

Some Results on Experimental Evaluation of Real-Time
Scheduling.

Gabriel A. Wainer

Universidad de Buenos Aires.
Facultad de Ciencias Exactas y Naturales.

Departamento de Computacion.
Pabellón I. Ciudad Universitaria.

Buenos Aires. Argentina.
gabrielw@dc.uba.ar.

ABSTRACT: The development of Hard Real-Time systems presents
several difficulties to the developers, as they must synchronize carefully the
execution of the tasks in the system to produce predictable responses. In
this work we present the results of a project devoted to test theoretical
results that can simplify the development of real-time software. We have
made many changes to the MINIX operating system (mainly to the kernel),
and obtained a new version serving as framework to test real-time
scheduling algorithms. To show our proposal, we present the results of
running real-time workloads with two different schedulers. We also present
performance results comparing these algorithms with non real-time
schedulers. The results obtained allowed us to analyze the proposal of new
scheduling solutions.

1. INTRODUCTION

In these days the number of Hard Real-Time
systems is growing rapidly. These systems must
control events occurring within the real world, and
every task in the system must respond to these
events with a constrained response time.

Conventional multitasking operating systems does
not provide enough support to build real-time
software. Usually, they allow concurrent
programming, task synchronization and
communication, resource sharing and further
services, but do not incorporate primitives to
define timing constraints. Due to these reasons,
many real-time designers still develop "ad-hoc"
solutions to solve each problem.

In this work we present the results of a project
devoted to provide programming facilities to
develop hard real-time software. To avoid
developing software from scratch, we resolved to
extend the services provided by MINIX operating
system [Tan87]. We selected MINIX motivated
by several considerations, mainly our academic
purposes, the availability of the hardware and
software, and the previous experience in the
subject [Wai92].

We want the operating system to ensure
predictable behavior of the time critical tasks,
entitling the programmer to define timing
constraints for the tasks, and letting the operating
system to run them in a timely fashion. We also
want to provide a framework to test real-time
scheduling algorithms, allowing to examine them
empirically (instead of using simulations), and
allowing the proposal of new solutions.

We devote the rest of this work to expose the
sketch of our project, the changes we made, and
some experimental results obtained.

2. REAL-TIME SCHEDULING

Real-time scheduling theory relates with fulfilling
the task's timing constraints in a real-time system.
To avoid unpredictable behavior, we must
schedule the distribution of the system resources
as well. Other topics to regard include the
precedence restrictions among tasks, and the
criticality of every task.

The aim of a real-time scheduler is to decide
whether there is a schedule to meet the timing
restrictions of a task set. In that circumstance, we
will say that such collection is schedulable.

Most of the real-time schedulers use priority-
driven algorithms, both static and dynamic. The
scheduler should be preemptive as well as a non
preemptive scheduler could lead to run a low
priority task while a high priority one is waiting.

We can recognize two classes of tasks: periodic
and aperiodic (sporadic). The periodic tasks must
run regularly, and within a fixed interval. The
aperiodic tasks run occasionally, and run only
once when we invoke them.

Considering our goals, we decided to implement
scheduling algorithms for centralized systems. We
selected two traditional ones: the Rate-Monotonic
(RM) and the Earliest-Deadline-First (EDF)
[Liu73]. These algorithms only contemplate timing
restrictions of the time-critical tasks. Both of them
are capable of guaranteeing predictable execution
of a task set supposing the processor load is
beneath a certain bound. This fact eases the work
involved in the development process, reducing the
costs.

The RM algorithm is used to schedule periodic
independent tasks, giving fixed priorities to every
task (inverse to its execution period). The EDF is
a dynamic priorities' algorithm. The tasks with
earlier deadlines run before those with later
deadlines. Both algorithms are preemptive.

3. KERNEL MODIFICATION

MINIX is a multitasking operating system
designed with academic goals, using a Round-
Robin scheduler. We have modified this scheduler
to allow the execution of real-time instances (the
minimum useful compute unit of a real-time task,
with a constrained compute time). Periodic tasks
start one instance per period (task deadline is the
period), and aperiodic only have one instance,
with a deadline to meet.

As a first step, we included services provided by
many real-time operating systems to compare its
performance with conventional real-time
schedulers.

To increase timing precision, we incorporated a
collection of system calls to modify the activation
rate of the timer. We also included a new service
(clock) to measure the time with a precision of
one tick.

As we know, the greater number of interrupts
increases overhead, but, in this case, the behavior
of the system was stable up to 10000 ticks per
second (meaning we are able to run periodic tasks
with a precision of 100 microseconds instead of
the original 20 milliseconds). At 30000 ticks per
second the performance degrades seriously, and
at 40000 ticks the system becomes useless.
Besides, we could see that the I/O-bound tasks'
response time is approximately the same even with

higher clock rates, as these tasks are rarely
affected by timeouts.

Ticks per second

Ex
ec

ut
io

n
tim

e

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

Mini
x

RT-
50

1 0 0 2 0 0 5 0 0 1K 2 K 5K 1 0 K 2 0 K 3 0 K

(a)

0

5

10

15

2 0

2 5

Minix RT-
50

1 0 0 2 0 0 5 0 0 1K 2 K 5K 1 0 K 2 0 K 3 0 K

(b)

0

5

10

15

2 0

2 5

3 0

Minix RT-50 100 2 0 0 500 1K 2 K 5K 10K 2 0 K 30K

i) ii) iii) iv)

(c)

0

10

2 0

3 0

4 0

50

6 0

Minix RT-
50

1 0 0 2 0 0 5 0 0 1K 2 K 5K 10K 2 0 K 3 0 K

i) ii) iii) iv)

(d)

Figure 1. Overloads changing the clock grain. (a)

CPU-bound task sets; (b) I/O-bound task sets; (c), (d)
Task mix. i) CPU-bound; ii)-iii) Interactive; iv) mixed

Figure 2. New scheduler structure.

Then, we changed the structure of the task
scheduler to suit our task model. We have used a
preemptive multiqueue scheduler with three ready
queues.

The first queue holds real-time instances ordered
using real-time scheduling algorithms. Periodic
instances must start within fixed intervals. To do
so, the timer driver manages the blocked instances
queue, used to store periodic instances waiting for
their next period. When a new task period starts,
the timer driver removes the Task Control Block
from this queue and includes it in the real-time
ready queue.

We took special care in the management of the
blocked instances queue, trying to lower its
overhead. As an initial step, we decided to cut
down the activation rate of the timer driver.
Instead of running the scheduling routine in every
tick, it is enough to consider the least common
divisor of the task's periods. Surprisingly, the
results of the benchmark tests did not improve

(moreover, due to implementation problems, we
got worst behavior of the real-time tasks).

We made statistic studies to analyze this behavior.
We started studying the queue's mean service time
with a large number of tasks (about 500). We ran
dissimilar workloads, and arrived to an average
service time of 22 milliseconds. Next, we adopted
a more realistic approach, and examined typical
MINIX workloads (about 40 tasks). In this case,
the mean service time of the queue was of 350
microseconds. Then, we modeled the queue using
a M/M/1 model, and we concluded that, in
average, there are among two and five tasks in the
queue, adding only a mean overhead of 100
microseconds to the timer interrupt.

Mean time between arrivals (seconds)

T
as

ks
 in

 q
ue

ue

0

2 0

4 0
6 0

8 0

100

120

140

160

180
2 0 0

0 0.1 0.2 0.3 0.4 0.5

(a)

Mean time between arrivals (seconds)

T
as

ks
 in

 q
ue

ue

0

2 0

4 0

6 0

8 0

100

120

140

0 0.002 0.004 0.006 0.008 0.01

(b)

Figure 3. Average tasks in the blocked instances queue.

(a) Considering large number of tasks; (b) MINIX
workloads

As a result, we decided to keep the activation rate
unchanged. Now, we are using more efficient data
structures and algorithms for instance activation,
and we will study the new service time, repeating
the previous analysis.
After changing the scheduler operation, we built
libraries to exploit the new services of the
operating system. The primitives include periods
or deadlines of the tasks, and worst execution
times. Using this information, we implemented
guarantee routines, using Theorem 2 in [Sha90],
and Theorem 4 in [Liu73]. We decided to add
these new services, instead of changing the old
calls, keeping the original MINIX system calls. To
have further information about these changes see
[Wai95].

4. SOME EMPIRICAL RESULTS

We have built an environment to test scheduling
algorithms, and our idea is to use this framework
to analyze the theoretic results in an experimental
fashion. We paid special attention to
implementation issues, performance and overhead
of the algorithms.

Our main aim was to examine the reliability of the
scheduling algorithms to run predictably a given
task set. With this purpose, we studied the
guarantee ratio of each task set. The guarantee
ratio measures the relationship between scheduled
instances and deadline missing.

Even a task set satisfying the theoretic bounds
should run predictably (100% guarantee ratio) we
run tasks not respecting the theory. We want to
study the resulting problems in detail, to allow the
proposal of new solutions. Following, we present
some results obtained (the results presented are
worst cases for several workloads).

4.1. Real-time scheduling using a time-
sharing scheduler.

To begin, we examined the performance of the
original time-sharing algorithm when scheduling
real-time tasks. We compared the

Task Period

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 10 21 44 80 100 117 2 0 0 250 280

60 100 500 1K 2K 5K 10K

(a)

Task Period

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 3 18 37 50 81 180 200 217 420 450 470 490 520 530

60 100 500 1K 2K 5K 10K

(b)

Task Period

0%

10%
20%

30%

40%
50%

60%

70%
80%

90%

100%

1 3 8 12 19 30 39 6 0 75 200 220 500 550 570

60 100 500 1K 2K 5K 10K

(c)

Task Periods

0%
10%

20%

30%

40%
50%

60%

70%

80%
90%

100%

1 3 8 10 12 18 19 20 30 37 44 50 60 80 100 117 180 200 220 420 500

r-500 c-500 m-500 r-5K c-5K m-5K

(d)

Figure 4. Guarantee ratio (5 periodic tasks). Different
clock grains (curves). (a) RT schedulers; (b) MINIX

scheduler + clock; (c)MINIX scheduler; (d)
combination (r: real-time; m: MINIX; c: Minix + clock).

results with those obtained using the new clock
system call. At last, we contrasted both results
with a real-time scheduling algorithm (in this case,
the RM). We built different task sets, some of
them consisting of tasks with the same period and
execution times, and others with variable periods.

Then, we tested the guarantee ratio of the
scheduling algorithms. Using different task sets, we
studied the influence of the schedulers, and also
examined the behavior with changes in the clock
granularity.

First, we considered periodic instances with a
worst execution time of 25 ms. (same period for
every task). We also studied the influence of
changing the task periods.

We can observe that the comportment of the
guarantee function is sigmoid. This happens
because, as we have a fixed task set, once a task
looses a deadline, will lose all subsequent
regularly. With small periods, the guarantee ratio
keeps close to 0%, because we have an
overloaded system. When we relax the task
period, the percentage increases quickly due
reduction of the overload. Once a task meets a

deadline, will meet it regularly, reducing the
cascaded deadline missing.

We can clearly recognize that the guarantee ratio
we got using the real-time scheduler is a great deal
better than using Round-robin scheduling.
Moreover, the results we obtained using the clock
system call are better than those got without using
it, due to the increased precision of the task timing.

Then, we tested a similar task set, with worst
execution time of 120 ms. The results for round-
robin scheduling are much worse, than the
previous case, since MINIX has a 100 millisecond
quantum. Hence, the scheduler preempts the
running in each period, making more difficult to
meet its deadline.

Task Period

0%

20%

40%

60%

80%

100%

0 100 200 300 400 500 600 700 800 900 1000

100-r 100-c 100-m 1K-r 1K-c 1K-m

Figure 5. G.R. of 5 tasks (worst execution time: 120ms).
m: Minix scheduler; c: Minix using clock() service; r:

real-time scheduler.

Later, we increased the number of tasks in the set.
In this case, we only run task sets using the clock
call and the real-time scheduler (the results we got
running simpler task sets using the MINIX
scheduler without the clock call showed to be
enough bad).

The differences of the guarantee ratio between
both examples are not so wide like the previous
cases. This happens because the system is almost
continuously overloaded due to the number of

tasks and their execution times. Therefore, the
real-time algorithm runs predictably only when the
bounds are respected.

The RM algorithm obtained better performance
even with overloading. This happens because it
runs first the tasks with higher priority, making
them to lose fewer deadlines. Again, the situation
was worse for MINIX scheduler running instances
with longer execution times. We can recognize the
influence of the scheduler time-out.

Subsequently, we started more realistic
benchmarks consisting of tasks with variable
periods. We can see the results in figure 7 (The
number in the x-axis of the graphic is
proportionate to the tasks' period in the
collection).

Task Period

0%

20%

40%

60%

80%

100%

0 200 400 600 800

100-r 100-c 1K-p 1K-c

(a)

Task period

0%

20%

40%

60%

80%

100%

0 500 1000 1500 2000 2500 3000 3500

100-r 100-c 1K-r 1K-c

(b)

Figure 6. 15 tasks. Real-time scheduler (r) and Minix
scheduler with clock service (c). Worst execution time:

(a) 25 ms; (b) 120 ms.

The differences were so large that we considered
not necessary to run overloaded task sets. As the
variable periods of the tasks difficult their
predictable execution under the round-robin
scheduler, the guarantee ratio is clearly better with
the real-time scheduler. In the previous cases, we
got more reduced differences, because every task
had the same period. In this situation, the real time
scheduler behaves as a cyclic executive (as the
round-robin scheduler does).

0%

20%

40%

60%

80%

100%

10 20 30 70 100 150 200 1000 2300

60 100 500 1K 5K

(a)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

10 20 30 70 100 150 200 1000

100-r 100-c 1K-r 1K-c

(b)

Figure 7. Variable periods. (a) real-time scheduler with
different clock grains; (b) comparing real-time (r) and

Minix + clock (c).

4.2. Comparing two real-time scheduling
algorithms

A second idea was to implement other scheduling
algorithms, and to relate their performance. We
started implementing the EDF, and compared it
with the RM approach. We can observe those
results in figures 8, and 9. We have repeated the
tests we made in the previous section,
contemplating the influence of having tasks with
equal or distinct periods. We have regarded
overloaded systems, increasing the processing
times of every task, or increasing the number of
tasks in the system as well. In this way, we are
able to examine the influence of overloads.

In the foremost case, we considered tasks with
equal periods (figure 8). As the RM runs first the
most crucial tasks in a stable fashion, the algorithm
acts better than the EDF when there is an
overload in the system. As the EDF algorithm has
a more relaxed bound of processor utilization, it
performs better when the load diminishes. The
algorithm yields to better processor load,
increasing the guarantee ratio. The values for both
algorithms are ultimately alike (100%), because
when we have longer tasks' periods we are below
the conceptual bounds.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 10 21 23 40 100 104 112 150 200 225 300 700 730

rm-100 dd-100 rm-5K dd-5K

(a)

0%
10%
20%
30%
40%

50%
60%
70%
80%
90%

100%

1 20 80 95 150 200 210 220 800 1.2K 2K 2.1K 4.7K 5K 5.1K

rm-100 dd-100 rm-5K dd-5K

(b)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 10 40 50 100 190 250 300

rm-500 dd-500 rm-1K dd-1K

(c)

0%
10%

20%
30%

40%

50%
60%

70%
80%

90%
100%

1 10 100 400 450 1000 2000 2500

rm-60 dd-60 rm-500 dd-500

(d)

Figure 8. Comparing RM (rm) and EDF (dd). Same
period. Worst execution time: 5 tasks(a) 25 ms (b) 120

ms 15 tasks (c) 25 ms (d) 120 ms

0%

10%

20%
30%

40%

50%

60%

70%

80%

90%
100%

10 20 30 70 100 130 150 200 280

rm-500 dd-500 rm-1K dd-1K

(a)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

10 30 70 80 90 200 250 300

rm-500 dd-500 rm-1K dd-1K

(b)

Figure 9. Comparing RM and EDF. 5 tasks with
variable periods. Worst execution case: (a) 25 ms. (b)

120 ms.

The same occurs when the task periods are
variable, as we can see in figure 9 (again, the
numbers we can see in the x-axis are proportional
to the task's periods).
The situation changes when we increase the
number of tasks and each one make extensive use
of the processor. In this case, the overload is
always high. In this circumstance, the RM acts
regularly better. This algorithm permits to satisfy a
larger number of deadlines since it schedules the
tasks with shorter period earlier, allowing to some
of them (the most critical) to meet their deadlines.

4.3. Testing sporadic tasks

Our last task sets considered combinations of
periodic and sporadic tasks. As the scheduling
algorithm only guarantees the execution of periodic
tasks, we want to study in detail the system
behavior when we include aperiodic tasks.

We ran different task sets with different
combinations of periodic and aperiodic tasks.
Likewise, we have contemplated the relationship
among task periods and sporadic deadlines.

We run periodic tasks with equal period, varying
the sporadic deadlines (we can observe the results
in figure 10, 11 and 12). Studying the figures, we
can distinguish two cases.

Case 1. Task period equal or larger that the
sporadic deadline.

a) Periodic tasks: both algorithms behave with
similar shapes. When the overload is too high, the
RM has a slightly better guarantee ratio. When we
run a large number of tasks with variable periods,
the distinction is still greater. We have a system
overload up to the moment the task's periods
approach the ideal limits. We can see
approximately the same results we saw in section
4.2.

b) Sporadic tasks: the guarantee ratio grows
constantly for the RM. Using the earliest deadline
first, the overloads make the sporadic tasks to
perform irregularly.

Case 2. Sporadic deadlines shorter than periodic
frequency

a) Periodic tasks: the earliest deadline first has
worse comportment when there are overloads.
When we cut down the overload, the behavior is
better for this algorithm. The sporadic tasks with

brief deadlines will insert first in the ready queue,
delaying the execution of the periodic tasks.

b) Sporadic tasks: the overload makes the earliest
deadline first to act unpredictably. When the
overload reduces, we have a 100% of guarantee
ratio for these tasks. The proportion is better for
the periodic tasks as well.

0%

10%

20%

30%

40%

50%

60%

70%
80%

90%

100%

1 10 20 30

rm-p rm-a dd-p dd-a

(a)

0%

10%

20%

30%

40%
50%

60%

70%

80%

90%
100%

1 10 20 30 50 80 100 150 200

rm-p rm-a dd-p dd-a

(b)

0%
10%

20%

30%

40%

50%

60%

70%
80%

90%

100%

1 10 20 30

rm-p rm-a dd-p dd-a

(c)

0%
10%

20%

30%

40%

50%

60%

70%
80%

90%

100%

1 40 200 250

rm-p rm-a dd-p dd-a

(d)

Figure 10. Mix of periodic and sporadic. Equal periods.
Period equal to sporadic deadline: (a)100 ticks/sec,
(b) 1000 ticks/sec. Deadline smaller than period: (c)

100 ticks/sec; (d) 1000 ticks/sec.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

5 10 20 35 40

rm-p rm-a dd-p dd-a

(a)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

5 20 40 80 160 170

rm-p rm-a d d - p d d - a

(b)

0%

10%

20%

30%

40%

50%

60%

70%
80%

90%

100%

5 10 20 35 40

rm-p rm-a dd-p dd-a

(c)

0%

10%

20%

30%

40%

50%

60%

70%
80%

90%

100%

5 40 80 120 160 180 220 240

rm-p rm-a dd-p dd-a

(d)

Figure 11. Mix of periodic and sporadic tasks. Variable
periods. Period equal to sporadic deadline: (a) 100

ticks/sec, (b) 1K ticks/sec. Sporadic deadline smaller
than period (c) 100 ticks/sec; (d) 1K ticks/sec.

0%

10%

20%

30%

40%

50%

60%

70%
80%

90%

100%

1 10 20 100 200 400

rm-p rm-a dd-p dd-a

(a)

0%

10%

20%

30%

40%

50%

60%

70%
80%

90%

100%

2 10 100 200 400 600

rm-p rm-a dd-p dd-a

(b)

0%

10%

20%

30%

40%

50%

60%

70%
80%

90%

100%

5 50 100 200

rm-p rm-a dd-p dd-a

(c)

0%

10%

20%

30%

40%

50%

60%

70%
80%

90%

100%

6 50 100 200 300 400

rm-p rm-a dd-p dd-a

(d)

Figure 12. Mix of periodic and sporadic tasks. 1000
ticks/second. Fixed period (a) Period equal to sporadic

deadline (b) Sporadic deadline smaller than period.
Variable periods (c) Period equal to sporadic deadline.

(d) Sporadic deadline smaller than period.

To finish with this section, we must say that the
results always satisfy the ideal bounds. After
finishing each benchmark, we inspected the results
using the corresponding formulas. In those
circumstances the benchmarks showed
predictable execution, we were respecting the
conceptual limits.

5. PRESENT WORK. CONCLUSION

We have just tested the properties of two classic
scheduling algorithms. Our next step will be to
experience with different schedulers. Our last goal
is trying to find new solutions, and examine them
empirically.

We are capable to get good response time with a
round-robin scheduler in cases when the activation
frequency for every task is approximately
equivalent. This is not a good solution indeed we
were careful while developing the system. If we
must alter a task period, the results are not
reliable. The algorithm act even less predictably
when it runs tasks with different periods.

We also could see that the real-time scheduling
algorithms we implemented have some problems.
The RM theory rest in the notion that the criticality
of a task depends on its period (which is not
always true). The algorithm has low time-loading
as well.

The EDF algorithm is dynamic, and allows to run
aperiodic tasks more safely. It also has higher
time-loading. Its main drawback is its unstable
behavior in circumstances of overloading (instead,
the RM executes the most critical tasks in a stable
fashion).

Although these inconveniences, these algorithms
are much better than conventional time-sharing
schedulers. We got better guarantee ratio,
development times and small overhead. These
facts make advisable to use them in any operating
system having preemptive priorities as a real-time
executive devoted to schedule real-time tasks.

At present, we are testing the implementation of
new solutions, such as those presented in [Sha90]
and [Liu91], between others. We will implement
solutions for sporadic servers, and a heuristic
mixed algorithm, that use different schedulers
depending on the actual workload conditions
[Wai95b]. We will relate these solutions with
other algorithms, such as period transformation
and imprecise computation models. We have
provided facilities letting the user to use multiple

version methods, that we will compare with
another known solutions.

With this work we tried a first proposal to solve
real-time scheduling problems. To do so, we built
a framework to develop real-time software,
running at predictable times in dynamic
environments. We can easily substitute this
environment to examine different real-time
scheduling algorithms.

We provided new services, permitting the
programmers to define tasks with time restrictions,
and leaving the scheduler to run them at the
needed times. We avoided the programmer
intervention with timing issues. In this way, he can
focus in solving the application problem, reducing
the difficulties related with completing the timing
restrictions. In this way, we are able to improve
productivity, security and costs during the
development cycle. Finally, we could test different
task sets, showing advantages and drawbacks of
using different real- time schedulers.

6. BIBLIOGRAPHY

[Hin88] HINNANT, D. "Accurate Unix
Benchmarking". IEEE Micro, October 1988.

[Liu73] LIU, C.; LAYLAND, J. "Scheduling
algorithms for multiprogramming in a Hard Real
Time System Environtment". Journal of the
ACM, Vol. 20, No. 1, 1973, pp 46-61.

[Liu91] LIU, W.S. et al. "Algorithms for
scheduling imprecise computations". IEEE
Computer. May 1991.

[Sha90] SHA, L.; GOODENOUGH, J. "Real-
Time Scheduling Theory and Ada". IEEE
Computer, April 1990. pp 53-62.

[Tan87] TANNENBAUM, A. "A Unix clone with
source code for Operating Systems courses".
Operating Systems Review, vol. 21, January
1987.

[Wai92] Wainer, G. A survey of the results of
using Minix as a tool for teaching in Operating
Systems Courses. Proceedings of the XII
International Conference of the SCCC.
Editorial de la USACH. October 1992.

[Wai95a] WAINER, G. "Implementing real-time
scheduling in a time-sharing operating system".
Proceedings of AARTC'95. Mayo de 1995.

[Wai95b] WAINER, G. "Una estrategia de
planificación para mejorar utilización de recursos
en planificadores para tiempo real estables".
Internal Report of the Computer Sciences
Department. FCEN-UBA.

[Wei89] WEIDERMAN, N. "Hartstone: synthetic
benchmark requirements for Hard Real-Time
applications". Technical Report CMU/SEI-89-
TR-23. Carnegie Mellon University. Software
Engineering Institute.

