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Abstract 

The ATLAS specification language entitles the 
definition of city section models used to simulate 
traffic flow. The model static behavior is characterized 
by parametric definition. Then, language constructions 
are translated into DEVS and Cell-DEVS models to 
represent the system dynamic behavior. We have 
extended the original rules defined for the language 
constructions to include routing mechanisms and 
congestion avoiding techniques. An example of the 
application of the proposed strategies illustrates these 
concepts. 

 
INTRODUCTION 

 
Traffic analysis and control complexity is increasing 

in a daily basis, and simulation based studies have 
proven to be helpful to improve traffic control, avoid 
pollution, traffic jams, etc.  

 
ATLAS (Advanced Traffic LAnguage 

Specifications) is a high level specification language 
defined to represent city sections as cell spaces [1]. It is 
focused to analyze detailed behavior of traffic 
(microsimulations). The idea is to allow elaborate study 
of flow according with the shape of a city section and 
its traffic attributes. A city section can be easily 
described, including definitions for traffic components. 
Therefore, a modeler can concentrate in the transit 
problems to be solved.  

 
The constructions defined in this language are used 

to define a static view of the system to be modeled. 
System dynamic behavior has been defined by creating 
a mapping into DEVS [2] and Cell-DEVS models [3]. 
Cell-DEVS was proposed to describe cell spaces as 
DEVS models with explicit delays. Using Cell-DEVS, a 

cellular model can be described as a discrete event 
model, and transport and inertial delays allow accurate 
timing description.  

 
The article focuses on the definition of congestion 

monitoring techniques. Congestion information about 
conflictive points can be useful to evaluate structural 
alternatives to congestion problems, or giving the 
drivers information to avoid traffic jams. The language 
constructions were extended, allowing dynamic traffic 
routing.  

 
We briefly recall the DEVS and Cell-DEVS 

formalisms, and explain the main components of the 
specification language. Then, the congestion monitoring 
techniques employed are presented. finally, the results 
of an implementation example are introduced. 

 
 

DEVS AND CELL-DEVS FORMALISMS 
 
ATLAS is a specification language built on top of 

DEVS and Cell-DEVS formalisms. DEVS formalism 
permits to specify discrete events systems using a 
modular description. A model is seen as composed by 
atomic submodels than can be combined into coupled 
models. DEVS is a discrete event paradigm. It uses a 
continuous time base, which allows accurate timing 
representation. Precision of the conceptual models can 
be improved, and CPU time requirements reduced. A 
DEVS model is seen as composed of atomic submodels 
than can be hierarchically combined into coupled 
models. A DEVS atomic model is described as: 

 
M = < X, S, Y, δint, δext, λ, ta > 

 
X is a set of input events, S defines the state 

variables, and Y is a set of output events. The function 
δint manages internal transitions, δext external 
transitions, λ the outputs, and ta  the elapsed time. A 
DEVS coupled model is defined as: 



CM = < X, Y, D, {M i}, {Ii}, {Zij} > 
 
Here, X is the set of input events, and Y is the set of 

output events. D is an index of components, and for 
each i ∈ D, Mi is a basic DEVS model, where Mi = < 

Xi, Si,  Yi, δinti, δexti, tai >. Ii is the set of influencees 

of model i. For each j ∈ Ii, Zij is the i to j translation 
function. 

 
Cell-DEVS is an extension of DEVS, especially 

devoted to define cell spaces. Each cell is defined as an 
atomic DEVS, and a procedure to couple cells is 
depicted. Timing delay constructions let the modeler to 
define the cell timing behavior. Each cell, built as an 
atomic model, can be described as: 

 
TDC = < X, Y, θ, N, delay, d, δint, δext, τ, λ, ta > 

 
X defines the external inputs, Y the external outputs. 

θ  is the cell state definition, and N is the set of inputs. 
Delay defines the kind of delay for the cell, and d its 
duration. Finally, there are several functions: δint for 
internal transitions, δext for external transitions, τ for 
local computations, λ for outputs and ta for the state's 
duration. Each cell uses the set of inputs to compute the 
cell's next state using the τ function. The delay allows 
to defer the transmission of the results. This behavior is 
defined by the δint, δext, λ and ta functions. A modeler 
only focuses in defining the local computing function, 
the kind of delay and its length.  

 
A Cell-DEVS coupled model is defined by: 
 

GCC = < Xlist, Ylist, X, Y, n, {t1,...,tn}, N, C, B, Z > 
 
Here, Xlist  and Ylist are the input/output coupling 

lists. X and Y represent the input/output events. The n 
value defines the dimension of the cell space, {t1,...,tn} 
is the number of cells in each dimension and N is the 
neighborhood set. The cell space is defined by C, B (the 
set of border cells) and Z (the translation function). For 
coupled models, the modeler only has to focus in the 
neighborhood shape, the size and dimension of the 
model, the definition of the border set, and the coupling 
lists. 

 
In ATLAS, the structure of a city section is 

represented by a set of streets connected by crossings. 
Some of the language components include: 

 
. Segments: they represent sections between two 

corners. Every lane in a given segment has the same 
direction (one way segments) and a maximum speed. 
They are specified as: Segments = { (p1, p2, n, a, dir, 
max) / p1, p2 ∈ City ∧  n, max ∈ Ν ∧  a, dir ∈ {0,1} }, 
where p1 and p2 represent the boundaries of each 

segment, n is the number of lanes, and dir represents 
the vehicle direction. The a parameter defines the shape 
of the segment, and max is the maximum speed 
allowed.  

 
. Crossings : they represent the places where the 

streets (represented as sets of segments) are gathered. 
Each crossing can connect any number of segments. 
They can be defined as: Crossings = { c /  ∃ t ,t’ ∈ 
Segments ∧  t = (p1, p2, n, a, dir, max) ∧  t’ = (p1’, p2’, 
n’, a’, dir’, max’) ∧  t ≠ t’ ∧ (p1 = c ∨ p2 = c) ∧  (p1’ = c 
∨  p2’ = c) } 

 
. Traffic lights: crossings with traffic lights are 

defined as: TLCrossings = { c / c ∈ Crossings }. Every  
c ∈ TLCrossings is a set of models representing the 
traffic lights in a corner and the corresponding 
controller. Each of these models is associated with a 
crossing input. It sends a color value related with the 
traffic light to the corresponding segment in the 
intersection.  

 
. Railways: they are built as a sequence of level 

crossings overlapped with the city segments. The 
railway network is defined by: RailNet = { (Station, 
Rail) / Station is a model, Rail ∈ RailTrack }, where 
RailTrack = { (s, δ, seq) / s ∈ Segments ∧  δ ∈ Ν ∧  seq 
∈ Ν }. RailNet represents a set of stations connected to 
railways, thus defining a part of the railway network. 
Railtrack  associates a level crossing with other existing 
constructions in the city section. Each element identifies 
the segment that is crossed (s) and the distance to the 
railway from the beginning of the section (δ). Finally, a 
sequence number (seq) is assigned to each level 
crossing, defining its position in the RailTrack .  

 
. Men at work: they are specified as: Jobsite = { (s, 

ni, δ, #n) / s ∈ Segments ∧ s = (c1, c2, n, a, dir, max) ∧  
ni ∈ [0, n-1] ∧  δ ∈ Ν ∧  #n ∈ [1, n+1-ni] ∧  #n ≡ 1 mod 
2 }. Here, each (s, ni, δ, #n) ∈ Jobsite is related to a 
segment where the construction works are being done. 
It includes the first lane affected (ni), the distance 
between the center of the jobsite and the beginning of 
the segment (δ), and the number of lanes occupied by 
the work (#n). These values are used to define a 
rhombus where the cars cannot advance.  

 
. Traffic signs : they are defined by: Control = { (s, 

t, δ) / s ∈ Segments ∧  δ ∈ Ν ∧  t ∈ {bump, depression, 
school, pedestrian crossing, stop, others} }. Each tuple 
here identifies the segment where the traffic sign is 
used, the kind of signal, and the distance up to it from 
the beginning of the segment.  

 
 
 



CONGESTION MONITORING 
 

Traffic flow rate in a city section can influence the 
vehicle movement and the decisions taken by the 
drivers. Most existing modeling approaches based on 
cell spaces do not consider the information related to 
congestion, or provides mechanisms to reproduce 
vehicle routing. Our goal in this section is to present an 
extension to ATLAS to represent this behavior. 

 
To entitle the definition of vehicle routing, path 

information for the cars should be included. We have 
used an approach based in Origin/Destination (O/D) 
matrixes. These arrays provide data about routes and 
traffic flow between different regions in a city. Each 
element in the matrix represents the amount of traffic or 
the delays between the origin and the destination. O/D 
matrixes can be built using the definition of a region 
represented as a directed graph. Then, the available 
information (traffic flow, delays existing in each link of 
the graph) is inserted in the matrix. We suppose that a 
O/D matrix is provided for the region to be modeled, 
and we will be use it to make decisions related to 
vehicle routing. 

 
There are several ways to implement O/D matrixes, 

and we have chosen an approach based on a road table. 
Each register in this table specifies a road connecting a 
pair of origin/destinations, and the time a vehicle 
spends in that road. The table has the following 
structure: 

 
Time  Vehicle type 
{ ID Origin Destination {link1...linkN} Travel-time } 

 
Here, Time and Vehicle types are used to build 

different tables according to different parameters. The 
structure of the O/D matrix and the function used to 
make the routing decisions can be changed without 
affecting the simulation models. In this way, both 
problems can be treated independently.  

 
A traffic model is built by defining the city shape 

using ATLAS. Then, a directed graph can be built 
based on the segment and crossing identifications. 
Using this graph, the O/D matrix can be created. The 
simulation models devoted to represent routing use a 
function that queries the O/D matrix and provides a 
route to be followed by a vehicle.  

 
Once these basic static routing strategies were 

defined, the language was extended by adding a 
measure of traffic congestion. Based on this information 
and using the O/D matrixes, the cars can change their 
original routes. A new DEVS model, devoted to 
monitor congestion, was added. Now, every segment is 

provided with a controller to measure the number of 
cars. This model is defined as: 

 
M = < X, Y, S, δint, δext, λ, ta> 

 
X = {< x-r-carIn , N>, < x-r-carOut, N>} 
Y = {< y-r-weight, N>} 
S = k  ∈ N representing the number of cars in the 
segment under consideration, 
δext  () { 
 when (x-r-carIn = 1) 
     k = k + 1; 
 
 when (x-r-carOut = 1) 
  k = k – 1; 
passivate; 
} 
λ () { send k through the port y-r-weight } 

 
Once the DEVS congestion controllers were 

defined, the border cells of the Cell-DEVS representing 
the segments were changed to transmit information 
about the cars arriving or leaving a segment. New 
input/output ports were added to transmit this data to 
the coupled models corresponding to the crossings, 
depicted in the following figure: 

 

X-c-path
X -c-car

Y-c-room

Crossing

Cell (0,0)

(0,1)

Congestion controller

Y-r-newcar

 
Figure 1. Coupling scheme of congestion controllers, 
crossings and segments. 

 
The behavior of these models is similar to the ones 

presented in [1]. The rules used in the border cells have 
been redefined to include the congestion management 
definition. Now, these cells must inform the number of 
cars entering and leaving the segment to the DEVS 
congestion monitor. For instance, for one-lane 
segments, this specification is now translated into a 
Cell-DEVS defined by: 

 
C0(segment_no) = < I, X, S,Y,N,δint,δext,delay,d,τ,λ,D > 
 

I = <η, Px, Py>, with η = 3, Px = { <X1, Record>, <X2, 
Record>, <X3, Record> } and Py = { <Y1 , Record>, 
<Y2, Record>, <Y3 , Record> } 
X,  Y ∈ N 
S : {s, phase, σqueue, σ}, with s =  (destination, path)  
 



     ≠ 0 if there is a vehicle in the cell 
destination ∈ N =  

     0 otherwise. 
 

  {t1...tn} ti∈N ∧  (∀i(∃ r ∈ Segments/  
path  =   Segment_no(r) = ti ) ) 

  0 otherwise. 
N = { (0,-1), (0,0), (0,1) } 
delay = transport 
d = speed(max) 
λ, δint y δext are defined by Cell-DEVS with transport 
delays. 
τ: S x N → S. The behavior of the local computing 
function can be roughly defined by: 
 
New state Neighborhood 
Dest = Dest(0,-1) 
Path = Path(0,-1) 

Dest(0,-1) != 0  and 
Dest(0,0) = 0  

Dest = 0 
Path = 0 

Dest(0,0) != 0 and 
Dest(0,1) = 0 

Figure 2. Local computing function for the segments. 
 
In this case, the first rule represents a vehicle 

arriving to the cell, coming from the previous cell. The 
second rule represents the advance of the vehicle to the 
following cell. As we can see, the identifier of the 
destination cell represents the vehicle, and the path of 
the vehicle is transferred between cells. 

 
After defining the behavior for the controller and the 

segments (with 1 to 5 lanes), a new coupled model for 
the crossings was created.  

 
Then, the rules used for defining the crossing 

behavior were modified. Now, every crossing will 
receive information from the congestion controller, and, 
based on the availability of paths to arrive to the same 
destination and the congestion information, a routing 
decision is taken. The mo dels now include the 
definition of routing mechanisms associated with each 
cell, defined as: 

 
Cj(crossing_no) = < I,X,S,Y,N,δint,δext,delay,d,τ, λ, ta > 

 
I = < η ,  Px,  Py>, with η = 3, Px = { <x-t-destinat,  
Record>, <x-c-congestion, Record>, <x-t -path, 

Record> }, Py = { <y-t-room, Record>, <y -c-vehicle, 
Record>, <y-c-path, Record> }. 
X,  Y  ∈ N; 
S: {s, phase, σqueue, σ}, with s =  (destination, path, 
crossing_no, segment_no), with  
 
    !=0 if there is a vehicle (representing   
destination =          the destination crossing). 
    0 otherwise. 
 
  {t1.t2...tn}, ti ∈N∧ (∀i(∃ r ∈ Segments 
path  =    / segment_no(r) = ti ) )   
   0 otherwise. 

crossing_no ∈ N: crossing identifier;  
segment_no ∈ N: identifier of the segment to which the 
output cell of the crossing is connected. 
N = { (0,-1), (0,0), (0,1) } 
delay = transport 
d = speed(maxc) 
λ, δint y δext are defined by Cell-DEVS with transport 
delays.  
τ: S x N → S. The behavior of the local computing 
function can be roughly defined by: 
 
New state Neighborhood 
Dest= Dest(0,-1) 
Path= Path(0,-1) 
Crs_no= crs_no(0,0) 
Seg_no= seg_no(0,0) 

Dest(0,0)= 0 and 
Dest(0,-1) != 0  
Send(1, y-t-room) 
 

Dest= (x-t-dest) 
Path= (x-t-Path) 
Crs_no= crs_no(0,0) 
Seg_no= Seg_no(0,0) 
 
  

Dest(0,0)=0 and Dest(0,-
1)= 0 and (x-t-dest) != 
0 and (x-t-dest)!= 
crs_no(0,0) and 
!Congestion((x-c-
congest, next-
seg(path(0,-1)), seg_no 
(0,0))) 
Send(1, y-t-room) 

Dest= (x-t-dest) 
Path= 
New_Path(Crs_no(0,0
), Dest(0,-1), 
Path(0,-1)) 
Crs_no= crs_no(0,0) 
Seg_no= Seg_no(0,0) 
 

Dest(0,0)= 0 and 
Dest(0,-1)= 0 and (x-t-
dest) != 0 and (x-t-
dest) != crs_no(0,0) and 
Congestion((x-c-congest, 
next-segment(path(0,-1), 
seg_no(0,0))) 
Send(1, y-t-room) 

Dest= 0 
Path= 0 
Crs_no= crs_no(0,0) 
Seg_no= Seg_no(0,0) 
 

Dest(0,0)= 0 and 
Dest(0,-1)= 0 and (x-t-
dest) != 0 and (x-t-
dest)= crs_no(0,0) 
Send(0, y-t-room) 

Figure 3. Rule definition for the crossings. 
 

In this case, the first rule introduced represents the 
arrival of a vehicle to a cell that was in the crossing and 
preserves the original path. The second rule represents 
the input of a vehicle to the crossing that has not arrived 
to the destination, conserving the original route. The 
following rule represents the input of a vehicle that 
changes the path due to congestion in the area. The 
fourth rule eliminates a vehicle that has arrived to the 
destination.  

 
The crossing number uniquely defines the crossing 

where this cell is defined. In this way, an O/D matrix 
can be used, and the crossing identified to permit 
diffe rent paths to be taken. The cell state represents the 
existence of a vehicle, the path to be followed, and the 
crossing identifier. Using this information, every 
vehicle arriving to the crossing can be routed according 
to the congestion information. 

 
When a vehicle arrives to a crossing, it will be sent 

to the input cell, which will be in charge of deciding the 
vehicle routing. The input cells will use the congestion 
information sent by the congestion monitors. 



Segment j

Congestion controller

X-t-destinat
X-t-path
Y-t-room

X-c-congestionj

Segment k

crossing

....

....

....

....

Figure 4. Coupling scheme of output cells of segments, 
crossings, and congestion controllers. 

 
 

SIMULATION RESULTS 
 
Once the whole set of new rules and coupled model 

definitions were defined (see details in [4]), we defined 
the new set of constructions using the CD++ tool [5]. In 
this section, we will show the definition of a simple 
example implementing the new routing techniques. 

 
The following figure depicts a section of the city in 

which the new routing strategies were tested. The 
circles represent crossings, and the lines, the segments 
between two crossings. In this case, we have used one 
way streets with one lane each. 

 

 
Figure 5. Representation of a city section. 

 
 
This  city section is composed of 5 segments and 4 

crossings interconnected. Different cars arrive through 
the segment 1, and all of the cars will follow the same 
path (segment2-segment5). The segment 2 includes a 
pothole delaying the advance of cars. The defin ition of 
the congestion function considered that a segment with 
2 or more cars is congested. The goal of this example is 
to show how the dynamic routing is achieved. 

 
The segments were implemented as Cell-DEVS 

models using two state variables. The first variable 
defines the vehicle destination (or 0 if the cell is 

empty), and the second state variable include a 
definition of the path to be followed by the vehicle. The 
following figure shows the execution results for the 
segment 1: 

 
Time: 00:00:00:010 
             0      1      2       3       4  
      +------------------------------+ 
    0 |4                                       | 
    1 |2,5                                    | 
      +------------------------------+ 

Time: 00:00:00:040 
             0      1      2       3       4  
      +------------------------------+ 
    0 | 4                       4             | 
    1 | 2,5                    2,5          | 
      +------------------------------+ 

Time: 00:00:00:050 
             0      1      2       3       4  
      +------------------------------+ 
    0 |        4                        4     | 
    1 |        2,5                     2,5  | 
      +------------------------------+ 

Time: 00:00:00:060 
             0      1      2       3       4  
      +------------------------------+ 
    0 |               4                        | 
    1 |               2,5                     | 
      +------------------------------+ 

Time: 00:00:00:110 
             0      1      2       3       4  
      +------------------------------+ 
    0 |        4                        4     | 
    1 |        2,5                     2,5  | 
      +------------------------------+ 

Time: 00:00:00:140 
             0      1      2       3       4  
      +------------------------------+ 
    0 |                                  4     | 
    1 |                                  2,5  | 
      +------------------------------+ 

Figure 6. Execution results in Segment 1. 
 
In this example we see that in the simulated time 

00:00:010, 00:00:040, 00:00:070 and 00:00:100 new 
cars have arrived to the cell (0,0). Every vehicle will 
follow the route segment 2-segment 5. When the cars 
finish traversing the segment, they will be routed to the 
crossing 1. 

 
 Time: 00:00:00: 000      
                0           1           2  
     +----------------------------+ 
   0 |                                      |    
   1 |                                      | 
   2 |             2           3          | 
     +----------------------------+ 

Time: 00:00:00:050 
                0           1           2  
     +----------------------------+ 
   0 | 4                                    |    
   1 | 2,5                                 | 
   2 |              2           3          | 
     +----------------------------+ 

Time: 00:00:00:060 
                0           1           2  
     +----------------------------+ 
   0 |              4                       |    
   1 |           2,5                       | 
   2 |              2           3          | 
     +----------------------------+ 

Time: 00:00:00:080 
                0           1           2  
     +----------------------------+ 
   0 | 4                                    |    
   1 | 2,5                                 | 
   2 |              2           3          | 
     +----------------------------+ 

Time: 00:00:00:110 
                0           1           2  
     +----------------------------+ 
   0 |              4                       |    
   1 |           2,5                       | 
   2 |              2           3          | 
     +----------------------------+ 

Time: 00:00:00:120 
                0           1           2  
     +----------------------------+ 
   0 | 4                                    |    
   1 | 3,4                                 | 
   2 |              2           3          | 
     +----------------------------+ 

Time: 00:00:00:130 
                0           1           2  
     +----------------------------+ 
   0 |              4                       |    
   1 |              3,4                    | 
   2 |              2           3          | 
     +----------------------------+ 

 Time: 00:00:00:140 
                0           1           2  
     +----------------------------+ 
   0 | 4                         4         |    
   1 | 2,5                      3,4      | 
   2 |              2           3          | 
     +----------------------------+ 

Figure 7. Execution results in Crossing 1. 
 
 
This crossing implements the dynamic routing 

techniques previously explained. The cell 0 of the 
crossing is an input cell, while the remaining two are 
used for outputs. The following figure shows the values 



of the different state variables used in each cell of the 
crossing. The state variables showed in the lines 0 and 1 
represent the vehicle information used for the segments 
(destination and route). Line 2 represents the segments 
to which the output cells are connected.  

 
The first two cars arriving to the crossing (in 

00:00:050 and 00:00:080) keep the original path 
(segment 2-segment 5). As the cell 1 in the crossing is 
connected to the segment 2, the vehicle is sent to the 
crossing through this cell.  

 
The last two cars arriving to the crossing (at 

00:00:110 and 00:00:140) must take a new path, 
because the congestion function for the segment 2 
returns a value representing that the segment is 
congested. Therefore, the cars ask to the O/D matrix for 
a new path, and the model returns the path segment 3-
segment 4. Then, they leave the crossing through the 
cell 2, connected to the segment 3, following the rules 
defined in the previous sections.  

 
 

CONCLUSION 
 
ATLAS is an application oriented specification 

language that allows the definition of complex traffic 
behavior using simple rules. The models are formally 
specified, avoiding a high number of errors in the 
developed application, and the problem solving time is 
highly reduced, allowing analyzing complex behavior 
in the traffic, and providing new solutions. 

 
In this case, we have extended the original 

definitions to include complex routing behavior not 
available in other microsimulation tools. Due to the 
hierarchical and modular characteristics of DEVS and 
Cell-DEVS, the inclusion of this new complex behavior 
was straightforward. The implementation of these 
techniques in existing DEVS tools allowed us to prove 
the implementation feasibility of the approach, entitling 
the future inclusion of the routing mechanisms in the 
TSC compiler for the ATLAS language [6]. 
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