
This work was partially supported by ANPCYT Project
11-04460 and UBACYT Project JW10.

EXPERIMENTAL RESULTS OF TIMED CELL-DEVS QUANTIZATION

Gabriel A. Wainer Bernard P. Zeigler
Departamento de Computación

Facultad de Ciencias Exactas y Naturales
Universidad de Buenos Aires

Planta Baja. Pabellón I. Ciudad Universitaria.
(1428) Buenos Aires. Argentina

gabrielw@dc.uba.ar

Arizona Center for Integrated M&S.
Electrical and Computer Engineering Dept.

University of Arizona,
Tucson, AZ 85715.

zeigler@ece.arizona.edu

Keywords: Simulation methods: Discrete-event simulation
Modeling methodology: DEVS models, Cell-DEVS models,
quantization.

Abstract

An experimental analysis of quantized Cell-DEVS models is
presented. The experiments show that execution times can be
reduced according with bx-a when quantized cell spaces are
used. The error introduced has linear growth for small
quanta. The experimental studies suggest how to define
dynamic strategies to improve the execution times in timed
Cell-DEVS. Quantization ideas are easy to apply, and the
concept is generic to be used in any simulation environment.

INTRODUCTION

In (Wainer 1998) the Timed Cell-DEVS formalism
was presented, as a combination of the DEVS (Zeigler
1976) and Cellular Automata (Wolfram 1986) paradigms
with timing delays (Giambiasi and Miara 1976). The idea is
to describe cell spaces as a DEVS model that can be
delayed using several constructions. The DEVS paradigm
was taken as base, due to it is a formal approach to specify
discrete events systems using a modular description.

Figure 1. Quantization (Zeigler et al. 1999)

Recently, a theory of quantized models was developed
(Zeigler 1998, Zeigler et al. 1998). The theory has been
verified when applied to predictive quantization of arbitrary
ordinary differential equation models. A curve is
represented by the crossings of an equal spaced set of
boundaries, separated by a quantum size. A quantizer
checks for boundary crossings whenever a change in a
model takes place. Only when such a crossing occurs, a
new value is sent to the receiver. This operation reduces
substantially the frequency of message updates, while
potentially incurring into error.

The cost/benefit analysis between reduced traffic and
increased error was discussed in (Zeigler et al. 1999). The
goal of this work is to show the applicability of the approach
when used in timed Cell-DEVS.

The following sections will be devoted to present
several empirical results obtained using the quantization
theory in timed Cell-DEVS. First, a review on DEVS and
Cell-DEVS is presented. After this, the main results related
with performance improvements are shown. Finally, the
models' error behavior is characterized.

BACKGROUND: DEVS FORMALISM

A DEVS model is seen as composed atomic
submodels than can be combined into coupled models. A
DEVS atomic model is described as:

M = < I, X, S, Y, δint, δext, λ, D >

Here, I is the model's interface, X is the input events
set, S is the state set, and Y is the output events set. There
are also several functions: δδint manages internal transitions,
δδext external transitions, λλ the outputs, and D the elapsed
time.

A DEVS coupled model is defined as:

CM = < I, X, Y, D, {Mi}, {Ii}, {Zij} >

Here, I is the model's interface, X is the set of input
events, and Y is the set of output events. D is an index of
components, and for each i ∈ D, Mi is a basic DEVS model,
where Mi = < Ii, Xi, Si, Yi, δinti, δexti, tai >. Ii is the set of

influencees of model i. For each j ∈ Ii, Zij is the i to j
translation function.

Timed Cell-DEVS allows us to define cellular discrete
events models. Each cell is defined as an atomic DEVS
model, and a procedure to couple cells is depicted.
Transport and inertial delays allow to define timing
behavior. A transport delay allows us to model a variable
commuting time for each cell with anticipatory semantics
(every schedled event will be executed). Using inertial
delays, the semantics is preemptive: some scheduled events
are not executed due to a small interval between two input
events. This kind of delay allows us to analyze frequency
limit response of systems.

Recalling the definitions from (Wainer 1998), Cell-
DEVS atomic models can be formally specified as:

TDC = < X, Y, I, S, θ, N, delay, d, δint, δext, τ, λ, D >

In this case, X is the set of external input events, Y is
the set of external output events, and I is the model's
modular interface. S is the set of sequential states for the
cell, θθ is the cell state definition, and N is the set of input
events. Delay defines the kind of delay for the cell, and d its
duration. Finally, there are several functions: δδint for internal
transitions, δδext for external transitions, ττ for local
computations, λλ for outputs and D for the state's duration
function.

A Cell-DEVS coupled model is defined by:

GCC = < Xlist, Ylist, I, X, Y, n, {t1,...,tn}, N, C, B, Z >

Here, Ylist is the output coupling list, Xlist is the
output coupling list and I represents the definition of the
model's interface. X is the set of external input events and Y
is the set of external output events. The n value defines the
dimension of the cell space, {t1,...,tn} is the number of cells
in each dimension and N is the neighborhood set. C is the
cell space, B is the set of border cells, and Z the translation
function.

QUANTIZED CELL-DEVS EXECUTION

Several experimental tests were done in order to
analyze the behavior of quantized Cell-DEVS models. The

quantized version includes a quantum to define the state
change for each cell in the model. Two classes of behavior
were analyzed: the execution time, and the number of
messages involved during execution.

Figure 2. Cell's neighborhood. (a) Von-Neumann
Neighborhood. (b) 3-dimensional heat model.

The following models were executed using a quantized
version of the N-CD++ tool (Rodríguez and Wainer 1999):

a) Heat diffusion: a two-dimensional model (10x10
cells) executed during 1 minute simulated time. One cell is
"hot" and the rest remain without initial heating. The
neighborhood shape can be seen in Figure 2a.

b) Heat model with 87% of active cells.
c) Three-dimensional extension of the previous

model. The neighborhood shape is shown in Figure 2b.
d) Three-dimensional modification of the Life game

(10x10x10 cells). The neighborhood includes the cell (0,-
8) to the South in the XY plane. The cell's value changes
according with the neighborhood, averaging them in some
cases, multiplying them in others. The goal is to introduce
complex neighborhood behavior and real numbers for the
state variables. It was executed for 20 seconds simulated
time.

e) Four dimensional extension of the previous model.
It was executed for 20 seconds simulated time.

f) Dynamic heat seeker: a three dimensional model
consisting of two adjacent planes. One of the surfaces
executes a heat diffusion model. The other one includes a
set of heat-seeking devices that follows the heat cells
towards a local maximum. It was executed for 3 seconds
simulated time.

The number of messages involved in the execution for
Cell-DEVS spaces can be expressed as follows:

mi = ∑
=

i

j 1

nj . µ (1)

mi: number of messages distributed up to the i-eth
simulation step;

nj: number of active cells in the j-eth simulation step.
µ: neighborhood size.

The results presented in the following figure show a
reduction according to bx-a in the number of messages
involved. Analyzing equation (1), it can be seen that nj has
been reduced in each time step. Also, the use of a quantized

version provides fewer steps to be executed, reducing the i
value in the equation.

0
5000

10000
15000

20000
25000
30000

0 0.001 0.01 0.1 0.5 1

Quantized Non Q.

(a) f(x) = 441x-0.58

0

5000

10000

15000

20000

25000

30000

0 0.001 0.01 0.1 0.5 1
Quantized Non Q.

(b) f(x) = 2547x-0.32

0

25000

50000

75000

100000

125000

0 0.001 0.01 0.1 0.5 1
Quantized Non Q.

(c) f(x) = 13752 x-0.3

0

25000

50000

75000

100000

125000

0 0.001 0.01 0.1 0.5 1
Quantized Non Q.

 (d) f(x) = 14013 x-0.2

0

2000

4000

6000

8000

10000

0 0.001 0.01 0.1 0.5 1
Quantized Non Q.

(e) f(x) = 1860x-0.15

0

5000

10000

15000

20000

25000

30000

0 0.001 0.01 0.1 0.5 1
Quantized Non Q.

(f) f(x) = 4790 x-0.32

Figure 3. Number of messages involved.

The curves belong to the class of curves f(x) = bx-a

with x ∈ (0,1]. Approximations of a and b values were
found using the minimum square method, allowing to find a
description for each curve, that are presented in the figure.
These results approximate the theoretical optimum results
presented in (Zeigler et al. 1998).

Message reductions in model (b) are slightly less than
the (a) case, because the number of active initial cells is
higher. Therefore, in the first simulation steps, nj is greater
than the previous case. The accumulation of these values
makes that reduction slightly slower than in model (a).

The case is different for model (c) though the curve
shapes are similar. Here, we can see that the number of
messages has increased significantly, reflecting the change
of the neighborhood and cell space sizes. The proportion of
active cells is significantly reduced (4 initial hot cells in a
total of 1000). Therefore, the value µ has the main weight in
equation (1), producing a slower reduction for high quanta.
Similar results were achieved for model (e). In this case, the
number of active cells is proportionally small in the four
dimensional model.

The model (d) uses about 60% of active cells. The
neighborhood size has been reduced to 7 cells. The number
of messages is similar to the previous case, though the
simulated time was reduced to 33%. Therefore, nj increases
while µ was reduced proportionally.

In model (f), the number of active cells between 0 and
0.001 changed around 1% and 5%. This happened because
the initial values for temperatures had a precision of 0.1
degrees. Therefore, the average temperature differs in 0.01
or 0.001 sizes only after long execution time, while the
simulation run for 3 seconds (the total seeking time).

Now we will analyze the execution times for the same
models studied previously. The results obtained are
presented follows:

0

5

10

15

20

0 0.001 0.01 0.1 0.5 1
Quantized Non Q.

 (a) f(x) = 0.61 x-0.45

0

5

10

15

20

0 0.001 0.01 0.1 0.5 1
Quantized Non Q.

 (b) f(x) = 4.1 x-0.19

0

50

100

150

0 0.001 0.01 0.1 0.5 1
Quantized Non Q.

 (c) f(x) = 73 x-0.08

0

20

40

60

80

100

0 0.001 0.01 0.1 0.5 1
Quantized Non Q.

(d) f(x) = 28.3 x-0.08

0
2
4
6
8

10
12
14

0 0.001 0.01 0.1 0.5 1
Quantized Non Q.

 (e) f(x) = 4.2 x-0.12

0

10

20

30

40

50

0 0.001 0.01 0.1 0.5 1
Quantized Non Q.

 (f) f(x) = 7.67x—0.24

Figure 4. Execution time for the examples.

In this case, the total execution time can be expressed
as:

ti = ∑
=

i

j 1

[(nj . µ . xj) + (nj . τj)] (2)

ti: total execution time up to the i-th simulation step;
nj: number of active cells in the j-th simulation step;
xj: transmission time for each message;
µ: neighborhood size; and
τj: execution time for the local computing function.

The results obtained in models (a) and (b) are
proportional to those obtained analyzing the number of
messages involved. In this case, the execution and
transmission times for each cell are equivalent. The results
obtained with larger quantum have increased proportionally
to the number of messages involved. This is because the

first step of the simulation (where the quantum size has no
influence) introduces a minimum execution time.

Model (c) obtained a smaller run time reduction than
the number of messages involved, due to the size of the
neighborhood. Initially, there are 4 "hot" cells with 27
neighbors each. Therefore, the transmission time is at least
of 112*xj. A similar phenomenon occurs in case (e). In this
case the difference is slightly lower than in the (c) case,
because here we have only 10 neighbors. Preparation time
for messages in 3 and 4-dimensional spaces produces higher
amounts of overhead. This can be seen analyzing the (e)
model. It has the same neighborhood and computing
function of (d), but the messages has to be sent to 4-
dimensional neighbors.

An interesting behavior can be seen in model (f). Even
though the number of messages was not reduced for small
quanta, the execution speed improved. The model is divided
in two planes, each executing different computing functions.
One of them averages the values of the neighbors, while the
other compares the present values. The computation of the
average is more time consuming than the comparisons of the
seeker plane. Analyzing the log files, the cells of the heat
surface becomes inactive faster due to the quantized version.
Even the use of a small quantum does not reduce the
number of messages, improvement in the execution speed is
achieved, due that this is the more time consuming part of
the model.

MODEL'S ERROR BEHAVIOR

The error behavior of these models can be expressed
as:

e(Cc, i) = ∑
=

i

j 1

|τcj(Nc) - [τcj(Nc)] q| (3)

Here, e(Cc, i) is the accumulated error up to the i-th
simulation step in cell Cc (c is an n-dimensional index of the
cell). Nc are the inputs of the cell c, τcj is the execution result
of j-th step of the local computing function of cell c, and []q

represents the quantized value of the last change.

The error obtained is a function of the local computing
function, the number of simulation steps and the quantum.
The future input values for a cell are dependent of the
present results for the cell. This can lead to a nonlinear
behavior of the error, depending on the cell's
interconnection. In any case it can be seen that the higher
the quantum, the worse the error. The use of a higher
quantum reduces the number of steps, but each of them will

have higher error. The experimental results validate this
behavior.

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2

0 0.001 0.01 0.1 1 10

 (a) f(x) = 0.1 x0.63

0

0.5

1

1.5

0 0.001 0.01 0.1 0.5 1

(c) f(x) = 1.58 x0.77

0

0.2

0.4

0.6

0.8

1

0 0.001 0.01 0.1 0.5 1

 (d) f(x) = 0.57 x1.02

Figure 5. Accumulated error behavior.

It can be seen that the error grows as f(x) = axb. This
error can be linear when there is no influence between cells.
We can see that, in the (a) case, the error hardly increases
while the messages go down by approximately 1/10.
Nevertheless, the error can lead to undesired behavior for
the execution models, as shown in the following figure.

(a) (b) (c)

Figure 6. Error behavior for the heat seekers. (a)
non-quantized and q=0.001; (b) q=0.1; (c) q=1.

The figure shows the seekers in the left, and the
surface in the right for a given simulated time (using
different quantum in each case). We can see that the use of a
high quantum produces much higher errors, producing a
final result completely different from the desired. The use of
a smaller quantum also introduces errors, but most seekers
can reach the local maximum. Therefore, several orders of
improvement in execution times can be achieved using
small quanta, preserving the model's behavior. In this case, a
speedup of almost 40% was achieved with almost no error.

Another set of tests was devoted to analyze the error
behavior depending on the individual cells. The results can
be seen in the following figure:

0

0.002

0.004

0.006

0.008

0.01

11 33 55 77 99

(a)

0

0.5

1

1.5

317 333 555 731 777 Avg.

(b)
Figure 7. Error behavior for individual cells. (a)

Model (a); (b) Model (c).

The error is reduced when the cells analyzed are far
from the more active ones. This allowed us to define two
dynamical quantum adjustment strategies:

a) Reduce the quantum of the most inactive cells. The
goal of this policy is to improve the precision of the
inactive cells. An active cell can appear as quiescent due
to the use of a quantized version. Therefore, if the
quantum is reduced, the error introduced can be avoided.
Besides, the quantum is increased for the most active cells,
thus improving execution times.

b) Increase the quantum of the most inactive cells.
This would lead to faster inactive behavior, eliminating
these cells from the computations. Besides, the most active
cells will have higher quanta, thus reducing their error.

CONCLUSION

Several conclusions can be drawn of the execution of
the present examples and of those reported in (Zeigler 1998,
Zeigler et al. 1998 and Zeigler et al. 1999):

• The number of messages involved in the execution
diminishes according to bx-a. This result is especially
useful in distributed environments, where the
communication costs can produce degradation in the
execution times.

• Due to the transient characteristics of the examples
in this paper, the main reduction is due to the number of
active cells involved. The use of a quantum deactivates
the cells in fewer simulation steps. The shape and size of
the neighborhood and the dimension of the cell space are
also influences. Recent results from other studies
indicate that message reduction can be independent of
active cell numbers.

• Quantum size increase can reduce the number of
simulation steps.

• Equation (2) introduces a factor for transmission
time for messages. This value was small in the presented
examples, due to the use of a centralized simulation
approach. A distributed version would increase this
value, making the quantized approach even more useful.

The quantization process can be used in experimental
phases of complex systems studied through simulation. In
these cases it takes a long time to find a specification's
errors, leading to a time consuming procedure. Quantized
versions can be used to obtain fast results in the early
testing phases.

Finally, the quantization approach is relatively easy to
apply and requires minimal restructuring of the state
computation processes. However, it can incur loss of
accuracy due to the receiver’s diminished state updates and
this may propagate in a global error due to feedback
between sender and receiver. The concept is generic and can
be employed in any distributed simulation environment.

REFERENCES

Giambiasi, N. and Miara, A. "SILOG: A practical tool for
digital logic circuit simulation. In Proceedings of the 16th.
D.A.C., San Diego, U.S.A. 1976.
Rodríguez, D. and Wainer, G. "New Extensions to the
CD++ tool". In Proceedings of SCS Summer
Multiconference on Computer Simulation, Chicago, U.S.A.
1999.
Wainer, G. “Discrete-events cellular models with explicit
delays”. Ph.D. Thesis, Université d'Aix-Marseille III. 1998.
Wolfram, S. “Theory and applications of cellular automata”.
Vol. 1, Advances Series on Complex Systems. World
Scientific, Singapore, 1986.

Zeigler, B. Theory of modeling and simulation. Wiley,
1976.
Zeigler, B. DEVS Theory of Quantization. DARPA
Contract N6133997K-0007: ECE Dept., UA, Tucson, AZ.
1998
Zeigler, B.; Cho, H. ; Lee, J. and Sarjoughian, H. The
DEVS/HLA Distributed Simulation Environment and its
Support for Predictive Filtering. DARPA Contract
N6133997K-0007: ECE Dept., UA, Tucson, AZ. 1998.
Zeigler, B.; Ball, G.; Cho, H. Lee, J. and Sarjoughian, H.
"Bandwidth Utilization/Fidelity Tradeoffs in Predictive
Filtering". In SISO SIW '99. Orlando, Florida. March 1999.

