

COMPILING TRAFFIC MODELS USING TSC

Mariana Lo Tártaro César Torres

Departamento de Computación

FCEN – Universidad de Buenos Aires
Planta Baja. Pabellón I.

Ciudad Universitaria (1428)
Buenos Aires. Argentina.

Gabriel Wainer

Department of Systems and Computer Engineering
Carleton University

4456 Mackenzie Building
1125 Colonel By Drive

Ottawa, ON. K1S 5B6. Canada.

E-mail: gwainer@sce.carleton.ca

KEYWORDS
Traffic models, DEVS, Cell-DEVS, cellular models.

ABSTRACT

ATLAS is a specification language defined to outline city
sections as cell spaces. The goal is that a modeler is able to
define complex traffic models in a simple fashion. A compiler
for this specification language (called TSC) was built. We
present the compiling techniques used to allow flexible defin i-
tion of the models. The tools can be used to generate interme-
diate code based on templates, which can be interpreted by
different DEVS modelling tools. We show how the code is
generated, and how it can be applied to existing modelling
tools.

INTRODUCTION

Urban traffic analysis and control is a problem whose comple x-
ity is difficult to be analyzed with traditional tools. Modelling
and simulation approaches are gaining popularity as analysis
tool. Here, we present the results of a project to build mo del-
ling and simulation tools with this purpose. The first stage of
this project was devoted to define and validate a high level
specification language defined to represent city sections (Da-
vidson and Wainer 2000a). This language, called ATLAS (Ad-
vanced Traffic LAnguage Specifications) represents traffic as
cell spaces, allowing elaborate study of flow according with
the shape of a city section. The constructions defined in this
language are mapped into DEVS (Zeigler et al. 2000) and Cell-
DEVS models (Wainer and Giambiasi 2001). DEVS models
provide high performance for discrete-event systems simula-
tion. The CD++ tool (Rodríguez and Wainer 1999) provides a
specification language following the formal specifications for
DEVS and Cell-DEVS. ATLAS was defined as a set of con-
structions mapped into DEVS and Cell-DEVS models (David-
son and Wainer 2000b, Davidson and Wainer 2000c). Once
these models were validated, a compiler was built. The com-
piler, called TSC (Traffic Simulator Compiler), generates code
by using a set of templates that can be redefined by the user. In
this way, the models can be mapped in different tools (avoiding
version problems). ATLAS allows representing the structure of
a city section defined by a set of streets connected by cross-
ings. The language constructions define a static view of the

model. Here, we present the main constructions of ATLAS
and its syntax in TSC.

- Segments: they represent sections between two corners. In
TSC, they are defined using the sentences begin segments
and end segments. Each segment is defined as: id =
p1,p2,lanes,shape,direction,speed,parkType, with
shape: [curve|straight] and direction: [go|back].
- Parking : border cells in a segment can be used for parking.
parkType: [parkNone|parkLeft|parkRight|parkBoth]
defines in which area of the segment a car can park.
- Crossings : they are points in the plane where several seg-
ments intersect. In TSC are delimited by the separators be-
gin crossings and end crossings. Each sentence defines a
crossing using the following syntax: id = p, speed,
tLight, crossHole, pout
- Traffic lights : the following qualifier is added to a stan-
dard crossing definition in TSC when a crossing must in-
clude traffic lights: tLight: [withTL|withoutTL].
- Railways: they are built as a sequence of level crossings
overlapped with the city segments. When a railway is de-
fined in TSC, the begin railnets and end railnets act as
separators. Each railnet by id = (s1, d1) {,(si, di)},
where si is the identifier of a segment crossed by the rail-
way, and di the distance to the segment si.
- Men at work: the begin jobsites and end jobsites
separators allow to define all the jobsites needed. Each job-
site is: in t : firstlane, distance, lanes. Firstlane
defines the first lane affected by the jobsite, distance is the
distance to the beginning of the segment, and lanes the
number of lanes occupied.
- Traffic signs : in TSC, begin ctrElements and end
ctrElements delimits the control elements, with: in t :
ctrType, distance as the definition for each control sign.
Here, ctrType: [bump|depression|intersection|saw|
stop| school] are the different control signs. distance
defines the distance to the beginning of the segment. An
extension of this construction allows us to define Potholes,
which can also be included in a crossing.

CODE GENERATION IN TSC

TSC is built such that the code generation can be configured.
TSC is built as a set of templates defining the way of encod-

ing the output code according to the input specification. In this
way, the compiler can be adapted to different DEVS mo delling
tools. The models generated can run using the CD++ tool
(Rodríguez and Wainer 1999), and two different set of tem-
plates were used, proving the feasibility of the approach. CD++
lets the user to define DEVS and Cell-DEVS, were used to
define executable models. DEVS atomic models can be defined
as C++ functions. The template file contains one template
corresponding to each ATLAS construction. Every template
contains the sentences that must be generated in the simulation
file. They are organized in different sections. The template
format is the follo wing:

|--template identif--|
|--top components --|
line1 ... linen
|--top ports--|
line1 ...
|--top links--|
line1 ...
|--before neighbors--|
line1 ...
|--neighbors--|
line1 ...
|--before ports--|
line1 ...
|--ports--|
line1 ...

|--before links--|
line1 ...
|--links--|
line1 ...
|--before zones--|
line1 ...
|--zones--|
line1 ...
|--before rules--|
line1 ...
|--rules--|
block1 ... blockn
|--after rules--|
|--end template--|

Figure 1: Template Definition

|--top components --| are added to the top coupled model
|--top ports--| define input/output ports for the top model
|--top links--| internal/external couplings of the top model
|--before neighbors--| lines included before the neighbor-
hood definitions.
|--neighbors--| neighborhood shape used for the model.
|--before ports--| lines included before the definition of
the ports corresponding to the Cell-DEVS
|--ports--| input/output ports for the Cell-DEVS
|--before links--| lines included before the definition of
the internal and external couplings.
|--links--| internal and external couplings of the model
|--zones--| define special behavior in Cell-DEVS zones
|--rules--| define the behavior of each cell corresponding to
the Cell-DEVS translated from the original construct.

After the header definition, each linei defines the definitions
that will be written in the output files. These lines should fol-
low the syntax of the DEVS tool being used. For instance, they
can contain macro variables translated when the models are
generated. Besides, each blocki defines a set of rules corre-
sponding to the template, with the following syntax: [iden-
tif_block] line1 ... linen

Each of the original constructs generates a Cell-DEVS using
these descriptions. Different macro variables are used, because
every component contains basic information that is repeated:
size of the cell space, basic behavior, position of railways, etc.
Therefore, we have defined a set of macro variables that are
replaced by the corresponding value. When TSC finds a macro
variable, it will be replaced by the corresponding value. Macro
variables start and finishes with an & sign. For instance,

&IDENTIF& is replaced by the corresponding identifier for
this element. As a result, the high level specification in AT-
LAS is translated step by step to a Cell-DEVS definition
without needing writing any code. Let us suppose, for in-
stance, that the following city section is defined:

begin segments
t1 = (0,0),(10,0),2,straight,go,200,200,parkNone
end segments

This specifications defines one segment with two lanes, and
when the two-lane template is used, the intermediate code
seen in the Appendix is generated. In this example, the final
results of generating the constructions for the t1 model are
the following:

[TOP]
components : t1Gen@TSCGenerator t1Cons@TSCConsumer
t1
out : qtyOutSimu_t1Cons
link : y_t_car0@t1Gen x_ge_car00@t1
link : y_t_car1@t1Gen x_ge_car10@t1
link : y_co_car09@t1 x_t_car0@t1Cons
link : y_co_car19@t1 x_t_car1@t1Cons
link : quantity@t1Cons qtyOutSimu_t1Cons

[t1]
type : cell width : 4 height : 2
delay : transport border : nowrapped
neighbors:t1(1,-1) t1(1,0) t1(1,1) t1(0,0) t1(0,1)
neighbors:t1(-1,-1) t1(-1,0) t1(-1,1) t1(0,-1)
in : x-ge-car00 x-ge-car10
out: y-co-car03 y-co-car13
link : x-ge-car00 x-ge-car@t1(0,0)
link : x-ge-car10 x-ge-car@t1(1,0)
link : y-co-car@t1(0,3) y-co-car03
link : y-co-car@t1(1,3) y-co-car13
localtransition : t1-segment2-lane0-rule
...

[t1-segment2-lane0-rule]
rule : 1 21 { (0,0) = 0 and (0,-1) = 1 }
rule : 1 21 {(0,0)=0 and (-1,-1)=1 and (-1,0)=1 and
(0,-1)=0}
rule : 0 21 {(0,0)=1 and (0,1)=0 }
rule : 0 21 {(0,0)=1 and (-1,0) = 0 and (-1,1)= 0 }
rule : {(0,0)} 21 { t }
...

Figure 2: Resulting Definition for t1 in CD++

The translation begins defining the type of template used. In
this case, we are using a 2-lane segment with a generator in
the start of the segment. The top components will use the
specification of the model to get the model identifier (t1 in
this case), that will be used in the following replacements of
the identifier macro. Then, the components of the top model
are defined. In this case, we have one generator (predefined
as a DEVS model included in the CD++ toolkit). The link
statements are used to define the internal and external cou-
plings, according to the ATLAS definitions. In this case, the
generators output ports (whose names are generated using
macros) are connected to the input ports of the Cell-DEVS
representing the two lane model. The same procedures are
repeated for the couplings in the end model. Finally, we
show the generation of the Cell-DEVS model created using
the Segment-2Lane template. We can see that a one line

specification automatically expanded into a specifications with
more than 40 lines, defining the detailed behavior of this
model. In this way, definition time for traffic models can be
highly reduced.

CONCLUSION

The TSC compiler allows to define city sections, with a static
view of including different components. This approach pro-
vides an application-oriented specification language, which
allows the definition of complex traffic behavior using simple
rules for a modeler. The models are formally specified, avoid-
ing a high number of errors in the application, thus reducing
the problem solving time. The high level specification of the
problem to be modeled reduces the developing efforts, as the
tool automatically builds the structure for coupled models,
generates rules for atomic models, and takes care of validating
the DEVS specifications. In this way, changes in the system
specification can be done in a simple fashion, without spending
time in coding or testing every proposed solution to existing
problems.

Different sets of templates can be used to generate traffic speci-
fications using different tools (or different rules with the same
toolkit). These can be translated into executable models, with-
out needing to write a line of source code. In this way, a traffic
analyzer can focus in the problem solving task, avoiding
implementation or low level details.

REFERENCES

Davidson, A., Wainer, G. 2000a. ATLAS: a language to

specify traffic models using Cell-DEVS. Technical Re-
port 00-003, Departamento de Computación,
FCEN/UBA. Argentina. Submitted.

Davidson, A., Wainer, G. 2000b. Specifying control signals
in traffic models. In Proceedings of AI, Simulation and
Planning in High Autonomous Systems, AIS'2000 . Tuc-
son, Arizona. U.S.A.

Davidson, A., Wainer, G. 2000c. Specifying truck movement
in traffic models using Cell-DEVS. In Proceedings of
the 33rd Annual Simulation Symposium. Washington,
D.C. U.S.A.

Rodríguez, D., Wainer, G. 1999. New Extensions to the
CD++ tool. In Proceedings of Summer Computer Simu-
lation Conference. Chicago, U.S.A.

Wainer, G., Giambiasi, N. 2001a. Timed Cell-DEVS: mo del-
ing and simulation of cell spaces. In Discrete Event
Modeling & Simulation: Enabling Future Technologies.
Ed.: H. Sarjoughian, F. Cellier. Springer-Verlag.

Zeigler, B., Kim, T., Praehofer, H. 2000. Theory of Modeling
and Simulation: Integrating Discrete Event and Con-
tinuous Complex Dynamic Systems. Academic Press.

APPENDIX
|--template Segment-2Lane-StartGenerator --|
|--top components--|
components : &IDENTIF&Gen@TSCGenerator

|--top links--|
link : y_t_car&LANE&@&IDENTIF&Gen

x_ge_car&LANE&&FIRST_CELL&@&IDENTIF&

|--template Segment-2Lane-EndConsumer --|
|--top components--|
components : &IDENTIF&Cons@TSCConsumer

|--top ports--|
out : qtyOutSimu_&IDENTIF&Cons
|--top links--|
link : y_co_car&LANE&&LAST_CELL&@&IDENTIF&

x_t_car&LANE&@&IDENTIF&Cons
link : quantity@&IDENTIF&Cons

qtyOutSimu_&IDENTIF&Cons

|--template Segment-2Lane --|
|--top components--|
components : &IDENTIF&

|--before neighbors--|
[&IDENTIF&]
type : cell

components : t1Gen@TSCGenerator

link : y_t_car0@t1Gen x_ge_car00@t1
link : y_t_car1@t1Gen x_ge_car10@t1

components : t1Cons@TSCConsumer

out : qtyOutSimu_t1Cons

link : y_co_car09@t1 x_t_car0@t1Cons
link : y_co_car19@t1 x_t_car1@t1Cons
link : quantity@t1Cons qtyOutSimu_t1Cons

components : t1

[t1]
type : cell

Figure 3: Translation Based on Templates

