the patient. When the three models were evaluated, it was proven that

only the first and second achieved glycemic levels that were in the normal range.

An external physiological insulin delivery system (ePID) was developed by Medtronic



41

Minimed [88]. The design intent was to emulate the β-cells of a normal pancreas such

that the control algorithm would distinguish and control the first and second phase

insulin secretion [89, 90]. The problem was tackled by using a proportional integral

derivative (PID) controller [91]. The first phase of insulin secretion was linked to

the derivative aspect of the controller and is directly tied in with the rate of change

in blood glucose levels as read by the CGM. The second phase is controlled by the

proportional and integral aspect of the controller by establishing a direct link between

the target and the actual blood glucose concentrations. Although an evaluation of

this CAD resulted in satisfactory results it cannot prevent hyperglycemic events that

occur as a direct result of meal intake [88].

Another promising methodology was the optimal controller3 that was developed by

Swan [92] who estimated the insulin infusion rate by solving a non-linear algebraic

Riccati equation. The model cannot be confirmed due to the fact that its performance

after meal ingestion was not evaluated. An extension to Bergman’s minimal model

was implemented by Ollerton in [93]. Based on a deviation from the target glucose

value, Ollerton developed an integral squared error objection function. The CGM

however was sampled at a rate of ten minutes so that the algorithm calculation time

was minimized. However this CAD was criticized when it was discovered that the

algorithm would not converge at the basal state, instead, it would oscillate signifi-

cantly. In another study conducted by Fisher and Teo [94] various insulin infusion

protocols were tested in the quest to find an objective function that would be mini-

mized. The study concluded by applauding the sum-squared error set-point tracking

methodology as the most accurate model for maintaining blood glucose levels during

meal intake and fasting. However, this model seemed to only thrive provided a good

3The methodology is known as the optimal controller because uses optimal control theory and
solution of a nonlinear algebraic Riccati equation to solve the glucose control problem for the optimal
insulin infusion rate.



42

meal estimation was available.

Since 2009, there have been a number of CADs developed using model predictive con-

trollers (MPC). The approach used is true to its name, using a model based control

approach to control the blood glucose levels in a patient. In general it consists of the

model; the cost function; and, the constraints. The model itself is used to predict the

future of the system (states and/or outputs) based on its current state, estimation

of future values that are attained from manipulating variables; and predictions of

future values of any measurable or predictable disturbances. It’s flexible in the sense

that the model can be of any kind - based on continuous time or discrete time; linear

or nonlinear; input-output or state-space; black box, grey box or white box models.

The cost function aspect is a closed loop aspect, and is usually based on a differential

equation of degree two. Lastly, the constraints are based on the controlled and ma-

nipulated variables [95]. It has been proven that using an MPC to define the CAD has

many advantages in terms of regulating blood glucose levels in patients afflicted with

T1DM. The biggest advantage can be seen in the model prediction characteristic of

the MPC which can foresee a patient going into either hyperglycemic or hypoglycemic

state and within reason can adjust itself to compensate for it. Additionally it also

compensates quite well for the dynamics associated with the equipment used - i.e.

the insulin infusion pump and the CGM [65]. Lastly, the MPC can be constricted

which permits the insulin infusion rate to be bound which accounts for the safety

aspect that is lacking in many other CAD [96].

A MPC was developed by Trajonski et al. [47], in an attempt to regulate blood

glucose in individuals afflicted with DM. This system used subcutaneous glucose

measurement and insulin infusion. The control algorithmic part that predicted glucose

concentrations was defined by a radial basis function (RBF) neural network model.

This was done by using past subcutaneous glucose measurements and insulin infusion
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rates. Even in the presence of noise, a simulation of this model indicated that the

blood glucose levels of a patient could be controlled and stabilized.

The next MPC that will be considered was proposed by Parker et al. in [29]. It is

a linearized adaptation of Sorensen’s physiologically-based model with and without

state estimation. The constraints aspect of MPC was applied on the rate of change of

insulin infusion and rate of input delivery. A simulation modelling both a nonlinear

Sorensen physiological model and the MPC in question was performed in order to

validate the results. It concluded that normal glycemic levels were maintained after

a 50 gram OGTT. Another physiologically based MPC can be seen in the works of

Lynch and Bequette [97] who developed the MPC on the basis of the extension of the

minimal model by Fisher [98]. The model used state estimation of subcutaneous blood

glucose measurements. The validation of this model was performed when simulating

a high order Sorensen model. It was concluded that with proper tuning, the MPC

would return blood glucose levels of a patient to levels within normal glycemic range

even after a meal consumption.

To model and examine the effects of fasting in T1DM patients, a MPC was developed

by Hovorka et al. [99]. It included a compartmentalized model that was documented

in [40]. This model contained time varying parameters which were quantized by

the use of Bayesian parameter estimation. In order to normalize blood glucose levels,

the CAD also added the gradual decreasing set-point trajectory aspect to the existing

model. The system was designed to sample the blood glucose levels and infuse insulin

at a rate of 15 minutes. Clinical evaluations were conducted for this controller which

validates the effects of insulin infusion on ten patients over a period of 8-10 hours.

The study concluded that the adaptive nonlinear MPC proved to be promising and

must be further developed to take into account sudden spikes in blood glucose levels

due to meal ingestion.
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2.4 Problem Statement

In order to understand and design something that acts just like any organ such as

the pancreas, a number of research groups must be involved. The complex behaviour

is broken down into various smaller sub-components and studied. The knowledge

of these partial sub-systems are then combined together to form an artificial organ.

The amalgamation of sub-components mimics a hierarchical model structure with

multiple levels. The top level represents the whole body, thus representing blood

flow between the organs (which includes the flow of glucose and insulin). What is

more important is the fact that this hierarchical model allows for model re-use and

ease of interchangeability. That is to change the sub-component of the model (if

more information of the sub-component becomes available) without actual editing

the entire model itself.

This thesis will focus on implementing two different models. The first is the Dalla

Man model which is currently the gold standard for mixed meal simulations. This

model will act as a ‘patient’s body’ and depict the interactions of glucose and insulin

in various parts of the human body. The Dalla Man model will be validated against

literature. The second is an adaptation of the Hovorka model. This model will be

implemented in DEVS as the and will act as the CAD. The Hovorka model will be

validated by using the outputs of the Dalla Man model.



Chapter 3

Model Design

The creation of an artificial system requires a designer to have two major components:

knowledge of the system itself and experimental data in order to verify the artificial

system [100]. Furthermore, in order to accurately model any dynamic system, the

use of time dependent ordinary differential equations is almost compulsory [101]. The

following two models are derived from experimental systems and knowledge. They

use a number of ordinary differential equations to simulate the details of a human

body’s glucose regulatory system.

This thesis develops two models (as seen in Figure 6): the physiological system (also

referred to as the meal model simulation) and the artificial pancreas [102]. As men-

tioned in Chapter 1 and Chapter 2, the CGM and the insulin infusion pump have

already been developed and are readily available on the market. Thus the only com-

ponent that needs to be developed is the CAD. This is done via a MPC. The block

diagram for this second model is depicted in Figure 7.

3.1 Meal Model Simulation

Due to the reasons stated in section 2.3.1.3 of this document, the Dalla Man model

was chosen as the meal model simulation that would in turn validate the CAD. The

45
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Figure 7: Block Diagram showing the details of MPC (adapted from [102]). For
more details refer to related image depicted in Figure 6.

to this coupled model is the meal (amount of carbohydrate intake in grams) itself;

similarly, the outputs include: glucose utilisation; and, insulin secretion. Within this

coupled model exists two atomic models (depicted on the right in Figure 2) and three

coupled models. The atomic models include he gastrointestinal tract and the beta

cell. The three coupled models (depicted on the left in Figure 2): the plasma; the

liver; and, the muscle and adipose tissue.

3.1.1 Plasma

The plasma model can be considered to be the heart of the entire Dalla Man model

and is the most integral part with respect to diabetes. It is this coupled model

that is responsible for dictating; and, estimating the blood glucose level of the body.

This coupled model consists of one atomic model - glucose renal excretion defined

by the variable E(t); and, two integral internal calculations: glucose kinetics; and,

insulin kinetics. The glucose renal excretion is the excretion of glucose by the kidneys.

This occurs only when the plasma glucose exceeds a certain threshold; and, thus is
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modelled by a linear piecewise relationship with respect to the plasma glucose:

E(t) =















ke1 · [Gp(t)− ke2] ifGp(t) > ke2

0 ifGp(t) ≤ ke2

(3)

Where:

E(t) refers to the glucose renal excretion (defined in mg/(kg ·min));

Gp(t) refers to the glucose concentration in the plasma at time t (defined in mg/kg);

ke1 refers to the glomerular filtration rate (defined in min−1); and,

ke2 refers to the renal threshold for glucose (defined in mg/kg).

The glucose kinetic calculation is comprised of one overall function that is dependent

on two sub-functions that are defined in the internal transition of the plasma coupled

model: glucose masses in the plasma; and, glucose in rapidly-equilibrating tissues.

The overall function (one of the output functions) is defined as:

G(t) =
Gp(t)

VG

G(0) = Gb

(4)

Where:

G(t) refers to the plasma glucose concentration at time t (defined in mg/kg);

Gp(t) refers to the glucose mass in the plasma at time t (defined in mg/dl);

VG refers to the distribution of glucose (defined in dl/kg); and,

Gb refers to the basal steady-state of the glucose mass in the plasma.
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The glucose masses in the plasma is governed by the equation:

Ġp(t) = EGP (t) +Ra(t)− Uii(t)− E(t)− k1 ·Gp(t) + k2 ·Gt(t)

Gp(0) = Gpb

(5)

Where:

Gp(t) refers to the glucose mass in the plasma at time t (defined in mg/kg);

EGP (t) refers to the endogenous concentration at time t(defined in mg/kg/min);

Rat refers to the glucose rate of appearance in the plasma at time t (defined in

mg/kg/min);

Uii(t) refers to the insulin independent glucose utilisation at time t (defined in

mg/kg/min);

Uid(t) refers to the insulin dependent glucose utilisation at time t (defined in

mg/kg/min);

Gt(t) refers to the glucose mass in rapidly-equilibrating tissues (defined in mg/kg);

k1 refers to the rate of glucose mass in the plasma (defined in min−1);

k2 refers to the rate of the rapidly-equilibrating tissues (defined in min−1); and,

Gpb refers to the basal steady-state of the glucose mass in the plasma (defined in

mg/kg).

The glucose masses in the plasma is governed by the equation:

Ġt(t) = −Uid(t)− k1 ·Gp(t) + k2 ·Gt(t)

Gt(0) = Gtb

(6)

Where:

Gt(t) refers to the glucose mass in rapidly-equilibrating tissues (defined in mg/kg);

Gp(t) refers to the glucose mass in the plasma at time t (defined in mg/kg);
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Uid(t) refers to the insulin dependent glucose utilisation at time t (defined in

mg/kg/min);

k1 refers to the rate of glucose mass in the plasma (defined in min−1);

k2 refers to the rate of the rapidly-equilibrating tissues (defined in min−1); and,

Gpb refers to the basal steady-state of the glucose mass in the rapidly-equilibrating

tissues(defined in mg/kg).

The second major calculation that is performed is the insulin kinetics. Like the

glucose kinetic calculation, the insulin kinetics is comprised of one overall function

that is dependent on two sub-functions that are defined in the internal transition of

the plasma coupled model: insulin masses in the plasma; and, insulin mass in liver.

The overall function (one of the output functions) is defined as:

I(t) =
Ip(t)

VI

I(0) = Ib

(7)

Where:

I(t) refers to the plasma glucose concentration at time t (defined in mg/kg);

Ip(t) refers to the glucose mass in the plasma at time t (defined in mg/dl);

VI refers to the distribution of glucose (defined in dl/kg); and,

Ib refers to the basal steady-state of the glucose mass in the plasma.

The insulin masses in the plasma is governed by the equation:

İp(t) = −(m2 +m4) · Ip(t) +m1 · Il(t)

Ip(0) = Ipb

(8)
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The insulin masses in the liver is governed by the equation:

İl(t) = −(m1 +m3(t)) · Il(t) +m2 · Ip(t) + S(t)

Il(0) = Ilb

(9)

3.1.2 Liver

Figure 8: Coupled model representing the Liver.

The liver coupled model defined by the Endogenous Glucose Production (EGP) reac-

tions (see Figure 8) contains three atomic models - insulin in the portal vein; insulin

in the liver; and, four inputs:

• Ipo, the amount of insulin in the portal veins of the patient

• Id, the delayed insulin signal

• I, concentration of insulin in the plasma

• Gp, mass of glucose in plasma and in tissues
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The first atomic EGP model is the ’brains’ of the EGP coupled model which is mainly

governed by a functional description:

EGP (t) = kp1 − kp2 ·Gp(t)− kp3 · Id(t)− kp4 · Ipo(t)

EGP (0) = EGPb

(10)

The second and third EGP atomic models act as slaves to the first. The second atomic

model defines the delayed insulin signal that is defined by the ordinary differential

equation:

İ1(t) = −ki · (I1(t)− I(t))

I1(0) = Ib

(11)

Lastly, the third atomic model defines the insulin in the portal veins and is driven by

the differential equation:

İd(t) = −ki · (I1(t)− I(t))

Id(0) = Ib

(12)

3.1.3 Muscle and Adipose tissue

The muscle and adipose tissue compartment is responsible for describing the glucose

utilisation during a meal in a human body. This is done via two atomic models:

insulin-independent and insulin-dependent. The output of the coupled model is sim-

ply defined as the summation of the results from the two atomic models:

U(t) = Uii(t) + Uid(t) (13)
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The insulin-independent utilisation models the glucose uptake by the brain and ery-

throcytes (Fcns). It is modelled by the equation:

Iii(t) = Fcns(t) (14)

The insulin dependent utilisation however, is non-linear and is based on the Michaelis-

Menten reaction. It is the most complicated atomic model in the Dalla Man model.

The equation that governs this atomic model:

Uid(t) =
Vm(X(t)) ·Gt(t)

Km(X(t)) +Gt(t)
(15)

Where,

Vm(X(t)) = Vm + Vmx ·X(t) (16)

Km(X(t)) = Km +Kmx ·X(t) (17)

Vm us a function of insulin that describes the maximal uptake present near any given

cell (represented as X). The more insulin present in the blood stream, the more glucose

any given cell is able to intake through it’s membrane. Km is the Michaelis-Menten

constant; and, Gt is the saturation of glucose in the plasma.

3.1.4 Gastrointestinal Tract

The gastrointestinal tract coupled model is used to describe the glucose that transits

through the stomach and the intestines of the person. This coupled model is divided
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into three atomic models. Similar to the liver coupled model, an atomic model is used

as master of the gastrointestinal tract component, and the other atomic models.

The main atomic model is governed by the functional description:

Ra(t) =
f · kabs ·Qgut(t)

BW

Ra(0) = 0

(18)

The second atomic model, describes the intestines/gut of the human body. It is driven

by the following equation:

Q̇gut(t) = −kabs ·Qgut(t) + kempt(Qsto) ·Qsto2(t)

Qgut(0) = 0

(19)

The last atomic model describes the stomach of the human body. It is driven by two

differential equations and one output equation. The two differential equations are

described and calculated as internal transitions.

Qsto(t) = Qsto1(t) +Qsto2(t)

Qsto(0) = 0

(20)

The first differential equation describes how the stomach process its contents in the

solid phase:

Q̇sto1(t) = −kgri ·Qsto1(t) +D · δ(t)

Q̇sto1(0) = 0

(21)
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The second differential equation describes how the stomach processes its contents

that are triturated phase:

Q̇sto2(t) = −kempt(Qsto) ·Qsto2(t) + kgri ·Qsto1(t)

Q̇sto2(0) = 0

(22)

Note that the rate constant of gastric emptying that is part of the titurated phase of

the stomach and the intestinal atomic model is defined as:

kempt(Qsto) = kmin +
kmax − kmin

2
· {tanh[Qsto − b ·D]− tanh[c · (Qsto − d ·D] + 2}

(23)

3.1.5 Beta Cells

The beta cells in the model are responsible for modelling pancreatic insulin secretion.

The atomic model is governed by the overall equation:

S(t) = γ · Ipo(t) (24)

There are three functions defined in the internal transition function of the beta cell

atomic model: insulin in the portal (Ipo(t)); insulin secretion to the portal vein

(Spo(t)); and, the insulin response to cells (Y (t)). These three internal functions

are described by the following three sets of equations respectively:

˙Ipo(t) = −γ · Ipo(t) + Spo(t)

Ipo(0) = Ipob

(25)
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S(t) =















Y (t) +K · ˙G(t) + Sb ifĠ > 0

Y (t) + Sb ifĠ ≤ 0

(26)

Y (t) =















−α[Y (t)− β · (G(t)− h)] ifβ · (G(t)− h) ≥ −Sb

−α · Y (t)− α · Sb ifβ · (G(t)− h) < −Sb

Y (0) = 0

(27)

The parameter values used for the Dalla Man meal model is given below.

Table 1: Parameters used for the mixed meal model

Symbol Description Value for

Normal

Patient

Value for

Patient

inflicted

with

T2DM

Units

VG Distribution volume of

glucose

1.88 1.49 dl/kg

k1 0.065 0.042 min−1

k2 Rate constant 0.079 0.071 min−1

VI Distribution volume of

insulin

0.05 0.04 l/kg
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Symbol Description Value for

Normal

Patient

Value for

Patient

inflicted

with

T2DM

Units

m1 Rate of hepatic clear-

ance

0.190 0.379 min−1

m2 Rate constant 0.484 0.673 min−1

m4 Rate of peripheral

degradation

0.194 0.269 min−1

m5 Rate constant 0.0304 0.0526 min · kg/pmol

m6 Rate constant 0.6471 0.8118

HEb Hepatic Extraction of in-

sulin at basal state

0.6 0.6

kmax 0.0558 0.0465 min−1

kmin 0.0080 0.0076 min−1

kabs Intestinal absorption

rate

0.0057 0.023 min−1

kgri Grinding rate 0.0558 0.0465 min−1

f Fraction of intestinal ab-

sorption that actually

appears in plasma

0.90 0.90
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Symbol Description Value for

Normal

Patient

Value for

Patient

inflicted

with

T2DM

Units

a Rate constant 0.00013 0.00006 mg−1

b Rate constant 0.82 0.68

c Rate constant 0.00236 0.00023 mg−1

d Rate constant 0.010 0.09

kp1 Extrapolated EGP at

zero glucose and insulin

2.7 3.09 mg/kg/min

kp2 Liver glucose effective-

ness

0.0021 0.0007 min−1

kp3 Amplitude of insulin ac-

tion on the liver

0.009 0.005 mg/kg/min

per pmol/l

kp4 Amplitude of portal in-

sulin action on the liver

0.0618 0.0786 mg/kg/min

per pmol/kg

ki Delay between insulin

signal and insulin action

0.0079 0.0066 min−1

Fcns Glucose uptake by the

brain and erythrocytes

1.0 1.0 mg/kg/min

Vm0 2.5 4.65 mg/kg/min
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Symbol Description Value for

Normal

Patient

Value for

Patient

inflicted

with

T2DM

Units

Vmx 0.047 0.034 mg/kg/min

per pmol/l

Km0 225.59 466.21 mg/kg

p2U Insulin action on the pe-

ripheral glucose utiliza-

tion

0.0331 0.0840 min−1

K 2.30 0.99 pmol/kg per

mg/dl

α Delay between glucose

signal and insulin secre-

tion

0.050 0.0.13 min−1

β Pancreatic responsivity

to glucose

0.11 0.05 pmol/kg/min

per mg/dl

γ 0.5 0.5 min−1

ke1 Glomerular filtration

rate

0.0.0005 0.0007 min−1

ke2 Renal threshold of glu-

cose

339 269 mg/kg
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3.2 Control Algorithm

This section introduces the idea behind Model Predictive Control (MPC). MPC has

been used widely in literature for many years. In principle, the past data is used to

estimate the parameters that are part of the model. The objective of the controller

is then to try and predict the behaviour of the system based on the given parameters

and/or equations that are part of the model. In addition, it should be noted that

most MPC are designed such that the output, x(t), is as close to a set point as

possible. For example, with respect to the glucose levels in a given persons blood

stream, the ideal case is to keep the glucose concentration as close to 5 mmol/L as

possible. For the purposes of simplicity, the feedback controller was replaced with a

feed-forward controller. A feed-forward controller can assess disturbances (i.e. meals

being processed by the human body) but does not have any feedback on the output

(i.e. the glucose concentration of the human body). The model chosen for the MPC

is a Hovorka model which is described in [103]. This section will be broken down into

two sections: the first will describe the model in detail; and, the second will describe

the linear application of the MPC around the steady state.

3.2.1 MPC Model Simulation

The Hovorka model can be broken down into three components: The glucose ab-

sorption; the insulin absorption; and, the glucose regulatory system. It consists of

two inputs and two outputs. The inputs are meal disturbances and insulin infusions,

whereas the outputs are glucose and insulin concentrations in the blood stream. For

ease of understanding, a similar approach to the meal model simulation description

will be applied to this section.
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3.2.1.1 The glucose absorption

As its name suggests, this particular component is responsible for processing the

effects of meals on the glucose rate. It is described by three linear equations as

follows:

dD1

dt
(t) = AGd(t)−

D1(t)

τD

dD2

dt
(t) =

D1(t)

τD
−

D2(t)

τD

UG(t) =
D2(t)

τD

(28)

Where:

AG refers to the carbohydrate bio-availability parameter (this is a constant value of

0.8, the rest, 0.2 of the carbohydrates are lost in processing);

d(t) refers to amount of carbohydrates in the meal (in CHO/min);

τD refers to the time constant for glucose absorption (this is constant value of 40

minutes); and,

UG refers to the glucose absorption rate (in mmol/min)

3.2.1.2 The insulin absorption

Very similar to the glucose absorption, the insulin absorption component is responsible

for processing the effects of insulin in the body. It is also described by three linear
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equations as follows:

dS1

dt
(t) = u(t)−

S1(t)

τI

dS2

dt
(t) =

S1(t)

τI
−

S2(t)

τI

UI =
S2(t)

τI

(29)

Where:

u(t) refers to the insulin injected (in mU/min);

τI refers to the time constant for insulin absorption (this is constant value of 55

minutes); and,

UI refers to the insulin rate which enters the blood stream (in mU/min).

3.2.1.3 The glucose regulatory system

The glucose regulatory system is the most complicated subsystem in the MPC model.

There are two inputs the glucose and the insulin appearance rate in the blood stream.

There are two main processes that are interconnected in this compartment: glucose

processing and insulin processing. The first, glucose processing starts once the glucose

has been absorbed from the meal by the body. It then moves to one of two sub-

compartments: Q1(t) or Q2(t). The first sub-compartment, Q1(t) represents the

amount of glucose within the bloodstream; whereas, the second, Q2(t) represents the

amount of glucose in the muscles and tissues. The system is described by the following
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set of linear equations:

dQ1

dt
(t) = UG(t)− F01,c(t)− FR(t)− x1Q1(t) + k12Q2(t) + EGP0(1− x3(t))

dQ2

dt
(t) = x1(t)Q1(t)− k12Q2(t)− x2(t)Q2(t)

G(t) =
Q− 1(t)

VG

(30)

Where:

F01,c(t) refers to the glucose utilisation by the central nervous system (in mmol/min);

FR(t) refers to the glucose excreted by the body, namely the kidneys (in mmol/min);

EGP0 refers to the amount of glucose produced by the liver when the insulin level is

zero (mmol/min);

k12 refers to the transfer rate of glucose from the bloodstream to the muscles and

tissues;

x1(t) refers to the state in which the insulin interaction influences the glucose trans-

port and distribution;

x3 refers to the in which the insulin interaction influences the endogenous production

of glucose in the liver; and,

VG refers to the glucose distribution volume and is dependent on the body weight;

G(t) refers to the glucose concentration in the blood (mmol/L).

The glucose utilisation by the central nervous system is highly dependent on the

glucose consumption that is independent of insulin. This is described by the following

equation:
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F01,c =















F01 ifG(t) ≤ 4.5

F01G(t)
4.5

ifG(t) < 4.5

(31)

The glucose excreted by the kidneys is defined by the following equation:

FR =















0.003(G(t)− 9)VG ifG(t) ≥ 9

0 ifG(t) < 9

(32)

There are three main states that are involved with the insulin interaction in the

glucose regulatory system: x1(t), x2(t); and, x3(t). These states are dependent only

on the plasma insulin concentration and are influenced by the glucose transport and

distribution, glucose disposal, and endogenous production of glucose in the liver. The

equations that describe the insulin interactions in the glucose regulatory component

are as follows:

dx1

dt
(t) = −ka1x1(t) + kb1I(t)

dx2

dt
(t) = −ka2x1(t) + kb2I(t)

dx3

dt
(t) = −ka3x1(t) + kb3I(t)

dI

dt
(t) =

UI(t)

VI

− keI(t)

(33)

Where:

F01,c(t) refers to the glucose utilisation by the central nervous system (in mmol/min);
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FR(t) refers to the glucose excreted by the body, namely the kidneys (in mmol/min);

EGP0 refers to the amount of glucose produced by the liver when the insulin level is

zero (mmol/min);

x12 refers to the transfer rate of glucose from the bloodstream to the muscles and

tissues;

ka1; ka2; and, ka3 refers to the deactivation rates which were experimentally estimated;

kb1; kb2; and, kb3 refers to the activation rates which are calculated from the corre-

sponding insulin sensitivities (see equations 34-36); and,

VI refers to the insulin distribution volume.

The activation rates are calculated based on their corresponding insulin sensitives:

• Insulin transportation and distribution sensitivity (SI,1)

• Insulin disposal sensitivity (SI,2)

• Insulin endogenous production sensitivity (SI,3)

It should be noted that these sensitivities will vary from patient to patient and will

be dependent on what activity or stress level the patient is enduring. Thus, these

sensitivities may need to reanalysed and computed from time to time during a routine

doctor’s visit.

kb1 = SIT · ka1

= 3.07× 10−5L/min/mU

(34)

kb2 = SID · ka2

= 4.92× 10−5L/min/mU

(35)
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kb2 = SIE · ka3

= 1.6× 10−3L/min/mU

(36)

Lastly, like the meal model simulation, the following table is a summary of all the

constants used in the MPC.

Table 2: Parameters used for MPC model

Symbol Description Value Units

k12 Transfer rate of glucose from the blood-

stream to the muscles and tissues

0.066 min−1

ka1 Deactivation rate of glucose distribu-

tion and transportation

0.006 min−1

ka2 Deactivation rate of glucose disposal 0.06 min−1

ka3 Deactivation rate of endogenous pro-

duction of glucose

0.03 min−1

kb1 Activation rate of glucose transporta-

tion and distribution

3.07× 10−5 L/min/mU

kb2 Activation rate of glucose disposal 4.92× 10−5 L/min/mU

kb3 Activation rate of endogenous produc-

tion of glucose

1.6× 10−3 L/min/mU

ke Insulin elimination rate 0.138 min−1
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Symbol Description Value Units

τD Carbohydrate absorption rate 40 min

τI Insulin absorption 55 min

AG Carbohydrate utilisation 0.8 -

SI,1 Insulin transportation and distribution

sensitivity

51.2× 10−2 L/mU

SI,2 Insulin disposal sensitivity 8.2× 10−4 L/mU

SI,3 Insulin endogenous production sensi-

tivity

8.2× 10−4 L/mU

VI

BW
Insulin distribution volume 0.12 L/kg

VG

BW
Glucose distribution volume 0.16 L/kg

EGP0

Bw
Liver glucose production 0.0161 mmol/min/kg

F01

BW
Glucose utilisation by the central ner-

vous system

0.0097 mmol/min/kg

For the purposes of this document, the Hovorka model was used only as a basis for

the MPC because the model described above is a non-linear approximation. However,

the MPC that this document would like to explore is that of a linear model. The

linear approximation in MPC is used when calculating predictions because it is faster

and much more simpler in comparison to the non-linear model. The timing of the

predictions is time sensitive due to the short time intervals. Lastly, a linearised

adaptation of the model also aids in robust optimisation problems in comparison to
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a non-liner model which exponentially increases its chance of diverging.

In a normal individual, the blood glucose levels are between 4-6 mmol/L while fasting;

or 4-8 mmol/L after consumption of a meal [3]. Due to these values, the set point

for blood glucose concentration would ideally be 5 mmol/L. This in turn would be

in the mid range of both fasting and non-fasting blood glucose levels. A linearized

version of the Hovorka was developed by [104]. The steady states for all variables were

computed when the glucose concentrations were equal to 5 mmol/L. This resulted in

a basal insulin injection of 6.677 mU/min if the meal was ingested at steady state.



Chapter 4

Simulation Results and Discussion

As its name suggests, this section of the thesis presents the simulation results obtained

from the models described in Chapter 3 and then discusses them based on results

from literature. There are two models that are under consideration here: first the

meal model simulation; and, the MPC. The meal model was created from existing

equations derived from the Dalla Man model. As expected, the simulation resulted

in results that were quite comparable to that obtained from the Dalla Man model

itself (see Figure 9 - 14). It displays one of the advantage of hierarchical modelling -

examination of dynamic interactions between a single level and between its sub-levels.

However, there are major drawbacks in the Dalla Man model. This includes but is not

limited to: replacement of models with more up-to-date mechanistic models; including

a liver glucose utilisation and other hormones. First, the replacement of more up-to-

date models. Although the Dalla Man model is considered the gold standard, there

are many sub-models today that are presented in literature. These models act in

isolation to capture the interaction of one key component in the complex glucose and

insulin subsystem. A prime example of this would be the β-cells model. The current

representation of the β-cells in the pancreas in the Dalla Man model appears to be

in its infancy with respect to the details present. Yes, it represents the whole body
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model. However, it does not define the behaviour of the system down to the cell level1.

Considering that the model presented above was modelled in hierarchical structure,

replacing certain sub-components as newer research has been conducted will not pose

a problem. Secondly, the liver’s glucose uptake is not considered in the development

of the model. This leads to believe that the other components are compensating for

this (i.e. muscle and adipose tissue). Another drawback is the misrepresentation of

feedback signals from the muscle and adipose tissue model to the rest of the body.

Lastly the model only includes meal digestion and two key hormones - glucose and

insulin. However, in reality, the muscle and adipose tissue send out signals for the

uptake of various hormones that may hinder the uptake of glucose and/or insulin. A

prime example of this is glucagon. The problem with the exclusion of key hormones is

that it would require structural changes to the model itself. Nevertheless, if one would

like to develop a model that simulates both low level and high level interactions.

The MPC model, that was derived from the Hovorka model however did not perform

well in comparison to the Dalla Man model. The bigger the meal the further disparity

in the set-point glucose concentration. But, this is explainable since the bigger the

meal ingested, the further away the glucose level would be from steady state which

would mean that the assumption (meal ingested at steady state) when linearising the

model is incorrect. Thus in turn the results do not quite match up with the body’s

absorption. Another observation is that, there are times that the model looses control

over the glucose concentrations. This indicates that a linearised controller would have

no control if the patient was to go into the hypoglycemic stage (low blood sugar).

Like the Dalla Man model, there are also drawbacks to the MPC model (see Figure

15). One major problem is that the human body does not react in a linear fashion.

1A cell level model would be ideal to test not only algorithms designed for validating DM but
better understanding other disease and finding cures for them. In addition having cell level model
will aid in designing a better CAD as the insulin glucose interactions will be better understood.
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Thus, modelling an artificial device in such a way will not yield desirable results.

Having a non-linear model would better aid in maintaining the blood glucose level

between 4 and 8 mmol/L for meals that contain a high level of glucose and/or car-

bohydrate content. However, like in the linear model, the meals would have to be

ingested at predetermined times in order for the model to work ideally2. The com-

promise to this approach would be the computational time. While the non-linear

model would give results that are more accurate to the Hovorka model, it would need

a higher calculation capacity and thus requiring more time. Which in turn would

mean that one could not have a sampling size that is small enough for the safety

of the patient so that he/she does no go into hypoglycemic and/or hyperglycemic

conditions.

2The model could work just as effectively without predetermined meal times and within the range
of normal human behaviour; but, the results would not be ideal.
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Figure 9: Simulation of plasma glucose level of a non-diabetic patient weighing 78.0 kg graphed in excel
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Figure 10: Simulation of plasma insulin level of a non-diabetic patient weighing 78.0 kg graphed in excel
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Figure 11: Simulation of Endogenous Glucose Production level of a non-diabetic patient weighing 78.0 kg graphed in
excel
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Figure 12: Simulation of Endogenous Glucose Rate Of Appearance of a non-diabetic patient weighing 78.0 kg graphed
in excel
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Figure 13: Simulation of insulin dependent Glucose Utilization of a non-diabetic patient weighing 78.0 kg graphed in
excel



77

Figure 14: Simulation of Insulin secreted by the liver of a non-diabetic patient weighing 78.0 kg graphed in excel





Chapter 5

Conclusion

DM is a disease that involves a complex glucose regulatory system which involves

different levels of the human body system. It involves systems from the cellular level

which govern the absorption, production and intake of substances (for the purposes

of this document - glucose and insulin). But, at the same time it involves the whole

body itself, where substances (i.e. glucose and insulin) are transported between or-

gans in the body. In order to fully understand this complex behaviour, one has to

simulate the system combining all different levels and thus in turn understanding its

full complexity. This has been achieved easily by DEVS in a hierarchical form. The

first model, which is the physiological model examines the glucose insulin interactions

in the human body. The results are comparable to literature and can be easily mod-

ified to include other elements of this complex system such as glucose utilisation of

the liver and other hormones.

The second model, is a linearised version of the Hovorka model. It proves that a linear

version would greatly underestimate the effect insulin has on the body. However,

this was expected because the model was based on linear approximations. Which

indicates that any prediction that are farthest into the future will have the most

error. A non-linear model will be computationally heavy and thus requires more time
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to compute which could potentially compromise the safety of the patient. However,

given the computational power and resources now available, this should not be an

issue. Lastly, an adaptive controller would ensure that the parameters such as insulin

sensitives would adapt as the body changes everyday.

In order to implement this DEVS model into a a real time system on a micro-

controller. Once just has to connect the glucose sensor and insulin infusion pumps

to the micro-controller, download the project and simulate it in DEVSRT; which in

turn would result in a real time simulation of the above model.

5.1 Future Work

In addition to the enhancements stated above, one of the obvious steps to enhance this

thesis would be to write a driver that would particularly read actual data from a FDA

approved continuous glucose monitor and write the data to another FDA approved

device, the insulin pump. The model itself can be used to compute the right amounts

of insulin that the patient needs to be injected given the reading from the glucose

monitor. Furthermore, the system itself could be connected to a secure connection

that would alert authorities if the patient’s life was in danger. While this is a solvable

problem one should note that it could potentially bring up other problems such as

patient confidentiality.

This system could also be enhanced to include some/all of the growing common forms

of diabetes; especially those that have strong links to other disorders and/or diseases.

This includes the newly discovered Type 3 diabetes; which in turn would help find a

cure for Alzheimer’s Disease (AD) [105] which is described in Annex A.1 as Type 3

DM. However at this time, more studies and research need to be conducted in order

to be able to develop a model and thus simulate it.
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Appendix A

Diabetes Mellitus

The chronic metabolic disorder known as Diabetes Mellitus (DM) is one the fastest

growing disorders in the world. Like most diseases, DM has a big impact on the

patient’s economic, health and social aspect of life. The World Health Organization

(WHO) estimated that there are currently 171 million people around the world that

suffer from diabetes in the year 2000. However, this number is expected to increase

to approximately 366 million in the year 2030. In addition to this, WHO suggests

that this chronic metabolic disorder is one of the world’s costly diseases [106].

This section introduces the metabolic disorder and the three most common types of

DM. It then goes on to discuss some of the complications a person with this disorder

might face. Lastly, it investigates various treatment alternatives that are currently

available, and some emerging therapies.

Diabetes Mellitus, commonly known as diabetes, is a disease that is characterized

by the inadequate regulation of glucose concentrations (glycemia) within the human

body. WHO defines diabetes as the absolute or relative deficit of insulin which in

turn increases a person’s blood sugar level (specifically in the venous blood) over 7.0

mmol/L (126 mg/dL) after an fasting overnight (i.e. not consuming anything after

midnight) or over 11.1 mmol/L(200 mg/dL) after two hours of consuming a meal that
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is rich in carbohydrates, or after two hours after an oral tolerance test. Note that

the Oral Glucose Tolerance Test (OGTT) is the measure of the plasma glucose levels

both before and after two hours after glucose is given orally to the patient. [107,108].

A.1 Regulation of blood glucose

In order to regulate the glucose levels in the blood stream, a negative feedback loop

is required. This negative feedback loop acts in conjunction with the hormones that

are present in the body called insulin and glucagon. When the level of glucose in

the blood stream is high, the β-cells of the islet of langerhans in the pancreas secrete

insulin. The secreted insulin then sends a message to the liver, to start converting

all the excess glucose to glycogen and store it. In addition, the presence of insulin in

the blood stream triggers the muscle and adipose tissue to absorb more glucose; and

thus in turn achieving homeostasis [109].

Similarly, when the glucose concentration in the blood is low, the α-cells of the pan-

creas simulates the release of the hormone glucagon. Glucagon sends a message to

the liver to start converting the stored glycogen into glucose, and, release it into the

blood stream. This in turn enables the glucose concentration to return to its normal

level.

Patients who are inflicted with diabetes could have problems with any one of these

processes. This includes, but is not limited to:

• The person’s body has problem with the synthesis or secretion of the hormone,

insulin;

• The person’s body has developed a resistance to the hormone insulin;

• The person’s body has a subnormal production of the hormone insulin [109,110].
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Note that in a recent study conducted by researchers at the Rhode Island Hospital

and the Brown Medical School it was uncovered that insulin and its related proteins

are also produced brain [105]. This thesis does not take into consideration insulin

that is produced by the brain since it is predominantly dealing with Type 3 diabetes

(see section A.2).

A.2 Classification of Diabetes Mellitus

According to WHO, diabetes can be classified by three major types:

1. Type 1;

2. Type 2; or,

3. Gestational diabetes.

In addition to these three types there are also other secondary types of diabetes which

are far less common than the three previously mentioned[110,111]. These include, but

are not limited to: Maturity Onset Diabetes of the Young, steroid induced diabetes,

Brittle diabetes etc. [112].

A.2.1 Type 1 Diabetes Mellitus

Type 1 diabetes mellitus (T1DM), is also known as the insulin depended diabetes

mellitus (IDDM), or juvenile diabetes mellitus as it affects mostly younger people.

This particular type of autoimmune disease occurs when the patient’s β-cells located

in their pancreas stops producing the hormone insulin. This in turn causes the mass

of the β-cells to drastically reduce as the cells die. This entire process takes years

before any clinical symptoms appear [109].
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However, the mechanism and reasoning behind which this appears, is poorly under-

stood by the scientific community. Nevertheless, some genetic studies have claimed

that the HLA (human leukocyte antigen) gene, that is located on chromosome 6 is

closely related to T1DM. In addition to this gene, there also needs to be some en-

vironmental factors that trigger this autoimmune reaction to destroy the pancreatic

β-cells. However, this environmental is not yet thoroughly studied [113].

A.2.2 Type 2 Diabetes Mellitus

Type 2 diabetes mellitus (T2DM), is known as the non-insulin depended diabetes

mellitus (NIDDM). This type of diabetes is inflicted upon a patient whose β-cells in

their pancreas does not produce enough insulin. Or, the cells in the entire body do

not accurately utilize the insulin that is produced. Furthermore, it should be noted

that this particular type of diabetes accounts for approximately 90% of diabetics

worldwide [109,111].

T2DM can be further divided into two subcategories - diabetes with obesity and

diabetes without obesity. Research shows that the patients who are inflicted with

diabetes and obesity have altered their cell receptor due to the increase in abdominal

fat and thus developed a resistance to endogenous insulin. However, patients with

diabetes, who are not obese have only a little resistance at the cell receptor level, but

have a substantial deficiency in the production and release of insulin. Thus, there is a

direct correlation between obesity and diabetes, many patients can be simply ‘cured’

by changing the patient’s diet and lifestyle [109].

A.2.3 Gestational Diabetes Mellitus

As its name suggests, Gestational Diabetes Mellitus (GDM) occurs when a woman

is pregnant. This occurs because the woman’s body cannot handle the effects of
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a growing baby and the resultant hormone changes. Almost all women have some

degree of intolerance to glucose during pregnancy which results in high glucose levels.

However, 96% of women do not have a high enough glucose level to consider it to

be diabetes. The 4% of women who are diagnosed are usually done so during the

third trimester. This is because as the baby gets bigger there is a greater amount

of glucose fluctuation and accelerated starvation that the woman’s body experiences.

In addition, by the end of the first trimester there is an increase in insulin secretion

by the placenta and a decrease in insulin sensitivity. This results in a woman’s body

developing insulin resistance which thus causes diabetes [109].

It should be noted that, unlike other forms of diabetes which are life long, a patient

inflicted with GDM generally returns to their normal glucose regulation once the

baby is born. But, once inflicted with GDM, the chances of being diagnosed with

T2DM increases significantly [114]. Additionally, there are a number of complications

that may develop including: increased risk of mortality for both the mother and the

baby, pre-eclampsia, intrauterine growth retardation, premature delivery and still

birth [115].

A.3 Long Term Effects

There are some people throughout the world that live with DM without encountering

any serious side effects from the disease. This is because if one manages their blood

glucose levels vigorously, the body does not react differently to itself managing the

glucose levels or an external control managing the blood glucose levels. The effects

of diabetes are not consistent and each person’s body would react differently. It is

not the aim of this document to outline the details about the disease, thus only an

overview of the complications resulting from this disease will be outlined.
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As noted earlier on in this chapter, DM is characterised by either too high or too

low blood glucose concentrations. Blood as we know travels throughout the body

and hence the complications that could result from this are not restricted to a single

part of the body. Increased blood sugar levels could eventually damage blood vessels,

nerves, and the organs in the human body. This is mainly due to the fact that high

concentrations of blood glucose damages the blood vessels and low blood glucose

concentrations starves the rest of the body from getting one of the main nutrients -

sugar. Some of the main complications include but are not limited to: Cardiovascular

disease; Hypoglycemia; Nephropathy; Neuropathy; and, Retinopathy [116,117].

Cardiovascular diseases pertain to any disease relating to the cardiovascular system

of the human body and can range from diseases relating to blood vessels to strokes

and heart attacks. This group of diseases is the leading cause of death amongst

diabetic patients with coronary heart disease and hypertension at the top of this

chart. Coronary heart disease is caused by fatty deposits in the arteries that feed the

heart (high cholesterol). Hypertension on the other hand is most commonly known

as high blood pressure [116,117].

Hypoglycemia, meaning low blood sugar, is just as dangerous as high blood sugar.

This is most often triggered by one of the following conditions:

• not eating often enough, or, eating too little, which leads your body to think

you are starving;

• too much physical activity without eating enough, this also deceives your body

from thinking it is starving since the amount of energy you are expending is not

nearly enough to replenish it; or,

• too much insulin.
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This complication is easy to treat provided the person undergoing it knows that their

blood sugar is low (people who are diabetic are often informed of the effects of low

blood sugar such as headaches, fatigue, etc.). The problem with this complication is

that the more often one’s body gets used to being in this state the more likely it is

going to think it is normal. This can cause devastating effects such as unconsciousness

or even death [116,117].

Nephropathy (i.e. kidney disease) is also a common complication of diabetes. Un-

regulated glucose concentrations in the human body can eventually lead to the slow

deterioration of one’s kidneys and in turn its function. This eventually could result in

kidney failure (i.e. end-stage renal disease (ESRD)) or other renal diseases. The way

this occurs is because the kidneys are known to filter waste from the blood stream.

However, damage to blood cells due to high glucose concentrations could tip the bal-

ance of this delicate filtering system which would then lead into the fore mentioned

diseases [116, 117].

Neuropathy is complications relating to nerve damage. This is caused by high glucose

concentrations that damage the capillaries (smallest blood vessels in the human body)

that provide nutrients to various parts of the body. This particular group of problems

can also range from a small problem that can be overcome to a major disability or

even death. This usually starts with burning, numbness and/or tingling at the tips

of your extremities (i.e. fingers and toes). This usually then continues upwards

throughout the body which eventually could damage an entire limb or organ. The

damage of vital organs such as the heart or brain could then result in death. Nerve

damage could also be part of the autonomic nervous system. As its name suggests

this system functions automatically, such as breathing, sexual functions, digestion,

regulation of body temperature, etc. damage to these key automatic functions of the

body could have devastating effects and could eventually lead to death [116,117].
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The last major section this document will cover is retinopathy (diseases related to the

eye). This group of diseases is often progressive. It starts off with slowly destroying

small blood vessels in the retina causing vision loss and eventually leading to blindness

(i.e. proliferative retinopathy). Diabetic patients also have an increased risk of other

serious vision complication such as glaucoma and cataracts [116,117].

A.4 Current techniques available to monitor and

treat diabetes

As mentioned before, although there is no cure for DM, clinical trials time and time

again have proven how proper glucose management could reduce and possible elimi-

nate the risks posed by diabetes [118,119]. The Diabetes Control and Complications

Trial (DCCT) was the first clinical trial to prove the tremendous benefit to diabetic

patients if they rigorously maintain their blood glucose levels. And, although this

was targeted particularly at T1DM, it is hypothesised that this could easily be ex-

tended to T2DM. Not long after that, in 1998, the UK Prospective Diabetes Study

(UKPDS) Group conducted a study that verified the same improvements can be seen

in patients with T2DM provided the same rigorous monitoring of blood glucose levels

in maintained.

There are a number of ways to monitor and treat the disease depending on the

variation of DM one is inflicted with. Before attempting to treat the disease one

must first diagnose it and monitor it. There are mainly four blood tests that allow a

medical doctor to diagnose a patient - an A1C (also known as Glycated hemoglobin

(A1C), hemoglobin A1c, HbA1c, or glycohemoglobin) test; a fasting plasma glucose

(FPG) test; an Oral Glucose Tolerance Test (OGTT); a random blood glucose test.

The first blood test is extremely common as it indicates one’s average blood sugar
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Table A1: Significance of the results of blood tests used to diagnose diabetes mellitus [35].

Blood Test used to Diagnose Diabetes Result Diagnosis

Glycated hemoglobin (A1C) test

≥ 6.5% Diabetic

5.7% - 6.4% Pre-diabetic

≤ 5.7% Normal

Fasting Plasma Glucose test

≥ 126 mg/dL (7 mmol/L) Diabetic

100 mg/dL - 125 mg/dL (5.6 mmol/L - 6.9 mmol/L) Pre-diabetic

≤ 100 mg/dL (5.6 mmol/L) Normal

Oral glucose tolerance test (OGTT))

≥ 200 mg/dL (11.1 mmol/L) Diabetic

140 mg/dL - 199 mg/dL (7.8 mmol/L - 11.0 mmol/L) Pre-diabetic

≤ 140 mg/dL (7.8 mmol/L) Normal

Random blood sugar test

≥ 200 mg/dL (11.1 mmol/L) Diabetic

N/A Pre-diabetic

N/A Normal
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for the past two to three months. The significance of this test results can be seen

in Table A1. FPG on the other hand requires a blood sample to be taken after the

patient has fasted overnight. OGTT can be thought of as a modified FPG test. Just

like the FPG test the patient is required to fast overnight. Their blood glucose level

is then measured and recorded. A sugary liquid is then ingested by the patient and

their blood glucose level is then measured periodically over the course of the next two

hours. Lastly, as it’s name suggests the random blood sugar test requires a patient’s

blood sugar to be tested at any given time regardless of when the patient ate or

exercised last. It should be noted that all the above mentioned tests are performed

at least twice before a patient is officially diagnosed [120].

A.4.1 Monitoring glucose levels

Upon diagnosis from a medical doctor patients are often required to monitor their

blood glucose levels. This is usually done with a glucose sensor. Currently there

are many types of glucose sensors that are available in the market. Sensors range

from the basic to more advanced devices that could store measured glucose levels to

review with a doctor at a later time. Additionally, some sensors also come with an

application that can be downloaded on to your computer, tablet or phone. This gives

the patient the ability save the data so that he/she can review the data at a later

time. Currently there are basically two types of glucose monitors used widely: the

first the Continuous Glucose Monitoring (CGM) system; and, the second, but more

common sensor, the finger-prick test [121,122].

The finger-prick test includes three devices: one used to prick the patient’s finger

(or any part of the body) such that a drop of blood can be easily drawn. The

second includes a chemically treated strip that is attached to the third device which

is the glucose meter itself. The test involves pin pricking the patient’s body (usually
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finger) to release a drop of blood that is then ‘sucked’ into the chemically treated test

strip that the already inserted into the glucose monitor. Within a couple of seconds

the glucose monitor is able to read the blood sugar level of the drop of blood in

the chemically treated strip. This methodology is preferred amongst most patients

because it easily hidden and does not pose a stigma [121–123].

As its name suggests the CGM continuously monitors the blood glucose levels of

the patient and alerts the patient when their blood glucose is too high or too low.

This device is invasive and is continually attached to the patient’s body. Note that

this system is often recommended to patients who have huge fluctuations in their

blood glucose levels. These monitors are also often used on children and elderly

patients. When the monitor was first introduced, its bulky design turned away many

patients from actually using it. However, technology has advanced and more real

time continuous glucose monitors are available that are sleek [121,122].

A.4.2 Treatment

For patients who are inflicted with DM, once their blood glucose levels are measured

they may need to ingest something to adjust their blood sugar accordingly. Depending

on the type of diabetes the patient is diagnosed with, different ‘treatment’ options are

prescribed. These include Medical Nutrition Therapy (MNT); exercise; pills; and/or

insulin. MNT and exercise is the foundation to any diabetic treatment, it includes

educating the patient as to how to maintain a healthy diet; and use exercise as a way to

lower blood sugar by forcing their body to convert the excess sugar into energy. Pills

(i.e oral or other medication) is the second stage of treating T2DM. Generally the first

medication that is prescribed is known as Metformin. This particular drug aims to

decrease the glucose production in the liver and the amount of glucose absorbed from

food that is ingested by the patient [124]. Some other medication include stimulating
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the patient’s pancreas to produce and release more insulin [120].

Table A2: Major insulin types and their effective times [40].

Types of

Insulin

Time to reach

bloodstream

after injection

Peak

time after

injection

Effective

time after

injection

Example

Rapid-acting

insulin
15 minutes 1 hour 2 - 4 hours

- Insulin glulisine

(Apidra)

- Insulin lispro

(Humalog)

- Insulin aspart

(NovoLog)

Regular or

Short-acting

insulin

30 minutes 2 - 3 hours 3 - 6 hours
- Humulin R

- Novolin R

Intermediate-

acting insulin
2 - 4 hours 4 - 12 hours 12 - 18 hours

- NPH

(Humulin N,

Novolin N)

Long-acting

insulin
≥ 4 hours

Fairly even

over 24 hours
≤ 24 hours

- Insulin detemir

(Levemir)

- Insulin glargine

(Lantus)

Lastly, insulin therapy. This includes the patient injecting themselves with insulin.

People who are inflicted with T1DM are prescribed insulin therapy in the early stages.

However, people with T2DM are often prescribed insulin therapy when the body does

not respond to oral medications and the patient does not exercise enough to lower

blood glucose levels. The reason that insulin is separated from other oral medication

is because insulin cannot be ingested like a pill this is because it would be broken

down tremendously during digestion just like other proteins. Thus it must be injected,



105

and it must be injected into the body under the fat so that it is injected directly into

your blood stream. Depending on the diabetic type stage and therapy the patient is

undergoing there are four major types of insulin: rapid-acting; regular or short-acting;

intermediate-acting; and, long-acting. Details of their effectiveness are outlined in

Table A2. Additionally, a mixture of these types of insulin could also be prescribed.

These mixtures are available in pre-mixed packs or separately [125].

Like, the glucose sensor, the insulin is usually injected into the body by two major

means: a manual insulin injection, or an insulin pump. Currently, insulin injections

require far less education and training to the user. This is because the insulin pump

needs to be closely monitored so that not too much insulin in injected into the body.

Additionally, it is also a cheaper of the two options. On the other hand, the insulin

pump delivers continuous doses of insulin to the human body, much like the pancreas.

This prevents fewer peaks or troughs in blood glucose levels. Additionally, like the

CGM, this device in continually injected into the patient’s body offering the patient

to prick themselves once in three days as opposed to 15-18 times in three days. Lastly,

the biggest advantage of using the insulin pump is the ease and flexibility of adjusting

insulin delivery level according to you current activity [126].
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