
This work was partially supported by ANPCYT research
project 11-04460 (Argentina) and NSERC (Canada).

Defining Congestion Control Mechanisms in ATLAS

Gabriel Wainer

Systems and Computer Engineering
Carleton University

1125 Colonel By Drive
Ottawa, ON. K1S 5B6. Canada.

gwainer@sce.carleton.ca

Andrea Díaz Verónica Vázquez

Departamento de Computación
Universidad de Buenos Aires

Pabellón I. Ciudad Universitaria (1428)
Buenos Aires. Argentina.

{adiaz, vvazquez}@dc.uba.ar

Keywords : traffic models, DEVS, Cell-DEVS, cellular
models.

Abstract

The ATLAS specification language entitles the
definition of city section models used to simulate
traffic flow. The model static behavior is characterized
by parametric definition. Then, language constructions
are translated into DEVS and Cell-DEVS models to
represent the system dynamic behavior. We have
extended the original rules defined for the language
constructions to include routing mechanisms and
congestion avoiding techniques. An example of the
application of the proposed strategies illustrates these
concepts.

INTRODUCTION

Traffic analysis and control complexity is increasing

in a daily basis, and simulation based studies have
proven to be helpful to improve traffic control, avoid
pollution, traffic jams, etc.

ATLAS (Advanced Traffic LAnguage

Specifications) is a high level specification language
defined to represent city sections as cell spaces [1]. It is
focused to analyze detailed behavior of traffic
(microsimulations). The idea is to allow elaborate study
of flow according with the shape of a city section and
its traffic attributes. A city section can be easily
described, including definitions for traffic components.
Therefore, a modeler can concentrate in the transit
problems to be solved.

The constructions defined in this language are used

to define a static view of the system to be modeled.
System dynamic behavior has been defined by creating
a mapping into DEVS [2] and Cell-DEVS models [3].
Cell-DEVS was proposed to describe cell spaces as
DEVS models with explicit delays. Using Cell-DEVS, a

cellular model can be described as a discrete event
model, and transport and inertial delays allow accurate
timing description.

The article focuses on the definition of congestion

monitoring techniques. Congestion information about
conflictive points can be useful to evaluate structural
alternatives to congestion problems, or giving the
drivers information to avoid traffic jams. The language
constructions were extended, allowing dynamic traffic
routing.

We briefly recall the DEVS and Cell-DEVS

formalisms, and explain the main components of the
specification language. Then, the congestion monitoring
techniques employed are presented. finally, the results
of an implementation example are introduced.

DEVS AND CELL-DEVS FORMALISMS

ATLAS is a specification language built on top of

DEVS and Cell-DEVS formalisms. DEVS formalism
permits to specify discrete events systems using a
modular description. A model is seen as composed by
atomic submodels than can be combined into coupled
models. DEVS is a discrete event paradigm. It uses a
continuous time base, which allows accurate timing
representation. Precision of the conceptual models can
be improved, and CPU time requirements reduced. A
DEVS model is seen as composed of atomic submodels
than can be hierarchically combined into coupled
models. A DEVS atomic model is described as:

M = < X, S, Y, δint, δext, λ, ta >

X is a set of input events, S defines the state

variables, and Y is a set of output events. The function
δint manages internal transitions, δext external
transitions, λ the outputs, and ta the elapsed time. A
DEVS coupled model is defined as:

CM = < X, Y, D, {M i}, {Ii}, {Zij} >

Here, X is the set of input events, and Y is the set of

output events. D is an index of components, and for
each i ∈ D, Mi is a basic DEVS model, where Mi = <

Xi, Si, Yi, δinti, δexti, tai >. Ii is the set of influencees

of model i. For each j ∈ Ii, Zij is the i to j translation
function.

Cell-DEVS is an extension of DEVS, especially

devoted to define cell spaces. Each cell is defined as an
atomic DEVS, and a procedure to couple cells is
depicted. Timing delay constructions let the modeler to
define the cell timing behavior. Each cell, built as an
atomic model, can be described as:

TDC = < X, Y, θ, N, delay, d, δint, δext, τ, λ, ta >

X defines the external inputs, Y the external outputs.

θ is the cell state definition, and N is the set of inputs.
Delay defines the kind of delay for the cell, and d its
duration. Finally, there are several functions: δint for
internal transitions, δext for external transitions, τ for
local computations, λ for outputs and ta for the state's
duration. Each cell uses the set of inputs to compute the
cell's next state using the τ function. The delay allows
to defer the transmission of the results. This behavior is
defined by the δint, δext, λ and ta functions. A modeler
only focuses in defining the local computing function,
the kind of delay and its length.

A Cell-DEVS coupled model is defined by:

GCC = < Xlist, Ylist, X, Y, n, {t1,...,tn}, N, C, B, Z >

Here, Xlist and Ylist are the input/output coupling

lists. X and Y represent the input/output events. The n
value defines the dimension of the cell space, {t1,...,tn}
is the number of cells in each dimension and N is the
neighborhood set. The cell space is defined by C, B (the
set of border cells) and Z (the translation function). For
coupled models, the modeler only has to focus in the
neighborhood shape, the size and dimension of the
model, the definition of the border set, and the coupling
lists.

In ATLAS, the structure of a city section is

represented by a set of streets connected by crossings.
Some of the language components include:

. Segments: they represent sections between two

corners. Every lane in a given segment has the same
direction (one way segments) and a maximum speed.
They are specified as: Segments = { (p1, p2, n, a, dir,
max) / p1, p2 ∈ City ∧ n, max ∈ Ν ∧ a, dir ∈ {0,1} },
where p1 and p2 represent the boundaries of each

segment, n is the number of lanes, and dir represents
the vehicle direction. The a parameter defines the shape
of the segment, and max is the maximum speed
allowed.

. Crossings : they represent the places where the

streets (represented as sets of segments) are gathered.
Each crossing can connect any number of segments.
They can be defined as: Crossings = { c / ∃ t ,t’ ∈
Segments ∧ t = (p1, p2, n, a, dir, max) ∧ t’ = (p1’, p2’,
n’, a’, dir’, max’) ∧ t ≠ t’ ∧ (p1 = c ∨ p2 = c) ∧ (p1’ = c
∨ p2’ = c) }

. Traffic lights: crossings with traffic lights are

defined as: TLCrossings = { c / c ∈ Crossings }. Every
c ∈ TLCrossings is a set of models representing the
traffic lights in a corner and the corresponding
controller. Each of these models is associated with a
crossing input. It sends a color value related with the
traffic light to the corresponding segment in the
intersection.

. Railways: they are built as a sequence of level

crossings overlapped with the city segments. The
railway network is defined by: RailNet = { (Station,
Rail) / Station is a model, Rail ∈ RailTrack }, where
RailTrack = { (s, δ, seq) / s ∈ Segments ∧ δ ∈ Ν ∧ seq
∈ Ν }. RailNet represents a set of stations connected to
railways, thus defining a part of the railway network.
Railtrack associates a level crossing with other existing
constructions in the city section. Each element identifies
the segment that is crossed (s) and the distance to the
railway from the beginning of the section (δ). Finally, a
sequence number (seq) is assigned to each level
crossing, defining its position in the RailTrack .

. Men at work: they are specified as: Jobsite = { (s,

ni, δ, #n) / s ∈ Segments ∧ s = (c1, c2, n, a, dir, max) ∧
ni ∈ [0, n-1] ∧ δ ∈ Ν ∧ #n ∈ [1, n+1-ni] ∧ #n ≡ 1 mod
2 }. Here, each (s, ni, δ, #n) ∈ Jobsite is related to a
segment where the construction works are being done.
It includes the first lane affected (ni), the distance
between the center of the jobsite and the beginning of
the segment (δ), and the number of lanes occupied by
the work (#n). These values are used to define a
rhombus where the cars cannot advance.

. Traffic signs : they are defined by: Control = { (s,

t, δ) / s ∈ Segments ∧ δ ∈ Ν ∧ t ∈ {bump, depression,
school, pedestrian crossing, stop, others} }. Each tuple
here identifies the segment where the traffic sign is
used, the kind of signal, and the distance up to it from
the beginning of the segment.

CONGESTION MONITORING

Traffic flow rate in a city section can influence the
vehicle movement and the decisions taken by the
drivers. Most existing modeling approaches based on
cell spaces do not consider the information related to
congestion, or provides mechanisms to reproduce
vehicle routing. Our goal in this section is to present an
extension to ATLAS to represent this behavior.

To entitle the definition of vehicle routing, path

information for the cars should be included. We have
used an approach based in Origin/Destination (O/D)
matrixes. These arrays provide data about routes and
traffic flow between different regions in a city. Each
element in the matrix represents the amount of traffic or
the delays between the origin and the destination. O/D
matrixes can be built using the definition of a region
represented as a directed graph. Then, the available
information (traffic flow, delays existing in each link of
the graph) is inserted in the matrix. We suppose that a
O/D matrix is provided for the region to be modeled,
and we will be use it to make decisions related to
vehicle routing.

There are several ways to implement O/D matrixes,

and we have chosen an approach based on a road table.
Each register in this table specifies a road connecting a
pair of origin/destinations, and the time a vehicle
spends in that road. The table has the following
structure:

Time Vehicle type
{ ID Origin Destination {link1...linkN} Travel-time }

Here, Time and Vehicle types are used to build

different tables according to different parameters. The
structure of the O/D matrix and the function used to
make the routing decisions can be changed without
affecting the simulation models. In this way, both
problems can be treated independently.

A traffic model is built by defining the city shape

using ATLAS. Then, a directed graph can be built
based on the segment and crossing identifications.
Using this graph, the O/D matrix can be created. The
simulation models devoted to represent routing use a
function that queries the O/D matrix and provides a
route to be followed by a vehicle.

Once these basic static routing strategies were

defined, the language was extended by adding a
measure of traffic congestion. Based on this information
and using the O/D matrixes, the cars can change their
original routes. A new DEVS model, devoted to
monitor congestion, was added. Now, every segment is

provided with a controller to measure the number of
cars. This model is defined as:

M = < X, Y, S, δint, δext, λ, ta>

X = {< x-r-carIn , N>, < x-r-carOut, N>}
Y = {< y-r-weight, N>}
S = k ∈ N representing the number of cars in the
segment under consideration,
δext () {
 when (x-r-carIn = 1)
 k = k + 1;

 when (x-r-carOut = 1)
 k = k – 1;
passivate;
}
λ () { send k through the port y-r-weight }

Once the DEVS congestion controllers were

defined, the border cells of the Cell-DEVS representing
the segments were changed to transmit information
about the cars arriving or leaving a segment. New
input/output ports were added to transmit this data to
the coupled models corresponding to the crossings,
depicted in the following figure:

X-c-path
X -c-car

Y-c-room

Crossing

Cell (0,0)

(0,1)

Congestion controller

Y-r-newcar

Figure 1. Coupling scheme of congestion controllers,
crossings and segments.

The behavior of these models is similar to the ones

presented in [1]. The rules used in the border cells have
been redefined to include the congestion management
definition. Now, these cells must inform the number of
cars entering and leaving the segment to the DEVS
congestion monitor. For instance, for one-lane
segments, this specification is now translated into a
Cell-DEVS defined by:

C0(segment_no) = < I, X, S,Y,N,δint,δext,delay,d,τ,λ,D >

I = <η, Px, Py>, with η = 3, Px = { <X1, Record>, <X2,
Record>, <X3, Record> } and Py = { <Y1 , Record>,
<Y2, Record>, <Y3 , Record> }
X, Y ∈ N
S : {s, phase, σqueue, σ}, with s = (destination, path)

  ≠ 0 if there is a vehicle in the cell
destination ∈ N = 

  0 otherwise.

  {t1...tn} ti∈N ∧ (∀i(∃ r ∈ Segments/
path =  Segment_no(r) = ti))

  0 otherwise.
N = { (0,-1), (0,0), (0,1) }
delay = transport
d = speed(max)
λ, δint y δext are defined by Cell-DEVS with transport
delays.
τ: S x N → S. The behavior of the local computing
function can be roughly defined by:

New state Neighborhood
Dest = Dest(0,-1)
Path = Path(0,-1)

Dest(0,-1) != 0 and
Dest(0,0) = 0

Dest = 0
Path = 0

Dest(0,0) != 0 and
Dest(0,1) = 0

Figure 2. Local computing function for the segments.

In this case, the first rule represents a vehicle

arriving to the cell, coming from the previous cell. The
second rule represents the advance of the vehicle to the
following cell. As we can see, the identifier of the
destination cell represents the vehicle, and the path of
the vehicle is transferred between cells.

After defining the behavior for the controller and the

segments (with 1 to 5 lanes), a new coupled model for
the crossings was created.

Then, the rules used for defining the crossing

behavior were modified. Now, every crossing will
receive information from the congestion controller, and,
based on the availability of paths to arrive to the same
destination and the congestion information, a routing
decision is taken. The mo dels now include the
definition of routing mechanisms associated with each
cell, defined as:

Cj(crossing_no) = < I,X,S,Y,N,δint,δext,delay,d,τ, λ, ta >

I = < η , Px, Py>, with η = 3, Px = { <x-t-destinat,
Record>, <x-c-congestion, Record>, <x-t -path,

Record> }, Py = { <y-t-room, Record>, <y -c-vehicle,
Record>, <y-c-path, Record> }.
X, Y ∈ N;
S: {s, phase, σqueue, σ}, with s = (destination, path,
crossing_no, segment_no), with

  !=0 if there is a vehicle (representing
destination =  the destination crossing).
  0 otherwise.

  {t1.t2...tn}, ti ∈N∧ (∀i(∃ r ∈ Segments
path =  / segment_no(r) = ti))
  0 otherwise.

crossing_no ∈ N: crossing identifier;
segment_no ∈ N: identifier of the segment to which the
output cell of the crossing is connected.
N = { (0,-1), (0,0), (0,1) }
delay = transport
d = speed(maxc)
λ, δint y δext are defined by Cell-DEVS with transport
delays.
τ: S x N → S. The behavior of the local computing
function can be roughly defined by:

New state Neighborhood
Dest= Dest(0,-1)
Path= Path(0,-1)
Crs_no= crs_no(0,0)
Seg_no= seg_no(0,0)

Dest(0,0)= 0 and
Dest(0,-1) != 0
Send(1, y-t-room)

Dest= (x-t-dest)
Path= (x-t-Path)
Crs_no= crs_no(0,0)
Seg_no= Seg_no(0,0)

Dest(0,0)=0 and Dest(0,-
1)= 0 and (x-t-dest) !=
0 and (x-t-dest)!=
crs_no(0,0) and
!Congestion((x-c-
congest, next-
seg(path(0,-1)), seg_no
(0,0)))
Send(1, y-t-room)

Dest= (x-t-dest)
Path=
New_Path(Crs_no(0,0
), Dest(0,-1),
Path(0,-1))
Crs_no= crs_no(0,0)
Seg_no= Seg_no(0,0)

Dest(0,0)= 0 and
Dest(0,-1)= 0 and (x-t-
dest) != 0 and (x-t-
dest) != crs_no(0,0) and
Congestion((x-c-congest,
next-segment(path(0,-1),
seg_no(0,0)))
Send(1, y-t-room)

Dest= 0
Path= 0
Crs_no= crs_no(0,0)
Seg_no= Seg_no(0,0)

Dest(0,0)= 0 and
Dest(0,-1)= 0 and (x-t-
dest) != 0 and (x-t-
dest)= crs_no(0,0)
Send(0, y-t-room)

Figure 3. Rule definition for the crossings.

In this case, the first rule introduced represents the
arrival of a vehicle to a cell that was in the crossing and
preserves the original path. The second rule represents
the input of a vehicle to the crossing that has not arrived
to the destination, conserving the original route. The
following rule represents the input of a vehicle that
changes the path due to congestion in the area. The
fourth rule eliminates a vehicle that has arrived to the
destination.

The crossing number uniquely defines the crossing

where this cell is defined. In this way, an O/D matrix
can be used, and the crossing identified to permit
diffe rent paths to be taken. The cell state represents the
existence of a vehicle, the path to be followed, and the
crossing identifier. Using this information, every
vehicle arriving to the crossing can be routed according
to the congestion information.

When a vehicle arrives to a crossing, it will be sent

to the input cell, which will be in charge of deciding the
vehicle routing. The input cells will use the congestion
information sent by the congestion monitors.

Segment j

Congestion controller

X-t-destinat
X-t-path
Y-t-room

X-c-congestionj

Segment k

crossing

....

....

....

....

Figure 4. Coupling scheme of output cells of segments,
crossings, and congestion controllers.

SIMULATION RESULTS

Once the whole set of new rules and coupled model

definitions were defined (see details in [4]), we defined
the new set of constructions using the CD++ tool [5]. In
this section, we will show the definition of a simple
example implementing the new routing techniques.

The following figure depicts a section of the city in

which the new routing strategies were tested. The
circles represent crossings, and the lines, the segments
between two crossings. In this case, we have used one
way streets with one lane each.

Figure 5. Representation of a city section.

This city section is composed of 5 segments and 4

crossings interconnected. Different cars arrive through
the segment 1, and all of the cars will follow the same
path (segment2-segment5). The segment 2 includes a
pothole delaying the advance of cars. The defin ition of
the congestion function considered that a segment with
2 or more cars is congested. The goal of this example is
to show how the dynamic routing is achieved.

The segments were implemented as Cell-DEVS

models using two state variables. The first variable
defines the vehicle destination (or 0 if the cell is

empty), and the second state variable include a
definition of the path to be followed by the vehicle. The
following figure shows the execution results for the
segment 1:

Time: 00:00:00:010
 0 1 2 3 4
 +------------------------------+
 0 |4 |
 1 |2,5 |
 +------------------------------+

Time: 00:00:00:040
 0 1 2 3 4
 +------------------------------+
 0 | 4 4 |
 1 | 2,5 2,5 |
 +------------------------------+

Time: 00:00:00:050
 0 1 2 3 4
 +------------------------------+
 0 | 4 4 |
 1 | 2,5 2,5 |
 +------------------------------+

Time: 00:00:00:060
 0 1 2 3 4
 +------------------------------+
 0 | 4 |
 1 | 2,5 |
 +------------------------------+

Time: 00:00:00:110
 0 1 2 3 4
 +------------------------------+
 0 | 4 4 |
 1 | 2,5 2,5 |
 +------------------------------+

Time: 00:00:00:140
 0 1 2 3 4
 +------------------------------+
 0 | 4 |
 1 | 2,5 |
 +------------------------------+

Figure 6. Execution results in Segment 1.

In this example we see that in the simulated time

00:00:010, 00:00:040, 00:00:070 and 00:00:100 new
cars have arrived to the cell (0,0). Every vehicle will
follow the route segment 2-segment 5. When the cars
finish traversing the segment, they will be routed to the
crossing 1.

 Time: 00:00:00: 000
 0 1 2
 +----------------------------+
 0 | |
 1 | |
 2 | 2 3 |
 +----------------------------+

Time: 00:00:00:050
 0 1 2
 +----------------------------+
 0 | 4 |
 1 | 2,5 |
 2 | 2 3 |
 +----------------------------+

Time: 00:00:00:060
 0 1 2
 +----------------------------+
 0 | 4 |
 1 | 2,5 |
 2 | 2 3 |
 +----------------------------+

Time: 00:00:00:080
 0 1 2
 +----------------------------+
 0 | 4 |
 1 | 2,5 |
 2 | 2 3 |
 +----------------------------+

Time: 00:00:00:110
 0 1 2
 +----------------------------+
 0 | 4 |
 1 | 2,5 |
 2 | 2 3 |
 +----------------------------+

Time: 00:00:00:120
 0 1 2
 +----------------------------+
 0 | 4 |
 1 | 3,4 |
 2 | 2 3 |
 +----------------------------+

Time: 00:00:00:130
 0 1 2
 +----------------------------+
 0 | 4 |
 1 | 3,4 |
 2 | 2 3 |
 +----------------------------+

 Time: 00:00:00:140
 0 1 2
 +----------------------------+
 0 | 4 4 |
 1 | 2,5 3,4 |
 2 | 2 3 |
 +----------------------------+

Figure 7. Execution results in Crossing 1.

This crossing implements the dynamic routing

techniques previously explained. The cell 0 of the
crossing is an input cell, while the remaining two are
used for outputs. The following figure shows the values

of the different state variables used in each cell of the
crossing. The state variables showed in the lines 0 and 1
represent the vehicle information used for the segments
(destination and route). Line 2 represents the segments
to which the output cells are connected.

The first two cars arriving to the crossing (in

00:00:050 and 00:00:080) keep the original path
(segment 2-segment 5). As the cell 1 in the crossing is
connected to the segment 2, the vehicle is sent to the
crossing through this cell.

The last two cars arriving to the crossing (at

00:00:110 and 00:00:140) must take a new path,
because the congestion function for the segment 2
returns a value representing that the segment is
congested. Therefore, the cars ask to the O/D matrix for
a new path, and the model returns the path segment 3-
segment 4. Then, they leave the crossing through the
cell 2, connected to the segment 3, following the rules
defined in the previous sections.

CONCLUSION

ATLAS is an application oriented specification

language that allows the definition of complex traffic
behavior using simple rules. The models are formally
specified, avoiding a high number of errors in the
developed application, and the problem solving time is
highly reduced, allowing analyzing complex behavior
in the traffic, and providing new solutions.

In this case, we have extended the original

definitions to include complex routing behavior not
available in other microsimulation tools. Due to the
hierarchical and modular characteristics of DEVS and
Cell-DEVS, the inclusion of this new complex behavior
was straightforward. The implementation of these
techniques in existing DEVS tools allowed us to prove
the implementation feasibility of the approach, entitling
the future inclusion of the routing mechanisms in the
TSC compiler for the ATLAS language [6].

REFERENCES

[1] Davidson, A. and Wainer, G. 1999. "A specification
language for traffic modeling and simulation".
Technical Report 99-012, Departamento de
Computación, FCEN/UBA. Submitted.

[2] Zeigler, B.; Kim, T.; Praehofer, H. 2000. Theory of
Modeling and Simulation: Integrating Discrete Event
and Continuous Complex Dynamic Systems. Academic
Press.

[3] Wainer, G.; Giambiasi, N. 2001. "Timed Cell-
DEVS: modeling and simulation of cell spaces." in
Discrete Event Modeling & Simulation: Enabling
Future Technologies, Springer-Verlag.

[4] Díaz, A.; Vázquez, V. 2000. "Routing model
definition in ATLAS" (in Spanish). M. Sc. thesis.
Departamento de Computación, FCEN/UBA.

[5] Rodriguez, D.; Wainer, G. 1999. "New Extensions
to the CD++ tool.” In Proceedings of SCS Summer
Computer Simulation Conference, Chicago, USA.

[6] Lo Tartaro, M.; Torres, C.; Wainer, G. “TSC: a
compiler for the ATLAS language”. 2001. Technical
Report, 01-002. Computer Science Dept. Submitted.

Gabriel Wainer received his M. Sc. (1993) and Ph.D.
degree (1998) from the Universidad de Buenos Aires,
Argentina, and Université d'Aix-Marseille III, France.
He is currently Assistant Professor at the SCE Dept. of
Carleton University (Ottawa, Canada). He was
Assistant Professor at the Computer Sciences Dept. of
the Universidad de Buenos Aires, Argentina, being a
Visiting Research Scholar at the University of Arizona,
Tucson, AZ. He has been the PI of several research
projects (ANPCYT - Argentina, Usenix Foundation -
USA, NSERC - Canada, etc.). He is author of a book on
real-time systems and another on Discrete-Event
simulation. He is a member of the Board of Directors of
the Society for Computer Simulation International, and
a member of a group on standardization of DEVS
modeling tools.

Andrea Díaz and Veronica Vázquez received their
B.Sc. M. Sc. degree at the Universidad de Buenos Aires
in 1997 and 2000. They are in high tech firms in
Buenos Aires, Argentina.

