

EXPERIENCES WITH AGAPE-TR: A SIMULATION TOOL FOR LOCAL REAL-TIME
SCHEDULING

Gabriel A. Wainer

Computer Sciences Department.
Facultad de Ciencias Exactas y Naturales.

Universidad de Buenos Aires.
Ciudad Universitaria. Pabellón I. Buenos Aires.Argentina.

gabrielw@dc.uba.ar
http://www.angelfire.com/ga/gw

Abstract: Local real-time scheduling is a complex problem. The diversities of existing solutions
hinder to decide which algorithm to use upon designing each system. In this report a tool to
simulate real-time scheduling (AgaPé-TR) is presented. The tool helps to classify and compare
different solutions. To do so, it reflects the general characteristics of the problem, and provides
facilities to include new algorithms. Using a synthetic benchmarking model, it permits to analyze
different scheduling algorithms to get useful metrics. It also allows to make off-line
schedulability analysis. The experiments carried out allowed to show its usefulness.

Keywords: Real-Time, scheduling algorithms, simulation, performance evaluation.

1. INTRODUCTION

In real-time systems the computer control events
occurring in the real world, hence the correct system
behavior depends on the moments the computations
are carried out. To meet the system's timing con-
straints is usually a hard work, as there are many
restrictions to consider, usually conflicting.

Not only task's deadlines must be considered; each
task also has to meet timing constraints to use sys-
tems resources. As complex real time systems are
usually divided in multiple tasks, precedence con-
straints also must be considered. In this framework,
each task should meet concurrence constraints. In
distributed systems the situation is even more com-
plex, as we should meet communications restrictions
(including tasks' interconnection and timing re -
quirements), and load balance constraints. Finally, the
criticality level is another different constraint, telling

that the execution of one task is more critical than
other.

The programming environment should provide fa -
cilities to easily develop real-time applications. One
way to do so is to rely on real-time scheduling poli-
cies that must insure timely execution of every task in
the system. To do so, the scheduler must set a
predictable execution order (the schedule).

At present, the number of real-time scheduling so-
lutions is so diverse that it is difficult to decide which
algorithm to use. In this work the results obtained
using a tool called AgaPé-TR are presented. It is de-
signed to ease the study of local real-time schedulers,
allowing to classify them through simulation and
collection of performance metrics. It also can be used
by system designers to do off-line predictability
analysis. The inclusion of new schedulers in the tool
is easy, allowing the thorough study of new
proposals.

2. REAL-TIME SCHEDULING

As explained in the previous section, the variety of
constraints in real-time scheduling makes it an NP-
hard problem. To reduce this complexity, most al-
gorithms pose simplifications on the task models.
They usually do not consider several constraints, and
provide solutions useful for simplified task sets that
can be scheduled in a timely fashion.

Due to the diversity of scheduling solutions (see, for
instance, Cheng, et al., (1988), Mercer (1992),
Stankovic, et al., (1994), or Wainer, (1995)), the
designers face a complex decision to choose the right
scheduling approach. AgaPé-TR was developed to
allow the comparison of different approaches, helping
the designer to decide. As it is easy to include new
approaches or to change existing strategies, it can
help the designer to compare with known strategies.
This approximation is useful facing the
implementation of new solutions, mainly where formal
results of the advantages of a new scheduler are very
complex or impossible to obtain. Finally, facilities to
make off-line guarantee analysis are provided,
allowing the designers to make schedulability studies
of particular task sets.

To measure the merit of each scheduling solution,
several metrics can be used. To decide which ones to
include, the following goals of a real-time scheduler
were considered:

• Predictable response of system tasks. A measure

of predictability is the guarantee ratio, that is,
the number of guaranteed tasks against the
number of tasks arriving to the system.

• High degree of schedulability, that is, resource
use meeting the tasks' timing constraints. As
many real-time tasks as possible should be
executed in a timely fashion. A measure related
with schedulability is the processor time loading ,
that measures the useful processing time.

• The scheduler should provide stability under
transient overloads. When the system is over-
loaded and it is impossible to meet the deadlines
of every task, the behavior of the most critical
ones should be guaranteed. A measure of system
stability is the guarantee ratio weighed by the
tasks' criticality.

When the scheduler meets these goals, the develop-
ment complexity is reduced and the maintainability
increased. Also, the safety of the developed system is
improved (because it is less sensitive to timing er-
rors). Hence, the design of AgaPé-TR, is oriented to
collect data to check these features in any chosen
scheduler.

3. DESCRIPTION OF THE TOOL

Several scheduling algorithms rely on a task model
with two kinds of tasks: the periodic and sporadic.
Periodic tasks have a continuous series of regular
invocations (the task period), and a worst case exe -
cution time (WCET). Their deadlines can be defined at
the beginning, before or after the next period, de-
pending of the task model. They are very common,
because most real-time systems have some type of
regular sampling. Sporadic tasks only have one acti-
vation instance with a start time and deadline. We
also must consider their WCET. They are useful to
respond to events with random arrival time (for in -
stance, emergency tasks).

The simulator models the execution of periodic and
sporadic tasks using this model. Its inputs are a set of
parameters of each task: class (periodic or sporadic),
period (or deadline for aperiodics), WCET and start
time. Task's criticality and a semaphore set related
with the task are also included. Finally, the WCET of
an alternative routine associated with the task is also
included (new parameters can be easily added). Using
this information, guarantee tests are executed to
study predictability of the task set. The initial time
loading is also computed. The tests are repeated each
time a new task start or when a sporadic instance
finish.

Then, the execution of the task set is simulated using
the periodic tasks model. It is considered that when
an instance finishes the task is delayed up the begin -
ning of the next period in a queue driven by the timer
interrupt.

At present some well-known scheduling algorithms
have been included :

• Rate Monotonic (RM) (Liu and Layland, 1973;

Lehoczky, et al., 1986): it is used to schedule
periodic independent tasks. The tasks are
selected accordingly with their activation rate
(preemptive fixed priorities).

• Earliest Deadline First (EDF) (Liu and Layland,
1973): it selects the system tasks using variable
preemptive priorities, giving higher priority to
tasks with the earliest deadlines.

• Earliest Deadline (ED) (Dertouzos, 1974): the
highest priority is assigned to the task with the
earliest deadline (fixed priorities without
preemption).

• Least Laxity First (LLF) (Mok and Dertouzos,
1978): it is an Earliest Deadline algorithm, but
considering the task laxity, that is, the remaining
execution time up to the deadline. Tasks with
smaller laxity are chosen to execute first.

• Least Slack First (LSF) (Mok and Dertouzos,
1978): the highest priority is assigned to the task
with the least laxity, determined statically at task
arrival and not adjusted afterwards.

• Deadline Monotonic (DM) (Audsley, etr al.,
1993): it requires static priorities in ascending
order according with the periods, but does not
require deadlines equal to the period.

A graphical interface is used to show task exe cution,
as well as preemptions and deadline missing. In this
way the exe cution trace of an individual task set can
be studied, and off-line predictability analysis can be
done.

As the main goal is to compare different algorithms, a
second option generates task sets, and analyzes the
results of their execution, computing different metrics.
In each case, metrics are stored for the whole task set,
discriminating the results for periodic and sporadic
ones. To analyze system predictability, information is
collected to study the relative guarantee ratio
(relationship between the number of successful
instances and the number of instances). The
schedulability is studied analyzing the system time
loading (the percentage of useful processing done by
the system). The number of preemptions and context
switches entitle the study of overheads imposed by
the environment. The idle processor time is also
examined. This metric is related with system
schedulability, available time to run alternate routines
and fault-tolerance. As several schedulers deliver
rejected tasks to other processors, the number of
rejected tasks against total tasks arrived is also
measured.

The stability is studied computing the relative guar-
antee ratio, weighted by the tasks' criticality. The idea
is to associate a criticality value to each task (a real
number among 0 and 1, increas ing with the task
criticality). Let us call xi to the criticality of task ti, and
Gp to the relative weighted guarantee ratio. Then, let
us define two sets, P = {instances loosing its
deadline}, and M = {Number of instances}. Hence,

Gp
 xi
xi

.i

i

=
∑
∑

∈

∈

P

M
 As i [1,n]∀ ∈

xi R, xi [0,1], and , then Gp R,∈ ∈ ⊆ ∈P M and
Gp ∈[0,1]. This value expresses a relative weighted
ratio to compare the execution of the most crucial
tasks. As Gp gets closer to 1, the system stability in -
creases. If Gp=1, the scheduler meets every deadline.

The tool simulates different task loads, and collects
the mentioned metrics to compare the scheduler be-
havior for different loads. To do so, an experimental
frame was used to generate task loads based on the
Hartstone benchmark (Weiderman, 1989). Certain
changes to this benchmarking model were proposed,

and new tests were introduced, allowing to run task
sets with higher degree of offered load. The offered
load is not the real system load (that can never be
more than 100%), but the one obtained using the
parameters declared by the designer, and used for the
guarantee tests. The following guides suggested by
Hartstone benchmarks were considered:

• Make growing complexity tests, taking basic

requirements and establishing strategies to
change them.

• The load must represent real-time systems.
• Relative merit figures should be provided.

To achieve these goals, the following kind of loads
have been included :

• PH: Periodic Harmonic task sets are executed. To

begin, an underloaded system is generated, and it
is gradually loaded. 1) Tasks' WCETs are
augmented (increasing the total system load, al-
lowing to test the influence of system
overloading without new overhead). 2) Tasks'
periods are reduced (allowing to test system
ability to handle an in cremental workload). 3) One
task is selected its frequency increased,
augmenting context switches, and testing the
ability to manage fine time granularity. 4) The
overload is increased adding new tasks, checking
the ability to handle a large number of tasks.

• PN: The previous tests are repeated, but in this
case the Periodic tasks have Non harmonic peri-
ods. This second kind of test was included, as
non harmonic tasks produce worst processor use
than harmonic ones.

• AH: a set of Harmonic periodic tasks is combined
with Aperiodic ones. 1) The system is
overloaded, reducing periodic tasks' periods.
This test allows to test fine granularity of peri-
odic tasks when aperiodics have relaxed dead-
lines. 2) Overloads are generated by adding new
periodic tasks to the task set. In this case system
behavior when scheduling many periodic tasks
and how they influence sporadic ones can be
studied. 3) Sporadic tasks are added to study
sys tems with a large set of them (to study, for in -
stance, emergency conditions where many spo-
radic tasks are started). 4) The influence of spo-
radic tasks with short deadlines is studied re -
ducing their deadlines. 5) The the WCET is
augmented for the sporadic tasks to test the in -
fluence of overloading them.

• AN: the AH tests are repeated where the periodic
tasks have Non harmonic periods.

If a significant sample is collected, the system
behavior of each algorithm can be studied for
different loads using each metric. To do so, we
compute statistical measures to analyze the behavior

of the different policies, classifying the tests and the
different task classes.

The simulated executions are classified according
their processor system load, starting with under-
loaded systems. For each metric, minimum and
maximum values, average and standard deviation are
studied (at present, we are adding confidence
intervals). In this way a wide variety of information is
available to compare the simulated algorithms. Due to
the diversity of information provided, it is difficult to
study the results. Hence, a simple graphical interface
was built, allowing to select the information to study
and easing its visualization (it can be seen in the
Appendix).

One problem is related with the compute time to ob-
tain significant samples. To improve the performance
two different simulation approaches have been used.
One of them is time-driven, and the other is event-
driven. Each of them provides different results
depending on the algorithm to simulate. For instance,
RM can obtain significant speedup with the event-
driven approach, as future events can be easily
determined. On the other hand, a time -driven
approach provides better results for algorithms such
as LLF because it has potential context switches in
every tick. In this case, the overhead wasted in the
manipulation of an event list reduces performance. As
the execution of each load is is independent from the
others, speedup can be obtained through system
replication on multiple processors.

4. RESULTS

AgaPé-TR has been used in our Department, where
the students could implement and experiment with dif-
ferent scheduling algorithms. Some well-known
results found in the real-time scheduling literature
could be checked in an experimental fashion. Simple
comparisons were made between RM (TM in the
figures), EDF and LLF, that can be seen in the
following figures.

(a)

(b)

(c)

(d)

Figure 1. Minimum Guarantee Ratio; Periodic Tests:

(a) PA1; (b) PN1; (c) PA3 ; (d) PN3.

(a)

(b)

Figure 2. Aperiodic tasks - test AA1. (a) Minimum

G.R. (b) Min. wheighed G.R. (only aperiodics).

(a)

(b)

Figure 3. Aperiodic tasks - test AN4. (a) Minimum

G.R. (b) Min. Wheighed G.R. (only aperiodics).

(a)

(b)

Figure 4. (a) Preemptions (PA1); (b) Context Switches

(AN4).

We could check that:

• Harmonic periodic tasks produce 100% of guar-

antee ratio when the schedulability tests are met.
Instead, guarantee ratio is under 100% for non-
harmonic task sets.

• RM algorithm has stability under transient
overloading for certain periodic tasks, since

executes the tasks with shorter periods predict-
ably.

• EDF and LLF algorithms handle better the spo-
radic tasks, if the system is not overloaded.

• EDF and LLF algorithms run erratically under
transient overloading. EDF is better than LLF
when the system is not loaded for harmonic pe-
riodic tasks. The results are opposite when we
run non-harmonic ones.

• LLF is the algorithm with higher number of
context switches and preemptions. Instead, RM
and EDF have about the same number of context
switches.

At present, the tool has been used to test easily new
scheduling algorithms (Wainer, 1996). New studies
have been started, including ED, LSF and DM
algorithms. These have been programmed by
undergraduates in about 10 man-hours, including 8
hours devoted to study the tool. This fact allowed to
check that the system design makes easy the
inclusion of new approaches.

5. PRESENT WORK AND CONCLUSION

In this work the features of a tool used to study real-
time scheduling algorithms have been presented. An
environment has been built considering the main
features of the problem and the metrics to use.

It could be shown the capability of AgaPé-TR to make
experimental analysis. Its flexibility allows to test new
solutions easily. In particular, a designer interested to
improve some aspects of an algorithm can include
them and study the aspects to improve. Without extra
effort, collateral effects can be detected (for instance,
increases in overhead or reduction of stability).

AgaPé-TR also serves to make off-line schedulability
studies of particular loads through system trace. In
this way a designer can study the timeliness of a
given task set. It has been used with success to
analyze the behavior of some traditional algorithms,
and now it is being used to compare them with new
solutions.

At present new tests are being added to study tasks
with precedence constraints, and facing new changes
to study fault-tolerant scheduling solutions. The
Hartstone model was found incomplete to test several
existing algorithms and some solutions for these
problems are being studied at present. The design of
the tool makes that new tests can be added easily.
The tool is courrently being prepared to run in Unix
environments.

REFERENCES

Audsley, N., Burns, A. and Wellings, J. (1993).
"Deadline monotonic scheduling theory and ap-
plication". Control Engineering Practice, 1, (1), 71-
78.

Cheng, S., Stankovic, J. and Ramamritham, K. (1993).
"Scheduling Algorithms for Real-time systems: a brief
survey". In: Real-Time Systems (J. Stankovic, K.
Ramamritham (Ed.)). IEEE Press, pp. 150-173.

Dertouzos, M. (1974). "Control robotics: the
procedural control of physical process". In: Proceed-
ings of the IFIP Congress .

Lehoczky, J.P., Sha, L. and Ding. Y. (1986).."The Rate
Monotonic Scheduling algorithm - exact charac-
terization and average case behavior". In: Pro -
ceedings IEEE Real-Time Systems Symposium. CS
Press, Los Alamitos, California. 166-171.

Liu, C. and Layland, J. (1973). "Scheduling algorithms
for multiprogramming in a Hard Real Time System
Environment". Journal of the ACM, Vol. 20, No. 1. 46-
61.

Mercer, C. (1992)."An introduction to real-time
operating systems: scheduling theory". Technical
Report. Carnegie Mellon University.

Mok, A.; Dertouzos, M. (1978)."Multiprocessor
scheduling in a hard real-time environment".
Proceedings of the Seventh Texas Conference on
Computing System.

Stankovic, J., Spuri, M., Di Natale, M., Butazzo, G.
(1994). "Implications of classical scheduling results
for Real-Time systems". CMPSCI Technical Report
93-23. University of Massachussets at Amherst .

Wainer, G. (1995). "Some results of local real-time
schedulin". (in Spanish). In: Proceedings of the 24th.
Jornadas Argentinas de Informática e Investigación
Operativa. Buenos Aires, Argentina. 433-451.

Wainer, G. (1996)."Improving the performance of real-
time scheduling algorithms". Technical Report No.
96-007. Facultad de Ciencias Exactas y Nagturales.
Universidad de Buenos Aires. To be published in the
Proceedings of AARTC'97.

Weiderman, N. (1989). "Hartstone: synthetic
benchmark requirements for Hard Real-Time applica-
tions". Technical Report CMU/SEI-89-TR-23.
Carnegie Mellon University.

APPENDIX - Graphical interface (selection - in Spanish)

