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Abstract: Local real-time scheduling is a complex problem. The diversities of existing solutions 
hinder to decide which algorithm to use  upon designing each system. In this report a tool to 
simulate real-time scheduling (AgaPé-TR) is presented. The tool helps to classify and compare 
different solutions. To do so, it reflects the general characteristics of the problem, and provides 
facilities to include new algorithms. Using a synthetic benchmarking model, it permits to analyze 
different scheduling algorithms to get useful metrics. It also allows to make off-line 
schedulability analysis. The experiments carried out allowed to show its usefulness.  
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1. INTRODUCTION 
 
In real-time systems the computer control events 
occurring in the real world, hence the correct system 
behavior depends on the moments the computations 
are carried out. To meet the system's timing con-
straints is usually a hard work, as there are many 
restrictions to consider, usually conflicting. 
 
Not only task's deadlines must be considered; each 
task also has to meet timing constraints to use sys-
tems resources. As complex real time systems are 
usually divided in multiple tasks, precedence con-
straints also must be considered. In this framework, 
each  task should meet concurrence constraints. In 
distributed systems the situation is even more com-
plex, as we should meet communications restrictions 
(including tasks' interconnection and timing re -
quirements), and load balance constraints. Finally, the 
criticality level is another different constraint, telling 

that the execution of one task is more critical than 
other. 
 
The programming environment should provide fa -
cilities to easily develop real-time applications. One 
way to do so is to rely on real-time scheduling poli-
cies that must insure timely execution of every task in 
the system. To do so, the scheduler must set a 
predictable execution order (the schedule). 
 
At present, the number of real-time scheduling so-
lutions is so diverse that it is difficult to decide which 
algorithm to use. In this work the results obtained 
using a tool called AgaPé-TR are presented. It is de-
signed to ease the study of local real-time schedulers, 
allowing to classify them through simulation and 
collection of performance metrics. It also can be used 
by system designers to do off-line predictability 
analysis. The inclusion of new schedulers in the tool 
is easy, allowing the thorough study of new 
proposals. 



 
2. REAL-TIME SCHEDULING 

 
As explained in the previous section, the variety of 
constraints in real-time scheduling makes it an NP-
hard problem. To reduce this complexity, most al-
gorithms pose simplifications on the task models. 
They usually do not consider several constraints, and 
provide solutions useful for simplified task sets that 
can be scheduled in a timely fashion. 
 
Due to the diversity of scheduling solutions (see, for 
instance, Cheng, et al., (1988), Mercer (1992), 
Stankovic, et al., (1994),  or Wainer, (1995)), the 
designers face a complex decision to choose the right 
scheduling approach. AgaPé-TR was developed to 
allow the comparison of different approaches, helping 
the designer to decide. As it is easy to include new 
approaches or to change existing strategies, it can 
help the designer to compare with known strategies. 
This approximation is useful facing the 
implementation of new solutions, mainly where formal 
results of the advantages of a new scheduler are very 
complex or impossible to obtain. Finally, facilities to 
make off-line guarantee analysis are provided, 
allowing the designers to make schedulability studies 
of particular task sets. 
 
To measure the merit of each scheduling solution, 
several metrics can be used. To decide which ones to 
include, the following goals of a real-time scheduler 
were considered: 
 
• Predictable response of system tasks. A measure 

of predictability is the guarantee ratio, that is, 
the number of guaranteed tasks against the 
number of tasks arriving to the system. 

• High degree of schedulability, that is, resource 
use meeting the tasks' timing constraints. As 
many real-time tasks as possible should be 
executed in a timely fashion. A measure related 
with schedulability is the processor time loading , 
that measures the useful processing time. 

• The scheduler should provide stability under 
transient overloads. When the system is over-
loaded and it is impossible to meet the deadlines 
of every task, the behavior of the most critical 
ones should be guaranteed. A measure of system 
stability is the guarantee ratio weighed by the 
tasks' criticality. 

 
When the scheduler meets these goals, the develop-
ment complexity is reduced and the maintainability 
increased. Also, the safety of the developed system is 
improved (because it is less sensitive to timing er-
rors). Hence, the design of AgaPé-TR, is oriented to 
collect data to check these features in any chosen 
scheduler. 
 

 
3. DESCRIPTION OF THE TOOL 

 
Several scheduling algorithms rely on a task model 
with two kinds of tasks: the periodic and sporadic. 
Periodic tasks have a continuous series of regular 
invocations (the task period), and a worst case exe -
cution time (WCET). Their deadlines can be defined at 
the beginning, before or after the next period, de-
pending of the task model. They are very common, 
because most real-time systems have some type of 
regular sampling. Sporadic tasks only have one acti-
vation instance with a start time and deadline. We 
also must consider their WCET. They are useful to 
respond to events with random arrival time (for in -
stance, emergency tasks).  
 
The simulator models the execution of periodic and 
sporadic tasks using this model. Its inputs are a set of 
parameters of each task: class (periodic or sporadic), 
period (or deadline for aperiodics), WCET and start 
time. Task's criticality and a semaphore set related 
with the task are also included. Finally, the WCET of 
an alternative routine associated with the task is also 
included (new parameters can be easily added). Using 
this information, guarantee tests are executed to 
study predictability of the task set. The initial time 
loading is also computed. The tests are repeated each 
time a new task start or when a sporadic instance 
finish.  
 
Then, the execution of the task set is simulated using 
the periodic tasks model. It is considered that when 
an instance finishes the task is delayed up the begin -
ning of the next period in a queue driven by the timer 
interrupt. 
 
At present some well-known scheduling algorithms 
have been included : 
 
• Rate Monotonic (RM) (Liu and Layland, 1973; 

Lehoczky, et al., 1986): it is used to schedule 
periodic independent tasks. The tasks are 
selected accordingly with their activation rate 
(preemptive fixed priorities). 

• Earliest Deadline First (EDF) (Liu and Layland, 
1973): it selects the system tasks using variable 
preemptive priorities, giving higher priority to 
tasks with the earliest deadlines.  

• Earliest Deadline (ED) (Dertouzos, 1974): the 
highest priority is assigned to the task with the 
earliest deadline (fixed priorities without 
preemption). 

• Least Laxity First (LLF) (Mok and Dertouzos, 
1978): it is an Earliest Deadline algorithm, but 
considering the task laxity, that is, the remaining 
execution time up to the deadline. Tasks with 
smaller laxity are chosen to execute first. 



• Least Slack First (LSF) (Mok and Dertouzos, 
1978):  the highest priority is assigned to the task 
with the least laxity, determined statically at task 
arrival and not adjusted afterwards. 

• Deadline Monotonic (DM) (Audsley, etr al., 
1993): it requires static priorities in ascending 
order according with the  periods, but does not 
require deadlines equal to the period. 

 
A graphical interface is used to show task exe cution, 
as well as preemptions and deadline missing. In this 
way the exe cution trace of an individual task set can 
be studied, and off-line predictability analysis can be 
done.  
 
As  the main goal is to compare different algorithms, a 
second option generates task sets, and analyzes the 
results of their execution, computing different metrics.  
In each case, metrics are stored for the whole task set, 
discriminating the results for periodic and sporadic 
ones. To analyze system predictability, information is 
collected to study the relative guarantee ratio 
(relationship between the number of successful 
instances and the number of instances). The 
schedulability is studied analyzing the system time 
loading (the percentage of useful processing done by 
the system). The number of preemptions and context 
switches entitle the study of overheads imposed by 
the environment. The idle processor time is also 
examined. This metric is related with system 
schedulability, available time to run alternate routines 
and fault-tolerance. As several schedulers deliver 
rejected tasks to other processors, the number of 
rejected tasks against total tasks arrived is also 
measured. 
 
The stability is studied computing the relative guar-
antee ratio, weighted by the tasks' criticality. The idea 
is to associate a criticality value to each task (a real 
number among 0 and 1, increas ing with the task 
criticality). Let us call xi to the criticality of task ti, and 
Gp to the relative weighted guarantee ratio. Then, let 
us define two sets, P = {instances loosing its 
deadline}, and M = {Number of instances}. Hence,       
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xi  R,  xi  [0,1],  and   ,  then Gp  R,∈ ∈ ⊆ ∈P M and 
Gp ∈[0,1]. This value expresses a relative weighted 
ratio to compare the execution of the most crucial 
tasks. As Gp gets closer to 1, the system stability in -
creases. If Gp=1, the scheduler meets every deadline.  
 
The tool simulates different task loads, and collects 
the mentioned metrics to compare the scheduler be-
havior for different loads. To do so, an experimental 
frame was used to generate task loads based on the 
Hartstone benchmark (Weiderman, 1989). Certain 
changes to this benchmarking model were proposed, 

and new tests were introduced, allowing to run task 
sets with higher degree of offered load. The offered 
load is not the real system load (that can never be 
more than 100%), but the one obtained using the 
parameters declared by the designer, and used for the 
guarantee tests. The following guides suggested by 
Hartstone benchmarks were considered:  
 
• Make growing complexity tests, taking basic 

requirements and establishing strategies to 
change them.  

• The load must represent real-time systems. 
• Relative merit figures should be provided.  
 
To achieve these goals, the following kind of loads 
have been included :  
 
• PH: Periodic Harmonic task sets are executed. To 

begin, an underloaded system is generated, and it 
is gradually loaded. 1) Tasks' WCETs are 
augmented (increasing the total system load, al-
lowing to test the influence of system 
overloading without new overhead). 2) Tasks' 
periods are reduced (allowing to test system 
ability to handle an in cremental workload). 3) One 
task is selected its frequency increased, 
augmenting context switches, and testing the 
ability to manage fine time granularity. 4) The 
overload is increased adding new tasks, checking 
the ability to handle a large number of tasks. 

• PN: The previous tests are repeated, but in this 
case the Periodic tasks have Non harmonic peri-
ods. This second kind of test was included, as 
non harmonic tasks produce worst processor use 
than harmonic ones. 

• AH: a set of Harmonic periodic tasks is combined 
with Aperiodic ones. 1) The system is 
overloaded, reducing periodic tasks' periods. 
This test allows to test fine granularity of peri-
odic tasks when aperiodics have relaxed dead-
lines. 2) Overloads are generated by adding new 
periodic tasks to the task set. In this case system 
behavior when scheduling many periodic tasks 
and how they influence sporadic ones can be 
studied. 3) Sporadic tasks are added to study 
sys tems with a large set of them (to study, for in -
stance, emergency conditions where many spo-
radic tasks are started). 4) The influence of spo-
radic tasks with short deadlines is studied re -
ducing their deadlines. 5) The the WCET is 
augmented for the sporadic tasks to test the in -
fluence of overloading them. 

• AN: the AH tests are repeated where the periodic 
tasks have Non harmonic periods. 

 
If a significant sample is collected, the system 
behavior of each algorithm can be studied for 
different loads using each metric. To do so, we 
compute statistical measures to analyze the behavior 



of the different policies, classifying the tests and the 
different task classes.  
 
The simulated executions are classified according 
their processor system load, starting with under-
loaded systems. For each metric, minimum and 
maximum values, average and standard deviation are 
studied (at present, we are adding confidence 
intervals). In this way a wide variety of information is 
available to compare the simulated algorithms. Due to 
the diversity of information provided, it is difficult to 
study the results. Hence, a simple graphical interface 
was built, allowing to select the information to study 
and easing its visualization (it can be seen in the 
Appendix). 
 
One problem is related with the compute time to ob-
tain significant samples. To improve the performance 
two different simulation approaches have been used. 
One of them is time-driven, and the other is event-
driven. Each of them provides different results 
depending on the algorithm to simulate. For instance, 
RM can obtain significant speedup with the event-
driven approach, as future events can be easily 
determined. On the other hand, a time -driven 
approach provides better results for algorithms such 
as LLF because it has potential context switches in 
every tick. In this case, the overhead wasted in the 
manipulation of an event list reduces performance. As 
the execution of each load is is independent from the 
others, speedup can be obtained through system 
replication on multiple processors. 
 
 

4. RESULTS 
 
AgaPé-TR has been used in our Department, where 
the students could implement and experiment with dif-
ferent scheduling algorithms. Some well-known 
results found in the real-time scheduling literature 
could be checked in an experimental fashion. Simple 
comparisons were made between RM (TM in the 
figures), EDF and LLF, that can be seen in the 
following figures. 
 

(a) 
 

(b) 

(c) 

(d) 
 
Figure 1. Minimum Guarantee Ratio; Periodic  Tests: 

(a) PA1; (b) PN1; (c) PA3 ; (d) PN3. 
 

(a) 

 
(b) 

 
Figure 2. Aperiodic tasks - test AA1. (a) Minimum 

G.R. (b) Min. wheighed G.R. ( only aperiodics). 
 



(a) 
 

(b) 
 
Figure 3. Aperiodic tasks - test AN4. (a) Minimum 

G.R.  (b) Min. Wheighed G.R. (only aperiodics). 
 

(a) 
 

(b) 
 
Figure 4. (a) Preemptions (PA1); (b) Context Switches 

(AN4).  
 
We could check that: 
 
• Harmonic periodic tasks produce 100% of guar-

antee ratio when the schedulability tests are met. 
Instead, guarantee ratio is under 100% for non-
harmonic task sets. 

• RM algorithm has stability under transient 
overloading for certain periodic tasks, since 

executes the tasks with shorter periods predict-
ably.  

• EDF and LLF algorithms handle better the spo-
radic tasks, if the system is not overloaded. 

• EDF and LLF algorithms run erratically under 
transient overloading. EDF is better than LLF 
when the system is not loaded for harmonic pe-
riodic tasks. The results are opposite when we 
run non-harmonic ones. 

• LLF is the algorithm with higher number of 
context switches and preemptions. Instead, RM 
and EDF have about the same number of context 
switches.  

 
At present, the tool has been used to test easily new 
scheduling algorithms (Wainer, 1996). New studies 
have been started, including ED, LSF and DM 
algorithms. These have been programmed by 
undergraduates in about 10 man-hours, including 8 
hours devoted to study the tool.  This fact allowed to 
check that the system design makes easy the 
inclusion of new approaches. 
 
 

5. PRESENT WORK AND CONCLUSION 
 
In this work the features of a tool used to study real-
time scheduling algorithms have been presented. An 
environment has been built considering the main 
features of the problem and the metrics to use. 
 
It could be shown the capability of AgaPé-TR to make 
experimental analysis. Its flexibility allows to test new 
solutions easily. In particular, a designer interested to 
improve some aspects of an algorithm can include 
them and study the aspects to improve. Without extra 
effort, collateral effects can be detected (for instance, 
increases in overhead or reduction of stability). 
 
AgaPé-TR also serves to make off-line schedulability 
studies of particular loads through system trace. In 
this way a designer can study the timeliness of a 
given task set. It has been used with success to 
analyze the behavior of some traditional algorithms, 
and now it is being used to compare them with new 
solutions. 
 
At present new tests are being added to study tasks 
with precedence constraints, and facing new changes 
to study fault-tolerant scheduling solutions. The 
Hartstone model was found incomplete to test several 
existing algorithms and some solutions for these 
problems are being studied at present. The design of 
the tool makes that new tests can be added easily. 
The tool is courrently being prepared to run in Unix 
environments. 
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