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ABSTRACT: The development of Hard Red-Time sysems presents
severd difficulties to the developers, as they must synchronize carefully the
execution of the tasks in the system to produce predictable responses. In
this work we present the results of a project devoted to test theoretica

results that can smplify the development of red-time software. We have
made many changes to the MINIX operating system (mainly to the kerndl),
and obtained a new verson serving as framework to test red-time
scheduling agorithms. To show our proposd, we present the results of
running real-time workloads with two different schedulers. We aso present
performance results comparing these agorithms with non red-time
schedulers. The results obtained alowed us to analyze the proposal of new
scheduling solutions.



1. INTRODUCTION

In these days the number of Hard Red-Time
systems is growing rapidly. These sysems must
control events occurring within the real world, and
every task in the system must respond to these
events with a congtrained response time.

Conventional multitasking operating systems does
not provide enough support to build red-time
software. Usudly, they dlow concurrent
programming, tak  synchronization  and
communication, resource sharing and further
sarvices, but do not incorporate primitives to
define timing congraints. Due to these easons,
many red-time desgners Hill develop "ad-hoc”
solutions to solve each problem.

In this work we present the results of a project
devoted to provide programming facilities to
develop hard red-time software. To avoid
developing software from scratch, we resolved to
extend the services provided by MINIX operating
system [Tan87]. We sdlected MINIX motivated
by severd condderations, mainly our academic
purposes, the availability of the hardware and
software, and the previous experience in the
subject [Wai92].

We want the operating sysem to ensure
predictable behavior of the time critical tasks,
entiting the progranmer to define timing
condraints for the tasks, and letting the operating
system to run them in a timey fashion. We adso
want to provide a framework to test red-time
scheduling dgorithms, alowing to examine them
empiricaly (ineed of usng smulaions), and
alowing the proposa of new solutions.

We devote the rest of this work to expose the
sketch of our project, the changes we made, and
some experimental results obtained.

2. REAL-TIME SCHEDULING

Red-time scheduling theory rdates with fulfilling
the task's timing condraints in a red-time system.
To avoid unpredictable behavior, we must
schedule the distribution of the system resources
as wel. Other topics to regard include the
precedence redrictions among tasks, and the
criticaity of every task.

The am of a red-time scheduler is to decide
whether there is a schedule to meet the timing
restrictions of atask set. In that circumstance, we
will say that such collection is schedulable.

Most of the red-time schedulers use priority-
driven dgorithms, both stetic and dynamic. The
scheduler should be preemptive as well as anon
preemptive scheduler could lead to run a low
priority task while ahigh priority one iswaiting.

We can recognize two classes of tasks: periodic
and aperiodic (sporadic). The periodic tasks must
run regulaly, and within a fixed inteval. The
gperiodic tasks run occasondly, and run only
once when we invoke them.

Congdering our gods, we decided to implement
scheduling dgorithms for centrdized systems. We
Seected two traditional ones: the Rate-Monotonic
(RM) and the Earliest-Deadline-First (EDF)
[Liu73]. These dgorithms only contemplate timing
restrictions of the time-critical tasks. Both of them
are cgpable of guaranteeing predictable execution
of a task set supposing the processor load is
beneath a certain bound. This fact eases the work
involved in the development process, reducing the
costs.



The RM dgorithm is used to schedule periodic
independent tasks, giving fixed priorities to every
task (inverse to its execution period). The EDF is
a dynamic priorities agorithm. The tasks with
ealier deadlines run before those with later
deadlines. Both agorithms are preemptive.

3. KERNEL MODIFICATION

MINIX is a multitasking operating system
desgned with academic gods, usng a Round-
Robin scheduler. We have modified this scheduler
to dlow the execution of red-time instances (the
minimum useful compute unit of a red-time task,
with a congtrained compute time). Periodic tasks
gart one instance per period (task deadline is the
period), and aperiodic only have one ingtance,
with adeadline to meet.

As afirgt step, we included services provided by
many red-time operating systems to compare its
peformance  with  conventiond  red-time
schedulers,

To increase timing precison, we incorporated a
collection of system cals to modify the activation
rate of the timer. We aso included a new sarvice
(clock) to measure the time with a precison of
onetick.

As we know, the grester number of interrupts
increases overhead, but, in this case, the behavior
of the system was stable up to 10000 ticks per
second (meaning we are able to run periodic tasks
with a precison of 100 microseconds instead of
the origind 20 milliseconds). At 30000 ticks per
second the performance degrades serioudy, and
a 40000 ticks the system becomes usdess.
Besides, we could see that the 1/0-bound tasks
response time is gpproximately the same even with

higher clock rates, as these tasks ae rardy
affected by timeouts.
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Figure 1. Overloads changing the clock grain. (a)
CPU-bound task sets; (b) I/0O-bound task sets; (c), (d)
Task mix. i) CPU-bound; ii)-iii) Interactive; iv) mixed
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Figure 2. New scheduler structure.

Then, we changed the dructure of the task
scheduler to suit our task modd. We have used a
preemptive multiqueue scheduler with three ready
queues.

The first queue holds red-time instances ordered
usng red-time scheduling agorithms Periodic
indances must sart within fixed intervals. To do
90, the timer driver manages the blocked instances
gueue, used to store periodic instances waiting for
their next period. When a new task period starts,
the timer driver removes the Task Control Block
from this queue and includes it in the red-time

ready queue.

We took specid care in the management of the
blocked ingtances queue, trying to lower its
overhead. As an initid step, we decided to cut
down the activation rate of the timer driver.
Ingead of running the scheduling routine in every
tick, it is enough to consder the least common
divisor of the tak's periods. Surpriangly, the
results of the benchmark tests did not improve

(moreover, due to implementation problems, we
got worst behavior of the real-time tasks).

We made datistic studies to andyze this behavior.
We darted studying the queue's mean service time
with alarge number of tasks (about 500). We ran
dissmilar workloads, and arrived to an average
sarvice time of 22 milliseconds. Next, we adopted
a more redigtic gpproach, and examined typica
MINIX workloads (about 40 tasks). In this case,
the mean service time of the queue was of 350
microseconds. Then, we modeled the queue using
a M/M/1 modd, and we concluded that, in
average, there are among two and five tasks in the
queue, adding only a mean overhead of 100
microseconds to the timer interrupt.

200 “’

180 +
160 +
140 +
120 +
100 +
80 1
60 1
40 4+

Beer—0o o+ o

0 0.1 0.2 0.3 0.4 0.5

Tasks in queue

Mean time between arrivals (seconds)

@

140 T
120 4
100 +
80 1
60 +

Tasks in queue

40 4+

20 T

¢

t t t t
0.002 0.004 0.006 0.008 0.01

Mean time between arrivals (seconds)
(b)

Figure 3. Average tasksin the blocked instances queue.
(a) Considering large number of tasks; (b) MINIX
workloads



As aresault, we decided to keep the activation rate
unchanged. Now, we are usng more efficient data
dructures and adgorithms for ingance activation,
and we will sudy the new service time, repesting
the previous andyss.

After changing the scheduler operation, we built
libraries to exploit the new services of the
operdting system. The primitives include periods
or deadlines of the tasks, and worst execution
times. Usng this informetion, we implemented
guarantee routines, usng Theorem 2 in [Shad9(0],
and Theorem 4 in [Liu73]. We decided to add
these new services, ingead of changing the old
cals, keeping the origind MINIX system cdlls. To
have further information about these changes see
[Wai95].

4, SOME EMPIRICAL RESULTS

We have built an environment to test scheduling
agorithms, and our idea is to use this framework
to anayze the theoretic results in an experimenta
fashion. We pad <specid dtention to
implementation issues, performance and overhead
of the dgorithms.

Our main am was to examine the religbility of the
scheduling agorithms to run predictably a given
tak set. With this purpose, we studied the
guarantee ratio of each task set. The guarantee
ratio measures the relationship between scheduled
ingdtances and deadline missing.

Even a task set stisfying the theoretic bounds
should run predictably (100% guarantee rétio) we
run tasks not respecting the theory. We want to
sudy the resulting problems in detail, to alow the
proposa of new solutions. Following, we present
some results obtained (the results presented are
worst cases for severa workloads).

4.1. Real-time scheduling using a time-
sharing scheduler.

To begin, we examined the performance of the
origind time-sharing adgorithm when scheduling
real-time tasks. We compared the
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Figure 4. Guarantee ratio (5 periodic tasks). Different
clock grains (curves). (a) RT schedulers; (b) MINIX
scheduler + clock; (c)MINIX scheduler; (d)
combination (r: real-time; m: MINIX; c: Minix + clock).
results with those obtained usng the new clock
sysem cal. At last, we contrasted both results
with a red-time scheduling dgorithm (in this case,
the RM). We built different task sets, some of
them conggting of tasks with the same period and
execution times, and others with variable periods.

Then, we tesded the guarantee raio of the
scheduling dgorithms. Using different task sets, we
dudied the influence of the schedulers, and aso
examined the behavior with changes in the clock
granularity.

First, we consdered periodic instances with a
worst execution time of 25 ms. (same period for
every tak). We aso sudied the influence of
changing the task periods.

We can observe that the comportment of the
guarantee function is sgmoid. This happens
because, as we have a fixed task set, once a task
looses a deadling, will lose dl subsequent
regularly. With small periods, the guarantee ratio
keeps close to 0%, because we have an
overloaded sysem. When we rdax the task
period, the percentage increases quickly due
reduction of the overload. Once a task meets a

deadline, will meet it regulaly, reducing the
cascaded deadline missing.

We can clearly recognize that the guarantee ratio
we got using the red-time scheduler isagreat ded
better than usdng Round-robin  scheduling.
Moreover, the results we obtained using the clock
system cdl are better than those got without using
it, due to the increased precison of the task timing.

Then, we tested a Smilar task set, with worst
execution time of 120 ms. The results for round-
robin scheduling are much worse, than the
previous case, snce MINIX has a 100 millisecond
quantum. Hence, the scheduler preempts the
running in each period, making more difficult to
mest its deadline.
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Figure 5. G.R. of 5 tasks (worst execution time: 120ms).

m: Minix scheduler; ¢: Minix using clock() service; r:
real-time scheduler.

Later, we increased the number of tasksin the .
In this case, we only run task sets using the clock
cdl and the real-time scheduler (the results we got
running smpler tak sets usng the MINIX
scheduler without the clock cal showed to be

enough bad).

The differences of the guarantee ratio between
both examples are not so wide like the previous
cases. This happens because the system is dmost
continuoudy overloaded due to the number of



tasks and their execution times. Therefore, the
real-time agorithm runs predictably only when the
bounds are respected.

The RM dgorithm obtained better performance
even with overloading. This happens because it
runs firg the tasks with higher priority, making
them to lose fewer deadlines. Again, the Stuation
was worse for MINIX scheduler running instances
with longer execution times. We can recognize the
influence of the scheduler time-out.

Subsequently, we dated more redidic
benchmarks condsting of tasks with varigble
periods. We can see the results in figure 7 (The
number in the x-axis of the grgphic is
proportionate to the tasks period in the
collection).
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Figure 6. 15 tasks. Real-time scheduler (r) and Minix
scheduler with clock service (c). Wor st execution time:
(a) 25 ms; (b) 120 ms.

The differences were so large that we considered
not necessary to run overloaded task sets. As the
vaiable periods of the tasks difficult ther
predictable execution under the round-robin
scheduler, the guarantee ratio is clearly better with
the real-time scheduler. In the previous cases, we
got more reduced differences, because every task
had the same period. In this Stuation, the red time
scheduler behaves as a cyclic executive (as the
round-robin scheduler does).
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4.2. Comparing two real-time scheduling
algorithms

A second idea was to implement other scheduling
dgorithms, and to relate their performance. We
darted implementing the EDF, and compared it
with the RM approach. We can observe those
results in figures 8, and 9. We have repeated the
teds we made in the previous section,
contemplating the influence of having tasks with
equal or digtinct periods. We have regarded
overloaded systems, increasing the processng
times of every task, or increasng the number of
tasks in the sysem as well. In this way, we are
able to examine the influence of overloads

In the foremost case, we consdered tasks with
equa periods (figure 8). As the RM runs firg the
mogt crucid tasksin a stable fashion, the dgorithm
acts better than the EDF when there is an
overload in the system. As the EDF agorithm has
a more relaxed bound of processor utilization, it
performs better when the load diminishes. The
dgorithm vyidds to better processor load,
increasing the guarantee ratio. The vaues for both
dgorithms are ultimady dike (100%), because
when we have longer tasks periods we are below
the conceptua bounds.
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Figure 8. Comparing RM (rm) and EDF (dd). Same
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Figure 9. Comparing RM and EDF. 5 tasks with
variable periods. Worst execution case: (a) 25 ms. (b)

120 ms.

The same occurs when the task periods are
vaiable, as we can see in figure 9 (agan, the
numbers we can see in the x-axis are proportional
to the task's periods).

The dtuation changes when we increese the
number of tasks and each one make extensive use
of the processor. In this case, the overload is
adways high. In this circumstance, the RM acts
regularly better. This agorithm permits to satify a
larger number of deadlines since it schedules the
tasks with shorter period earlier, dlowing to some
of them (the mogt critical) to meet their deadlines.

4.3. Testing sporadic tasks

Our lagt task sets consdered combinations of
periodic and sporadic tasks. As the scheduling
agorithm only guarantees the execution of periodic
tasks, we want to study in detall the system
behavior when we include aperiodic tasks.

We ran different task sats with  different
combinations of periodic and aperiodic tasks.
Likewise, we have contemplated the relationship
among task periods and sporadic deadlines.

We run periodic tasks with equa period, varying
the sporadic deadlines (we can observe the results
in figure 10, 11 and 12). Studying the figures, we
can digtinguish two cases.

Case 1. Task period equd or larger that the
sporadic deadline.

a) Periodic tasks both dgorithms behave with
amilar shapes. When the overload is too high, the
RM has adightly better guarantee ratio. When we
run a large number of tasks with variable periods,
the digtinction is 4ill grester. We have a system
overload up to the moment the task's periods
goproach the ided Ilimits We can see
gpproximately the same results we saw in section
4.2,

b) Sporadic tasks. the guarantee ratio grows
congantly for the RM. Using the earliest deadline
fird, the overloads make the sporadic tasks to

perform irregularly.

Case 2. Sporadic deadlines shorter than periodic
frequency

a) Periodic tasks: the earliest deadline firgt has
worse comportment when there are overloads.
When we cut down the overload, the behavior is
better for this agorithm. The sporadic tasks with
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Figure 11. Mix of periodic and sporadic tasks. Variable
periods. Period equal to sporadic deadline: (a) 100
ticks/sec, (b) 1K ticks/sec. Sporadic deadline smaller
than period (c) 100 ticks/sec; (d) 1K ticks/sec.
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Figure 12. Mix of periodic and sporadic tasks. 1000
ticks/second. Fixed period (a) Period equal to sporadic
deadline (b) Sporadic deadline smaller than period.
Variable periods(c) Period equal to sporadic deadline.
(d) Sporadic deadline smaller than period.

To finish with this section, we must sy thet the
results dways satify the ided bounds. After
finishing each benchmark, we inspected the results
usng the corresponding formulas. In those
cdrcumgances the  benchmarks  showed
predictable execution, we were respecting the
conceptud limits.

5. PRESENT WORK. CONCLUSION

We have just tested the properties of two classic
scheduling dgorithms. Our next step will be to
experience with different schedulers. Our last god
is trying to find new solutions, and examine them
empiricaly.



We are capable to get good response time with a
round-robin scheduler in cases when the activation
frequency for every task is gpproximatey
equivdent. This is not a good solution indeed we
were careful while developing the system. If we
must dter a task period, the results are not
reliable. The dgorithm act even less predictably
when it runs tasks with different periods.

We aso could see that the red-time scheduling
agorithms we implemented have some problems.
The RM theory rest in the notion that the criticality
of a task depends on its period (which is not
aways true). The dgorithm has low time-loading
aswall.

The EDF dgorithm is dynamic, and dlows to run
gperiodic tasks more safey. It dso has higher
time-loading. Its main drawback is its ungable
behavior in circumstances of overloading (insteed,
the RM executes the most critical tasks in a stable
fashion).

Although these inconveniences, these agorithms
are much better than conventiond time-sharing
schedulers. We got  better guarantee ratio,
development times and smdl overhead. These
facts make advisable to use them in any operating
system having preemptive priorities as a red-time
executive devoted to schedule real-time tasks.

At present, we are testing the implementation of
new solutions, such as those presented in [Sha90]
and [Liu9l], between others. We will implement
solutions for sporadic servers, and a heurigtic
mixed dgorithm, that use different schedulers
depending on the actud workload conditions
[Wa9sh]. We will relate these solutions with
other dgorithms, such as period transformation
and imprecise computation moddls. We have
provided facilities letting the user to use multiple

verson methods, tha we will compare with
another known solutions.

With this work we tried a first proposal to solve
real-time scheduling problems. To do so, we built
a framework to develop red-time software,
running a predictable times in dynamic
environments. We can easly subditute this
environment to examine different red-time
scheduling dgorithms.

We provided new sarvices, permitting the
programmers to define tasks with time regtrictions,
and leaving the scheduler to run them at the
needed times. We avoided the programmer
Intervention with timing issues. In this way, he can
focus in solving the application problem, reducing
the difficulties rdated with completing the timing
redtrictions. In this way, we are able to improve
productivity, security and costs during the
development cycle. Findly, we could test different
task sets, showing advantages and drawbacks of
using different red- time schedulers.
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