
Departamento de Computación 
Facultad de Ciencias Exactas y Naturales 

Universidad de Buenos Aires 

2001 

 
 

Modificaciones a CD++ 
para simulación paralela y distribuida 

de modelos Cell-DEVS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Autor  
Alejandro Troccoli 

 
 

Director 
Dr. Gabriel Wainer



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

2 
 

Abstract ......................................................................................................... 3 
1 Introduction ............................................................................................. 4 
2 The Parallel DEVS formalism ................................................................. 7 

2.1 Parallel DEVS Atomic Models ................................................... Error! Bookmark not defined.  
2.2 Parallel DEVS Coupled Models ................................................. Error! Bookmark not defined.  

3 Cellular Automata and the Parallel Cell-DEVS formalism .................. 13 
3.1 The Parallel Cell-DEVS formalism .................................................................................................. 13 
3.2 Cell-DEVS Quantization .................................................................................................................. 18 

4  Abstract simulator for distributed Parallel-DEVS ............................... 20 
4.1 Parallel DEVS Abstract Simulators ............................................................................................ 20 

5 Parallel Simulation ................................................................................ 31 
6 CD++ ..................................................................................................... 35 

6.1 Atomic model definition ............................................................................................................. 35 

7 Parallel CD++ ........................................................................................ 37 
7.1 Warped API ................................................................................................................................ 37 
7.2 An overview of parallel CD++ ................................................................................................... 38 

8 Results ................................................................................................... 40 
8.1 An extended version of the GPT model...................................................................................... 40 
8.2        A heat diffusion model .............................................................................................................. 42 
8.3 A measure of model parallelism ................................................................................................. 47 

9  A flow-injection Cell-DEVS model ........................................................ 51 
9.1 Flow injection analysis ............................................................................................................... 51 
9.2 A Cell-DEVS model for flow-injection ...................................................................................... 52 
9.3 Simulation results ....................................................................................................................... 56 

10 Conclusions and further developments .............................................. 58 
11 References ........................................................................................... 59 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

3 
 

Abstract 
 
Cell-DEVS is a formalism intended to model cell spaces. It describes cellular models using timing delay 
constructions, allowing simple definition of complex timing. Large Cell-DEVS models require such 
computing power that their execution in a standalone machine is not feasible. As parallel and distributed 
environments became more accessible, the Cell-DEVS formalism was revised to permit parallel 
specification of these models. This work defines a new simulation mechanism suited for distributed 
environments and presents a tool for the simulation of Parallel DEVS and Cell-DEVS models on  a 
network of computers. 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

4 
 

1  
Introduction 

 
Simulation is a powerful tool for studying complex systems, with quite a range of uses, from new system 
testing to physical phenomena understanding. The simulation process starts with a problem to solve or 
understand. It might be the case of a train company trying to develop a new strategy for cargo storage and 
railway tracks usage or a chemist trying to understand a complex process of physical diffusion taking 
place inside a narrow tube. The simulation process starts from the observation of a real system. Entities 
are identified, and an abstract representation, a model, is constructed. Once the model is constructed, it 
needs to be executed. This is done by a simulator, which consists of a computer system that executes the 
model’s instructions to generate its behavior. To complete the cycle, the results obtained are compared to 
those of the real system for model validation. It is often the case that a modeler is only interested in a few 
aspects of the real system. In such a case, an experimental frame captures the modeler’s objectives and 
defines the scope of the model. 
 

 
Figure  1 : The basic entities and their relationships [Zei00] 

 
 
The basic entities are linked by two relations  [Zei00]: 
 
� modeling relation. Links  the real system and model, defining how well the model represents the 
system or entity being modeled. In general terms a model can be considered valid if the data generated by 
the model agrees with the data produced by the real system in an experimental frame of interest. 
 
� simulation relation. Links the model and simulator. It represents how faithfully the simulator is able 
to carry out the instructions of the model. 
 
There exist at present quite a number of simulation techniques and paradigms. Among these, the DEVS 
formalism [Zei76] provides a framework for the construction of hierarchical models in a modular manner, 
allowing for model reuse and reducing development time and testing. In DEVS a model is specified as a 
black box with a state and a duration for that state. When the duration time for the state expires, an output 
event is sent, an internal transition takes place and the model changes its current state. A change of state 
can also occur when an external event is received. Then, a complete model is defined by describing the 
set of states a model goes through, the internal and external transition functions, the output function and 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

5 
 

the state duration function. DEVS models can be put together by linking the outputs of a model to inputs 
of other models to form coupled models. Models made out of only one component are called atomic.  
 
DEVS not only proposes a framework for model construction, but also defines an abstract simulation 
mechanism that is independent of the model itself. This mechanism is high level description of how the 
simulation of DEVS models should be executed by a simulator. Two kinds of simulators are defined, 
one for atomic and another one for coupled models, this latter known as a coordinator. These simulators 
progress through the simulation by exchanging messages as described by the abstract simulation 
mechanism. 
 
Timed Cell-DEVS [Wai98] is a formalism based on DEVS for the simulation of cellular models. A 
cellular automaton is a lattice of cells, each of which has a value and a local rule that defines how to 
obtain a new value based on the current state of the cell and the values of neighboring cells. Cells are 
updated synchronously all at the same time. Timed Cell-DEVS defines a cell as a DEVS model and a 
cellular automaton as a coupled model, and introduces a new way of defining the timing of each cell 
which is more flexible than the existing synchronous approach. In Timed Cell-DEVS each cell defines its 
own update delay.  
 
CD++ is a tool for the simulation of DEVS and Cell-DEVS models which has been used to simulate a 
variety of models including: traffic, forest fires, ants and watershed simulation. Simple models were 
easily handled by the tool, but the execution of complex models requires a computing power that stand 
alone computers do not provide. It was then proposed that parallel execution should be used. 
 
Not only parallel execution was being demanded for Cell-DEVS but also for DEVS models. But the 
DEVS formalism suffered from serialization constraints that would not allow for a parallel 
implementation. Therefore, it was revised and the Parallel DEVS (P-DEVS) [Cho94a] formalism was 
proposed. The Cell-DEVS formalism was also revised [Wai00] and the Parallel Cell-DEVS formalism 
followed. 
 
It is the aim of this work to modify CD++ to run Parallel Cell-DEVS on a distributed environment, 
providing a tool that will not only reduce execution times but also allow larger models. When P-DEVS 
was proposed, the abstract simulator was changed to implement the new semantics. This new simulator, 
though well suited for an implementation on a parallel system with shared memory, does not allow for an 
efficient implementation over a network of computers because it does not distinguish messages sent over 
the network from those sent between objects on the same process. Therefore, there was a need to extend 
the P-DEVS abstract simulator for distributed environments. This work addresses this issues by further 
specializing coordinators into master and slave. 
 
For the new parallel version of CD++, a simulation kernel that would encapsulate all the lower level 
network communications was required. In parallel simulation, the execution is divided into a set of logical 
processes, each running on a different CPU. Logical process communicate with each using timestamped 
messages. For correct results to be obtained, a way of synchronizing the logical process for correct 
message processing must be defined. There are three approaches to synchronization between logical 
process: optimistic, pessimistic, and no synchronization at all (application level synchronization). A 
parallel simulation kernel must provide one of these.  
 
During the design phase of  parallel CD++, some research was done to evaluate existing simulation 
kernels and the Warped project was found. Warped is a project at the University of Cincinnati dedicated 
to the implementation of a simulation API to support different parallel simulation kernels. Two kernels 
are currently provided: an optimistic kernel that implements the TimeWarp protocol and a NoTime kernel 
that uses no synchronization. Further work was carried out at the Universidad de Buenos Aires, and a 
pessimistic kernel that complied with the Warped API was implemented. Having three different 
simulation kernels with the same API, Warped proved ideal for  parallel CD++, which  was therefore 
written to run on top of Warped and currently supports the TimeWarp and NoTime kernels. Switching 
between kernels is just a matter of setting the proper compilation arguments.  
 
The final release of  parallel CD++ runs both, distributed and standalone simulation. For simple and small 
models, the standalone version performs well. For complex and big models the distributed version is 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

6 
 

preferred. The development was carried out in Linux machines. Testing has been done on different Linux 
clusters at the Universidad de Buenos Aires and at the University of Carleton in Ottawa. 
 
This work is organized as follows. Chapter 2 presents the DEVS and Parallel DEVS formalisms and 
Chapter 3 the Cell-DEVS and Parallel Cell-DEVS counterpart. In chapter 4, the new abstract simulator 
suited for distributed environments is introduced. Chapter 5 will make a short presentation of  
synchronization techniques for parallel discrete event systems. After this presentation, chapter 6 will 
introduce CD++ and chapter 7 its parallel version, with special mention of implementation issues using 
the Warped kernel. Chapter 8 will show some results obtained, chapter 9 will show a chemical diffusion 
model so large that parallel execution is required, and then the conclusions will follow. A complete user’s 
for parallel CD++ guide is also provided.  
 
 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

7 
 

2  
The DEVS and Parallel DEVS formalisms 

 

2.1 The original DEVS formalism 
 
Systems whose variables are discrete and the time advance is continuos are known as DEDS – Discrete 
Events Dynamic Systems, as opposed to CVDS – Continuous Variable Dynamic Systems [Wai98]. A 
simulation mechanism for DEDS systems assumes that the system will only change its state at discrete 
time points upon the occurrence of an event. An event is formally defined as a change of state that takes 
place at time specific point of time ti ∈ R.  
 
DEVS [Zei76] is a formalism for modeling and simulation of DEDS systems. It defines a way of 
specifying systems whose states change upon the reception of an input event or the expiration of a time 
delay. It also allows for hierarchical decomposition of the model by defining a way to couple existing 
DEVS models. 
 
The original DEVS model is a structure: 
 

DEVS = < X , Y , S, δ ext , δ int,  λ, ta> 
where 
 

X    is the set of external events 
 
Y     is the set of output events 
 
S     is the set of sequential states; 
 
δ ext: Q x X → S    is the external state transition function; 

    

  where Q := { (s, e) | s ∈ S , 0 ≤ e ≤ ta(s) } and e is the elapsed time since the last state transition. 
 
δ int: S →  S    is the internal state transition function; 

 
λ : S → Y    is the output function; 
 

ta : S → R0 
+ ∪ ∞   is the time advance function; 

  
 
The semantics for this definition are as follows. At any given time, a DEVS model is in a state s ∈ S and 
in the absence of external events, it will remain in that state for a period of time as defined by ta(s). The 
ta(s) function can take any real value between 0 and ∞. A state for which ta(s) = 0 is called a transient 
state. On the other hand, if ta(s) = ∞, the system will stay in that state forever unless an external event is 
received. In such a case, s is called a passive state. Transitions that occur due to the expiration of ta(s) are 
called internal transitions. When an internal transition takes place, the system outputs the value λ(s), 
and changes to state δint(s).  A state transition can also happen when an external event occurs. In this case, 
the new state is given by δ ext based on the input value, the current state and the elapsed time. Figure 2 
illustrates this definition by specifying a model of a computer processor using DEVS. 
 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

8 
 

A computer processor can be specified as a DEVS model. A processor would have to states: busy and 
available. So 
 
 S = { busy, available } 
 
Jobs will constitute the set of input events and output events. A job arriving on an input port will change 
the processor state to busy. Once the job has been processed it will be sent as an output event.  Jobs will 
be identified with a natural numbers, hence 
 
 X = N 
 
 Y = N 
 
Assuming no job arrives while the processor is busy and that the model keeps an internal variable with 
the id of the job its processing, then the external transition function is defined as follows: 
 
δ ext (x, e) 
{ 
  s = busy 
  jobId = x 
}  
  
A job will occupy the processor during a random time with a given Poisson distribution, so the time 
advance function is 
 
ta ( busy ) = Poisson() 
ta (available ) = ∞ 
 
If the processor is available, then it will remain in that state until an external event arrives. 
 
When the processing time has expired, a state transition will take place. At this time, the output function 
is called followed by the internal transition function. Continuing with our description, 
 
λ( busy ) = jobId 
 
δ ext (busy) = available 
 
An internal transition from the available to busy state will never happen because available is a passive 
state. 

(a) 

 
(b) 

Figure  2 : (a) Specification of a computer processor using DEVS  
(b) DEVS semantics 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

9 
 

 
A coupled model is a structure: 

 
DN = < Xself , Yself , D, {Mi}, {I i}, {Zi,j}, select) 
 

where 
 
D is a set of components. 
  
for each i in D, 
  
 Mi is a component. 
 
for each i in D ∪ { self } , 
 
 I i is the set of influencees of i. 
 
for each j in I i 

 
 Zi , j is a function, the i - to -j output-input translation  
 
select is a tie-breaker function. 
 
This structure is subject to the constraints that for each i in D, 
 

Mi = < X i , Yi , Si, δi ext , δi int,  λi, tai) is a DEVS model 
  
I i is a subset of D ∪ { self }, i is not in I i, 
 
Zself,j : Xself → Xj 

 
Zi, self : Yi → Yself 
 
Zi,j : Yi → Xj 

 
select : subset of D → D 
  
 such that for any non-empty subset E,  
  
 select ( E ) ∈  E 

 
A coupled model groups several DEVS models together into a compound model that can be regarded, due 
to the closure property, as another DEVS model. This allows for hierarchical model construction. A 
DEVS model that is not constructed as a coupled model is known as an atomic model.  
 
A coupled model can have its own input and output events, as defined by the Xself and  Yself sets. Upon 
receiving an external event, the coupled model has to redirect the input to one or more of its components. 
In addition, when a component produces an output, this has to be mapped as another’s component input 
or as an output of the coupled model itself. All these input-output mappings are defined by the Z function. 
 
When models are coupled together, ambiguity arises when there are more than one components schedule 
for an internal transition at the same time. The first model to make its internal transition will produce and 
output that may be translated to an external event being received by another component model that is 
already scheduled for an internal transition at that time. But then, should this second model process the 
external transition first with e = ta(s) or should the internal transition take place first and then the external 
transition with e = 0? The way the DEVS formalism solves this is by the use of the select function. Only 
one model of the group of imminent models will be allowed to be with e = 0. The other imminent models 
will be divided in two groups: those that receive the external output from this model, and the ones that do 
not receive this output. The first group will execute their external transitions functions with e = ta(s) and 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

10 
 

the second group will be among the group of imminent models for the next simulation cycle, which may 
require again the use of the select function to decide which model will execute first. 
 
This tie-breaking approach is a potential source of errors since the serialization produce may not reflect 
the correct system’s behavior upon the occurrence of simultaneous events. In addition, the serialization 
reduces the possibility of a speed up in a parallel environment. For these reasons, the parallel DEVS 
formalism was revised giving place to the Parallel DEVS formalism. 
  

2.2 The Parallel DEVS formalism 
 
The Parallel DEVS formalism [Cho94a] keeps all the nice properties of the DEVS formalism and 
eliminates all the serialization constraints that made simultaneous execution in a parallel environment not 
feasible. 
 
Chow  required that the following properties hold: 
 
• Collision handling: the behavior of a collision must be controllable by the modeler. 
 
• Parallelism: the formalism must not use any serialization function that prohibits possible 

concurrencies. 
 
• Uniformity: the hierarchical construction must have uniform behavior: different hierarchical 

constructs of the same model must display the same behavior. 
 
A P-DEVS model is described as a set of basic and coupled models. In addition, the model’s interface 
was also revised. A model will now have input and output ports through which all interaction with the 
environment takes place. Events determine values appearing on such ports. A model receives outside 
events through its input ports. Upon reception of such events, the model description must determine how 
it responds to them. In addition, internal events arising within the model change its state, and manifest 
themselves as events on the output ports to be transmitted to other model components. 
 
Atomic models are still the most basic constructions, which can be combined with other models into 
coupled models. A Parallel-DEVS coupled model satisfies the closure property [Cho94b], so it can be 
seen as another basic model. Therefor, Parallel-DEVS preserves the hierarchical properties of the original 
DEVS formalism.  
 
A basic Parallel DEVS is a structure: 

 
DEVS = < X M , Y M , S, δ ext , δ int, δ con, λ, ta) 

where 
X M = {(p,v)| p ∈ IPorts, v ∈ X p }  is the set of input ports and values; 
 
Y M = {(p,v)| p ∈ OPorts, v ∈ Y p } is the set of output ports and values; 
 
S     is the set of sequential states; 
 
δ ext: Q x XM

b
 → S   is the external state transition function; 

 
δ int: S →  S    is the internal state transition function; 

 
δ con: Q x XM

b
 → S  is the confluent transition function; 

 
λ : S → YM

b    is the output function; 
 

ta : S → R0 
+ ∪ ∞   is the time advance function; 

  

 with Q := { (s, e) | s ∈ S , 0 ≤ e ≤ ta(s) } the set of total states. 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

11 
 

 
 
The differences between the DEVS and Parallel-DEVS formalism are the following: 
 

• The model interface has been extended to include ports and values. 
• The external and output functions no longer handle one event at a time. Instead, bags of 

events are now being handled, allowing then for simultaneous processing of multiple events. 
• A new transition function has been defined, the confluent function δ con. This function will 

define a new model’s state when there is a collision between internal and external 
transitions. Basically, this function will allow the modeler to specify how the model should 
behave in the presence of collisions. 

  
The semantics of the Parallel-DEVS definition are then as follows. At any given time, a basic model is in 
a state s and in the absence of external events, it will remain in that state for a period of time as defined by 
ta(s). When an internal transition takes place, the system outputs the value λ(s), and changes to state 
δint(s). If one or more external events E = { x1 .. xn / x ∈ XM } occurs before ta(s) expires, i.e., when the 
system is in total state (s, e) with e ≤ ta(s), the new state will be given by δext(s,e,E). When an external and 
internal transition collide, i.e.  external events E arrives when e = ta(s), the new system’s state could 
either be given by δext(δint(s),e,E) or δint(δext(s,e,E)). To avoid a fix behavior, the modeler can define the 
most appropiate behavior with the δconf function. Then, in the Parallel DEVS formalism, in the presence of 
collisions the new system’s state will be the one defined by δconf(s,E).  
 
A Parallel DEVS  coupled model is defined by: 
 

CM = <X, Y, D, {M d | d ∈ D}, EIC, EOC, IC> 
where 

X = {(p,v)| p ∈ IPorts, v ∈ X p }   is the set of input ports and values; 
 
Y = {(p,v)| p ∈ OPorts, v ∈ Y p }   is the set of output ports and values; 

  
  D is the set of the component names;  
 
 The following constraints apply to the components: 
 

Components are DEVS models: 
 

for each d ∈ D 
 

M d = (X d , Y d S, δ ext , δ int, δ con, λ, ta) is a DEVS basic structure 
 
with X d = {(p,v)| p ∈ IPorts, v ∈ X p }  ; 

 
Y d = {(p,v)| p ∈ OPorts, v ∈ Y p } ;  

 
The couplings are subject to the following conditions: 

 

• external input couplings (EIC) connect external inputs to component inputs: 
 
EIC ⊆  {((N, ip N ), (d, ip d )) | ip N ∈ IPorts, d ∈ D, ip d ∈ IPorts d } 
 

• external output couplings (EOC) connect component outputs to external outputs: 
 
EOC ⊆ {((d, op d ), ( N, op N )) | op N ∈ OPorts, d ∈ D, op d ∈ OPorts d } 

 

• internal couplings (IC) connect component outputs to component inputs: 
 
IC ⊆ {((a, op a ), (b, ip b )) | a, b ∈ D, op a ∈ OPorts a , ip b ∈ IPorts b } 

 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

12 
 

No direct feedback loops are allowed, i.e., no output port of a component may be 
connected to an input port of the same component i.e., 

 
((d, opd), (e, ipd)) ∈ IC implies d ≠ e. 
 

• Range inclusion constraints: the values sent from a source port must be within the 
range of accepted values of a destination port, i.e., 

    
   ∀((N, ip N ), (d, ip d )) ∈ EIC : X ipN ⊆ X ipd 
 
  ∀ ((a, op a ), (N, op N )) ∈ EOC : Y opa ⊆ Y opN 

 
∀ ((a, op a ), (b, ip b )) ∈ IC : Y opa ⊆ X ipb. 

 
The Parallel-DEVS definition eliminated the select function. If there multiple imminent components, then 
all their outputs will be first collected and mapped to their influencees. Then, the corresponding transition 
function will be executed for each model. 
 
As an example, a generator-processor-transducer (gpt) model will be shown. The aim of this model is to 
calculate the usage of a given processor. It is made of three atomic models: 
 

• A generator that generates new jobs at random time intervals. 
• A processor that consumes the jobs that the generator produces. 
• A transducer: a model that will keep count of the number of jobs processed and the time it 

took to process each job. 
 

The generator has two input ports: start and stop, and an output port out. Whenever a new job is 
generated, a new event is sent through the out port. The processor has one output port in and an output 
port out. A new job is received through the in port and when it has been processed after an elapsed time t, 
an event is sent through the out port. The transducer has two input ports: arriv and solved, and one output 
port result. When an event is recevied through arriv a timer is started and a job count is increased by one. 
When an event is received through the solved port the counter is stoped. After an pre-defined observation 
period of time, the processor usage is sent through the out port. The whole coupled has two input ports 
start and stop, and two output ports out and result. The couplings are shown in Figure 3. 
 

 
Figure  3 : The GPT coupled model. [Zei00] 

 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

13 
 

3  
The Cell –DEVS and Parallel Cell-DEVS formalisms 

 

3.1 Cellular Automata 
 
Cellular Automata are used to describe real systems that can be represented as a cell space. A cellular au-
tomaton is an infinite regular n-dimensional lattice whose cells can take one finite value. The states in the 
lattice are updated according to a local rule in a simultaneous and synchronous way. The cell states 
change in discrete time steps as dictated by a local transition function using the present cell state and a 
finite set of nearby cells (called the neighborhood of the cell). 
 

 
 

 
Figure  4 : Sketch of a Cellular Automaton [Wai00] 

 
 
When cellular automata are used to simulate complex systems, large amounts of compute time are 
required, and the use of a fixed interval discrete time base poses restrictions in the precision of the model. 
The Timed Cell-DEVS formalism [Wai98] tries to solve these problems by using the DEVS paradigm to 
define a cell space where each cell is defined as a DEVS atomic model. The goal is to build discrete 
event cell spaces, improving their definition by making the timing specification more expressive.  
 

3.2 The Timed Cell-DEVS formalism 
 
Cell-DEVS defines a cells as DEVS atomic models. A Cell-DEVS atomic model is defined by [Wai98]: 

 
TDC = < X, Y, I, S, θ, N, d, δint, δext, τ, λ, D > 

 
where 

 
X     is a set of external input events; 

 
Y    is a set of external output events; 

 
I    represents the model's modular interface; 

 
S     is the set of sequential states for the cell; 

 
θ    is the cell state definition; 

 
N     is the set of states for the input events; 
 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

14 
 

d     is the delay for the cell; 
 

δint     is the internal transition function; 
 
δext     is the external transition function; 

 
τ     is the local computation function; 

 
λ     is the output function; and 

 
D     is the state's duration function. 

 
A cell uses a set of input values N to compute its future state, which is obtained by applying the local 
computation function τ. A delay function is associated with each cell, deferring the output of the new 
state to the neighbor cells.  There are two types of delays: inertial and transport delays. When a transport 
delayed is used, the future value will be added to a queue sorted by output time. Therefore, all previous 
values that were scheduled for output but that have not yet been sent, will be kept. On the contrary, 
inertial delays use a preemptive policy: any previous scheduled output value, unless the same as the new 
computed one, will be deleted and the new one will be scheduled. This activation of the local computation 
is carried by the δext  function. 
 
After the basic behavior for a cell is defined, the complete cell space will be constructed by building a 
coupled Cell-DEVS model: 
 

GCC = < Xlist, Ylist, I, X, Y, n, {t1,...,tn}, N, C, B, Z, select > 
 
where 
 

Xlist    is the input coupling list; 
 

Ylist     is the output coupling list; 
 

I   represents the definition of the interface for the modular 
model; 

 
X    is the set of external input events; 

 
Y    is the set of external output events; 

 
n    is the dimension of the cell space; 

 
{t 1,...,tn}    is the number of cells in each of the dimensions; 

 
N     is the neighborhood set; 

 
C     is the cell space; 

 
B     is the set of border cells; 

 
Z    is the translation function; and 

 
select     is the tie-breaking function for simultaneous events. 

 
This specification defines a coupled model composed of an array of atomic cells. Each cell is connected 
to the cells defined in the neighborhood, but as the cell space is finite, either the borders are provided with 
a different neighborhood than the rest of the space, or they are "wrapped", meaning that cells in one 
border are connected with those in the opposite one. Finally, the Z function defines the internal and 
external coupling of cells in the model. This function translates the outputs of m-th output port in cell Cij 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

15 
 

into values for the m-th input port of cell Ckl. Each output port will correspond to one neighbor and each 
input port will be associated with one cell in the inverse neighborhood.  

 
Figure  5 : Informal definition of a Cell-DEVS model [Wai98] 

 
The select function serves the same purpose as in the original DEVS models: to tie-break between 
imminent components.  
 
The use of the select function introduces similar problems to those described for coupled DEVS models: 
lack of parallelism exploitation and a probable inconsistency with the real system. In addition, the timed 
Cell-DEVS was restricted to one input from each input port. Such restriction disallows [Wai00]: 
 

• zero-delay transitions 
• external DEVS models sending two simultaneous events to the same cell. 

 
To forbid zero-delay transitions is too restrictive, and so is allowing only one event per external model, 
specially after the Parallel DEVS formalism allowed a basic model to send more than one event at a time. 
These were enough reasons to revise Cell-DEVS and the Parallel Cell-DEVS formalism was proposed. 

3.3 The Parallel Cell-DEVS formalism 
 
A parallel Cell-DEVS basic model can be formally defined as: 

 
TDC = < Xb, Yb, I, S, θ, N, d, δint, δext, δcon, τ, τcon, λ, D > 

 
where 
 

In this case, #Τ < ∞  ∧  T ∈ {Ν, Ζ, R, {0,1} } ∪ {φ}; 

X ⊆ T; 

Y ⊆ T; 

I = < η, µx, µy, Px, Py >. Here, η ∈ N, η < ∞  is the neighborhood's size, µx, µy ∈ N, µx, µy 

< ∞  is the number of other input/output ports, and ∀ j ∈ [1, η], i ∈ {X, Y}, P j
i is a definition of 

a port (input or output respectively), with Pj
i = { (Nj

i, Tj
i) /  ∀ j ∈ [1, η+µi],  Nj

i ∈ [i1, iη+µ] 

(port name), y Tj
i ∈ Ιi (port type)}, where Ιi = { x / x ∈ X if X } or Ιi = { x / x ∈ Y if i = Y } ; 

S ⊆ T; 

θ= { (s, phase, σqueue, f, σ)  / 

  s ∈ S is the status value for the cell, 

 s’ ∈ S is an intermediate status value for the cell; 

  phase ∈ {active, passive}, 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

16 
 

σqueue = { ((v1,σ1),...,(vm,σm)) / m ∈ N ∧ m <∞) ∧ ∀ (i ∈ N, i ∈ [1,m]), vi ∈ S ∧ σi 

∈ R0
+∪∞}; 

 f ∈ T; and 

 σ ∈ R0
+ ∪ ∞ } ;  

 N ∈ Sη+µ; 

 d ∈ R0
+, d < ∞; 

 δint: θ →  S; 

 δext: QxXb → θ, Q = { (s, e) / s ∈ θ x N x d; e ∈ [0, D(s)]}; 

 δcon: θxXb → S; 

 τ: N → S x {inertial, transport} x d; 

 τcon: X
bxN → S x {inertial, transport} x d; 

 λ: S →Yb; and 

 D: θ x N x d → R0
+ ∪ ∞. 

 
A Cell-DEVS atomic model is a specialization of a Parallel DEVS basic model. The difference between 
an atomic model and a Cell-DEVS model is the existence of  a cell neighborhood, a delay d and a local 
computation function τ. The I interface defines a fixed number of ports for message exchange to neighbor 
cells. 
  
Originally, only one kind of delay of a given duration was related with each cell. Now, the local transition 
function will return the type and length of the delay, and the cell's outputs will be delayed accordingly. 
This redefinition allows to include complex timing behavior. 
 
In the presence of collisions between internal and external events, the confluent transition function δcon is 
activated. It must activate the confluent local transition function ττττcon, whose goal is to analyze the present 
values for the input bags, and to provide a unique set of input values for the cell. In this way, the cell will 
compute the next state by using the values chosen by the modeler. Basically, what τcon does is to choose 
members from the bag, and update the inputs for the cell. After, it deletes the unnecessary members of the 
bag. 
 
The following figure shows a sketch of the contents of each cell. 
 

 
Figure  6 : Cell’s definition [Wai00] 

 
Atomic Cell –DEVS models can be put together to form coupled Cell-DEVS models. A parallel Cell-
DEVS coupled model can be represented as: 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

17 
 

 

GCC = < Xlist, Ylist, I, X, Y, n, {t1,...,tn}, N, C, B, Z > 

 

Xlist is the input coupling list; 

Ylist is the output coupling list; 

I represents the definition of the interface for the modular model; 

X is the set of external input events; 

Y is the set of external output events; 

n is the dimension of the cell space; 

{t 1,...,tn} is the number of cells in each of the dimensions; 

N is the neighborhood set; 

C is the cell space; 

B is the set of border cells; and 

Z is the translation function. 

 

C = { Cc / c ∈ I  ∧ Cc = < Ic, Xc, Yc, Sc, Nc, dc, δintc, δextc, δconc, τc, τconc λc, Dc> }, 

where Cc is a parallel Cell-DEVS atomic model, and I = { (i1,...,in) / (ik ∈ N  ∧ ik ∈ [1, tk]) ∀ k ∈ [1, n]}. 

That is, each cell in the space is a parallel Cell-DEVS atomic cell using the δcon and τcon functions to avoid 
collisions.  
 
As stated in [Wai00], the following lemmas apply. 
 
Lemma 1 
The Parallel Cell-DEVS models are equivalent to parallel DEVS models. 
 
Lemma 2 
Closure under coupling for parallel Cell-DEVS models: a coupled parallel Cell-DEVS model is 
equivalent to a basic parallel Cell-DEVS model. 
 
 
This two lemmas imply that within a coupled Parallel DEVS model, a Cell-DEVS model can be used as if 
it were a basic Parallel DEVS model. This property will be used in the next section, when the abstract 
simulator is described, to prove that the abstract simulator for Parallel DEVS models will also execute 
Parallel Cell-DEVS models. 
 
If a parallel Cell-DEVS model can be viewed as parallel DEVS model, then it should be possible to 
define its corresponding  δ ext , δ int, δconf, and λ functions. The semantics for these functions will be now 
presented. 
 
Note: σqueue is a list of pairs (delay, value) sorted by ascending order of delay. These are the values 
scheduled for output. The following operations are defined for the queue:  
 
 first: the first pair. 

 head: the set of pairs  from the front of the queue with minimum delay.  

 tail: queue – head 

 add: adds  a new pair to the queue. 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

18 
 

δδδδint:  

σ = 0;   σqueue ≠ {∅};   phase = active  
_______________________________________________________________________ 

∀ i ∈  [1, m], ai ∈ σqueue, ai.σ = ai.σ - head(σqueue.σ);  σqueue = tail(σqueue);  
σ = head(σqueue.σ); 

 
 

σ = 0;   σqueue = {∅};   phase = active  
_______________________________________________________________________ 

σ = ∞   ∧   phase = passive 
 
 
λ:λ:λ:λ: 

σ = 0; 
_____________ 

out = { ai.v | ai ∈ head(queue) }; 
 
 
δδδδext: 

Nc = τcon(X
b);  (s', transport) = τ(Nc);  σ ≠ 0;    e = D(θ x N x d);  phase = active;       

____________________________________________________________________________________ 
s ≠ s'  ⇒  (s = s’  ∧  ∀ i ∈ [1,m] ai ∈ σqueue, ai. σ = ai.σ - e  ∧  σ = σ - e;  add(σqueue, <s', d>) ∧ f = s ) 

 

Nc = τcon(X
b);  (s', transport) = τ(Nc); σ ≠ 0;   e = D(θ x N x d);      phase = passive;     

____________________________________________________________________________ 
s ≠ s'  ⇒    ( s = s’   ∧   σ = d  ∧  phase = active   ∧  add(σqueue, <s', d>)  ∧ f = s ) 

 

Nc = τcon(X
b);   (s', inertial) = τ(Nc); σ ≠ 0; e = D(θ x N x d);   phase = passive;  

____________________________________________________________________ 
s ≠ s'  ⇒   ( s = s’   ∧   phase = active  ∧  σ = d  ∧  f = s ) 

 

Nc = τcon(X
b);  (s', inertial) = τ(Nc); σ ≠ 0;    e = D(θ x N x d);   phase = active;    

___________________________________________________________________ 
s ≠ s'  ⇒   s = s’   ∧   (f ≠ s'   ⇒   σqueue = {∅} ∧ σ = d  ∧  f = s) 

    

3.3 Cell-DEVS Quantization 
 
Recently, a theory of quantized models was developed (Paper Gabriel). When using a quantized model, 
after a cell’s state value will be only informed to its neighbors if its difference with the previous value is 
greater than a given quantum.  This idea is shown in Figure  7. Here, a continuos curve is represented by 
the crossings of an equal spaced set of boundaries, separated by the quantum size. A quantizer checks for 
boundary crossings whenever a change in a model takes place.  Only when such a crossing occurs, a new 
value is sent to the receiver. This operation reduces substantially the frequency of message updates, while 
potentially incurring into error.  
 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

19 
 

 
 

 
 

Figure  7 : Quantization (Zeigler et al 1999) 
 

In (Paper Gabriel) several experimental tests were done in order to analyze the behavior of quantized 
Cell-DEVS models. The results showed that quantization reduced both, the total number of messages sent 
and the execution time, but introduced an error. The error obtained is a function of the local computing 
function, the number of simulation steps and the quantum. Since the future input values for a cell depend 
on the present results, a nonlinear error may be observed. The error magnitude will depend on the cell's 
neighborhood size. It was shown in [Paper Gabriel] that as the quantum gets  higher, the error gets bigger.  
 
Choosing an adequate quantum will then depend on the precision desired. 
 
When quantization is used with a quantum value d, δδδδext is defined as: 
 
δδδδext: 

Nc = τcon(X
b);  (s', transport) = τ(Nc);  σ ≠ 0;    e = D(θ x N x d);  phase = active;       

____________________________________________________________________________________ 
s ≠ value(s',d)  ⇒   

(s = s’  ∧  ∀ i ∈ [1,m] ai ∈ σqueue, ai. σ = ai.σ - e  ∧  σ = σ - e;  add(σqueue, <s', d>) ∧ f = s ) 
 

Nc = τcon(X
b);  (s', transport) = τ(Nc); σ ≠ 0;   e = D(θ x N x d);      phase = passive;     

____________________________________________________________________________ 
s ≠ value(s',d)  ⇒    ( s = s’   ∧   σ = d  ∧  phase = active   ∧  add(σqueue, <s', d>)  ∧ f = s ) 

 

Nc = τcon(X
b);   (s', inertial) = τ(Nc); σ ≠ 0; e = D(θ x N x d);   phase = passive;  

____________________________________________________________________ 
s ≠ value(s',d)  ⇒   ( s = s’   ∧   phase = active  ∧  σ = d  ∧  f = s ) 

 

Nc = τcon(X
b);  (s', inertial) = τ(Nc); σ ≠ 0;    e = D(θ x N x d);   phase = active;    

___________________________________________________________________ 
s ≠ value(s',d)  ⇒   s = s’   ∧   (f ≠ s'   ⇒   σqueue = {∅} ∧ σ = d  ∧  f = s) 

 
where  
 
 value(v,d) = v’ such that  ∃ q ∈ N / v’ = q.d  ∧ v’ ≤ v. 
 
i.e. the lowest boundary as defined by the quantum size. 
 
e.g.: value(23.45, 0.1) = 23.4  value( 550, 100) = 500 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

20 
 

4  
Abstract simulator for distributed Parallel-DEVS 

 
The DEVS formalism separates the model from the actual simulation. This simulation mechanism is 
implemented by abstract simulators. In [Cho94b] an abstract simulator for the Parallel DEVS formalism 
was presented. Though well suited for shared memory parallel environments, this abstract simulator does 
not distinguish between intra-process messages and inter-process messages. In a distributed environment, 
there is considerable communications overhead which can not be ignored. Therefore, the abstract 
simulator should restrict the number of messages over the network to a minimum.  
 
As a result, a abstract simulator for distributed environments was developed and will be now presented. 
 

4.1 Parallel DEVS Abstract Simulators 
 
The simulation is carried out by DEVS processors. As in the existing definition of the abstract simulator 
[Cho94b], the DEVS processors will be specialized into two different simulation engines, simulator and 
coordinator.  Basically, the role of the simulator is to invoke an atomic’s model transition and external 
event functions. On the other hand, a coordinator is paired with a coupled model and has the 
responsibility of translating its children’ output events and of keeping the time of the next imminent/s 
dependants.  
 
 
 
 
 
 
 
 

 
 
 
 

Figure  8 : Correspondence between the model and the DEVS processors 
 
As it is shown in Figure  8, every coordinator has a set of child DEVS processors. When a simulation is 
run in distributed fashion, each machine will run one logical process which will host one or more DEVS 
processors. Under these assumptions, a coordinator’s children need not be executing on the same logical 
process. If the correspondence between models and DEVS processors is one to one, then every coupled 
model is associated to only one coordinator. Then every message sent to child processors running on a 
different CPU will require inter-process communication. Figure  9(a) illustrates this case. It shows a 
coordinator sending a message to its 8 children distributed on two CPUs. Four inter-process messages are 
required for the four children running on processor 1.  
 
If the number of children processors is high (as it usually is for coupled Cell-DEVS), the number of 
messages sent across the network will be significant. This can be avoided if every coupled model has 
more than one coordinator. Figure  9(b) illustrates this case. For the same coupled model, there are two 
coordinators, one in logical process 0 and another in logical process 1. In this case, only one message is 
sent over the network. 
 
So, to reduce inter-process messages, coupled models will require a coordinator on each logical process 
where a child processor is running. Children processors will send messages to the local coordinator, 
which will decide how to handle the received messages. Upon receiving a message from a child, a 
coordinator could forward this message to all the coordinators for the model. This would require all 
coordinators to know about each other. For instance, if coupled model A is a child of coupled model B, 
then B´s coordinators would have to interact with A´s coordinators. If handled uncarefully, this 

Abstract Simulator Model 

Atomic 
Dependant 1 

Coupled 
Model 

Atomic 
Dependant 2 

Atomic 
Dependant 3 

 
Simulator 1 

 
Coordinator 

 
Simulator 2 

 
Simulator 3 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

21 
 

communication can turn out producing a big number of inter-process messages. In such a scenario, a way 
of keeping the number of inter-process messages to a minimum is to have only one of the coordinators to 
receive messages from or route messages to the parent´s model coordinator. This specialized coordinator 
will be known as a master coordinator and  all other model coordinators will be slaves. The master 
coordinator for model A will then be the only one that can receive or send messages to B´s local 
coordinator. 
 
 
 

 
(a) 
 

  
(b) 

Figure  9 : (a) A single coordinator sending a message to all its child processor. Dashed lines = 
interprocess messages. (b) A master- slave pair sending messages to all their children processors. 

 
 
When master and slave coordinators are used, DEVS processors are organized in a hierarchy, which does 
not have a one to one correspondence with the model hierarchy . Therefore a parent child-relationship that 
takes into account the existence of master and slave coordinators must be defined. This relationship is 
defined as follows: 
 
a. for each simulator, the parent coordinator will be the parent’s model local processor (it is guaranteed 

that this will exist) 
 
b. for each slave coordinator, the parent coordinator will be the model’s master coordinator. 
 
c. for each master coordinator, the parent coordinator will be the parent’s model local processor; just as 

if it were a simulator.  
 
The simulation advances as a result of the exchange of messages between parent and child DEVS 
processors. Every message is a pair of the form ( type, time) and can belong to one of two categories: 
synchronization messages and content messages. The synchronization messages are ( @ , t), ( *, t), and ( 
done, t ) and the contents messages are ( y, t ) and ( q , t ).  
 
The synchronization messages ( @ , t), ( *, t) are sent from a parent DEVS processor to its imminent 
children. A ( @ , t) is used to tell the children to send their outputs and ( *, t) tells the children to invoke 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

22 
 

their transition function (whether it corresponds to execute an external, internal or confluent transition). 
All outputs produced by a model are translated to ( y, t ) messages between a child DEVS processor and 
its parent. Finally, those external messages that arrive from outside the system or that are generated as a 
result of an output message being sent to an influencee are sent as ( q , t ) messages. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  10 : Messages a DEVS processor receives and sends 
 
It is assumed that any two messages sent from the same source to the same destination will preserve their 
original ordering.  
 
The complete behavior of a DEVS processor is described by how it handles each of these messages. To 
completely define the abstract simulator, the behavior of the simulator, master coordinator, slave 
coordinator and root coordinator will be described. 
 
The simulator is responsible of invoking the atomic model’s  λ(s) , δext, δint, δcon functions. The description 
that follows is based on the one in [Cho94b], with some minor changes: 
 

SIMULATOR 

when a ( @ , t ) message is received 

if  t = tN then 

  y := λ(s) 

  send ( y , t ) to the parent coordinator 

  send ( done, t ) to the parent coordinator 

end if 

else raise error 

end when 

 

When a simulator receives a ( @ , t ) it executes the atomic model’s λ function and sends the output to the 
parent coordinator. 

 

 
DEVS PROCESSOR 

 

( y, t) ( q, t) 

( @, t) 

( *, t) 

( done, t) 

Synchronization msgs
 

Content msgs 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

23 
 

SIMULATOR 

when a ( q , t ) message is received 

lock the bag 

Add event q to the bag 

unlock the bag 

end when 

 

SIMULATOR  

when a ( *  , t ) message is received 

case tL ≤ t < tN 

  e := t - tL 

  s := δext( s, e, bag ) 

  empty bag 

end case 

case t = tN  and bag is empty 

  s := δint( s )  

end case 

case t = tN  and bag not is empty 

  s := δcon( s, bag )  

  empty bag 

end case 

case  t > tN or t < tL 

  raise error 

end case 

tL := t 

tN := ta (s) 

send ( done, tN) to parent coordinator 

end when 

 
The (*, t) message indicates a model’s transition function must be executed. The transition function to be 
executed will depend on t and the content’s of the queue. If t < tN , then it is not the time for an internal 
transition, and it must be the case that the queue is not empty and δext should be executed. If t = tN, it is the 
time for an internal transition. If no external messages have been received then δint, is executed, but if 
there are external messages, then δcon should be called instead. 
 
Now the master coordinator will be described. A coordinator, whether master or slave, is responsible for 
the simulation of a coupled model. It translates output events to input events and keeps track of the 
imminent models. Each coordinator has a set of child processors which correspond with the coupled 
model components. For a master coordinator the set of child processors is made by the set of slave 
coordinators, the set of local child simulators and  the set of local child master coordinators. A DEVS 
processor is local if it is executing on the same processor. 
 

To simplify the following description it is necessary to define the function coordinator. 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

24 
 

coordinator : M x P →→→→ C 
   where  
 M is a coupled model 
 P is a DEVS processor 
 S is a coordinator ( master or slave) 
 
coordinator ( M, j) = i , where i is the  coordinator associated to coupled M that is local to child j. The 
following restrictions apply for the function to be well  defined: 
 
 j is a DEVS processor associated to a dependant of M 
 
 i is one of the coordinators associated with M 
 
MASTER COORDINATOR  

when a ( @ , t ) message is received from parent coordinator 

if  t = tN then 

  tL := t 

  for all imminent child processors i with minimum tN 

   send ( @, t ) to child i 

   cache i in the synchronize set 

  end for 

  wait until ( done, t )’s have been received from all imminent processors 

  send ( done, t ) to parent coordinator 

 end if 

 else raise error 

end when 

 
For describing the behavior of a master coordinator upon receiving an output message, two cases need to 
be distinguished:  
  
 an output message ( y , t ) received from a child i that is not a slave coordinator  

 
an output message ( y , i, t ) forwarded from a slave coordinator that received ( y , t ) from a local 
child i. 

 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

25 
 

MASTER COORDINATOR 

when a ( y , t ) message is received from child i  

for  all influencees, j of child i 

  if  j is a local processor 

  q := zi,j ( y ) 

   send ( q, t ) to child j 

   cache j in the synchronize set 

 else  

   s := coordinator( self, j) 

  if s ∉ slave-sync set then 

       send ( y, i, t) to s 

       cache s in the slave-sync set 

      cache s in the synchronize set 

   end if 

  end if 

end for 

if  self ∈ Ii ( y is to be transmitted upward) then  

 y := zi, self  ( y ) 

  send ( y, t ) to parent coordinator 

end if 

clear slave-sync set 

end when 

 

when a ( y , i, t ) message is received from a slave s 

 cache s in the slave-sync set and proceed as if a ( y , t ) message had been received from child i  

end when 

 

Here slave-sync is used to avoid forwarding an output message twice to a slave coordinator. It is 
important to note that instead of forwarding a (q, t) message to a slave coordinator, a (y, i, t) is sent. This 
is done to reduce the number of messages sent across the network. A slave coordinator might be the 
parent coordinator for more than one of the influencees of i. If (q , t) messages were to be forwarded, then 
there will be one (q, t) message for each influencee of i. For Cell–DEVS models, this can be an important 
overhead. Instead, just one (y, i, t) message is sent across the network and it will be the responsibility of 
the slave coordinator to generate the appropiate  (q, t) messages.  
 
As mentioned in [Cho94b], all children ready for a transition are cached in a synchronize set to later 
distinguish active from inactive components. 
 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

26 
 

MASTER COORDINATOR 

when a ( q , t ) message is received from parent coordinator 

 lock the bag 

 Add event q to the bag 

 unlock the bag 

end when 

 

MASTER COORDINATOR 

when a ( *  , t ) message is received from parent coordinator 

if  tL ≤ t ≤ tN 

  for  all q ∈ bag 

     for  all receivers of q,  j ∈ Iself 

        if  j is a local processor 

     q := zself, j (q) 

     send ( q, t ) to j 

     cache j in the synchronize set 

        else 

     s := coordinator( self, j) 

     if  s ∉ slave-sync set then 

          send ( q , t ) to s 

          cache s in the slave-sync set 

         cache s in the synchronize set 

     end if 

        end if 

     end for 

     clear slave-sync set 

  end for 

  empty bag 

  for  all i in the synchronize set 

   send ( *, t ) to i 

  end for 

  wait until all ( done, tN)’s are received 

  tL :=  t 

  tN := minimum of components’ tN’s  

  clear the synchronize set  

  send ( done, tN ) to parent coordinator 

else raise an error 

end when 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

27 
 

When the output events are routed down to child processors, if the message is to be forwarded to a slave 
coordinator the z translation will not be applied. Instead, the original q message will be sent. Therefore, 
care must be taken not to forward a message twice to a slave coordinator. Here again, the slave-sync is 
used for that purpose.  
 

The slave coordinator will be introduced next. It differs from the master coordinator in only one way: 
when a message needs to be sent a processor that is not local, it will be sent to the master coordinator 
instead. 
 
SLAVE COORDINATOR 

when a ( @ , t ) message is received from parent coordinator 

 if  t = tN then 

  tL := t 

  for  all imminent child processors i with minimum tN 

   send ( @, t ) to child i 

   cache i in the synchronize set 

  end for 

  wait until ( done, t )’s have been received from all imminent processors 

  send ( done, t ) to parent coordinator 

 end if 

 else raise error 

end when 

 
As it can be noticed, there is no difference on how both master and slave coordinators handle a (@, t ). 
However, the set of child processor of a slave coordinator is different. For a slave coordinator the set of 
child processors is made by the set of local child simulators and  the set of local child master 
coordinators only. 
 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

28 
 

SLAVE COORDINATOR 

when a ( y , t ) message is received from child i  

 sent_to_master := false 

 for  all influencees, j of child i 

  if  j is a local processor 

   q := zi,j ( y ) 

   send ( q, t ) to child j 

  cache j in the synchronize set 

  else  

   if not  sent_to_master 

    send ( y, t ) to parent coordinator 

   sent_to_master := true 

  end if 

 end if 

 end for 

if  self ∈ Ii ( y is to be transmitted upward) then  

  if  not sent_to_master 

   send ( y, t ) to parent coordinator 

  end if 

end if 

end when 

when a ( y , i, t ) message is received from parent coordinator 

 sent_to_master := true 

 proceed as if a ( y , t ) message had been received from child i  

end when 

 
When an output event is received from a child i, the slave coordinator sorts the message to the 
influencees of i. If any influencee is local, the z function is applied a ( q , t ) message is sent. If there are 
non-local influencees, then the output event is sent to the master coordinator, who will then sort the 
message to other slave coordinators if necessary. Only one ( y , t ) message should be forwarded to the 
master coordinator. 
 
When the slave coordinator receives an output event that has been forwarded by the master coordinator 
on behalf of child i, it will handle the event as if i had been local, but no ( y, t ) messages will be 
forwarded back to the master coordinator if there is a non-local influencee. This is to avoid infinite loops 
of messages being forwarded back and forth.  
 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

29 
 

SLAVE COORDINATOR 

when a ( q , t ) message is received from parent coordinator 

 lock the bag 

 Add event q to the bag 

 unlock the bag 

end when 

 

SLAVE COORDINATOR 

when a ( *  , t ) message is received from parent coordinator 

if  tL ≤ t ≤ tN 

  for  all q ∈ bag 

   for  all receivers of q,  j ∈ Iself 

        if  j is a local processor 

     q := zself, j (q) 

     send ( q, t ) to j 

     cache j in the synchronize set 

    else 

  do nothing 

     end if 

end for 

end for 

  empty bag 

 for  all i in the synchronize set 

   send ( *, t ) to i 

  end for 

  wait until all ( done, tN)’s are received 

  tL :=  t 

 tN := minimum of components’ tN’s  

  clear the synchronize set  

  send ( done, tN ) to parent coordinator 

else raise an error 

end when 

 
The root coordinator is a special processor that is above the topmost coordinator. It is responsible for 
driving the simulation and advancing the virtual simulation time. The root coordinator can also handle 
external events which are stored in a sorted queue of events. 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

30 
 

ROOT COORDINATOR 

load queue of external events and sort them by arrival time. 

t :=  minimum of tN of topmost coordinator and tN of queue. 

while t ≠ ∞ 

if  t = tN of queue 

 for  all q in queue with time t 

  send ( q , t ) to topmost coordinator 

 end for 

end if 

 

if  t = tN of topmost coordinator 

 send ( @, t ) to topmost coordinator 

 wait until ( done, t ) is received from it 

end if 

 

send ( *, t ) to topmost coordinator 

wait until ( done, t ) is received from it 

end while 

raise simulation completed 

 

This abstract simulator mechanism will be able to handle both, Parallel DEVS and Parallel Cell-DEVS 
models because the latter one is a specialization of the first one. 
 
 
 

 

 
 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

31 
 

5  
Parallel Simulation 

 
When running parallel and distributed simulation, the whole model is divided among a set of logical 
process, each of which will execute on a different CPU. In general terms, each logical process will host 
one or more simulation objects. For the present discussion, those simulation objects will be DEVS 
processors. 
 
Logical processes (LPs) talk to each other through time-stamped events that move the simulation forward. 
Events must be processed in the order defined by their timestamps for correct results. It does not always 
suffice to have a queue on each logical process and advance the simulation by processing the first event 
on the queue, ignoring the other LPs. Such case is illustrated in Figure 10 which shows two LPs, each 
with one event in its input queue. Both events are processed simultaneously, and as a result of processing 
C with time 2, a new event is generator for LP 1, D, with time stamp 5. But LP 1 has already processed an 
event with timestamp 8 so the simulation is incorrect. Such an error is called a causality error. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  11 : Execution of the first queued message does not always guarantee correct results. 
 
Then, either LPs must agree on a synchronization mechanisms, or the application programmer has to 
ensure the application will keep the LPs synchronize.  
 
For event driven simulation, there are three types of synchronization strategies: 
 

1. No synchronization at all (synchronization is ensured by the application). 
2. Optimistic synchronization. 
3. Pessimistic (conservative) synchronization. 

 
The first approach assumes all messages will always arrive in the order defined by their time-stamp, and 
no out of order message will ever be received. It is an optimistic strategy that relies on the 
synchronization being handled by the simulation objects instead of the logical process themselves. It is a 
very efficient implementation that does not require event queues; each event is processed as soon as it 
arrives. Special consideration will be given to this approach later because the Parallel-DEVS abstract 
simulator presented in the previous chapter does provide by itself a synchronization mechanism. 
 
The other two rely on synchronization being handled by the LPs. Input events are queued in order of 
earliest time-stamp and the following two constraints must be always valid [Zei00]: 
 
• All outputs resulting from the processing of an input event must have a time-stamp greater or equalt 

to the input time. This means processing can’t proceed backwards in time. 
• Messages must be processed in order of time-stamps in the queues.  
 

LP 1 LP 2 

Queue: 
B 8 

Queue: 
C 2 

D 5 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

32 
 

Optimistic and conservative schemes differ on the way they enforce the second constraint. In conservative 
schemes the time-stamped order constraint is never violated. On the other hand, optimistic schemes allow 
a temporary violation that must be repaired before the final simulation output is presented. 
 

5.1 Conservative synchronization 
 
The conservative approach is illustrated in figure 10, where there are two logical processors LP1 and LP2 
with queues of time stamped messages.  
 
Starting in the upper left corner, LP 1 has a message with timestamp 3 and LP 2 has an earliest message 
with timestamp 1. Therefore, LP 1 can not execute its message because there is a potential risk of LP 2 
producing an output with time stamp less than 3. Conservative schemes must therefore find a way to 
determine when it is safe to process input events. If a LP has an unprocessed event with timestamp t and 
no event with earlier timestamp can be received, then the event can be safely processed. A LP that has in 
its queue an unprocessed event from all the other LPs can safely process the one with lowest timestamp 
because future messages will have a later timestamp. This process can be repeated as long as there are 
unprocessed messages from all the other LPs. But if this is not so, there is a risk of deadlock. 
 

 
Figure  12 : LPs with conservative synchronization [Zei00] 

 
To avoid deadlock, each LP provides a time in the immediate future up to which it promises not to send 
input events. This is done through null messages. An LP will send a null message to other LPs with a time 
in the future up to which it is safe to process messages. Each LP must then carry a lookahead for 
determining the time up to which it is safe to process time-stamped inputs. In Figure  12, the lookahead 
for LP 2 is 1. Therefore, when LP 1 receives a null message with this lookahead time, it knows it must not 
process message (a,3). Large lookahead values are needed to gain advantages over sequential simulation, 
but unfortunately, such large lookaheads are difficult to find in many representations of reality. 
 
A safe lookahead value is the timestamp of the first unprocessed message in the input queue. If after 
processing an event all logical process send a null message with the timestamp of the next input event, a 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

33 
 

deadlock will be rare. There is only one case in which a deadlock may occur, and that is the case when all 
LPs are about to process an input event with the same time stamp. An improvement on these mechanism 
is to send null messages on demand. When a process is about to block, it will request the next events from 
the LPs it does not have a timestamp. This reduces the number of null messages being sent, but increases 
the overhead. 

5.2 Optimistic synchronization 
 
The optimistic schemes process their input queues as fast as they can. If a message out of place in the 
time-stamp order of processing is received, usually known as a straggler, a recovery and rollback 
mechanism is started to rectify this situation.  
 
Figure  13 shows such a situation. In the upper left hand corner, LP1 and LP2 have  arrived at the 
situation where LP2 has processed events (d,1) and (e,5) and sent input events (d’,5) and (e’,6) to LP1. 
Now, LP1 processes event (a,3) which causes it send an input (a’,3) to LP2 as shown in the middle. 
However, since LP2 has already processed event (e,5), the new input (a’,3) a straggler.  
 

 
Figure  13 : Event processing in an optimistic scheme 

 
To rectify an abnormal situation, an anti-message such as (e’,6) that annihilates the effects of already sent 
messages must be sent. To be able to return to a previous state, each simulation object must maintain a 
queue of already processed inputs and their outputs, and a queue of previous states. When an anti-
message is received, the queues are restored to the anti-message time and new anti-messages are sent for 
every output sent that should not have been sent. This starts a chain reaction of rollbacks. An optimization 
technique known as lazy cancellation delays the anti-messages until the simulation object is sure the 
previous output must be cancelled. It might be the case that the previous and new output are the same, so 
nothing should be done. 
 
The overhead for running an optimistic scheme is quite considerable. There is a memory overhead 
because three queue must be kept: input events, output events and state. And there is a processing 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

34 
 

overhead during rollbacks.  A fossil collection mechanism that will delete those queue elements that are 
no longer required must be conveyed to avoid exhausting system resources. Logical process have a local 
time know as Local Virtual Time. There is also a Global Virtual Time, which is the time of the system, 
that is equal to the least LVT. After a number of simulation cycles, LPs will exchange their LVTs and the 
GVT will be determined. This GVT is broadcasted, triggering the fossil collection process on each LP.  
All those input events, output events and states that have a time-stamp earlier than the GVT can be safely 
deleted. A high GVT calculation frequency saves memory but generates a big processing overhead. On 
the contrary, a low frequency will generate less processing overhead and require more memory.  
 
The protocol just described is known as TimeWarp and was proposed by Jefferson [Jeff]. 

5.3 Synchronization for the DEVS abstract simulator 
 
Parallel CD++ will run the abstract simulator described in Section 4. The DEVS processor (root 
coordinator, simulator, slave coordinator or master coordinator) will be the simulation objects that will 
run on the available LPs and a suitable synchronization mechanism should be chosen. 
 
When analyzing the behavior of the simulator and master and slave coordinator, it can be seen that upon 
receiving any of the (*,t),(@, t), (done,t) , (y,t) or (q, t) messages, any other message that is sent will have 
the same timestamp t. The root coordinator is the only DEVS processor that will cause the time to 
advance by sending a new message with the time of the next imminent model or external event. In fact, 
each simulation cycle starts with the root coordinator sending a (@, t). After all the (done,t) messages 
from the child processors have been received, it sends a (*,t) message and when all the corresponding   
(done,t) messages are sent back again, the simulation cycle finishes. Only then, the time is updated.  
 
In the scope of the abstract simulator, a message will only be considered a straggler if its timestamp t is 
less than the LVT of the receiving LP. An LP will be allowed to receive multiple messages with a 
timestamp equal to its LVT. The only constraint that needs to be placed is that the two or more events 
sent from a source object S to a destination object D should preserve the same ordering upon arrival to D. 
 
Lemma 3 
The abstract simulator of Section 4 can not produce a straggler message. 
 
Proof 
Assume a message m with timestamp ts is sent by a simulation object S to a simulation object D with 
timestamp td,  with ts < td. Since all messages carry the timestamp of the simulation cycle being executed, 
it must be the case that the current simulation cycle either corresponds to time td or to time ts. 
 
If it is the first case, i.e. the current cycle’s time is td, then the root coordinator has sent a message with 
timestamp td. And the root coordinator would only send such a message after receiving a (done, ts) 
message from all the components that were active at time ts, and S would have only sent a  (done, ts) upon 
finishing its simulation cycle. The fact that m has time ts < td  is a contradiction, because S could have 
never sent a message timestamped ts after sending  (done, ts). 
 
Now, if it is the second case,  i.e. the current cycle’s time is ts, then it is impossible for D to have a 
timestamp td < ts because the root coordinator has not yet sent a message with timestamp td. 

 

Having proved that the abstract simulator of Section 4 can not produce a straggler message, then no 
synchronization mechanism at the LP level is needed, because the synchronization is provided by the 
application itself. However, as it will be seen Section 7, parallel CD++ will be implemented over a 
simulation kernel that provides all three synchronization mechanisms. This will allow future abstract 
simulators to take advantage of the TimeWarp protocol and send events in the current simulation cycle 
with a timestamp in the future. 
 
 
 
 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

35 
 

6  
CD++ 

CD++ implements the DEVS theory. It allows to define models according to the original DEVS 
formalism (Wainer et al. 2000, Rodríguez and Wainer 1999). A set of independent applications related 
with the tool allow the user to have a complete toolkit to be applied in the development of simulation 
models. 
 
The tool is built as a hierarchy of classes, each of them related with a simulation entity. Atomic models 
can be programmed and incorporated into a basic class hierarchy programmed in C++. Coupled and Cell-
DEVS models need not be programmed. The tool provides a specification language that defines the 
model's coupling, including the initial values and external events,  and the local transition rules for Cell-
DEVS models.  
 

 
 

Figure  14 : CD++ Models and Processors. 
 
This class hierarchy implements the model theoretical definition presented in the previous section. New 
atomic models must be incorporated to the class hierarchy as subclasses of the Atomic Model class. 
Coupled models are defined using a specialized specification language. Following, we explain how to 
incorporate atomic and coupled models to be simulated. 
 

6.1 Atomic model definition 
 
A new atomic model is created by including a new class that inherits from Atomic. In doing so, the 
following methods may be overloaded: 
 
• initFunction : this method is invoked when the simulation starts. It allows to define initial values and to 
execute any initialization procedure for the model. When this method is executed, the value of sigma next 
scheduled event) is set to infinite and the model phase to passive. The sigma variable is used to 
implement the duration function: it stores the time up to the next event in the model. This variable is 
related with the elapsed time value, which is maintained by an independent simulation mechanism. 
 
• externalFunction: this method is invoked when an external event arrives from an input port. 
 
• internalFunction: this method is started when the value of sigma is zero, since an internal event has 
occurred. 
 
• outputFunction: this method executes before the internal function, allowing to provide outputs for the 
model. 
 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

36 
 

After defining these functions, new models can be incorporated to the modelling class hierarchy. Finally, 
the model must be registered using the method MainSimulator.registerNewAtomics(). The following 
primitives can be used in defining the atomic’s model behavior: 
 
• holdIn(state, time): a model executing this sentence will remain in state during time. When the time is 
consumed (sigma = 0), the model executes the internal transition. This macro was included to make easy 
the definition of the duration function. 
 
• passivate(): the model enters in passive mode (phase = passive; sigma = infinite) and it will be  
reactivated by an external event. 
 
• sendOutput(time, port, value): it sends an output message through the given port. 
 
• state(): it returns the present model phase. 
 

 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

37 
 

7  
Parallel CD++ 

 
The main goal of this work has been to extend CD++ into Parallel CD++, a tool for the simulation of 
Parallel DEVS and Parallel Cell-DEVS models on a distributed environment. For this to be accomplished 
in a modular and portable fashion, a suitable layered architecture had to be chosen.  
 
It was decided that Parallel CD++ should be built on top of a modified version of Warped [8]. The 
Warped project is an attempt to make a freely available simulation kernel for parallel and distributed 
environments. Two simulation kernels are currently provided for parallel and distributed simulation: a 
TimeWarp kernel and a NoTime kernel. The first one implements the TimeWarp protocol as defined by 
Jefferson’s paper [Jeff]; the second is an unsynchronized kernel. In addition, a sequential kernel is also 
provided for running standalone simulation. Further efforts were done at the University of Buenos Aires 
to develop a conservative kernel [Sul].   
 
For the distributed simulation kernels, Warped uses MPI for the message passing. The complete layered 
architecture is shown in Figure  15. 
 
 
 
 
 
 
 
 
 
 

 
Figure  15 : Parallel CD++ layered architecture 

 

7.1 Warped API 
 
The Warped system is implemented in C++ and utilizes the object oriented capabilities of the language to 
provide an application interface. It provides base classes for simulation objects (Warped objects), events 
and object’s states. The user creates its own application by creating new classes that derive from the ones 
provided. The benefit of this type of design is that the end user can redefine functions without directly 
changing the kernel code. Though this interface was designed to be used with the TimeWarp protocol, it 
is simple to switch from one kernel to another. Figure  16 shows the Warped API. 
 
The Warped kernel presents an interface to the application that is based on Jefferson’s original paper on 
TimeWarp. Objects are modeled as entities which send and receive events to and from each other, and act 
on these events by applying them to their internal state. Thus, the kernel provides basic functions for the 
application to send and receive events.  Since the TimeWarp protocol requires periodic state saving for a 
potential rollback and recovery process, Warped provides an interface for defining each object’s state. 
Other facilities the Warped API provides include the possibility of having user define the data each event 
will carry. 
 
In return, the user application must provided several functions to the kernel. The most important function 
defines what each simulation object does in each simulation cycle. Other functions define such things as 
how to initialize and destroy each simulation object. 

MPI 

WARPED 

Parallel CD++ 

MODEL 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

38 
 

 
class TimeWarp { 
 
 // Methods the user defines  
 virtual void initialize(); 
 virtual void finalize(); 
 virtual void executeProcess(); 
 BasicState* allocateState();  
 
 //Simulation kernel services 
 void sendEvent (BasicEvent * ); 
 BasicEvent* getEvent(); 
}; 
 
class BasicEvent { 
 
 int size; 
 Vtime sendTime; 
 Vtime recvTime; 
 
 int sender; 
 int dest; 
} 
 
class BasicState { 
  
 BasicState* copyState( BasicState*); 
} 
 

 
Figure  16 : Warped API 

 

7.2 An overview of Parallel CD++ 
 
Following the original design of CD++,  Parallel CD++ provides an API for users to define new atomic 
models. The original CD++ atomic’s model interface was changed slightly to satisfy the Parallel DEVS 
formalism. The new interface allows simultaneous external events to be handled together, defines a 
confluent function and requires the user to give a definition of a model’s state (Figure  17).  
 
class Atomic { 
 
 // Methods the user should define 
 Model& internalFunction(); 
 Model& externalFunction (MessageBag&) 
 Model& outputFunction(); 
 Model& confluentFunction(); 
 ModelState* allocateState(); 
 
 //Simulation kernel services 
 void sendOutput ( Port&, BasicMsgValue* ); 
 const Vtime& lastChange(); 
 void holdIn( state, Vtime ); 
}; 

 
Figure  17 : The Atomic class 

 
In addition, Parallel CD++ provides a way of allowing the user to define the data carried by output and 
external events. Originally, in CD++, this was restricted to real numbers.  
 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

39 
 

class BasicMsgValue  
{ 
public: 
 BasicMsgValue(); 
 virtual ~BasicMsgValue(); 
 virtual int valueSize() const; 
 virtual string asString() const; 
 virtual BasicMsgValue* clone() const; 
 BasicMsgValue(const BasicMsgValue& ); 
 
}; 
 
class RealMsgValue : public BasicMsgValue 
{ 
public: 
 RealMsgValue(); 
 RealMsgValue( const Value& val); 
 
 Value v; 
 
 int valueSize() const;  
 string asString() const ; 
 BasicMsgValue* clone() const; 
 RealMsgValue(const RealMsgValue& ); 
};  

 
Figure  18 : The BasicValue class for defining the contents of external and output events. 

 
To run parallel and distributed simulation, it is required that the user defines the set of available machines 
and a model partition. The set of available machines must be defined as specified by MPI, either by the 
use of procgroup file or by adding the corresponding entries to machines.ARCH. Details on how this is 
done are provided in the Parallel CD++ User’s guide. 
 
To define the model partition, Parallel CD++ requires that the user specifies for each atomic model the 
machine on which it will run. For Cell-DEVS models, the user has to define the location of each cell or 
cell-range. This is done through a partition file, which is specified as a command line parameter,  
allowing for the definition of different partitions for the same model. 
 
Parallel CD++ has been compiled and tested with both, the NoTime and TimeWarp kernel. Since the 
Parallel DEVS abstract simulator provides a synchronization mechanism that guarantees in order 
execution of events, the NoTime kernel was adopted for the final release, being this kernel more efficient 
in the use of system resources. Still, the possibility of  changing the Parallel DEVS abstract simulator 
mechanism for exploiting the full capabilities of the TimeWarp protocol is left open to further 
exploration. 
 
The NoTime kernel can also be compiled to run in standalone mode without using MPI. Parallel CD++ 
supports compilation for standalone execution as well. 
 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

40 
 

8  
Results  

 
The aim of making CD++ to run in parallel is to have a tool that will reduce the simulation time. 
Therefore, the results to be presented in this chapter will show how execution time of different models 
changes with different configurations. As it will be seen, it is not always the case that adding more 
machines to a simulation will reduce the execution time. After a set results were obtained, some 
bottlenecks were identified in the master-slave abstract simulator of section 4, and a new one, which will 
be explained in the next section, was proposed. 
 
The simulations were carried out with the Alpha network of the RADS group at the Systems and 
Computing Engineering Department of the University of Carleton. The Alpha network consists of 14 
Pentium machines with 128Mb of RAM running Red Hat Linux 6.2. 
 
 

 
Figure  19 : The RADS measurement networks 

8.1 An extended version of the GPT model 
 
Parallel CD++ was first tested with an extended version of the Generator-Producer-Transducer model 
(GPT). The GPT model simulates a processor receiving jobs and calculates its throughput and load. It 
consists of a generator, a queue, a processor and a transducer, as shown in Figure  20. The generator 
outputs jobs periodically. When a new job is sent through the out port, it is received by the queue and the 
transducer. If the queue is empty, the job will directly be forwarded to the processor; otherwise, the job 
will be queued till the processor is released. When the processor finishes a job it sends it through its out 
port to the transducer and the queue. If the queue has jobs waiting, it will send the next job to the 
processor; the transducer will compute the turnaround time and update the throughput and cpu usage 
values, which it will output periodically. 
 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

41 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure  20 : The GPT model 
 
The definition of this model for Parallel CD++ is shown in Figure  21.  
 
00 [top] 
01 components : Queue@queue Processor@CPU Transduce r@transducer Generator@generator 
02 Out : throughput 
03 Out : cpuusage 
04 Link : out@generator arrived@transducer 
05 Link : out@generator in@queue 
06 Link : out@queue in@processor 
07 Link : out@processor done@queue 
08 Link : out@processor solved@transducer  
09 Link : throughput@transducer throughput 
10 Link : cpuusage@transducer cpuusage 
 
... 

 
Figure  21 : Definition of the GPT model 

 
The extended version of the GPT model consists of several copies of the GPT model just shown. Tests 
were conducted with 12, 48 and 96 copies, running on 1 to 12 machines.  The results of running this 
model are shown in Figure  22. All random variables that were present in the model definition were 
eliminated to obtain comparable results. 
 

Running time for the GPT model

0

20

40

60

80

100

120

0 5 10 15

Number of machines

T
im

e 
(s

ec
)

12 Copies

48 Copies

96 copies

 
 

Figure  22 : Execution time in seconds of 12, 48, and 96 copies 
 

As it can be seen, the execution times for this model did not behave as expected. As more machines are 
added, the execution time increases. To determine the causes for such a behavior further tests were 
conducted. To verify if the communications overhead was being the cause for such an increase in the 
running time, the model was rewritten to include a delay in the external function. This would increase the 
computing time at each simulation cycle. If the computing time for a simulation cycle is greater than the 
communications overhead, then it is expected that adding more machines will reduce the overall 
simulation time. The new results, that do confirm this hypothesis,  are shown in Figure  23. 
 
 
 

GPT 
 

generator 

transducer 

 queue 

processor 
throughput 

cpuusage 

out 

arrive 

in 

in done 

solved out 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

42 
 

 

Running time for the GPT model with delays

0

500

1000

1500

2000

2500

3000

0 5 10 15

Number of machines

T
im

e 
(s

ec
)

12 Copies

48 Copies

96 copies

 
Figure  23 : Execution time in seconds of 12, 48, and 96 copies of the GPT model with delays on 1 to 

12 machines, for a simulation virtual time of 10 minutes. Results show the minimum time of three runs 
independent runs. 

 

8.2 A heat diffusion model  
 
Parallel CD++  was also tested with a heat diffusion model. In this model, a surface is represented by a 50 
x 50 cellular automaton, each cell containing a temperature. In each simulation cycle, the temperature of a 
cell is updated to the average of the values of the neighborhood. In addition, a heat generator is connected 
to the cells (25, 25) and (10, 10), generating temperatures in the range [24, 40] with uniform distribution. 
Also, a cold generator that creates temperatures in the range [10, 15] with uniform distribution, has been 
connected to the cells (10, 40) and (40, 40). Both generators create values after x seconds, where x 
follows an exponential distribution with mean 50 seconds. When any of the generators outputs a new 
value, the cell to which it is connected will take that value. For testing purposes, the random number 
generators were disabled to obtain comparable results. 
 
The definition of the model using the language provided by the tool is showed in Figure  24. The top 
model and its components are defined between lines 1 and 4. Between lines 6 and 26, the model 
representing the surface is defined. It is composed of a cellular automata of 50x50 cells with an initial 
temperature of 24° C. In the lines 28 and 29 the local transition function is defined. 
 
Lines 31 and 32 define the transition function upon receiving an external event from the heat generator, 
and lines 34 and 35 for transition triggered by external events coming from the cold generator. Lines 37 to 
47 define the distribution parameters for the generators. 
 

01   [top] 
02   components : surface generatorHeat@Generator g eneratorCold@generator  
03   link : out@generatorHeat inputHeat@surface  
04   link : out@generatorCold inputCold@surface  
05  
06   [surface] 
07   type : cell 
08   width : 50 
09   height : 50 
10   delay : transport 
11   defaultDelayTime  : 100 
12   border : wrapped  
13   neighbors : surface(-1,-1) surface(-1,0) surfa ce(-1,1)  
14   neighbors : surface(0,-1)  surface(0,0)  surfa ce(0,1) 
15   neighbors : surface(1,-1)  surface(1,0)  surfa ce(1,1) 
16   initialvalue : 24 
17   in : inputHeat inputCold 
18   link : inputHeat in@surface(25,25) 
19   link : inputHeat in@surface(10,10) 
20   link : inputCold in@surface(40,40) 
21   link : inputCold in@surface(10,40) 
22   localtransition : heat-rule 
23   portInTransition : in@surface(25,25)  setHeat 
24   portInTransition : in@surface(10,10)  setHeat 
25   portInTransition : in@surface(40,40)  setCold 
26   portInTransition : in@surface(10,40)  setCold 
27 
28   [heat-rule] 
29   rule : { ((0,0) + (-1,-1) + (-1,0) + (-1,1) + (0,-1) + (0,1) + (1,-1) + (1,0) + (1,1)) / 9 } 1000 0 { t }  



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

43 
 

30 
31   [setHeat] 
32   rule : { uniform(24,40) } 1000 { t } 
33 
34   [setCold] 
35   rule : { uniform(-10,15) } 1000 { t } 
36 
37   [generatorHeat] 
38   distribution : exponential 
39   mean : 50 
40   initial : 1 
41   increment : 0 
42 
43   [generatorCold] 
44   distribution : exponential 
45   mean : 50 
46   initial : 1 
47   increment : 0 

Figure  24 : Definition of the heat diffusion model 
 
Figure  25 shows a model partition for running the heat diffusion model on 4 machines. There are a total 
of 252 simulators that have to be assigned to 4 CPUs. Line 1 defines the location for the simulators 
associated to the generatorHeat and generatorCold atomic models. Lines 2 to 5 set where the simulators 
for the cells of the surface model will be running.  
 
 
01   0 : generatorHeat generatorCold 
02   0 : surface(0,0)..(24,24) 
03   1 : surface(25,0)..(49,24) 
04   2 : surface(0,25)..(24,49) 
05   3 : surface(25,25)..(49,49) 

 

Figure  25 : A model partition for 4 processors 
 

The heat diffusion model was run on 1, 2, 4 and 8 machines, for a virtual time of 2 minutes and using 
quantum values of 0.001, 0.01 and 0.1. 
 

Heat diffusion model 50 x 50

0

50

100

150

200

250

No quantum 0.001 0.01 0.1

Quantum used

T
im

e 
(s

ec
) 1

2

4

8

 
 

Figure  26 : Simulation execution time (seconds) for the heat diffusion model 
 
The graph shows that: 
 

• As the quantum is increased there is a reduction in the execution time. 
• When the same quantum is used, adding more machines does not reduce the simulation time. 

 
The results shown in Figure  26 were rearranged to display the number of machines in the X axis and the 
new graph is shown in Figure  27. It is clear that, as more machines are added, the execution time 
increases. When this behavior was observed for the extended GPT model, adding a delay to the external 
transition function produced the expected results. For cellular models, another way of increasing the 
computing load is to increase the model size. So the heat diffusion model was rewritten as a 100x100 
cellular model to asses if the execution time would behave differently. The results are shown in  Figure  
28. 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

44 
 

Heat diffusion model 50 x 50

0

50

100

150

200

250

1 2 4 8

Number of machines

T
im

e

No quantum

0.001

0.01

0.1

 
Figure  27: Simulation execution time for a 50x50 heat diffusion model. 

 

Heat diffusion model 100 x 100

0

200

400

600

800

1000

1 2 4 8

Number of machines

T
im

e

No quantum

0.001

0.01

0.1

 
Figure  28: Simulation time for a 100x100 heat diffusion model 

 
The 100 x 100 cellular model showed a different behavior. Taking for instance, the executions without 
quantum, it can be observed that the smallest execution time was achieved with 4 machines. The 
execution time for 2 machines was the greatest, and using 8 machines the performance was worse than 
using 4. 
 
After these results, the abstract simulator of section 4 was studied thoroughly to determine the causes for 
such a behavior, specially for the time increase observed from 4 machines to 8 machines. As a result, the 
revised abstract simulator that is described in the next section was obtained. 
 
 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

45 
 

9  
A revised abstract simulator. 

 
For cellular models, there is an invariant that is independent of the abstract simulator being used: adding 
more machines to a simulation increases the number of cells that have a neighbor running in a different 
logical process, as shown in Figure  29. 

 
#Machines  #Cells  

1 0 
2 698 
4 890 
8 1274 

Figure  29: Number of cells with remote neighbors  
when different partitions are used. 

 
When a cell sends an output, this value has to be forwarded to all neighbor cells, which can be local or 
remote. For remote cells, a message through the network is required. The abstract simulator of section 4, 
though well suited for dealing efficiently with  (@ , t), (* , t) and (Done , t) messages, does not handle 
 ( y , t ) messages  very efficiently. In fact, when a slave coordinator determines that a ( y , t ) message 
should be sent as a ( q , t ) message to a model that is running on a different logical process, it just 
forwards the ( y , t ) message to the master coordinator who will then forward it to the corresponding 
recipients. Thus, an output message will whose final recipient is a logical process that is not the one 
running the master coordinator, will make to hops: one from the originating slave coordinator to the 
master coordinator, and a second one from the master coordinator to the final slave recipient. Figure  30 
shows how an output message from cell (25,0) is forwarded to cell (25,49). The dashed lines represent 
messages sent over the network.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  30 : Master - Slave coordinator output relaying. 
 
This way of relaying messages between logical processes has a negative impact on: 
 
• The master coordinator, who receives all output messages, even those that are not addressed to his 

logical process. 
• The number of messages being sent over the network, which is almost doubled due to message 

relaying. 
 
From the numbers in Figure  29, it can be seen that for 8 machines, if all cells have an output to send the 
master coordinator for the coupled cellular model will receive 1274 messages. All but one eight of these 
output messages will then be forwarded to a different logical process.  
 
To reduce this overhead, a different approach can be taken. When a slave coordinator has an output 
message to a remote model, it could send it directly to the recipient’s parent coordinator, without going 
through the master coordinator. In this way, the relaying is avoided, as shown in Figure  31. 
 

(25,0) 

Coordinator 1 

Coordinator 0 
(master) 

Coordinator 3 
 

(25,49) 

1: (y,t) 

2: (y,t) 3: (q,t) 

4: (q,t) 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

46 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  31: Revised output relaying. 
 
Though simple as it may seem, this new way of relaying messages requires a complete new abstract 
simulator because it is not enough to change the way output messages are handled. 
 
Section 4 mentions that there are three stages to be completed when a component is imminent: 
 
1. A ( @, t ) is sent to all imminent components. 
2. All imminent components send their outputs ( y, t ) which are sorted into ( q, t) messages. Now, all 

those components that received a ( q, t) are also imminent. 
3. A ( * , t ) is sent to all imminent components. 
 
When centralized relaying of messages is used, the master coordinator has complete knowledge of who 
the active slave coordinators are (these are the coordinator that should received the (* , t ) message ). In 
Figure  30, the master coordinator knows that the coordinator 3 will be imminent and should receive a (* , 
t ).  Instead, when distributed relaying is used, the master coordinator does no longer know who the active 
slave coordinators are. As Figure  31, the master coordinator does not know coordinator 3 has received an 
output message. If coordinator 3 had not received a ( @, t ), then the master coordinator would not 
coordinator 3 is now imminent. 
 
The solution to this problem is to have the master coordinator send a ( * , t ) to all slave coordinators. 
Those that are not imminent would just respond with a (Done, t’) doing nothing else. This would work if 
the message passing interface (MPI) would guarantee that all messages are delivered in the same order 
they are sent. But unfortunately, this is not so. MPI can guarantee that if two messages are sent from 
logical process 1 to logical process 2, they will arrive in the same order they were sent. But if two 
messages are sent from logical process 1 to logical process 2, and a third message is sent from logical 
process 1 to logical process 3, there is no guarantee those two first messages will arrive before the third 
one. This can lead to a special situation were a ( * , t ) is received before a ( y , t ) message as shown in 
Figure  32. 
 
In Figure  32, coordinator 1 first sends a (y,t) message to coordinator 3 and then a (done, t) message to 
coordinator 0. However, the (done, t) message is received before and so the master coordinator sends a 
(done, t) and receives a (*,t) that is forwarded to coordinator 1 and 3. Coordinator 3 can receive the (*,t) 
message before the (y,t) message, producing incorrect results. The problem here is that there is no 
knowledge of when all the sorting of output messages has concluded. The abstract simulator of section 4 
did not have this problem because all output messages to remote models went through the master 
coordinator. Since the master coordinator always forwarded all outputs before sending a (*,t) message, 
and because MPI guarantees that messages between two logical process are received in the same order 
they were sent, the problem was avoid.  
 
A correct abstract simulator would delay the (done, t) messages (number 3 in Figure  30) until all outputs 
have been received. A first approach might lead to having a coordinator acknowledge a (y,t), but this 
again, leads to an enormous number of messages being sent.  
 
 
 

(25,0) 

Coordinator 1 

Coordinator 0 
(master) 

Coordinator 3 
 

(25,49) 

1: (y,t) 

2: (y,t) 

3: (q,t) 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

47 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  32: A (*,t) message is received before a (y,t) message 
 
Instead, the following approach will be taken: 
 
1. When a master coordinator receives a ( @, t ), it will forward it to all its slave coordinators, whether 

they are imminent or not. 
2. When a slave coordinator receives a ( @, t ), it will send all of its ( y, t ) to the other coordinators.  
3. After a slave coordinator has sent all the ( y, t ), a new ( $, t ) message will be sent to all the other 

coordinators (except to the master). This new message, called output synchronization, is a way of 
telling the other coordinators that no more output messages will be sent. 

4. After a slave coordinator has sent all its ( $, t ) messages and received the ( $, t ) messages from the 
other coordinators, a (done, t) message will be sent. 

 
In this way, when the master coordinator receives all the (done, t), a (*, t) message can be safely sent. 
 
 

 

 

 

 

8.3 A measure of model parallelism 
 
To have a better understanding of the factors that contribute to a reduction of a model’s simulation time 
as more machines are used, a measure of a model level of parallelism was developed. Basically, this 
measure should have its greatest value when all of the machines have the same load, i.e. there is 
simultaneous execution, and its least value when all the simulation is done by only one of the available 
machines. 
 
In Parallel DEVS, one way to determine how much activity there is on each simulation cycle is to count 
the number of  received ( *, t ) messages. If in addition this information is obtained for each logical 
process at each simulation cycle, a clear picture of how much activity is taking place can be drawn. The 
expression 
 

Count( LPnum, t) 
 

(25,0) 

Coordinator 1 

Coordinator 0 
(master) 

Coordinator 3 
 

(25,49) 

1: (y,t) 

2: (y,t) 

3: (done,t) 
6: (*,t) 

2: (y,t) (7) 

4: (done,t) 5: (*,t) 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

48 
 

will be used to denote the number of  ( *, t ) messages received by LP number LPnum during the simulation 
cycle at time t. 
 
But counting the messages by itself does not give the sort of measure being sought, it just gives the 
number of messages. For a better measure, it  can be assumed that the processing of each ( *, t ) will 
require the same computing time. Then, assuming also an homogeneous network,  the execution time for 
each simulation cycle will be given by 
 

( )),()( 1
0 tLPCountMaxtCycleTime i

NumLPs
i

−
==  

 
That is to say, the execution time of a simulation cycle will be equal to the time it takes the LP that 
receives the highest number of ( *, t ). Knowing the cycle time, the CPU usage at each LP can be obtained 
by dividing the used time by the cycle time, which is given by 
 

)(
),(

),(
tCycleTime

tLPCount
tLPUsage num

num =  

 
The LP with the maximum number of messages will have a usage measure of 1. If all the LPs receive the 
same number of ( *, t ) messages then all LPs will have a CPU usage of 1, being this the case of 
maximum parallelism. All LP’s CPU usage measures can be averaged to give a measure for the whole 
system. This measure will depend on two factors: the model and its partition. For maximum parallelism to 
be achieved the model has to be partitioned in a way that all LPs will have an equal number of active 
models. For some models, such a partition might exist, but for some others, it might not. Most probably, 
the load of each LP will vary with time. Model partitions in Parallel CD++ are static. 
 
This measure was used with the heat diffusion model. The results are shown in figure 26. As it is shown, 
the parallelism for the execution without quantum is keeps over 0.88 for all partitions, but falls 
considerably when a quantum is used. This helps to explain why for the execution using quantization 
adding more machines did not reduce the execution time. Adding more machines does not necessarily 
mean that there will more simultaneous execution. 
 
As a subproduct, the total number of * messages sent during the whole was calculated. The results are 
shown in figure 27. Here it is interesting to see that using quantization does indeed reduce the number of 
messages sent. For a discussion on quantization to be complete, it remains to analyze the error incurred in 
each case, but that is not within the scope of this work. 
 
Last, the evolution of the level of parallelism through the whole execution time is shown for the heat 
diffusion model when 2, 4 and 8 LPs are used. Figure 28 shows the results for the execution without 
quantization and figure 29 shows the results when a quantum of 1 is used. In the first case, the level of 
parallelism increases steadily till it reaches a value near to 1 at time 20 sec. On the other hand, the level of 
parallelism is constantly changing. 
 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

49 
 

 
# Machines  No quantum  Q = 0.1 Q = 0.5 Q = 1 

1 1,00 1,00 1,00 1,00 
2 0,95 0,68 0,71 0,70 
4 0,93 0,58 0,62 0,62 
8 0,88 0,47 0,49 0,48 

 

Parallelism

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1 2 3 4

#Machines

U
sa

ge

No quantum

Q = 0.1

Q = 0.5

Q = 1

 
 

Figure 26 : Parallelism of the heat diffusion model with and without quantum 
 
 
 
 
 

# Machines  No quantum  Q = 0.1 Q = 0.5 Q = 1 
1 107148 17920 12357 11649 
2 107201 17964 12409 11689 
4 107307 18057 12486 11766 
8 107522 18206 12637 11908 

 
Figure 27 : Number of * messages sent when executin the heat diffusion model with 

and without quantum 
 
 
 
 

Evolution of parellelism without quantum

0,00

0,20

0,40

0,60

0,80

1,00

1,20

0 10 20 30 40 50 60

Virtual Time (sec)

P
ar

al
le

lis
m 2

4

8

 
 

Figure 28 : Evolution of the parallelism for the heat diffusion model 
when no quantum is used. Results shown correspond to execution on  

2, 4 and 8 LPs. 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

50 
 

Evolution of Parallelism with a quantum of 1

0,00

0,20

0,40

0,60

0,80

1,00

1,20

0 10 20 30 40 50

Virtual Time (sec)

P
ar

al
le

lis
m 8

4

2

 
Figure 29 : Evolution of the parallelism for the heat diffusion model 

when a quantum of 1 is used. Results shown correspond to execution on  
2, 4 and 8 LPs. 

 
 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

51 
 

9  
A flow-injection Cell-DEVS model 

 
In this section, a Cell-DEVS model for a flow-injection system will be presented. This model has been 
developed together with people working at the Laboratorio de Análisis de Trazas – Facultad de Ciencias 
Exactas y Naturales – Universidad de Buenos Aires.  
 

9.1 Flow injection analysis 
 
Flow-injection methods are analytical methods used for automated sample analysis of liquid samples. In a 
flow injection analyser, a small, fixed volume of a liquid sample is injected as a discrete zone using an 
injection device into a liquid carrier which flows through a narrow tube. As a result of convection at the 
beginning, and later of axial and radial diffusion,  this sample is progressively dispersed into the carrier as 
it is transported along the tube. The addition of reagents at different confluence points (which mix with 
the sample as a result of radial dispersion) produces reactive or detectable species which can be sensed by 
flow-through detection devices. Figure  33 presents a simple flow-injection apparatus. 
 

 
Figure  33 : A FIA manifold. 

 
This device (called a FIA manifold) consists of a peristaltic pump (P) that adds carrier solution (A) into a 
valve (I) that connects to a tube called a reactor (R2).  At the end of the tube a detector is placed to sense 
a specific property of the flowing solution. The valve can be turned to allow the flow of the sample (B) 
into the reactor. The sample is held in the loop L and when the valve is rotated its contents flow into the 
reactor, where chemical activity will usually take place between the sample and the carrier solution. As a 
result, a change will be observed in the signal produced by D, making it possible to quantify the sample 
after comparing the results with those obtained by known samples. 
 
In a FI system convective transport yields a parabolic velocity profile with molecules at the tube walls 
having speed zero and those at the center having twice the average velocity. At the same time, the 
presence of concentration gradients develops axial and radial diffusion of sample molecules. It has been 
reported that in FI systems of practical interest, axial molecular diffusion has almost no influence in the 
overall dispersion, but radial diffusion is the main contributor. For a pump proving a net flow of q ml/min 
in a coil of radius a, the average flow velocity is given by: 

   

)(60 2a

q
Va ⋅⋅

=
π

     (Equation 1) 

 
At a point at distance r from the center, the flow velocity is described by: 
 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

52 
 









−⋅⋅=

2

2

12)(
a

r
Vrv a        (Equation 2) 

 
As mentioned in [1], it is very difficult, if not impossible, to correlate the experimentally obtained 
response curve with the actual spatial mass distribution of the system. This is a consequence of the 
selected method of measurement, which fixes spatially and temporally the point of detection. Under these 
circumstances, any event occurred before the detection point is inferred from the response curve profile. 
Therefore, this detection approach is a powerful tool for predicting response curves, but ignores the 
processes leading to the generation of such response. In [1] a method for continuously monitoring a FI 
system was proposed. A FI system using nitric acid as the carrier solution, water as the injected sample 
and a digital conductimeter with a couple of wires at both ends of the carrier stream detector was used to 
follow the radial mass distribution of the sample zone.  
 

 
Figure  34 :  FIA manifold for continuously monitoring. P = pump; l = loop; L = reactor; W=waste; A, 

B = detection points. Punctual detection: suitable detector in point B; integrated detection: Pt wires 
located at points A-B. [1] 

 
When the water sample is injected, it acts as a blocking disc, and no electric conductance is measured. As 
convective transport and diffusion gradient forces the water sample to be released from the walls, causing 
a reduction of the blocking area and allowing electric current to flow, conductivity values different from 
zero are measured. Figure  35 shows the characteristic conductivity curve obtained by such a system. 

 

 
Figure  35 : Characteristic conductivity curve [1] 

 

9.2 A Cell-DEVS model for flow-injection 
 
As mentioned, it is impossible to analyze the detailed behavior of the changes in the mass distribution 
profile. Therefore, we decided to build a Cell-DEVS model describing the integrated conductivity  flow-
injection system (ICM) in detail. In this way, the internal complex behavior can be analyzed by studying 
the simulated results. The ICM system consists of a 0.025 cm radius tube, a 10.75 cm loop and a 9,25 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

53 
 

reactor coil . We assumed the total tube length of the tube to be of 20cm. For this system, a cell space of 
25 rows and 200 columns was defined, each cell representing a 0.001 x 0.1cm of a half tube section. Row 
0 represents the center of the tube and row 24 the section of the tube touching its walls and the value of 
each cell will represent the nitric acid concentration. 
 

Tube wall    
   Row 24 
... ... ......  
Center   Row 0 
... ... ... ... 
    
Tube wall    

 
Figure  36 : Correspondence between the cell-space and the actual tube 

 
Figure  36 shows in light gray a tube section representing a cell. This is a longitudinal cut of the tube. The 
final aim is to build a 3 dimensional space representing a cylindrical section of the tube, but in this case 
each cell represent a flat section. 
 
To deal with convective transport and radial diffusion at the same time, the model reacts in two phases: 
transport and diffusion. The local computing function simulates the transport phase, and all cells are 
connected to an external generator sending an event which triggers the diffusion phase. The model is built 
as a coupled DEVS model with two components: a Cell-DEVS (named fia) representing the tube, and an 
atomic model (named generator). The generator has one output port (out) to send the diffusion triggering 
event. This port is mapped to the diffuse input port of the fia model (line 2). This means all ouput events 
sent through the out port will be received as external events by the fia model through the diffuse port.  
  
00 [Top] 
01 components :  fia generator@ConstGenerator 
02 link : out@generator diffuse@fia 
03 
04 [generator]  
05 frecuency : 00:00:00:014 

 
Figure  37 : Components of the DEVS model 

 
The frequency of diffuse events is defined by Equation 3. This equation computes the the characteristic 
distance a particle of a given solution of diffusion coefficient c will travel in dt seconds. 
 

dtcds ⋅⋅= 2      (Equation 3) 
 
Solving the equation for c = 3,5 x 10 –5 cm/s and ds = 0.001 cm, we obtain a dt of 14ms. We used for the 
ds value the cell height to find out how long it would take for two cells to diffuse homogeneously. We did 
not take into account the cell width because axial diffusion can be ignored. 
 

05 [fia] 
06 in : diffuse  
07 width : 200 
08 height : 25 
09 delay :   inertial 
10 border :   nowrapped  
11 neighbors : fia(-1,-1) fia(-1,0) fia(-1,1)  
12 neighbors : fia(0,-1) fia(0,0) fia(0,1)  
13 neighbors : fia(1,-1) fia(1,0) fia(1,1)  
14 localtransition :  transport  

 
Figure  38 : Definition of the FIA coupled cell model 

 

Figure  38 shows the definition of the parameters for the coupled Cell-DEVS fia. Line 6 defines the 
diffuse input port, and lines 7 and 8 define the cell space dimensions.  Line 9 sets the cell delay type to 
inertial. An inertial delay cell that has a scheduled future value f will preempt this value if upon receiving 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

54 
 

an external event and evaluating the local transition rules a new future value f1,with f ≠  f1, is obtained. In 
this case,  f1 will be scheduled as the future value with a given delay d. Line 10 defines non-wrapped 
borders and lines 11 to 13 define a cell’s neighborhood shape. Finally, line 14 defines the sets the local 
transition function rules, which is defined in Figure  39.  
 
 

18 [transport] 
19 rule : { (0,-1) } { 0.1 / ( 22.57878 * ( 1 - pow er( cellPos(0) * 0.001 + 0.0005 , 2) 

 / 0.000625 )) * 1000 } { cellpos(1) != 0 }  
20 rule : { 0.8 } { 0.1 / ( 22.57878 * ( 1 - power(  cellPos(0) * 0.001 + 0.0005 , 2) / 

 0.000625 )) * 1000 } { cellpos(1) = 0 } 

 
Figure  39 : The local transition rules 

 
The convective transport has been arbitrarly been defined in the direction of increasing column values, so 
that in visual representations the carrier will be seen flowing from left to right. Being this the case, a local 
transition rule for the transport phase should set a cell’s value to the current value of its (0,-1) neighbor 
cell. The rate at which this is done depends on the velocity of the flow at the cell, which, as mentioned 
before, has its maximum at the centre of the tube and decreases towards its walls. This is stated in the first 
transport rule in line 19. As mentioned in section 2, a local transition rule has three components, a value, a 
delay and a condition. For this rule, this components are: 
 
 Value:   { (0,-1) } //The value of the cell’s left neighb or 

 
Delay:   { 0.1 / ( 22.57878 * ( 1 - power( cellPos(0) * 0 .001 + 0.0005 , 2) 

  / 0.000625 )) * 1000 } 
 

 Condition:  { cellpos(1) != 0 } 
 

The delay is calculated using equations 1 and 2. For a pump with a constant flow of 1,33ml/min, the 
average velocity is 11,29 cm/s. This value can be substituted in equation 2 and multiplied by 2 to yield the 
number 22.57878 shown in the delay expression.  In addition, for equation 2 to be solved, we also need to 
know the distance to the center of the tube. NCD++ provides a built in function called cellpos that returns 
a requested coordinate of the cell whose value is being sought. For a 2 dimensional model, cellpos(0) 
returns the cell’s row. Consequently, 

 
cellPos(0) * 0.001 + 0.0005  

 

is the distance of the centre of the cell to the centre of the tube and therefore,  
 

( 22.57878 * ( 1 - power( cellPos(0) * 0.001 + 0.00 05 , 2) / 0.000625 )) 
 

is the solution to equation 2, for a = 0.025 cm. Having the velocity of flow v(r), the delay will be the time 
in milliseconds for a particle moving at speed v(r) cm/s to travel across a 0.1 cm cell. This time is given 
by the expression 
 
 0.1 /  v(r) * 1000 
 

concluding our explanation for the delay component of the rule. 
 
The generic rule we have just given is only valid for all cells that have a valid (0,-1) neighbor. The left 
border cells (those in column 0) do not satisfy this prerequisite, stated in the condition component 
cellpos(1) != 0,  and should therefore have a different rule. 
 
The rule in line 20 is the rule for the left border cells. It simply states that for these cells the new value 
should be 0.8, which corresponds to the concentration of the carrier solution being pumped into the tube.  
 
Table 1 shows the results of applying equation 2 to calculate the delays for each row.  It is important to 
notice that some adjacent rows have different delay values, as is the case of rows 2 and 3. This might lead 
to the presumption that the convective transport behavior will not be preserved due to an early preemption 
a cell’s scheduled future value. This is not the case, as we will show. 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

55 
 

 
 

Row Delay (ms)  Row Delay (ms) 
0 4  13 6 
1 4  14 7 
2 4  15 7 
3 5  16 8 
4 5  17 9 
5 5  18 10 
6 5  19 11 
7 5  20 14 
8 5  21 17 
9 5  22 23 

10 5  23 38 
11 6  24 112 
12 6 

 
Table 1 – Calculated delays for each row 

 
When the simulation starts at time 0, all cells will evaluate their local transition functions and schedule 
their next change. A cell in row 2 will schedule an internal transition at time t = 4ms and a cell in row 
three at t = 5ms. So at time t = 4ms, all cells in row 2 will send an output event to their neighbors. Cells in 
row 3 will receive this event and evaluate the local transition function, which says they should take the 
value of their left neighbor. But their left neighbor has not changed yet, so the new value will be the same 
as the previous future value. Therefore, they will keep their scheduled internal transition for t = 5 ms. At 
this time, all cells in row 2 with a scheduled internal transition will send their new value to their 
neighbors. A row 2 cell receiving a new value from its left neighbor will again evaluate its local transition 
function, but this time the delay has already expired and there is no future value scheduled, so the result 
of this evaluation will be scheduled as the future value for time t = 10 ms.  
 
Figure  40 shows the radial diffusion rules.  For a cell with valid top and bottom neighbors, the diffusion 
rule states that the new cell value will be the average of the three cells. This is the case of the rule in line 
22. A delay of 1 ms was chosen. Though a 0 ms delay would be more appropriate, this is still not 
supported in the version of NCD++ for which the model was written. A new version that implements the 
Parallel Cell-DEVS formalism has been recently finished, and is currently being tested. This version will 
allow 0 time delays. The other three rules in lines 23 and 24 cover the special case of top and border cells. 
These cells do not have both, a valid top and bottom neighbor so instead of using three cells to obtain the 
average, only two are used.  
 

21 [diffusion] 
22 rule : { ((-1,0) + (0,0) + (1,0)) / 3 } 1 { cell pos(0) != 0 AND cellpos(0) != 24 }  
23 rule : { ((-1,0) + (0,0)) / 2 } 1 { cellpos(0) ! = 0 AND cellpos(0) = 24 }  
24 rule : { ((0,0) +  (1,0)) / 2 } 1 { cellpos(0) =  0 AND cellpos(0) != 24 }  

 
Figure  40 : Radial diffusion rules. 

 
So far we have shown the diffusion rule, but we have not yet defined that this ruled should be evaluated 
when an external event is received through the diffuse input port. Figure  41 shows the statements that 
link the fia model diffuse input port to a cell’s diffuse input port (line 27) and set the diffusion rule to be 
evaluated upon the arrival of an external event through this port (line 28). 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

56 
 

 
 

[fia] 
27 link : diffuse diffuse@fia(x,y) 
28 PortInTransition : diffuse@fia(x,y) diffusion  

 
Figure  41 : External coupling of the FIA Cell-DEVS model. 

 
 

9.3 Simulation results 
 
The described model was run for 10s and the state of the whole cell space was logged every 100ms. A 
graphical  representation of the model at five different stages is shown in Figure  42. The logged results 
were also used to draw the conductivity curve.  
 
To obtain the conductivity of the whole system, we divided the cell space in axial segments, calculated 
the resistance of each, and assumed the whole resistance to be the result of combining all segments in 
serial mode. We took each segment to be a column of cells and calculated its resistance using equation 4. 
 
 

 
 

Figure  42 : Different execution stages of the FIA model. (1) At time 0 the sample (white), has been 
injected. The other half of the tube contains the carrier solution (dark gray). (2,3,4) The convective 

transport makes the sample disperse faster at the middle of the tube than near the walls.  (5) The whole 
tube now contains the carrier solution only. 

 
1

199

0

24

0 ),(

1
−

= =
∑ ∑ 













=

column row colrowcell
total R

R   (Equation 4) 

 
To calculate the resistance, equation 5, which gives the conductivity of each cell, was used. The 
resistance of a cell can be obtained by calculating the inverse of the conductivity. All values are known, 
being the concentration of nitric acid the one that varies from cell to cell. 
 

( )][
1

3323
HNO

Length

Area
GG

R
G HNO

cell

cell
OHHNO

cell
cell ⋅=+== κ      (Equation 5) 

 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

57 
 

Restored conductivity

-0,2

0

0,2

0,4

0,6

0,8

1

1,2

0 2 4 6 8 10 12

Time

 
Figure  43 : Conductivity curve obtained 

 
Figure  43 shows the conductivity curve obtained. For THIS example the curve is quite similar to the first 
part of the measured curve. It is a good starting point to simulate the whole FIA manifold.  
 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

58 
 

10   
Conclusions and further developments 

 
An abstract simulator for distributed Parallel DEVS and Cell-DEVS has been presented. Distributed 
environments have a communications overhead that can be quite significant and that was not taken into 
account in previous works, which assumed parallel simulation on a shared-memory system. The extension 
of the Parallel-DEVS abstract simulator here presented keeps to a minimum the number of messages sent 
across machines. This was possible by assigning each coupled model one master coordinator and zero, 
one or more slave coordinators. Messages that have to cross a processor boundary are always sent 
between master and slave coordinators, which then forward the received messages to their local 
dependants.  
 
This mechanism was implemented into Parallel CD++, a tool for running these models on a network of 
computers. Several tests were done to measure the execution time of a model on different configuration of 
machines. It was expected that a simulation on a distributed environment would take less time as more 
machines are used, but this was not always the case. Adding more machines to the simulation does reduce 
the execution time if there is simultaneous execution and if each simulation cycle takes a significant 
computing time that will compensate for the overhead due to messages being sent across the network.  A 
model’s level of parallelism was measured through a given formula that evaluated the amount of activity 
on each LP at every simulation cycle. Through this measure, it was shown that those simulations which 
experienced a reduction in the simulation time as more machines were added had a high level of 
parallelism.  
 
Finally, a flow injection model using Cell-DEVS was presented. This model is still being developed and 
Parallel CD++ will be required for a simulation of a full scale scenario which consists of more than 
50,000 thousand cells. 
 
There are quite a few topics for further research: 
 

• A new abstract simulator that will allow for out of order execution of events. The current 
abstract simulator forces all LPs to run at the same virtual time. This constraint may reduce the 
parallelism. A new abstract simulator may simplify this constraint and allow for better 
performance. For this new mechanism the Warped TimeWarp kernel will be required. The 
TimeWarp protocol by itself has a lot of performance improvements options which will affect 
DEVS and Cell-DEVS simulation on different ways. These should be also studied. 

 
• Parallel CD++ requires the model partition to be defined before the simulation is run. If a 

partition is not chosen wisely, the load may turn out to be unbalanced among the available 
machines. A dynamic load balance mechanism might be implemented to allow for run-time 
balancing of the load. 

 
• Though most of CD++ has been changed to obtain Parallel CD++, the Cell-DEVS rule 

evaluation mechanism has been left unmodified. These mechanism should now contemplate the 
new timing constraints presented in Wai00. 

 
 

 



Parallel DEVS and Cell-DEVS models – Alejandro Troccoli 

59 
 

11  
References 

 
[Zei00] ZEIGLER, B.; KIM, T.; PRAEHOFER, H. "Theory of Modeling and Simulation: Integrating 
Discrete Event and Continuous Complex Dynamic Systems". Academic Press. 2000. 
 
[Cho94a] ALEX C. CHOW; BERNARD P. ZEIGLER. Parallel DEVS: A parallel, hierarchical, modular 
modeling formalism. In Winter Simulation Conference Proceedings, Orlando, Florida, 1994. SCS. 
 
[Wai] WAINER, G.; GIAMBIASI, N. "Timed Cell-DEVS: modelling and simulation of cell spaces ". In 
"Discrete Event Modeling & Simulation: Enabling Future Technologies", to be published by Springer-
Verlag. 2001. 
 
[Wai00] WAINER, G. “Improved cellular models with parallel Cell-DEVS”. In Transactions of the SCS. 
June 2000.  
 
[Cho94b] ALEX C. CHOW, DOO H. KIM; BERNARD P. ZEIGLER. "Abstract Simulator for the 
parallel DEVS formalism". AI, Simulation, and Planning in High Autonomy Systems. Dec., 1994  
 
[Zei90] BERNARD P. ZEIGLER. Object Oriented Simulation with Hierarchical, Modular Models. 
Academic Press, San Diego, California, 1990. 
 
[Wai99] RODRIGUEZ, D.; WAINER, G. "New Extensions to the CD++ tool". In Proceedings of SCS 
Summer Multiconference on Computer Simulation. 1999. 
 
[Mar97] MARTIN, D.; MCBRAYER, T.; RADHAKRISHNAN, R.; WILSEY, P. "TimeWarp Parallel 
Discrete Event Simulator''. Technical Report. Computer Architecture Design Laboratory, University of 
Cincinnati. December 1997. 
 
 
 
 
 
 
 
 


