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ABSTRACT: The development of Hard Real-Time systems presents 
several difficulties to the developers, as they must synchronize carefully the 
execution of the tasks in the system to produce predictable responses. In 
this work we present the results of a project devoted to test theoretical 
results that can simplify the development of real-time software. We have 
made many changes to the MINIX operating system (mainly to the kernel), 
and obtained a new version serving as framework to test real-time 
scheduling algorithms. To show our proposal, we present the results of 
running real-time workloads with two different schedulers. We also present 
performance results comparing these algorithms with non real-time 
schedulers. The results obtained allowed us to analyze the proposal of new 
scheduling solutions. 

 



1. INTRODUCTION 
 
In these days the number of Hard Real-Time 
systems is growing rapidly. These systems must 
control events occurring within the real world, and 
every task in the system must respond to these 
events with a constrained response time.  
 
Conventional multitasking operating systems does 
not provide enough support to build real-time 
software. Usually, they allow concurrent 
programming, task synchronization and 
communication, resource sharing and further 
services, but do not incorporate primitives to 
define timing constraints. Due to these reasons, 
many real-time designers still develop "ad-hoc" 
solutions to solve each problem. 
 
In this work we present the results of a project 
devoted to provide programming facilities to 
develop hard real-time software. To avoid 
developing software from scratch, we resolved to 
extend the services provided by MINIX operating 
system [Tan87]. We selected MINIX motivated 
by several considerations, mainly our academic 
purposes, the availability of the hardware and 
software, and the previous experience in the 
subject [Wai92]. 
 
We want the operating system to ensure 
predictable behavior of the time critical tasks, 
entitling the programmer to define timing 
constraints for the tasks, and letting the operating 
system to run them in a timely fashion. We also 
want to provide a framework to test real-time 
scheduling algorithms, allowing to examine them 
empirically (instead of using simulations), and 
allowing the proposal of new solutions.  
 
We devote the rest of this work to expose the 
sketch of our project, the changes we made, and 
some experimental results obtained.  

 
 

2. REAL-TIME SCHEDULING 
 
Real-time scheduling theory relates with fulfilling 
the task's timing constraints in a real-time system. 
To avoid unpredictable behavior, we must 
schedule the distribution of the system resources 
as well. Other topics to regard include the 
precedence restrictions among tasks, and the 
criticality of every task. 
 
The aim of a real-time scheduler is to decide 
whether there is a schedule to meet the timing 
restrictions of a task set. In that circumstance, we 
will say that such collection is schedulable.  
 
Most of the real-time schedulers use priority-
driven algorithms, both static and dynamic. The 
scheduler should be preemptive as well as a non 
preemptive scheduler could lead to run a low 
priority task while a high priority one is waiting. 
 
We can recognize two classes of tasks: periodic 
and aperiodic (sporadic). The periodic tasks must 
run regularly, and within a fixed interval. The 
aperiodic tasks run occasionally, and run only 
once when we invoke them. 
 
Considering our goals, we decided to implement 
scheduling algorithms for centralized systems. We 
selected two traditional ones: the Rate-Monotonic 
(RM) and the Earliest-Deadline-First (EDF) 
[Liu73]. These algorithms only contemplate timing 
restrictions of the time-critical tasks. Both of them 
are capable of guaranteeing predictable execution 
of a task set supposing the processor load is 
beneath a certain bound. This fact eases the work 
involved in the development process, reducing the 
costs. 
 



The RM algorithm is used to schedule periodic 
independent tasks, giving fixed priorities to every 
task (inverse to its execution period). The EDF is 
a dynamic priorities' algorithm. The tasks with 
earlier deadlines run before those with later 
deadlines. Both algorithms are preemptive. 
 
 

3. KERNEL MODIFICATION 
 
MINIX is a multitasking operating system 
designed with academic goals, using a Round-
Robin scheduler. We have modified this scheduler 
to allow the execution of real-time instances (the 
minimum useful compute unit of a real-time task, 
with a constrained compute time). Periodic tasks 
start one instance per period (task deadline is the 
period), and aperiodic only have one instance, 
with a deadline to meet.  
 
As a first step, we included services provided by 
many real-time operating systems to compare its 
performance with conventional real-time 
schedulers. 
 
To increase timing precision, we incorporated a 
collection of system calls to modify the activation 
rate of the timer. We also included a new service 
(clock) to measure the time with a precision of 
one tick.  
 
As we know, the greater number of interrupts 
increases overhead, but, in this case, the behavior 
of the system was stable up to 10000 ticks per 
second (meaning we are able to run periodic tasks 
with a precision of 100 microseconds instead of 
the original 20 milliseconds). At 30000 ticks per 
second the performance degrades seriously, and 
at 40000 ticks the system becomes useless. 
Besides, we could see that the I/O-bound tasks' 
response time is approximately the same even with 

higher clock rates, as these tasks are rarely 
affected by timeouts.  
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Figure 1. Overloads changing the clock grain. (a) 

CPU-bound task sets; (b) I/O-bound task sets; (c), (d) 
Task mix. i) CPU-bound; ii)-iii) Interactive; iv) mixed 

 
 

Figure 2. New scheduler structure. 
 
Then, we changed the structure of the task 
scheduler to suit our task model. We have used a 
preemptive multiqueue scheduler with three ready 
queues.  
 
The first queue holds real-time instances ordered 
using real-time scheduling algorithms. Periodic 
instances must start within fixed intervals. To do 
so, the timer driver manages the blocked instances 
queue, used to store periodic instances waiting for 
their next period. When a new task period starts, 
the timer driver removes the Task Control Block 
from this queue and includes it in the real-time 
ready queue. 
 
We took special care in the management of the 
blocked instances queue, trying to lower its 
overhead. As an initial step, we decided to cut 
down the activation rate of the timer driver. 
Instead of running the scheduling routine in every 
tick, it is enough to consider the least common 
divisor of the task's periods. Surprisingly, the 
results of the benchmark tests did not  improve 

(moreover, due to implementation problems, we 
got worst behavior of the real-time tasks). 
 
We made statistic studies to analyze this behavior. 
We started studying the queue's mean service time 
with a large number of tasks (about 500). We ran 
dissimilar workloads, and arrived to an average 
service time of 22 milliseconds. Next, we adopted 
a more realistic approach, and examined typical 
MINIX workloads (about 40 tasks). In this case, 
the mean service time of the queue was of 350 
microseconds. Then, we modeled the queue using 
a M/M/1 model, and we concluded that, in 
average, there are among two and five tasks in the 
queue, adding only a mean overhead of 100 
microseconds to the timer interrupt.  
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Figure 3. Average tasks in the blocked instances queue. 

(a) Considering large number of tasks; (b) MINIX 
workloads 

 



As a result, we decided to keep the activation rate 
unchanged. Now, we are using more efficient data 
structures and algorithms for instance activation, 
and we will study the new service time, repeating 
the previous analysis. 
After changing the scheduler operation, we built 
libraries to exploit the new services of the 
operating system. The primitives include periods 
or deadlines of the tasks, and worst execution 
times. Using this information, we implemented 
guarantee routines, using Theorem 2 in [Sha90], 
and Theorem 4 in [Liu73]. We decided to add 
these new services, instead of changing the old 
calls, keeping the original MINIX system calls. To 
have further information about these changes see 
[Wai95]. 

 
 

4. SOME EMPIRICAL RESULTS 
 
We have built an environment to test scheduling 
algorithms, and our idea is to use this framework 
to analyze the theoretic results in an experimental 
fashion. We paid special attention to 
implementation issues, performance and overhead 
of the algorithms.  
 
Our main aim was to examine the reliability of the 
scheduling algorithms to run predictably a given 
task set. With this purpose, we studied the 
guarantee ratio of each task set. The guarantee 
ratio measures the relationship between scheduled 
instances and deadline missing.  
 
Even a task set satisfying the theoretic bounds 
should run predictably (100% guarantee ratio) we 
run tasks not respecting the theory. We want to 
study the resulting problems in detail, to allow the 
proposal of new solutions. Following, we present 
some results obtained (the results presented are 
worst cases for several workloads). 
 

 
4.1. Real-time scheduling using a time-
sharing scheduler. 
 
To begin, we examined the performance of the 
original time-sharing algorithm when scheduling 
real-time tasks. We compared the  
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Figure 4. Guarantee ratio (5 periodic tasks). Different 
clock grains (curves). (a) RT schedulers; (b) MINIX 

scheduler + clock; (c)MINIX scheduler; (d) 
combination (r: real-time; m: MINIX; c: Minix + clock). 

results with those obtained using the new clock 
system call. At last, we contrasted both results 
with a real-time scheduling algorithm (in this case, 
the RM). We built different task sets, some of 
them consisting of tasks with the same period and 
execution times, and others with variable periods.  
 
Then, we tested the guarantee ratio of the 
scheduling algorithms. Using different task sets, we 
studied the influence of the schedulers, and also 
examined the behavior with changes in the clock 
granularity. 
 
First, we considered periodic instances with a 
worst execution time of 25 ms. (same period for 
every task). We also studied the influence of 
changing the task periods. 
 
We can observe that the comportment of the 
guarantee function is sigmoid. This happens 
because, as we have a fixed task set, once a task 
looses a deadline, will lose all subsequent 
regularly. With small periods, the guarantee ratio 
keeps close to 0%, because we have an 
overloaded system. When we relax the task 
period, the percentage increases quickly due 
reduction of the overload. Once a task meets a 

deadline, will meet it regularly, reducing the 
cascaded deadline missing. 
 
We can clearly recognize that the guarantee ratio 
we got using the real-time scheduler is a great deal 
better than using Round-robin scheduling. 
Moreover, the results we obtained using the clock 
system call are better than those got without using 
it, due to the increased precision of the task timing. 
 
Then, we tested a similar task set, with worst 
execution time of 120 ms. The results for round-
robin scheduling are much worse, than the 
previous case, since MINIX has a 100 millisecond 
quantum. Hence, the scheduler preempts the 
running in each period, making more difficult to 
meet its deadline. 
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Figure 5. G.R. of 5 tasks (worst execution time: 120ms). 
m: Minix scheduler; c: Minix using clock() service; r: 

real-time scheduler. 
 
Later, we increased the number of tasks in the set. 
In this case, we only run task sets using the clock 
call and the real-time scheduler (the results we got 
running simpler task sets using the MINIX 
scheduler without the clock call showed to be 
enough bad).  
 
The differences of the guarantee ratio between 
both examples are not so wide like the previous 
cases. This happens because the system is almost 
continuously overloaded due to the number of 



tasks and their execution times. Therefore, the 
real-time algorithm runs predictably only when the 
bounds are respected. 
 
The RM algorithm obtained better performance 
even with overloading. This happens because it 
runs first the tasks with higher priority, making 
them to lose fewer deadlines. Again, the situation 
was worse for MINIX scheduler running instances 
with longer execution times. We can recognize the 
influence of the scheduler time-out. 
 
Subsequently, we started more realistic 
benchmarks consisting of tasks with variable 
periods. We can see the results in figure 7 (The 
number in the x-axis of the graphic is 
proportionate to the tasks' period in the 
collection). 
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Figure 6. 15 tasks. Real-time scheduler (r) and Minix 
scheduler with clock service (c). Worst execution time: 

(a) 25 ms; (b) 120 ms. 
 
 
The differences were so large that we considered 
not necessary to run overloaded task sets. As the 
variable periods of the tasks difficult their 
predictable execution under the round-robin 
scheduler, the guarantee ratio is clearly better with 
the real-time scheduler. In the previous cases, we 
got more reduced differences, because every task 
had the same period. In this situation, the real time 
scheduler behaves as a cyclic executive (as the 
round-robin scheduler does). 
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Figure 7. Variable periods. (a) real-time scheduler with 
different clock grains; (b) comparing real-time (r) and 

Minix + clock (c). 

 



4.2. Comparing two real-time scheduling 
algorithms 
 
A second idea was to implement other scheduling 
algorithms, and to relate their performance. We 
started implementing the EDF, and compared it 
with the RM approach. We can observe those 
results in figures 8, and 9. We have repeated the 
tests we made in the previous section, 
contemplating the influence of having tasks with 
equal or distinct periods. We have regarded 
overloaded systems, increasing the processing 
times of every task, or increasing the number of 
tasks in the system as well. In this way, we are 
able to examine the influence of overloads. 
 
In the foremost case, we considered tasks with 
equal periods (figure 8). As the RM runs first the 
most crucial tasks in a stable fashion, the algorithm 
acts better than the EDF when there is an 
overload in the system. As the EDF algorithm has 
a more relaxed bound of processor utilization, it 
performs better when the load diminishes. The 
algorithm yields to better processor load, 
increasing the guarantee ratio. The values for both 
algorithms are ultimately alike (100%), because 
when we have longer tasks' periods we are below 
the conceptual bounds. 
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Figure 8. Comparing RM (rm) and EDF (dd). Same 
period. Worst execution time: 5 tasks(a) 25 ms (b) 120 

ms 15 tasks (c) 25 ms (d) 120 ms 
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Figure 9. Comparing RM and EDF. 5 tasks with 
variable periods. Worst execution case: (a) 25 ms. (b)  

120 ms. 
 
The same occurs when the task periods are 
variable, as we can see in figure 9 (again, the 
numbers we can see in the x-axis are proportional 
to the task's periods). 
The situation changes when we increase the 
number of tasks and each one make extensive use 
of the processor. In this case, the overload is 
always high. In this circumstance, the RM acts 
regularly better. This algorithm permits to satisfy a 
larger number of deadlines since it schedules the 
tasks with shorter period earlier, allowing to some 
of them (the most critical) to meet their deadlines. 
 
 
4.3. Testing sporadic tasks 
 

Our last task sets considered combinations of 
periodic and sporadic tasks. As the scheduling 
algorithm only guarantees the execution of periodic 
tasks, we want to study in detail the system 
behavior when we include aperiodic tasks.  
 
We ran different task sets with different 
combinations of periodic and aperiodic tasks. 
Likewise, we have contemplated the relationship 
among task periods and sporadic deadlines. 
 
We run periodic tasks with equal period, varying 
the sporadic deadlines (we can observe the results 
in figure 10, 11 and 12). Studying the figures, we 
can distinguish two cases. 
 
Case 1. Task period equal or larger that the 
sporadic deadline. 
 
a) Periodic tasks: both algorithms behave with 
similar shapes. When the overload is too high, the 
RM has a slightly better guarantee ratio. When we 
run a large number of tasks with variable periods, 
the distinction is still greater. We have a system 
overload up to the moment the task's periods 
approach the ideal limits. We can see 
approximately the same results we saw in section 
4.2. 
 
 
b) Sporadic tasks: the guarantee ratio grows 
constantly for the RM. Using the earliest deadline 
first, the overloads make the sporadic tasks to 
perform irregularly. 
 
Case 2. Sporadic deadlines shorter than periodic 
frequency 
 
a) Periodic tasks: the earliest deadline first has 
worse comportment when there are overloads. 
When we cut down the overload, the behavior is 
better for this algorithm. The sporadic tasks with 



brief deadlines will insert first in the ready queue, 
delaying the execution of the periodic tasks. 
 
b) Sporadic tasks: the overload makes the earliest 
deadline first to act unpredictably. When the 
overload reduces, we have a 100% of guarantee 
ratio for these tasks. The proportion is better for 
the periodic tasks as well. 
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Figure 10. Mix of periodic and sporadic. Equal periods. 
Period equal to sporadic deadline: (a)100 ticks/sec, 
(b) 1000 ticks/sec. Deadline smaller than period: (c) 

100 ticks/sec; (d) 1000 ticks/sec. 
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(c) 
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Figure 11. Mix of periodic and sporadic tasks. Variable 
periods. Period equal to sporadic deadline: (a) 100 

ticks/sec, (b) 1K ticks/sec. Sporadic deadline smaller 
than period (c) 100 ticks/sec; (d) 1K ticks/sec. 

 

0%

10%

20%

30%

40%

50%

60%

70%
80%

90%

100%

1 10 20 100 200 400

rm-p rm-a dd-p dd-a

 
(a) 

0%

10%

20%

30%

40%

50%

60%

70%
80%

90%

100%

2 10 100 200 400 600

rm-p rm-a dd-p dd-a

 
(b) 

0%

10%

20%

30%

40%

50%

60%

70%
80%

90%

100%

5 50 100 200

rm-p rm-a dd-p dd-a

 
(c)  

0%

10%

20%

30%

40%

50%

60%

70%
80%

90%

100%

6 50 100 200 300 400

rm-p rm-a dd-p dd-a

 
(d) 

Figure 12. Mix of periodic and sporadic tasks. 1000 
ticks/second. Fixed period (a) Period equal to sporadic 

deadline (b) Sporadic deadline smaller than period. 
Variable periods (c) Period equal to sporadic deadline. 

(d) Sporadic deadline smaller than period.  
 
To finish with this section, we must say that the 
results always satisfy the ideal bounds. After 
finishing each benchmark, we inspected the results 
using the corresponding formulas. In those 
circumstances the benchmarks showed 
predictable execution, we were respecting the 
conceptual limits.  
 

5. PRESENT WORK. CONCLUSION 
 
We have just tested the properties of two classic 
scheduling algorithms. Our next step will be to 
experience with different schedulers. Our last goal 
is trying to find new solutions, and examine them 
empirically. 
 



We are capable to get good response time with a 
round-robin scheduler in cases when the activation 
frequency for every task is approximately 
equivalent. This is not a good solution indeed we 
were careful while developing the system. If we 
must alter a task period, the results are not 
reliable. The algorithm act even less predictably 
when it runs tasks with different periods. 
 
We also could see that the real-time scheduling 
algorithms we implemented have some problems. 
The RM theory rest in the notion that the criticality 
of a task depends on its period (which is not 
always true). The algorithm has low time-loading 
as well. 
 
The EDF algorithm is dynamic, and allows to run 
aperiodic tasks more safely. It also has higher 
time-loading. Its main drawback is its unstable 
behavior in circumstances of overloading (instead, 
the RM executes the most critical tasks in a stable 
fashion). 
 
Although these inconveniences, these algorithms 
are much better than conventional time-sharing 
schedulers. We got better guarantee ratio, 
development times and small overhead. These 
facts make advisable to use them in any operating 
system having preemptive priorities as a real-time 
executive devoted to schedule real-time tasks.  
 
At present, we are testing the implementation of 
new solutions, such as those presented in [Sha90] 
and [Liu91], between others. We will implement 
solutions for sporadic servers, and a heuristic 
mixed algorithm, that use different schedulers 
depending on the actual workload conditions 
[Wai95b]. We will relate these solutions with 
other algorithms, such as period transformation 
and imprecise computation models.  We have 
provided facilities letting the user to use multiple 

version methods, that we will compare with 
another known solutions. 
 
With this work we tried a first proposal to solve 
real-time scheduling problems. To do so, we built 
a framework to develop real-time software, 
running at predictable times in dynamic 
environments. We can easily substitute this 
environment to examine different real-time 
scheduling algorithms. 
 
We provided new services, permitting the 
programmers to define tasks with time restrictions, 
and leaving the scheduler to run them at the 
needed times. We avoided the programmer 
intervention with timing issues. In this way, he can 
focus in solving the application problem, reducing 
the difficulties related with completing the timing 
restrictions. In this way, we are able to improve 
productivity, security and costs during the 
development cycle. Finally, we could test different 
task sets, showing advantages and drawbacks of 
using different real- time schedulers. 
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