

New Real-Time Extensions to the MINIX operating system

Pablo J. Rogina Gabriel Wainer

{pr6a,gabrielw}@dc.uba.ar

Departamento de Computación
Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires
Pabellón I - Ciudad Universitaria

Buenos Aires (1428) – ARGENTINA

ABSTRACT

The present work presents the inclusion of several
real-time services provided in real-time operating
systems, and incorporates these features in a recent
version of the MINIX operating system. The most
recent extensions allow the incorporation of fault
tolerant schemes. The services are being used in a
bottle-filling plant prototype to test real-time
capabilities of the operating system.

Keywords: Operating systems, Real-time systems,
Scheduling Algorithms, Fault Tolerance.

1. INTRODUCTION

Real-time systems are those systems in which the
correctness depends not only on the results
obtained, but also on the time at which these results
are produced. These timing constraints are usually
attached to processes (or tasks).

Real-time systems span from microcontrollers in
automobile engines to very complex applications,
such as aircraft flight control or process control in
manufacturing plants. Nonetheless, a real-time
system consists generally of a control system and a
controlled system. Information about the
environment is provided via sensors, and the
system can in turn modify the state of the
environment through actuators. Failure in meeting
the tasks’ deadlines can lead to catastrophic
consequences.

As many other computer applications, real-time
systems are usually built by using the services
offered by an operating system. In this case, the
services provided should be slightly different than
the case for traditional applications. It should
provide basic support for predictability, satisfaction

of real-time constraints, fault tolerance and
integration between time-constrained resources and
scheduling.

Existing real-time operating systems (RTOS) can
be divided in two categories:
• Systems implemented using somewhat stripped

down and optimized (or specialized) versions
of conventional timesharing OS

• Systems starting from scratch, focusing on
predictability as a key design feature.

Research projects falling in the first category
include RT Mach [1]; RT-Linux [2] and KURT [3].
Operating systems like Spring [4], Maruti [5] and
YARTOS [6] were developed using the second
approach. Though several commercially available
systems, including LynxOS [7] and QNX [8], offer
real-time performance and services to applications,
they are too costly and proprietary to be used by
research or academic institutions.

Task scheduling in multitasking systems has been
extensively studied in the operating system
literature. Nevertheless, the traditional scheduling
techniques used in general purpose systems (e.g.
FIFO, Shortest Job First, Round Robin, etc.) are not
adequate to be used in time constrained systems.
These scheduling policies attempt to reduce certain
performance metrics (i.e., the average response
time), and do not deal with the timing constraints of
the processes to be scheduled.

On the other hand, scheduling policies for real-time
systems need to guarantee that tasks will meet their
deadlines in all circumstances. Such a set of tasks is
called schedulable , with each task having a
predictable behavior. Scheduling algorithms can be
divided in two major models: preemptive, and non-
preemptive. The first one assume that any task can

be interrupted during its execution, while non-
preemptive algorithms do not allow a running task
to be interrupted.

Most scheduling algorithms divide the schedulable
tasks into two different classes: periodic and
aperiodic (sporadic). The periodic tasks must run
repeatedly, and within fixed times (known as
period). The aperiodic tasks run sporadically, and
only once, when they are invoked.

Two well-known policies are broadly accepted for
Real-Time scheduling: RMS (Rate Monotonic
Scheduling) was shown to be optimal for
scheduling fixed priority task sets. In dynamic
priority systems, using EDF (Earliest Deadline
First) policy, full processor utilization can be
achieved. Real-time scheduling algorithms are a
field of continuing research.

Taking this base into account, the present project
shows the results obtained building a new version
of an extended Real-Time operating system. The
Minix 2.0 [9] operating system was taken as a base,
and it was extended it with several real-time
services. The most important include task
management capabilities (both for periodic an
aperiodic tasks), real-time scheduling algorithms;
new device drivers allowing A/D conversion, and
improved fault tolerance features, specially, robust
sensing algorithms incorporated inside the kernel.

The rest of this work is divided as follows: Section
2 describes the MINIX OS and the real-time
extensions done to that operating system. Each
added feature is presented and explained in detail.
Section 3 is devoted to introduce current
applications using the modified OS, while future
work possibilities are listed in Section 4.

2. REAL-TIME EXTENSIONS TO MINIX

MINIX [9] (name that stands for Mini-UNIX), is a
complete, timesharing, multitasking operating
system. Inspired by UNIX, it was written from
scratch by A. Tannenbaum. Though it is
copyrighted, the source has been made widely
available to universities for study and research in
computer science courses.

The work presented in [10] showed the results
obtained in a research project devoted to use
MINIX to implement real-time scheduling. Several
changes was made to source code of the kernel, in
order to provide the user with a set of system calls
to create and manage tasks, both periodic or
aperiodic.

The project was devoted to provide programming
facilities to develop hard real-time software. Under
the changed MINIX OS, the programmer was
allowed to define timing constraints for the tasks,
letting the OS to execute them in a timely fashion.
In this way, productivity, security and development
costs can be improved.

Several real-time services were added. First, RM
and EDF scheduling were included. These
strategies were later combined with other
traditional strategies, such as Least Laxity First,
Least Slack First and Deadline Monotonic. At
present new flexible schedulers are being included.

To allow these chenges several data structures in
the operating system were modified (to consider
tasks period, execution time and criticality). A new
multiqueue scheme was defined, so as to
accommodate real-time tasks along with interactive
and CPU-bound tasks.

A new set of signals was added to indicate special
situations, such as missed deadlines, overload or
uncertainty of the schedulability of the task set.

All these services were made available to the
programmer as a complete set of new system calls.
A long list of tests demonstrated the feasibility of
MINIX as a workbench for real-time development.

Several work was done using the tool, spanning
from the testing of new scheduling algorithms to
kernel modifications. In despite of this fact, several
additional features were identified to be added to
original environment. Recently, the need to
integrate the previous work in a new version for the
operating system arised. This happened because
new MINIX versions were released in the
meantime. Some of those extensions are presented
in the following paragraphs.

Analogic- Digital Conversion

The first group of changes was related with the
need to acquire analogic data from the
environment. As stated earlier, many real-time
systems are used to control a real process, such as a
production line or a chemical reaction. This implies
a ‘sense and act’ attitude, i.e., sensing the
environment and then changing it if necessary to
keep control of the whole process. To sense the real
world, a long list of sensors can be used, ranging
from thermometers, pressure, infrared, etc.; many
of them providing analogic signals.

The game port interface in the PC allows
connecting up to four analog and four digital
inputs. Providing the OS with the ability to directly
read the game port enhances the chance to connect
different analog sensors. The possibility to use this
feature from within MINIX was tested [11], and a
device driver for the game port was written.

When the new solutions were tested, it showed
ppor performance when doing the readings. The
device driver had to be completed rewritten, this
time following the same framework used under
Linux [12], with slightly changes. Resistive inputs
(coordinates XY) and digital inputs (buttons) are
aligned together in a byte (8 bits) that can be read at
address 201h. Input pins from D-connector relates
with that byte the following way:

Figure 1. Game Port Data bus and pins correlation

The device driver adds a new kernel task that
provide the programmer with three basic operations
(open, read, close) to access the game port as
character devices (/dev/js0 and /dev/js1, for joystick
A and joystick B, respectively). To read the axis,
the task sends any value to that port (201h) and
cycles reading the port, waiting for any of the
resistive inputs to become 0. The number of times
the cycle is run is proportiona l to the resistance
(and thus position) of the joystick. Some scripts

were also modified to make device creation a
simple step.

At present we ar working into the addition of new
drivers for different A/D – D/A controllers.

Joined Scheduling Queues

A second set of changes was related with the task
scheduler management. The original task scheduler
of MINIX used three queues, in order to handle
task, server and user processes in that order of
priority. Each queue was scheduled using the
Round Robin algor ithm.

The next figure shows the MINIX structure related
to processes and message passing and the ready
process queuing and handling:

Level 3 INIT User 1 User 2 User n
Level 2 Memory Manager

(MM)
File System (FS)

Level 1 Disk
Task

Clock
Task

Printer
Task

Other
Tasks

Level 0 Process Manager
Figure 2. Processes structure in MINIX [9]

Each of these levels are described below:

• Level 0 is in charge of three fundamental
duties: process management; message passing
and interrupti management.

• Level 1 includes I/O processes or tasks (known
also as device drivers).

• Level 2 contains only two processes, FS and
MM, bringing an extended machine able to
manage system calls of certain complexity.

• Level 3 comprises all the processes below the
INIT process, the place for applications (like
compilers, shell, editors) and user processes.

The basic idea considered in joining the queues was
related with the goal that a real-time task should not
be interfered by low level interrupts (and its
associated servers). The work presented in [13]
worked on the hypothesis that server and user
queues can be joined, allowing File System (FS)
and Memory Manager (MM) processes to be
moved from server to user process category.

The expected result of such change is getting better
response time from the operating system. The union
of the queues avoids intereference of the Operating

System tasks in the most critical real-time tasks.
Several examples of possible scenarios are
introduced. Through these case studies and their
impacts in processing time, it became clear that the
unification was feasible. Reducing the number of
queues is also a step towards fault tolerance.

When the availability of shared resources (such as
FS or MM) are diminished, a deadlock problem is
likely to appear quite often. A deadlock occurs
whenever a process is blocked waiting for a second
process, while the later is also waiting for the first
one.

Under the original scheduler in MINIX 2.0, a
process requiring a service from FS or MM had it
delivered immediately. This was that way because
FS or MM had enough priority to start at any time
without being preempted. An in-depth analysis was
made to check the possibility of deadlock between
FS and MM, first revisiting the semantics of them
and then trying to measure the impact of the new
scheduler (with the joined queues).

The only possible communication between FS y
MM (under the original source code) is done during
system initialization, and that connection is
unidirectional, thus avoiding the circular waiting
case. A conclusion from that scheme is that FS and
MM work independently, having relation only with
processes of task category (the kernel itself or
device drivers). Task level processes have higher
priority and are not preempted because of that
condition, with their execution being considered
instantaneous (and atomic) regarding a user
process.

The final conclusion is that deadlocks are not
probable to occur due to the changed scheduler.
User processes cannot communicate each other; FS
does not communicate with MM; and the
management of the task queue was not altered from
the original code. This is a very good feature to
achieve fault tolerance.

Real-time Metrics

Once the OS was extended with real-time services,
the need arose to have several measuring tools. It is
needed to test the evolution of the executing tasks
according with the different scheduling strategies.

The impact of the different workloads should be
also considered.

To do so, the kernel is in charge to keep a data
structure that is accessible to the user via a system
call. The structure includes the following items:

struct rt_globstats {
int actpertsk;
int actapetsk;
int misperdln;
int misapedln;
int totperdln;
int totapedln;
int gratio;
clock_t idletime;

};

with:
actpertsk, acrtapetsk : number of active (running)
real-time tasks, both periodic and aperiodic.

misperdln, misapedln : number of missed deadlines,
both periodic and aperiodic.

totpertsk, totapetsk : number of total scheduled real-
time tasks instances, both periodic and aperiodic.

gratio: guarantee ratio, i.e., the relationship
between number of instances and deadlines met.

idletime: time (in clock ticks) not used as compute
time.

Statistics also can be monitored online by means of
a function key displaying all that information.

Replicated Sensors

Sensor replication is an area of growing interest in
real-time processing. It enhances the fault tolerance
potential of the whole system by exploiting
redundancy. As earlier explained, MINIX has been
expanded with sensor reading capabilities, and the
existing serial and parallel ports can be connected
to data acquisiton hardware. The main goal was to
include standard fault tolerant strategies, allowing
to to check the validity of different available
sensing algorithms.

The work presented in [14] introduces an important
concept in order to tolerate sensor failure: the use of

abstract sensors. An abstract sensor is a set of
values that contains the present value of a physical
variable of interest. Each abstract sensor is
implemented using a concrete sensor (a physical
device that reads a physical variable, i.e. a
thermometer). The concrete sensor does not need to
sense the physical variable of interest. For example,
a temperature abstract sensor can be constructed
using a manometer to sense pressure and then
applying the Boyle’s law.

Another important aspect of sensor replication is
the ability to enhance the expected accuracy from a
set of replicated sensors far beyond the obtainable
using only one sensor. This leads to multisensor
environments or the use of a distributed network of
sensors.

Data coming from the physical system may be
faulty due to sensor’s failure, communication
problems or noise. When using sensor replication, a
method to combine data from several different
sensors is needed. This action is called information
integration, and it can be competitive or
complementary.

In the first approach, each sensor theoretically
provides identical information (though this is not
the case in practice). Complementary information
integration is done when partial information is
available from each sensor: that information is
combined to get the necessary knowledge about the
environment.

Another advantage provided by the concept of
abstract sensor is the capacity of data abstraction. A
strategy of fault tolerance algorithms is to employ
different kinds of redundant sensors. Thus, a real
application could arrange different sensors (i.e.,
infrared, microwaves, and radar) that are not
vulnerable to the same type of interference. To
specify such a real-time system, only abstract
sensors are considered, without concern of the type.

Using the algorithms studied under [15], the idea
was to extend RT-MINIX with the possibility to
use several sensors from a fault tolerance
perspective. First of all, the four algorithms were
coded as a user application. The next step was to
incorporate the ability to use real data. In this case,
the environment was sensed by means of four
potentiometers (using the four analogic inputs from
the joystick port). The inputs were arranged as a set

of concrete sensors (acting as position sensors for a
simulated robotic arm).

The algorithms worked as expected, providing a
unique value from the replicated sensors and
although one of them were faulty (the user had the
chance to change data varying the potentiometers as
desired).

Finally, the algorithms were combined in the
kernel, providing the programmer with a set of
functions to work with abstract sensors. It is
possible to create (indicating physical devices, such
as /dev/js0 and type of algorithms) and then read an
abstract sensor, even in the presence of faulty
concrete sensors.

3. CURRENT APPLICATIONS

The present section is mainly devoted to show
several applications that have been developed using
this Operating System, and a new set of programs
being built at present.

Supervisory Control And Data Acquisition

The first developed application was a SCADA
program developed with academic purposes. It was
written previously to run under MINIX and later
adapted to execute in a real-time environment.

The SCADA is built as as a general application
used to supervise a set of industrial processes.
Different parameters can be defined for each
process, including ports to be read, values to be
recorded and alarms to be raised. Data acquired by
the program can also be monitored from another
computer through the serial ports. A history log file
is generated, allowing the revision (and printout) of
the activity that occurred during program execution.

A SCADA tool is a good application to test RT-
MINIX with real processing conditions. It is
composed of several periodic and sporadic real-
time tasks running concurrently. It also includes a
set of soft real-time tasks combined with interactive
processes.

A Model of a Bottle -filling Line

A prototype of a bottle -filling system (as described
in [16]) is currently under construction, with the
aim of using RT-MINIX as the RTOS to control
such a real process.

The proposed system modeled in that work consists
in a number of bottle -filling lines fed by a single
vat containing the liquid to be bottled. The bottle
size may differ from line to line. The tasks of the
control system are to control the level, the pH and
the temperature of the liquid in the vat, to manage
the movement and filling of bottles in the various
lines, and to exchange and log information with
human operators working with the individual lines
and a supervisor monitoring the entire system.

With several concurrent tasks (both periodic and
aperiodic), this prototype will impose RT-MINIX
with real-world constraints to play with.

4. PRESENT WORK

The sensor integration problem and tolerance of
failures from replicated (redundant) sensors can
now be studied in depth with help of RT-MINIX
thanks to the incorporated sensing algorithms. A
possible work line is deal with multidimensional
sensors (replacing each interval corresponding to a
physical value by a vector of intervals).

The algorithms presented in section 1 are only two
examples of a long and growing list of scheduling
algorithms. Real-time guarantees in the presence of
faults along with fault tolerant scheduling strategies
are very interesting fields to extend the present state
of RT-MINIX. Feasible Shortest Path (FSP) and
Linear Time Heuristic (LTH) are models that can
be studied and compared, with a future
implementation in RT-MINIX depending on results
to be obtained.

One of the problems associated with scheduling
algorithms is priority inversion. [17] presents a very
clear example to definitely understand priority
inversion, a case that occurred during the NASA
Mars Pathfinder mission in 1997.

Any task within RT-MINIX can have a priority: if
new scheduling algorithms to be implemented will
consider that value to pick a task instead of another

one, care must be taken in order to handle this
characteristic properly. It is possible that a task
with medium priority be scheduled while a high
priority task is waiting for a resource that is
blocked by a low priority task. A solution to that
dilemma known as priority inheritance was identify
and proposed in [18]. Tasks should inherit the right
value to avoid priority inversion and furthermore
deadline missing, thus improving the overall
performance of the scheduling algorithms.

5. CONCLUSION

MINIX proved to be a feasible testbed for OS
development and real-time extensions that could be
easily added to it.

This “new” operating system (a MINIX 2.0 base
with real-time extensions) has a rich set of features,
which makes it a good choice to conduct real-time
experiences. The added real-time services covered
several areas:

• Task creation: tasks can be created either periodic

or aperiodic, stating their period, worst execution
time and priority

• Clock resolution management: the resolution

(grain) of the internal clock can be changed to get
better accuracy while scheduling tasks.

• Scheduling algorithms: both RMS and EDF

algorithms are supported, and can be selected on
the fly.

• Statistics: several variables about the whole

operation are accessible to the user to provide
data for benchmarking and testing new
developments.

• Supervisory Control and Data Acquisition: as a

user application, it makes full use of real-time
services.

• Sensor Integration: tolerance of failures from

replicated (redundant) sensors will be achieved
due to the sensing algorithms added to RT-
MINIX.

With these extensions, RT-MINIX can be used as a
platform for real-time processing or as a starting
point for adding more real-time services.

6. ACKNOWLEDGEMENTS

This work was partially supported by the UBA-
SECYT research project TX-004, "Concurrency in
Distributed Systems".

All the related source code can be obtained via FTP
at http://www.dc.uba.ar/people/proyinv/cso/rt-
minix, together with downloading and installation
instructions.

7. REFERENCES

[1] H. Tokuda, T. Nakajima, P. Rao. Real-time

MACH: Towards a predictable real-time
system. Proceedings of USENIX MACH
Workshop, volume 1, 1990.

[2] V. Yodaiken. The RT-Linux approach to hard

real-time. Online publication found at
http://luz.cs.nmt.edu/~rtlinux/whitepaper/short
.html

[3] B. Srinivasan. KURT: The KU Real-Time

Linux. Online publication found at
http://hegel.itc.ukans.edu/projects/kurt/

[4] J. Stankovic, K. Ramamrithman. The design of

the Spring kernel. In Proc. of 8th RealTime
Systems Symposium. 1991.

[5] M. Saksena, J da Silva, A. Agrawala.

Principles of Real-Time Systems, chapter
Design and Implementation of Maruti.
Prentice-Hall, 1994.

[6] K. Jeffay, D. Stone, D. Poitier. Kernel support

for efficient, predictable real-time systems.
Proceedings of the IEEE Workshop on RTOS,
pp. 8-31, 1991.

[7] LynxOS – Hard Real-time OS Features and

Capabilit ies, online at
http://www.lynx.com/products/ds_lynxos.html

[8] QNX Realtime OS, online at
http://www.qnx.com/product/qnxrtos.html

[9] A. Tannenbaum, “A Unix clone with source

code for operating systems courses”, ACM
Operating Systems Review, 21:1, January
1987.

[10] G. Wainer, “Implementing Real-Time

Scheduling in a Time-Sharing Operating
System”, ACM Operating Systems Review,
July 1995.

[11] D. Polakoff, P. Rogina, W. Ruaro, E.

Szulsztein, Wainer, G. “Real-time
modificatioins of the Minix Operating System”
(in Spanish), Internal Report, CS Dept.,
FCEyN, UBA, December 1997.

[12] V. Paulik, Joystick device driver for Linux,

online at
ftp://atrey.karlin.mff.cuni.cz/pub/linux/joystick
/joystick-0.8.0.tar.gz

[13] N. Wolowick, M. Cuenca Acuña, Wainer, G.

“Joining the scheduling queues in Minix
Operating System” (in Spanish), Internal
Report, CS Dept., FCEyN, UBA, July 1998.

[14] K. Marzullo, “Tolerating failures of

continuous-valued sensors”, ACM
Transactions on Computer Systems, 8(4):284-
304, November 1990.

[15] R. Brooks, S. Iyengar, “Robust Distributed

Computing And Sensing Algorithm”, IEEE
Computer, June 1996, pp. 53-60.

[16] P. Ward, S. Mellor, “Structured Development

for Real-Time Systems”, Appendix B,
Yourdon Press, 1985.

[17] M. Jones, What happened on Mars?, online at

http://www.cs.cmu.edu/afs/cs/project/art-
6/www/mars.html

[18] L. Sha, R. Rajkumar, J. Lehoczky, Priority

Inheritance Protocols: An Approach to Real-
Time Synchronization. IEEE Trans. on Comp.,
39:1175-1185, Sep. 1990

