
This work was partially supported by the UBACYT research project TX-004, “Concurrency in distributed
systems”.

CELL-DEVS WITH EXPLICIT DELAYS: PARALLEL SIMULATION

Gabriel A. Wainer Daniel Rodríguez Norbert Giambiasi
{gabrielw, drodrigu}@dc.uba.ar Norbert.Giambiasi@ iuspim.u-3mrs.fr

Departamento de Computación

Facultad de Ciencias Exactas y Naturales
Universidad de Buenos Aires

(1428) Pabellón I. Ciudad Universitaria.
Buenos Aires. Argentina.

DIAM-IUSPIM

Av. Escadrille Normandie Niemen
13397 Marseille
Cedex 20 France

Abstract

This work describes some of the extensions included in a tool to study, model and simulate
cellular models. The environment is based on the DEVS and Cell-DEVS paradigms. Cell
based systems can be built using a specification language, allowing reductions in the
development, checking and maintenance times of the components. A mapping between the
simulation mechanism and asynchronous PDES techniques is also presented, permitting to
outline the implementation of executable models in parallel.

1. INTRODUCTION

In [Zei76], the DEVS (Discrete EVents Systems
specifications) formalism was proposed to model
discrete events systems. A DEVS model is built
using a set of behavioral models called Atomic,
which can be combined to form Coupled ones.
Cell-DEVS [WG98] is a paradigm that has
extended the DEVS formalism, allowing the
implementation of cellular models. In this
formalism, each cell is defined as an atomic model
using transport or inertial delays [Gho96] [GIA76].
A coupled model that includes a group of these
cells will form a cellular model. CD++ [BBW98] is
a tool that allows implementing the theoretical
concepts specified by the DEVS and Cell-DEVS
formalisms. A specification language permits the
creation of coupled models, the initial configuration
for the atomic models, and the creation of external
events to be used during the simulation. The
original version of CD++ permits the creation of
bidimensional cellular automata, where the state of
a cell has a binary or three-state value.

The goal of this work is to introduce a set of
extensions done to the CD++ tool [DW98], and
others being implemented at present, so as to allow
the execution of the models in parallel.

2. CD++

CD++ was defined building a class hierarchy in
C++, using the basic concepts defined in [Zei84,
Zei90]. Two basic abstract classes were defined:
Models and Processors. The first are used to
represent the behavior of the atomic and coupled
models, while the second implement the simulation
mechanisms. The Atomic class implements the

behavior of the atomic models. The Coupled-Model
class implements the mechanisms of the coupled
models. For the case of a cellular model, a special
atomic model is used to represent to each cell. To
do so, AtomicCell and CoupledCell are defined as
subclasses of Atomic and Coupled respectively.
AtomicCell extends the behavior of the atomic
models, to define the functionality of the cell space.
On the other hand, the CoupledCell class permits
the management of a group of atomic cells.

The Simulator and Coordinator classes manage the
atomic and coupled models respectively. The Root-
Coordinator class manages the global aspects of the
simulation. It is directly related with the coupled
model that has the higher level within the hierarchy.
It is in charge to maintain the global time, and to
start and stop the simulation process. In addition, it
gets the output results.

The simulation is based on the interchange of
messages between the different processors. Each
message contains information to identify the
sender/receiver, the time of the event, and the
content that consists in a port and a value for it.
Different messages are used: X (which represents
an external event), Y (represents the model output),
* (represents an internal event), and done
(indicating that the model has finished its task).

The CD++ tool includes a specification language
that allows describing the behavior of each cell of a
cellular model. In addition, it allows to define the
size of the cell space and their connection with
other DEVS models (if they exist), the type of
delay, the neighborhood, the border and the initial
state of each cell. To do so, the theoretical
definitions of the Cell-DEVS formalism are used.

The specification of the behavior for a cell is
defined using a set of rules. Each rule indicates the
value for the cell's state if a condition is satisfied.
The output of the model should be delayed by using
a specified time. The BNF for the specification
language is shown in the Appendix.

The specification of the behavior for a cell is
defined using a set of rules. Each rule indicates the
value for the cell's state if a condition is satisfied.
The output of the model should be delayed by using
a specified time. If the condition is not valid, then
the following rule will be evaluated (according to
the order in that they were defined), repeating this
process until a rule is satisfied, or until there are no
more rules.

In the latter case, an error will be raised, indicating
this situation to the modeller, and aborting the
simulation process. The occurrence of this error
indicates that the model has been specified in
incomplete form. The tool could also detect the
existence of two or more rules with same condition
but with different state value or delay, avoiding the
creation of ambiguous models. In this situation, the
simulation will be aborted. Also, when two
different rules are evaluated satisfactorily and their
result is the same, the modeller will be warned.

3. AN APPLICATION EXAMPLE: A HEAT
DIFFUSION MODEL

This example consists of a surface represented by
cellular automaton, where each cell contains a
temperature. In each stage of the simulation, the
temperature of the cell is calculated as the average
of the values of the neighborhood. In addition, heat
generator is connected to the cells (2, 2) and (5, 5),
and permit the creation of temperatures in the range
[24, 40] with uniform distribution. On the other
hand, a generator of cold allow to create values in
the range [10, 15] also with uniform distribution,
and is connected to the cells (2, 8) and (8, 8). Both
generators create values after x seconds, where x
follows an exponential distribution with mean 50
seconds.

Figure 1. Coupling scheme of the heat diffusion

model

01 [top]
02 components : surface generatorHeat@Generator generatorCold@Generator
03 link : out@generatorHeat inputHeat@surface
04 link : out@generatorCold inputCold@surface
05
06 [surface]
07 type : cell
08 width : 10
09 height : 10
10 delay : transport
11 defaultDelayTime : 100
12 border : wrapped
13 neighbors : surface(-1,-1) surface(-1,0) surface(-1,1)
14 neighbors : surface(0,-1) surface(0,0) surface(0,1)
15 neighbors : surface(1,-1) surface(1,0) surface(1,1)
16 initialvalue : 24
17 in : inputHeat inputCold
18 link : inputHeat in@surface(5,5)
19 link : inputHeat in@surface(2,2)
20 link : inputCold in@surface(8,8)
21 link : inputCold in@surface(2,8)
22 localtransition : heat-rule
23 portInTransition : in@surface(5,5) setHeat
24 portInTransition : in@surface(2,2) setHeat
25 portInTransition : in@surface(8,8) setCold
26 portInTransition : in@surface(2,8) setCold
27
28 [heat-rule]
29 rule : { ((0,0) + (-1,-1) + (-1,0) + (-1,1) + (0,-1) + (0,1) + (1,-1) + (1,0) + (1,1)) / 9 } 10000 { t }
30
31 [setHeat]
32 rule : { uniform(24,40) } 1000 { t }
33
34 [setCold]
35 rule : { uniform(-10,15) } 1000 { t }
36
37 [generatorHeat]
38 distribution : exponential
39 mean : 50
40 initial : 1
41 increment : 0
42
43 [generatorCold]
44 distribution : exponential
45 mean : 50
46 initial : 1
47 increment : 0

Figure 2. Definition of the heat diffusion model

ColdHeat

The definition of the model using the language
provided by the tool is showed in the figure 2. The
top model and its components are defined between
lines 1 and 4. Between lines 6 and 26, the model
representing the surface is defined. It is composed
by a cellular automata of 10x10 cells, having an
initial temperature of 24° C. In the lines 28 and 29
the local computation function is defined.

Lines 31 and 32 define the function creating a
temperature in the range [24, 40] with uniform
distribution. Similarly, lines 34 and 35 define the
function to create temperatures in the range [10, 15]
with uniform distribution. Finally, the generators of
cold and heat are defined between the lines 37 and
47. Here, the values are generate each x seconds,
where x follows an exponential distribution with a
mean of 50 seconds.

The outputs generated by the simulation are given
in appendix. In the time 00:00:01:000 the
generators of cold and heat produce changes in the
input cells. At the time 00:00:05:041, the generator
of cold will produce a change in the state of the
cells (2, 8) and (8, 8), establishing them the value
2.5 and -2.6 respectively.

4. ABSTRACT SIMULATION MECHANISM

IN ASYNCHRONOUS PDES

To improve the execution times in Cell-DEVS
model execution, it has been proposed that the
coordinators must be implemented to execute in
parallel. In this case, multiple processes will
execute the simulation simultaneously. Here, each
processor of an available set will have an associated
flat coordinator. Asynchronous parallel discrete
event simulation mechanisms will be used. The
logical execution of processes associated with each
processor will be synchronized by using optimist or
pessimist approaches. In this way, the environment
can be tailored to the application, achieving the best
performance results for each case.

Each coordinator will be coded as a logical process
including three different event lists: one for local
events, and the others for input and output links.
The main synchronization mechanisms will be
executed by three basic methods:
Receive_message(), Transmit_Message() and
Execute_Message(). The behavior of these methods
will differ depending on the chosen approach.

Each coordinator will be in charge to choose the
imminent cells to simulate, using the flatten
procedure analyzed previously. The q-messages
arriving to a coordinator can have a local or remote
source. When these messages are processed, new,
Y and done messages are created (using the

translation mechanism explained previously). In
this case, the coordinators must be changed to
manage the coupling with the parallel simulation
environment.

Figure 3. Structure for the logical process defined
for cell spaces.

If a new output event belongs to the local
processor, it will be added directly to the next event
list as it was shown in the previous procedures.
Instead, if the destination cell does not belong to
the local processor, the message will be added into
the output queue and transmitted to other processor,
where it will be received as an input message.

The simulation can be splitted accordingly with the
power of each processor, allowing the balance of
the simulation load. The Map_Tasks() method will
be in charge of this procedure, by executing
standard load distribution algorithms. This method
will be in charge of saving a submap of cells into
each coordinator, indicating to which processor
does each part of the cell space belong. This
information is recorded into the
Processor_Mapping instance variable, and will be
used to build the input and output links. The
following sections will be devoted to analyze the
behavior of the simulators for each of the proposed
methods.

4.1.1. Pessimist coordinators.

This section is devoted to study the behavior of
each of the methods associated with the
conservative coordinators for a Cell-DEVS
environment. The coordination mechanism should
execute the following methods:

Receive_Message() {
 Read a message arrived through an input link;
 Save it into the Event List;
 if the message correspond to the link with
 the lower timestamp then
 Unlock();
}

Execute_Message() {
 if the link with lower timestamp does not
 have a message then
 if Null Messages are used then
 Lookahead = LVT + d;
 Send a null message to the neighbors;
 endif
 Lock(); /* The LP should be blocked
 waiting the message with lower timestamp */
 endif

 LVT = time of the first message in the event list;
 For each message in the queue with
 timestamp = LVT do
 case kind of message do
 *: ReactionTo*Message();
 Send a done message to the parent
 coordinator. If it belongs to other
 processor, put it into the
 corresponding output link.
 Q: ReactionToQMessage();
 Send a Y message to the parent
 coordinator. If it belongs to other
 processor, queue it into the
 corresponding output link;
 Translate(Y, Q);
 /* Using the Neighborhood relationship */
 Insert Q into the local events list;
 endcase
 endfor
}

Transmit_Message() {
For each element into an output port do
 Send the message through the corresponding link;
}

Figure 4. Pessimist coordination functions for
Cell-DEVS parallel simulators.

In this case, the method Receive_Message() must
save a message into the input queue, recording its
type, timestamp, origin/destination and value,
according with the message type. When a message
arrives, they are queued into the event list. The pair
of Lock()/Unlock() methods are used to stop or
reactivate the activity of the logical process. In this
case, if a new message arrives with the lower
timestamp, the logical process should be restarted.
The method Execute_Message() must process all
the events in the queue having timestamps lower
than those of the local virtual time (LVT). This
should be done only if there are messages into the

input lists with timestamps higher than those of the
LVT. If this is not the case, the logical process must
be blocked. If the logical process is active, it must
start a cycle activating the methods
ReactionToXMessage(), and
ReactionTo*Message(), that will start the routines
of the flat coordinator.

According with the strategy chosen to manage
deadlocks, the method Recovery() (that detects and
recovers deadlocks) must be activated, or null
messages must be sent. In this case, the lookahead
computation is easy, due that as each cell has a
fixed delay, the lookahead is equal to the delay. The
method Transmit_Message() is activated when the
coordinator, analyzing its mapping (by using the
method Translate() that activates the Z function)
decides that the message belongs to other
processor. To do so, the instance variable
Processor_Mapping is used.

4.1.2. Optimist coordinators

For these processors, the methods
Receive_Message() and Transmit_Message() have
the same functionality that of the pessimist ones,
and the difference can be found in the
Execute_Message() method.

Receive_Message() {
 Read a message arrived through an input link;
 Save it into the Event List;
}

Execute_Message() {
 if the first message in the event list has a
 timestamp lower than the LVT then
 Rollback();
 endif

 LVT = time of the first message;

 if LVT > GVT then /* Fossil collection */
 Delete all the events with timestamps lower to
 the GVT to the Next-Events and Space lists;
 endif

 LVT = time of the first message in the event list;

 For each message in the queue whose
 timestamp = LVT do
 case type of message do
 *: ReactionTo*Message();
 Send a done message to the parent
 coordinator. If it belongs to other
 processor, queue it into the
 corresponding output link;

 Q: ReactionToQMessage();
 Send a Y message to the parent coordinator.

 If it belongs to other processor, queue it
 into the corresponding output link;
 Translate(Y, Q);
 Insert Q into the local events queue;
 endcase

 if a message identical to the present exists, and
 LAZY_ CANCELLATION is used then
 if the message is the same except for
 the value then
 Generate an antimessage using the previous;
 Queue the present;
 endif
 endif
endfor

Update the Next-Events and Spaces lists with the
 new status;
}

Rollback() {

 LVT = time for the straggler;
 Search into the Next-events and Space lists
 the first element whose value is smaller
 than LVT;
 Cells = Space.Cells;

 Next_Events = Next-Events.list;

 case CANCELLATION do
 LAZY: nothing;
 AGGRESIVE: generate an antimessage
 into the output queue;
 endcase

 Delete the elements whose timestamp
 is smaller than the LVT from the output
 queue;
}
Figure 5. Optimistic coordination functions for

Cell-DEVS models.

In this case, the first messages of the events list are
used, analyzing if the arrived event is a straggler or
not. If this is the case, the event list should be
restored to the instant for the straggler, as the cell
space is. To do so, a list keeping all the Next-
Events and other with all the cell spaces are kept.
The straggler generates antimessages, and restores
the previous state.

If aggressive cancellation is used, the
Transmit_Message() method should be activated
when the coordinator, analyzing the mapping,
decides that the message belongs to a coordinator in
a different processor. If lazy cancellation is used,
the method deletes safe elements from the output
queue, and antimessages are not transmitted for
messages with the same contents.

5. CONCLUSION

This work introduced an extension to the tool
CD++ used for the modeling and simulation of
Cell-DEVS models. This formalism allows
hierarchical construction of the models, which
improves the development, checking and
maintenance phases. The extensions introduced to
the tool allow to represent new models in other
domains for the sate variables. It also offers the
possibility to use probabilistic functions, which
permits the creation of stochastic models.

The parallel execution of these models is being
considered at present. A simulation mechanism was
presented for this kind of models. In addition, a
new extension to the flat coordination mechanism
was introduced. The formalism entitles the
definition of complex cell-shaped models using a
high level specification language. In this way, the
construction of the simulators is improved,
enhancing their safety and development costs.
Besides, the parallel execution allows performance
improvements without adding extra costs in
development or maintenance.

REFERENCES

[BBW98] BARYLKO, A.; BEYOGLONIAN, J.;
WAINER, G. "CD++: a tool to develop binary
Cell-DEVS models" (in Spanish). Proceedings of
the XXII Latin-American Conference on
Informatics. Quito, Ecuador. 1998.
[Gar70] GARDNER, M. “The Fantastic
Combinations of John Conway’s New Solitaire
Game ‘Life’ ”. Scientific American, 23 (4), 1970,
pp. 120-123.
[GM76] N.Giambiasi, A.Miara "SILOG: A
practical tool for digital logic circuit simulation"
16th D.A.C San Diego , 1976
[GG96] GHOSH, S.; GIAMBIASI, N. "On the
need for consistency between the VHDL language
constructions and the underliying hardware design".
SCS ESM '96. pp. 562-567.
[WG98] WAINER, G.; GIAMBIASI, N.
"Specification, modeling and simulation of timed
Cell-DEVS spaces". Technical Report n.: 98-007.
Departamento de Computación. Facultad de
Ciencias Exactas y Naturales. Universidad de
Buenos Aires. Submitted for publication. 1998.
[RW99] RODRIGUEZ, D.; WAINER, G.
"Extensions to the CD++ tool". Submitted for
publication. 1999.
[Zei76] ZEIGLER, B. “Theory of Modelling and
Simulation”. Wiley, N.Y. 1976.
[Zei84] ZEIGLER, B. "Multifaceted Modeling and
discrete event simulation". Academic Press, 1984.
[Zei90] ZEIGLER, B. "Object-oriented simulation
with hierarchical modular models". Academic
Press, 1990.

APPENDIX. Simulation results

Time: 00:00:00:000
 0 1 2 3 4 5 6 7 8 9
 +--+
 0| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
 1| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
 2| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
 3| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
 4| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
 5| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
 6| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
 7| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
 8| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
 9| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
 +--+

Time: 00:00:02:000
 0 1 2 3 4 5 6 7 8 9
 +--+
 0| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
 1| 24.0 25.3 25.3 25.3 24.0 24.0 24.0 20.6 20.6 20.6|
 2| 24.0 25.3 25.3 25.3 24.0 24.0 24.0 20.6 20.6 20.6|
 3| 24.0 25.3 25.3 25.3 24.0 24.0 24.0 20.6 20.6 20.6|
 4| 24.0 24.0 24.0 24.0 25.7 25.7 25.7 24.0 24.0 24.0|
 5| 24.0 24.0 24.0 24.0 25.7 25.7 25.7 24.0 24.0 24.0|
 6| 24.0 24.0 24.0 24.0 25.7 25.7 25.7 24.0 24.0 24.0|
 7| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 20.9 20.9 20.9|
 8| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 20.9 20.9 20.9|
 9| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 20.9 20.9 20.9|
 +--+

. . .
Time: 00:00:01:000
 0 1 2 3 4 5 6 7 8 9
 +--+
 0| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
 1| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
 2| 24.0 24.0 35.8 24.0 24.0 24.0 24.0 24.0 -6.3 24.0|
 3| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
 4| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
 5| 24.0 24.0 24.0 24.0 24.0 39.5 24.0 24.0 24.0 24.0|
 6| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
 7| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
 8| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 -4.0 24.0|
 9| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
 +--+

. . .

Time: 00:00:05:041
 0 1 2 3 4 5 6 7 8 9
 +--+
 0| 23.3 23.9 24.3 24.3 24.1 23.7 23.1 22.6 22.3 22.6|
 1| 23.4 24.1 24.5 24.5 24.2 23.8 23.2 22.6 22.3 22.7|
 2| 23.4 24.2 24.6 24.6 24.4 23.9 23.3 22.6 2.5 22.7|
 3| 23.5 24.2 24.6 24.7 24.6 24.3 23.7 23.1 22.7 23.0|
 4| 23.7 24.1 24.4 24.7 24.7 24.6 24.1 23.6 23.2 23.3|
 5| 23.7 24.0 24.3 24.6 24.8 24.7 24.4 23.9 23.5 23.5|
 6| 23.5 23.9 24.1 24.4 24.6 24.5 24.1 23.6 23.3 23.3|
 7| 23.3 23.8 24.0 24.2 24.3 24.2 23.7 23.1 22.8 22.9|
 8| 23.2 23.7 24.0 24.1 24.1 23.8 23.3 22.7 -2.6 22.6|
 9| 23.2 23.8 24.1 24.1 24.0 23.7 23.2 22.6 22.4 22.6|
 +--+

Simulation results of the heat diffusion model

APPENDIX. CD++ SPECIFICATION LANGUAGE.

RULELIST = RULE | RULELIST
RULE = RESULT RESULT { BOOLEXP }
RESULT = CONSTANT | { REALEXP }
BOOLEXP = BOOL | (BOOLEXP) | REALRELEXP | not BOOLEXP | BOOLEXP OP_BOOL BOOLEXP
OP_BOOL = and | or | xor | imp | eqv
REALRELEXP = REALEXP OP_REL REALEXP | COND_REAL_FUNC(REALEXP)
REALEXP = IDREF | (REALEXP) | REALEXP OPER REALEXP
IDREF = CELLREF | CONSTANT | FUNCTION | portValue(PORTNAME)
CONSTANT = INT | REAL | CONSTFUNC | ?
FUNCTION = UNARY_FUNC(REALEXP) | WITHOUT_PARAM_FUNC | BINARY_FUNC(REALEXP, REALEXP) |
 if(BOOLEXP, REALEXP, REALEXP) | ifu(BOOLEXP, REALEXP, REALEXP, REALEXP)
CELLREF = (INT, INT)
BOOL = t | f | ?
OP_REL = != | = | > | < | >= | <=
OPER = + | - | * | /
INT = [SIGN] DIGIT {DIGIT}
REAL = INT | [SIGN] {DIGIT}.DIGIT {DIGIT}
SIGN = + | -
DIGIT = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
PORTNAME = thisPort | STRING
STRING = LETTER {LETTER}
LETTER = a | b | c |...| z | A | B | C |...| Z
CONSTFUNC = pi | e | inf | grav | accel | light | planck | avogadro | faraday | rydberg |
euler_gamma | bohr_radius | boltzmann | bohr_magneton | golden | catalan | amu |
electron_charge | pem | ideal_gas | stefan_boltzmann | proton_mass | electron_mass |
neutron_mass
WITHOUT_PARAM_FUNC = truecount | falsecount | undefcount | time | random | randomSign
UNARY_FUNC = abs | acos | acosh | asin | asinh | atan | atanh | cos | sec | sech | exp | cosh
| fact | fractional | ln | log | round | cotan | cosec | cosech | sign | sin | sinh |
statecount | sqrt | tan | tanh | trunc | truncUpper | poisson | exponential | randInt | chi |
asec | acotan | asech | acosech | nextPrime | radToDeg | degToRad | nth_prime | acotanh |
CtoF | CtoK | KtoC | KtoF | FtoC | FtoK
BINARY_FUNC = comb | logn | max | min | power | remainder | root | beta | gamma | lcm | gcd |
normal | f | uniform | binomial | rectToPolar_r | rectToPolar_angle | polarToRect_x | hip |
 polarToRect_y
COND_REAL_FUNC = even | odd | isInt | isPrime | isUndefined

