
This work was partially supported by ANPCYT research
project 11-04460 (Argentina) and NSERC (Canada).

Performance Analysis of Cellular Models with Parallel Cell-DEVS

Alejandro Troccoli
Depto. de Computación, Universidad de Buenos Aires

P.B. Pabellón I. Ciudad Universitaria (1428)
Buenos Aires. Argentina.

atroccol@dc.uba.ar

Gabriel Wainer
SCE Dept., Carleton University

1125 Colonel By Drive
Ottawa, ON. K1S 5B6. Canada.

gwainer@sce.carleton.ca

Keywords: Discrete event simulation, Parallel DEVS,
Parallel Cell-DEVS, distributed simulation, cellular models.

Abstract

Cell-DEVS is a formalism intended to describe cell shaped
models. It defines cellular models with timing delay
constructions, using simple definition of complex timing.
The original specifications were recently extended to entitle
parallel execution. A distributed mechanism allows the
simulator to execute independently of the model
specification. Here we present some implementation issues
related with the definition of parallel simulators for Cell-
DEVS.

INTRODUCTION

The DEVS formalism [1] provides a framework for the
definition of hierarchical and modular models, allowing for
model reuse and development time reduction. A DEVS
model is seen as composed by atomic submodels than can be
combined into coupled models. DEVS use a continuous time
base, which allows accurate timing representation. Cell-
DEVS [2] defines a way of describing n-dimensional cellular
shaped models. Cell-DEVS can be combined with DEVS to
model complex systems. A Cell-DEVS is a discrete event
model using explicit delays for timing description.

The execution of complex models (such as the Cell-
DEVS) usually requires a computing power that stand-alone
computers do not provide, but that can be provided by
parallel and distributed systems. However, the DEVS
formalism posed some serialization constraints that made
parallel execution inefficient. So it was revised and Parallel
DEVS (P-DEVS) [3] was proposed. In [4] Parallel Cell-
DEVS was introduced, conforming to the new Parallel
DEVS formalism.

CD++ [5] is a toolkit developed for DEVS and Cell-
DEVS modeling and simulation. The tool was modified to
implement Parallel DEVS and Cell-DEVS models. To run
Parallel Cell-DEVS models efficiently in a distributed

environment, we implemented a modified version of the
Parallel-DEVS abstract simulator [6]. The impact of the
communication overhead was reduced by keeping the
number of messages sent over the network to a minimum.
This work analyzes the results obtained when running DEVS
and Cell-DEVS models using the new parallel simulator.

BACKGROUND

P-DEVS preserves the basic modular and hierarchical
structure defined for other DEVS models. The basic atomic
component is defined as:

M = < X, S, Y, δint, δext, δcon , λ, ta >

X: a set of input events.
S: a set of sequential states.
Y: a set of output events.
δint: S → S: internal transition function.
δext: Q x Xb → S: external transition function,

Xb is a set of bags over elements in X,
δext (s, e, φ) = (s, e)
δcon: S x Xb → S: confluent transition function.
λ : S → Yb : output function.
Ta : S → R0 → ∞ : time advance function,
 where Q = { (s, e) | s ∈ S, 0 < e < ta(s)}
 e is the elapsed time since last state transition.

Internal transitions execute at the next event time for all
imminent components receiving no external events.
Likewise, external events generated by these imminent
trigger external transitions at receptive non-imminent (those
components for which there are no internal transitions
scheduled for the receiving time). However, for those
components in which the internal and external transitions
collide, the confluent transition function is employed instead
of either the internal or external transition function to
determine the new state [3].

Several atomic models can be put together to make a coupled
model, which is defined by:

DN = < X, Y, D, {Mi}, {Ii}, {Zi , j}>

X : a set of input events.
Y : a set of output events.
D : a set of components.
for each i in D,

Mi is a component.
for each i in D ∪ { self }, Ii is the influencees of i.
For each j in Ii,

Zi , j is the i to j output translation function.

The structure is subject to the constraints that for each i in
D, Mi = < Xi, Si, Yi, δint i, δext i, δcon i , λi, tai > is a P-DEVS, Ii

is a subset of D ∪ { self }, i is not in Ii , and
Zself, j : Xself → Xj

Zi , self : Yi → Yself

Zi, j : Xi → Yj

Here self refers to the coupled model itself and is a
device for allowing specification of external input and
external output couplings.

In [2] the Cell-DEVS formalism was introduced. In
traditional cellular models, every cell change occurs at the
same time. Not only large amounts of compute time are
required, but also the use of discrete time base pose
restrictions in the precision of the model. The Timed Cell-
DEVS formalism tries to solve these problems by using the
DEVS paradigm to define a cell space where each cell is a
DEVS atomic model. The goal is to build discrete event cell
spaces, improving their definition by making the timing
specification more expressive. In [4] it was extended to
enable parallel execution of the models. A parallel Cell-
DEVS atomic model can be formally defined as:

TDC = < Xb, Yb, I, S, θ, N, d, δint, δext, δcon, τ, τcon, λ, D >

Two confluent functions have been added to the original
Cell-DEVS definition: δcon and τcon. In addition, the external
transition and output functions have been changed to handle
input/output bags (Xb and Yb) for each cell. The external
transition function activates the local computation, whose
result is delayed using one of both kinds of constructions:
transport or inertial delays. The output function transmits the
present values to other models. The confluent transition
function δcon is activated when there are collisions between
internal and external events. It must activate the confluent
local transition function τcon, whose goal is to analyze the
present values for the input bags and provide a unique set of
input values for the cell. In this way, the cell will compute
the next state by using the values chosen by the modeler.

Figure 1. Informal definition of a cell [4].

Recently, a theory of quantized models was developed
[7, 8]. The theory has been verified when applied to
predictive quantization of arbitrary ordinary differential
equation models. A curve is represented by the crossings of
an equal spaced set of boundaries, separated by a quantum
size. A quantizer checks for boundary crossings whenever a
change in a model takes place. Only when such a crossing
occurs, a new value is sent to the receiver. This operation
reduces substantially the frequency of message updates,
while potentially incurring into error.

Figure 2. Quantization in DEVS models [7,8]

This theory of quantized models has been applied to
Cell-DEVS. At any instant, a cell’s state is within two
different boundaries. When external events arrive and the
local transition function computes the new cell state, the
quantizer checks whether the new state falls within the same
boundaries as the previous one. If it does not, then it is
scheduled for output to neighbor cells.

ABSTRACT SIMULATOR FOR PARALLEL
CELL-DEVS

We have built an abstract simulator for Parallel DEVS
models, which entitles the execution of Parallel Cell-DEVS
models. In Parallel DEVS, the simulation is executed by
Processors that drive the simulation by exchanging
messages. There are two types of Processors: Simulators,
driving the simulation of atomic models, and Coordinators,
in charge of executing coupled models and coordinating the
activities of all their dependants. Processors are organized in
a hierarchy resembling the model hierarchy.

Messages are built as pairs (type, time). There are
different types of messages:

Synchronization messages:
(@, t) Collect message
(*, t) Internal message
($, t) Output Synchronization message
(Done , t) Done message

Content messages:
(q , t) External message
(y, t) Output message

A Processor is defined by describing a set of actions to
be carried out upon the reception of each of these messages.
A simulation cycle starts when the topmost Coordinator
sends a (@, t) message. This message tells all the imminent
Processors to execute their output functions and make the
necessary translations of the resulting (y, t) messages to (q, t)
messages that are sent to the model’s influencees. When a
Processor has finished sorting its outputs, it sends a (done , t)
message to its parent Coordinator. After all the outputs have
been processed, the topmost Coordinator sends a (*, t)
message to trigger the execution of a model’s transition
function.

A Simulator receiving a (*, t) message will execute one
of the three transition functions of its associated atomic
model: δint, δext, or δcon . If the model is imminent and has not
received any external event, then δint is executed. If the model
is not imminent and has received external events, then δext is
executed. Finally, if a model is imminent and received
external events, δcon is executed, which will decide which of
the external or internal transition function should be
executed.

A Coordinator receiving a (*, t) message will forward
this message to all its dependants that are either imminent or
that have received external events.

CD++ [5] is a tool for executing Cell-DEVS models.
This tool has been modified to conform to the Parallel Cell-
DEVS formalism. The parallel simulator was designed as a
layered architecture application. The topmost layer
implements the Parallel DEVS abstract simulator, a middle
layer carries out all required synchronization in the logical
process level, and the lowest layer is in charge of
communications.

The Warped kernel [9] was used as middleware. Warped
provides an API for running parallel simulation. It currently
supports two different kernels: a Time Warp kernel, which
implements the Time Warp protocol, and a No Time kernel,
which provides no synchronization. The parallel simulator
has been written to support both kernels. It is currently being
run with the No Time kernel because the application layer
handles all synchronization.

In this environment, the models are divided into logical
processes executing on different machines. Each logical
process involved will host a subset of Processors. In
particular, for Cell-DEVS models, each logical process will
host the Simulators for a subset of cells. Under these
assumptions, a Coordinator’s children need not be executing
on the same logical process. To reduce inter-process
messages, coupled models will require a Coordinator on
each logical process where a child Processor is running.
One of these Coordinators will be known as a Master
Coordinator and every other Coordinator will be a Slave. A
Master Coordinator will handle all communication with its
parent.

In Cell-DEVS models, output messages are sent every
time a cell changes its state. The output is received as an
external message by all neighbor cells. When a Cell-DEVS
model is executed in parallel, the number of cells whose
neighbors are running on a different logical process increases
as more machines are added to the simulation. Since the
number of output messages sent across the network to remote
cells will increase as well, it is necessary to sort them
efficiently. A distributed mechanism was chosen. With this
mechanism, a Slave having outputs for a remote cell will
send them directly to the corresponding Slave, without going
through the Master. This same idea is applicable to Parallel
DEVS models.

The distributed mechanism requires further
synchronization to know when all output sorting has finished.
This is achieved using the ($, t) messages. Once a Slave
Coordinator has sorted all outputs, it will send a ($, t)
message to all the other Slaves. After a Slave has received all
($, t) and (done , t) messages, it will now be able to send a
(done, t) message to the Master Coordinator. Upon receiving

a (done, t) from all the Slaves, the Master will know the
output sorting phase has finished, and it will now be safe to
send a (*, t) to execute the transition functions.

APPLICATION EXAMPLES

The parallel simulator has been tested with several
models implemented using CD++. These models ran on a
cluster of 12 workstations connected through an Ethernet
hub.

 The first results were obtained using an extended
version of a Generator-Processor-Transducer model (GPT)
[1]. The modified GPT model simulates a CPU receiving
jobs and computes performance metrics (throughput and
workload). It consists of a generator, a queue, a CPU and a
transducer, as shown in Figure 3.

Figure 3. Coupling scheme for the GPT model

The generator outputs jobs periodically. When a new job
is generated, its Id is sent to the queue and the transducer. If
the queue is empty, the Id will directly be forwarded to the
CPU; otherwise, it will be queued until the CPU is released.
When the CPU finishes a job, it sends its Id to the transducer
and the queue. If the queue has jobs waiting, it will send the
next job to the CPU. The transducer will compute the
turnaround time and update the throughput and CPU usage
values, which it will output periodically.

The extended version of the GPT model consists of
several copies of the GPT model just described with an
increase in the workload of each component. Tests were
executed using 12, 48 and 96 instances, running on 1 to 12
machines. The execution results are shown in Figure 4.

Figure 4 shows how the execution time changes with
different partition sizes and different number of instances of
the GPT. As more instances are used, a higher number of
simulation objects are used and the simulation load is
greater. As the load increases, so does the execution time. In
addition, we can see that for the same load, as more
machines are added to the simulation the execution time is
reduced.

Running time for the GPT model

0

500

1000

1500

2000

2500

3000

0 5 10 15

Number of machines

T
im

e
(s

ec
)

12 Instances

48 Instances

96 Instances

Figure 4. Execution times for the GPT model.

The performance of Parallel Cell-DEVS was tested
using a heat diffusion model. In this model, a surface is
represented by a 100 x 100 Cell-DEVS. Each cell contains a
temperature, which is updated to the average of the values of
the neighborhood whenever a new input arrives to the cell. In
addition, heat and cold generators were connected to 90
different cells. Each time a generator produces an event, the
temperature of a cell is updated.

Figure 5 shows part of the definition of the heat
diffusion model using CD++.

01 [top]
02 components : surface Heat@Generator Cold@generator
03 link : out@Heat inputHeat@surface
04 link : out@Cold inputCold@surface
05
06 [surface]
07 type : cell
08 width : 100
09 height : 100
10 delay : transport
11 defaultDelayTime : 1000
12 border : wrapped
13 neighbors : surface(-1,-1) surface(-1,0) surface(-
1,1)
14 neighbors : surface(0,-1) surface(0,0) surface(0,1)
15 neighbors : surface(1,-1) surface(1,0) surface(1,1)
16 initialvalue : 24
17 in : inputHeat inputCold
18 link : inputHeat in@surface(25,25)
...
22 localtransition : heat-rule
23 portInTransition : in@surface(25,25) setHeat
...

28 [heat-rule]
29 rule : { ((0,0) + (-1,-1) + (-1,0) + (-1,1) + (0,-1)
+ (0,1) + (1,-1) + (1,0) + (1,1)) / 9 } 10000 { t }

Figure 5. A heat diffusion model using CD++.

The model has three components: a surface, a heat
generator and a cold generator (line 2). The output from the
heat and cold generators is mapped to the inputHeat and
inputCold ports of the surface (lines 3 and 4). Then, surface
is defined as a wrapped cellular model of 100 x 100 cells
with transport delays (lines 7 to 11). The neighborhood of a
cell is set to the adjacent set of cells (lines 13 to 15). Line 18

connects the surface inputHeat port with the in port of cell
(25,25). This line is repeated for all cells that will be
connected to the inputHeat (not shown) and inputCold port.
Line 22 sets the default transition function to heat-rule,
which is defined in line 29. Finally, line 23 sets the transition
function for events arriving through the in input port of cell
(25,25) to setHeat.This model was evenly partitioned for 1,
2, 4 and 8 logical processes. The simulation was executed
using a quantized simulator, whose results are shown in
Figure 6.

0

100

200

300

400

500

600

700

800

900

Q = 0 Q = 0.001 Q = 0.01 Q = 0.1

Quantum size

T
im

e
(s

ec
) 1

2
4
8

(a)

0

100

200

300

400

500

600

700

800

900

1 2 4 8

Number of processors

T
im

e
(s

ec
) No quantum

Q = 0.001
Q = 0.01
Q = 0.1

(b)
Figure 6. Results of executing the heat diffusion model with
different quantum values on 1, 2, 4 and 8 logical processes.

Figure 6(a) shows the effect of quantization on the
execution time, which is reduced as the quantum size
increases. This is due mainly a considerable reduction in the
number of messages being sent. As discussed in [7] and [10],
the use of a quantized model produces an error in the
simulation results. Nevertheless, it was shown in [10] that the
error magnitude for this model was bounded when a quantum
size smaller than 0.1 was used. In this case, improvements in
the execution time from 4 to 6 times were achieved.

Figure 6(b) shows how the execution time varies with
different partition sizes. For the executions with quantum
sizes 0 and 0.001, every time a machine is added to the

simulation a reduction in the execution time is observed.
However, this behavior is not observed for executions with
quantum sizes 0.01 and 0.1. In this cases adding more
machines does not necessarily produce a reduction in the
execution time. The reason for this is that when a quantizer is
used, the model activity is not evenly distributed among
machines.

To assess how suitable a model is for parallel execution,
a metric of model parallelism was developed. Basically, this
metric will have a value of 1 when all processors involved
share the same load (i.e. there is simultaneous execution).
The value will be close to 0 if the simulation is completely
executed in only one of the available processors.

One way to determine how much activity there is on
each simulation cycle is to count the number of (*, t)
messages received. If this information is obtained for each
logical processor, a clear picture of how much activity is
taking place can be drawn. Assuming all (*, t) messages take
the same time to execute, then it can be determined how
much time the simulation cycle will take, and for each
machine, how busy it was during the simulation cycle. If all
logical processes received the same number of (*, t)
messages, then the load is evenly distributed.

Figure 7 shows the results of applying this metric to the
non-quantized diffusion model, and using a quantum size of
0.1. If the load is evenly distributed, then a value of 1 is
obtained. As the load distribution turns uneven, values get
closer to 0.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1 2 4 8

Number of processors

U
sa

g
e

Q = 0

Q = 0.1

Figure 7. Parallelism for the heat diffusion model with and
without quantum.

For the non-quantized version, the parallelism metric
keeps very close to 1. However, there is a slight deviation
from a perfect 1. This is because during the initial stages not
every cell is active, and some partitions have more active
cells than others do. On the contrary, when a quantizer with a
quantum size of 0.1 is used, the metric’s value falls below
0.6 as more machines are added. In this case, cells are not so

reactive to changes and reach a stable value quickly. Then, as
changes propagate from one partition to the other, the
workload shifts from processor to processor.

There is a relation between the metric’s value and the
performance observed. From Figures 6 and 7, it can be
observed that the non-quantized version, which shows a
value greater than 0.8 for the metric, experiences a
performance gain when executed in parallel. The quantized
version, which has a value for the metric that decreases as
more processors are added to the simulation, experiences a
slowdown.

CONCLUSION

We have presented performance results on the execution
of a Parallel Cell-DEVS simulation algorithm. This abstract
simulator entitled parallel execution of Parallel Cell-DEVS
and DEVS models. The distributed mechanism allowed the
simulator to execute independently of the model
specification. During the development process, different
simulation mechanisms were defined: some using the
Warped environment, others based on the No-Time
algorithm. We started using a Master/Slave coordination
mechanism that was later changed to a distributed version.
The abstract simulator runs originally in a centralized
fashion. These results allowed us to check the feasibility of
the approach, as no change was needed to any of the existing
models.

We obtained substantial gains in the execution times.
Quantization techniques produced even higher gains with a
related the cost expressed as errors in the executed models.
The introduction of a metric of parallelism in parallel DEVS
models allowed us to analyze load-balancing issues that
should be attacked in future works.

At present we are trying to reproduce the results here
obtained in a multiprocessor architecture and a distributed
architecture with a high speed switch, letting us to analyze
the communication overhead involved. Different partitions of
the existing models will be presented. The experimental
results will be applied to a new range of models with the goal
of classify them in order to obtain the highest speedups
according to the application to be executed.

REFERENCES

[1] Zeigler, B.; Kim, T.; Praehofer, H. 2000. Theory of
Modeling and Simulation: Integrating Discrete Event and
Continuous Complex Dynamic Systems. Academic Press.

[2] Wainer, G.; Giambiasi, N. 2001. "Timed Cell-DEVS:
modeling and simulation of cell spaces." in Discrete Event
Modeling & Simulation: Enabling Future Technologies,
Springer-Verlag

[3] Chow, A., and Zeigler, B. 1994. “Parallel DEVS: A
parallel, hierarchical, modular modeling formalism.” In
Winter Simulation Conference Proceedings. SCS, Orlando,
Florida.

[4] Wainer, G. “Improved cellular models with parallel Cell-
DEVS”. Transactions of the SCS. June 2000.

[5] Rodriguez, D.; Wainer, G. 1999. "New Extensions to the
CD++ tool.” In Proceedings of SCS Summer
Multiconference on Computer Simulation, Chicago, USA.

[6] Chow, A.; Kim, D.; Zeigler, B. 1994. "Abstract Simulator
for the parallel DEVS formalism". AI, Simulation, and
Planning in High Autonomy Systems, December.

[7] Zeigler, B. 1998. DEVS Theory of Quantization.
DARPA Contract N6133997K-0007: ECE Dept., UA,
Tucson, AZ.

[8] Zeigler, B.; Cho, H. ; Lee, J. and Sarjoughian, H. 1998.
The DEVS/HLA Distributed Simulation Environment and its
Support for Predictive Filtering. DARPA Contract
N6133997K-0007: ECE Dept., UA, Tucson, AZ.

[9] Martin, D.; McBrayer, T.; Radhakrishnan, R.; Wilsey, P.
1997. "Time Warp Parallel Discrete Event Simulator''.
Technical Report. Computer Architecture Design
Laboratory, University of Cincinnati.

[10] Wainer, G.; Zeigler, B. 2000. "Experimental results of
Timed Cell-DEVS quantization". In Proceedings of AIS
2000, Tucson, AZ.

Alejandro Troccoli has received his M. Sc. (2001) from the
Universidad de Buenos Aires, Argentina. He is a Teaching
and Research Assistant in the same University, and a part-
time consultant.

Gabriel Wainer received his M. Sc. (1993) and Ph.D.
degree (1998) from the Universidad de Buenos Aires,
Argentina, and Université d'Aix-Marseille III, France. He is
currently Assistant Professor at the SCE Dept. of Carleton
University (Ottawa, Canada). He is a member of the Board of
Directors of the Society for Computer Simulation
International, and a member of a group on standardization of
DEVS modelling tools.

