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Abstract 

This work describes some of the extensions included in a tool to study, model and simulate 
cellular models. The environment is based on the DEVS and Cell-DEVS paradigms. Cell 
based systems can be built using a specification language, allowing reductions in the 
development, checking and maintenance times of the components. A mapping between the 
simulation mechanism and asynchronous PDES techniques is also presented, permitting to 
outline the implementation of executable models in parallel.  
 

 
1. INTRODUCTION 
 
In [Zei76], the DEVS (Discrete EVents Systems 
specifications) formalism was proposed to model 
discrete events systems. A DEVS model is built 
using a set of behavioral models called Atomic, 
which can be combined to form Coupled ones. 
Cell-DEVS [WG98] is a paradigm that has 
extended the DEVS formalism, allowing the 
implementation of cellular models. In this 
formalism, each cell is defined as an atomic model 
using transport or inertial delays [Gho96] [GIA76]. 
A coupled model that includes a group of these 
cells will form a cellular model. CD++ [BBW98] is 
a tool that allows implementing the theoretical 
concepts specified by the DEVS and Cell-DEVS 
formalisms. A specification language permits the 
creation of coupled models, the initial configuration 
for the atomic models, and the creation of external 
events to be used during the simulation. The 
original version of CD++ permits the creation of 
bidimensional cellular automata, where the state of 
a cell has a binary or three-state value. 
 
The goal of this work is to introduce a set of 
extensions done to the CD++ tool [DW98], and 
others being implemented at present, so as to allow 
the execution of the models in parallel. 
  
2. CD++ 
 
CD++ was defined building a class hierarchy in 
C++, using the basic concepts defined in [Zei84, 
Zei90]. Two basic abstract classes were defined: 
Models and Processors. The first are used to 
represent the behavior of the atomic and coupled 
models, while the second implement the simulation 
mechanisms. The Atomic class implements the 

behavior of the atomic models. The Coupled-Model 
class implements the mechanisms of the coupled 
models. For the case of a cellular model, a special 
atomic model is used to represent to each cell. To 
do so, AtomicCell and CoupledCell are defined as 
subclasses of Atomic and Coupled respectively. 
AtomicCell extends the behavior of the atomic 
models, to define the functionality of the cell space. 
On the other hand, the CoupledCell class permits 
the management of a group of atomic cells. 
 
The Simulator and Coordinator classes manage the 
atomic and coupled models respectively. The Root-
Coordinator class manages the global aspects of the 
simulation. It is directly related with the coupled 
model that has the higher level within the hierarchy. 
It is in charge to maintain the global time, and to 
start and stop the simulation process. In addition, it 
gets the output results. 
 
The simulation is based on the interchange of 
messages between the different processors. Each 
message contains information to identify the 
sender/receiver, the time of the event, and the 
content that consists in a port and a value for it. 
Different messages are used: X (which represents 
an external event), Y (represents the model output), 
* (represents an internal event), and done 
(indicating that the model has finished its task). 
 
The CD++ tool includes a specification language 
that allows describing the behavior of each cell of a 
cellular model. In addition, it allows to define the 
size of the cell space and their connection with 
other DEVS models (if they exist), the type of 
delay, the neighborhood, the border and the initial 
state of each cell. To do so, the theoretical 
definitions of the Cell-DEVS formalism are used. 



The specification of the behavior for a cell is 
defined using a set of rules. Each rule indicates the 
value for the cell's state if a condition is satisfied. 
The output of the model should be delayed by using 
a specified time. The BNF for the specification 
language is shown in the Appendix. 
 
The specification of the behavior for a cell is 
defined using a set of rules. Each rule indicates the 
value for the cell's state if a condition is satisfied. 
The output of the model should be delayed by using 
a specified time. If the condition is not valid, then 
the following rule will be evaluated (according to 
the order in that they were defined), repeating this 
process until a rule is satisfied, or until there are no 
more rules. 
 
In the latter case, an error will be raised, indicating 
this situation to the modeller, and aborting the 
simulation process. The occurrence of this error 
indicates that the model has been specified in 
incomplete form. The tool could also detect the 
existence of two or more rules with same condition 
but with different state value or delay, avoiding the 
creation of ambiguous models. In this situation, the 
simulation will be aborted. Also, when two 
different rules are evaluated satisfactorily and their 
result is the same, the modeller will be warned.  
 

3. AN APPLICATION EXAMPLE: A HEAT 
DIFFUSION MODEL 

 
This example consists of a surface represented by 
cellular automaton, where each cell contains a 
temperature. In each stage of the simulation, the 
temperature of the cell is calculated as the average 
of the values of the neighborhood. In addition, heat 
generator is connected to the cells (2, 2) and (5, 5), 
and permit the creation of temperatures in the range 
[24, 40] with uniform distribution. On the other 
hand, a generator of cold allow to create values in 
the range [10, 15] also with uniform distribution, 
and is connected to the cells (2, 8) and (8, 8). Both 
generators create values after x seconds, where x 
follows an exponential distribution with mean 50 
seconds.  
 

 
Figure 1. Coupling scheme of the heat diffusion 

model 
 
 

01   [top] 
02   components : surface generatorHeat@Generator generatorCold@Generator 
03   link : out@generatorHeat  inputHeat@surface 
04   link : out@generatorCold  inputCold@surface 
05  
06   [surface] 
07   type : cell 
08   width : 10 
09   height : 10 
10   delay : transport 
11   defaultDelayTime  : 100 
12   border : wrapped  
13   neighbors : surface(-1,-1) surface(-1,0) surface(-1,1)  
14   neighbors : surface(0,-1)  surface(0,0)  surface(0,1) 
15   neighbors : surface(1,-1)  surface(1,0)  surface(1,1) 
16   initialvalue : 24 
17   in : inputHeat inputCold 
18   link : inputHeat in@surface(5,5) 
19   link : inputHeat in@surface(2,2) 
20   link : inputCold in@surface(8,8) 
21   link : inputCold in@surface(2,8) 
22   localtransition : heat-rule 
23   portInTransition : in@surface(5,5)  setHeat 
24   portInTransition : in@surface(2,2)  setHeat 
25   portInTransition : in@surface(8,8)  setCold 
26   portInTransition : in@surface(2,8)  setCold 
27 
28   [heat-rule] 
29   rule : { ((0,0) + (-1,-1) + (-1,0) + (-1,1) + (0,-1) + (0,1) + (1,-1) + (1,0) + (1,1)) / 9 } 10000 { t }  
30 
31   [setHeat] 
32   rule : { uniform(24,40) } 1000 { t } 
33 
34   [setCold] 
35   rule : { uniform(-10,15) } 1000 { t } 
36 
37   [generatorHeat] 
38   distribution : exponential 
39   mean : 50 
40   initial : 1 
41   increment : 0 
42 
43   [generatorCold] 
44   distribution : exponential 
45   mean : 50 
46   initial : 1 
47   increment : 0 

Figure 2. Definition of the heat diffusion model 
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The definition of the model using the language 
provided by the tool is showed in the figure 2. The 
top model and its components are defined between 
lines 1 and 4. Between lines 6 and 26, the model 
representing the surface is defined. It is composed 
by a cellular automata of 10x10 cells, having an 
initial temperature of 24° C. In the lines 28 and 29 
the local computation function is defined. 
 
Lines 31 and 32 define the function creating a 
temperature in the range [24, 40] with uniform 
distribution. Similarly, lines 34 and 35 define the 
function to create temperatures in the range [10, 15] 
with uniform distribution. Finally, the generators of 
cold and heat are defined between the lines 37 and 
47. Here, the values are generate each x seconds, 
where x follows an exponential distribution with a 
mean of 50 seconds. 
 
The outputs generated by the simulation are given 
in appendix. In the time 00:00:01:000 the 
generators of cold and heat produce changes in the 
input cells. At the time 00:00:05:041, the generator 
of cold will produce a change in the state of the 
cells (2, 8) and (8, 8), establishing them the value 
2.5 and -2.6 respectively. 
 
 
4. ABSTRACT SIMULATION MECHANISM 

IN ASYNCHRONOUS PDES 
 
To improve the execution times in Cell-DEVS 
model execution, it has been proposed that the 
coordinators must be implemented to execute in 
parallel. In this case, multiple processes will 
execute the simulation simultaneously. Here, each 
processor of an available set will have an associated 
flat coordinator. Asynchronous parallel discrete 
event simulation mechanisms will be used. The 
logical execution of processes associated with each 
processor will be synchronized by using optimist or 
pessimist approaches. In this way, the environment 
can be tailored to the application, achieving the best 
performance results for each case.  
 
Each coordinator will be coded as a logical process 
including three different event lists: one for local 
events, and the others for input and output links. 
The main synchronization mechanisms will be 
executed by three basic methods: 
Receive_message(), Transmit_Message() and 
Execute_Message(). The behavior of these methods 
will differ depending on the chosen approach. 
 
Each coordinator will be in charge to choose the 
imminent cells to simulate, using the flatten 
procedure analyzed previously. The q-messages 
arriving to a coordinator can have a local or remote 
source. When these messages are processed, new, 
Y and done messages are created (using the 

translation mechanism explained previously). In 
this case, the coordinators must be changed to 
manage the coupling with the parallel simulation 
environment.  
 

 
 

Figure 3. Structure for the logical process defined 
for cell spaces. 

 
 
If a new output event belongs to the local 
processor, it will be added directly to the next event 
list as it was shown in the previous procedures. 
Instead, if the destination cell does not belong to 
the local processor, the message will be added into 
the output queue and transmitted to other processor, 
where it will be received as an input message. 
 
The simulation can be splitted accordingly with the 
power of each processor, allowing the balance of 
the simulation load. The Map_Tasks() method will 
be in charge of this procedure, by executing 
standard load distribution algorithms. This method 
will be in charge of saving a submap of cells into 
each coordinator, indicating to which processor 
does each part of the cell space belong. This 
information is recorded into the 
Processor_Mapping instance variable, and will be 
used to build the input and output links. The 
following sections will be devoted to analyze the 
behavior of the simulators for each of the proposed 
methods. 
 
 
4.1.1. Pessimist coordinators. 
 
This section is devoted to study the behavior of 
each of the methods associated with the 
conservative coordinators for a Cell-DEVS 
environment. The coordination mechanism should 
execute the following methods: 
 
 
 



Receive_Message() { 
   Read a message arrived through an input link; 
  Save it into the Event List; 
  if the message correspond to the link with  
             the lower timestamp then 
    Unlock(); 
} 
 
Execute_Message() { 
  if the link with lower timestamp does not  
      have a message then 
            if Null Messages are used then  
       Lookahead = LVT + d; 
    Send a null message to the neighbors; 
           endif 
          Lock();       /* The LP should be blocked  
           waiting the message with lower timestamp */ 
   endif 
  
    LVT = time of the first message in the event list; 
    For each message in the queue with  
          timestamp = LVT do 
 case kind of message do 
       *: ReactionTo*Message(); 
           Send a done message to the parent  
                           coordinator. If it belongs to other  
                              processor, put it into the  
                                corresponding output link. 
       Q: ReactionToQMessage(); 
            Send a Y message to the parent  
                           coordinator. If it belongs to other  
                             processor, queue it into the  
                              corresponding output link; 
            Translate(Y, Q);                
              /* Using the Neighborhood relationship */ 
            Insert Q into the local events list; 
   endcase 
     endfor 
} 
 
Transmit_Message() { 
For each element into an output port do 
   Send the message through the corresponding link; 
} 

Figure 4.  Pessimist coordination functions for 
Cell-DEVS parallel simulators. 

 
In this case, the method  Receive_Message() must 
save a message into the input queue, recording its 
type, timestamp, origin/destination and value, 
according with the message type. When a message 
arrives, they are queued into the event list. The pair 
of Lock()/Unlock() methods are used to stop or 
reactivate the activity of the logical process. In this 
case, if a new message arrives with the lower 
timestamp, the logical process should be restarted. 
The method Execute_Message() must process all 
the events in the queue having timestamps lower 
than those of the local virtual time (LVT). This 
should be done only if there are messages into the 

input lists with timestamps higher than those of the 
LVT. If this is not the case, the logical process must 
be blocked. If the logical process is active, it must 
start a cycle activating the methods 
ReactionToXMessage(), and 
ReactionTo*Message(), that will start the routines 
of the flat coordinator. 
 
According with the strategy chosen to manage 
deadlocks, the method Recovery() (that detects and 
recovers deadlocks) must be activated, or null 
messages must be sent. In this case, the lookahead 
computation is easy, due that as each cell has a 
fixed delay, the lookahead is equal to the delay. The 
method Transmit_Message() is activated when the 
coordinator, analyzing its mapping (by using the 
method Translate() that activates the Z function) 
decides that the message belongs to other 
processor. To do so, the instance variable 
Processor_Mapping is used. 
 
4.1.2. Optimist coordinators 
 
For these processors, the methods 
Receive_Message() and Transmit_Message() have 
the same functionality that of the pessimist ones, 
and the difference can be found in the 
Execute_Message() method. 
 
Receive_Message() { 
   Read a message arrived through an input link; 
   Save it into the Event List; 
} 
 
Execute_Message() { 
   if the first message in the event list has a  
       timestamp lower than the LVT then 
             Rollback(); 
   endif 
 
   LVT = time of the first message; 
 
   if LVT > GVT then  /* Fossil collection */ 
      Delete all the events with timestamps lower to  
         the GVT to the Next-Events and Space lists; 
   endif 
 
   LVT = time of the first message in the event list; 
 
   For each message in the queue whose  
        timestamp = LVT do 
          case type of message do 
  *:  ReactionTo*Message(); 
    Send a done message to the parent  
                    coordinator. If it belongs to other  
                       processor, queue it into the  
                         corresponding output link; 
 
       Q: ReactionToQMessage(); 
            Send a Y message to the parent coordinator.  



            If it belongs to other processor, queue it  
               into the corresponding output link; 
            Translate(Y, Q); 
             Insert Q into the local events queue; 
     endcase 
 
    if a message identical to the present exists, and  
             LAZY_ CANCELLATION is used then 
       if the message is the same except for  
               the value then 
            Generate an antimessage using the previous; 
            Queue the present; 
       endif 
    endif 
endfor 
 
Update the Next-Events and Spaces lists with the  
 new status;  
} 
 
Rollback() { 
 
     LVT = time for the straggler;  
     Search into the Next-events and Space lists  
        the first element whose value is smaller  
           than LVT; 
      Cells = Space.Cells; 
 
       Next_Events = Next-Events.list; 
 
       case CANCELLATION do 
   LAZY: nothing; 
   AGGRESIVE: generate an antimessage  
                                         into the output queue; 
        endcase 
 
       Delete the elements whose timestamp  
          is smaller than the LVT from the output 
             queue; 
} 
Figure 5.  Optimistic coordination functions for 

Cell-DEVS models. 
 
In this case, the first messages of the events list are 
used, analyzing if the arrived event is a straggler or 
not. If this is the case, the event list should be 
restored to the instant for the straggler, as the cell 
space is. To do so, a list keeping all the Next-
Events and other with all the cell spaces are kept. 
The straggler generates antimessages, and restores 
the previous state. 
 
If aggressive cancellation is used, the 
Transmit_Message() method should be activated 
when the coordinator, analyzing the mapping, 
decides that the message belongs to a coordinator in 
a different processor. If lazy cancellation is used, 
the method deletes safe elements from the output 
queue, and antimessages are not transmitted for 
messages with the same contents. 

5. CONCLUSION 
 
This work introduced an extension to the tool 
CD++ used for the modeling and simulation of 
Cell-DEVS models. This formalism allows 
hierarchical construction of the models, which 
improves the development, checking and 
maintenance phases. The extensions introduced to 
the tool allow to represent new models in other 
domains for the sate variables. It also offers the 
possibility to use probabilistic functions, which 
permits the creation of stochastic models.  
 
The parallel execution of these models is being 
considered at present. A simulation mechanism was 
presented for this kind of models. In addition, a 
new extension to the flat coordination mechanism 
was introduced. The formalism entitles the 
definition of complex cell-shaped models using a 
high level specification language. In this way, the 
construction of the simulators is improved, 
enhancing their safety and development costs. 
Besides, the parallel execution allows performance 
improvements without adding extra costs in 
development or maintenance. 
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APPENDIX. Simulation results 
 

 

Time: 00:00:00:000 
         0    1    2    3    4    5    6    7    8    9 
    +--------------------------------------------------+ 
   0| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0| 
   1| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0| 
   2| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0| 
   3| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0| 
   4| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0| 
   5| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0| 
   6| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0| 
   7| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0| 
   8| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0| 
   9| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0| 
    +--------------------------------------------------+ 

Time: 00:00:02:000 
         0    1    2    3    4    5    6    7    8    9 
    +--------------------------------------------------+ 
   0| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0| 
   1| 24.0 25.3 25.3 25.3 24.0 24.0 24.0 20.6 20.6 20.6| 
   2| 24.0 25.3 25.3 25.3 24.0 24.0 24.0 20.6 20.6 20.6| 
   3| 24.0 25.3 25.3 25.3 24.0 24.0 24.0 20.6 20.6 20.6| 
   4| 24.0 24.0 24.0 24.0 25.7 25.7 25.7 24.0 24.0 24.0| 
   5| 24.0 24.0 24.0 24.0 25.7 25.7 25.7 24.0 24.0 24.0| 
   6| 24.0 24.0 24.0 24.0 25.7 25.7 25.7 24.0 24.0 24.0| 
   7| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 20.9 20.9 20.9| 
   8| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 20.9 20.9 20.9| 
   9| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 20.9 20.9 20.9| 
    +--------------------------------------------------+ 

. . . 
Time: 00:00:01:000 
         0    1    2    3    4    5    6    7    8    9 
    +--------------------------------------------------+ 
   0| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0| 
   1| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0| 
   2| 24.0 24.0 35.8 24.0 24.0 24.0 24.0 24.0 -6.3 24.0| 
   3| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0| 
   4| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0| 
   5| 24.0 24.0 24.0 24.0 24.0 39.5 24.0 24.0 24.0 24.0| 
   6| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0| 
   7| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0| 
   8| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 -4.0 24.0| 
   9| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0| 
    +--------------------------------------------------+ 

. . . 

Time: 00:00:05:041 
         0    1    2    3    4    5    6    7    8    9 
    +--------------------------------------------------+ 
   0| 23.3 23.9 24.3 24.3 24.1 23.7 23.1 22.6 22.3 22.6| 
   1| 23.4 24.1 24.5 24.5 24.2 23.8 23.2 22.6 22.3 22.7| 
   2| 23.4 24.2 24.6 24.6 24.4 23.9 23.3 22.6  2.5 22.7| 
   3| 23.5 24.2 24.6 24.7 24.6 24.3 23.7 23.1 22.7 23.0| 
   4| 23.7 24.1 24.4 24.7 24.7 24.6 24.1 23.6 23.2 23.3| 
   5| 23.7 24.0 24.3 24.6 24.8 24.7 24.4 23.9 23.5 23.5| 
   6| 23.5 23.9 24.1 24.4 24.6 24.5 24.1 23.6 23.3 23.3| 
   7| 23.3 23.8 24.0 24.2 24.3 24.2 23.7 23.1 22.8 22.9| 
   8| 23.2 23.7 24.0 24.1 24.1 23.8 23.3 22.7 -2.6 22.6| 
   9| 23.2 23.8 24.1 24.1 24.0 23.7 23.2 22.6 22.4 22.6| 
    +--------------------------------------------------+ 

Simulation results of the heat diffusion model 
 
 

APPENDIX. CD++ SPECIFICATION LANGUAGE. 
 
RULELIST = RULE  |  RULELIST 
RULE = RESULT RESULT { BOOLEXP } 
RESULT = CONSTANT  |  { REALEXP } 
BOOLEXP = BOOL  |  (BOOLEXP)  |  REALRELEXP  | not BOOLEXP  |  BOOLEXP OP_BOOL BOOLEXP 
OP_BOOL = and  |  or  |  xor  |  imp  |  eqv 
REALRELEXP = REALEXP OP_REL REALEXP  |  COND_REAL_FUNC(REALEXP) 
REALEXP = IDREF  |  (REALEXP)  |  REALEXP OPER REALEXP 
IDREF = CELLREF  |  CONSTANT  |  FUNCTION  |  portValue(PORTNAME) 
CONSTANT = INT  |  REAL  |  CONSTFUNC  |  ? 
FUNCTION = UNARY_FUNC(REALEXP) | WITHOUT_PARAM_FUNC |  BINARY_FUNC(REALEXP, REALEXP)  | 
   if(BOOLEXP, REALEXP, REALEXP)  |  ifu(BOOLEXP, REALEXP, REALEXP, REALEXP) 
CELLREF = (INT, INT) 
BOOL = t  |  f  | ? 
OP_REL = !=  |  =  |  >  |  <  |  >=  |  <= 
OPER = +  |  -  |  *  |  / 
INT = [SIGN] DIGIT {DIGIT} 
REAL = INT  |  [SIGN] {DIGIT}.DIGIT {DIGIT} 
SIGN = +  |  - 
DIGIT = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 
PORTNAME = thisPort  |  STRING 
STRING = LETTER {LETTER} 
LETTER = a | b | c |...| z | A | B | C |...| Z 
CONSTFUNC = pi | e | inf | grav | accel | light | planck | avogadro | faraday | rydberg | 
euler_gamma | bohr_radius | boltzmann | bohr_magneton | golden | catalan | amu | 
electron_charge | pem  | ideal_gas | stefan_boltzmann | proton_mass | electron_mass | 
neutron_mass  
WITHOUT_PARAM_FUNC = truecount | falsecount | undefcount | time | random | randomSign 
UNARY_FUNC  = abs | acos | acosh | asin | asinh | atan | atanh | cos | sec | sech | exp | cosh 
| fact | fractional | ln | log |  round | cotan | cosec | cosech | sign | sin | sinh | 
statecount | sqrt | tan | tanh | trunc | truncUpper | poisson | exponential | randInt | chi | 
asec   | acotan | asech | acosech | nextPrime | radToDeg | degToRad | nth_prime | acotanh | 
CtoF | CtoK | KtoC | KtoF | FtoC | FtoK 
BINARY_FUNC = comb | logn | max | min | power | remainder | root | beta | gamma | lcm | gcd | 
normal | f | uniform | binomial | rectToPolar_r | rectToPolar_angle | polarToRect_x | hip | 
     polarToRect_y 
COND_REAL_FUNC = even | odd | isInt | isPrime | isUndefined 


