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Abstract  
 
 
Simulation is becoming increasingly important in the analysis and design of complex 

systems. CD++ is a modelling tool for simulation of complex physical systems, which 

can be used to simulate a variety of models. In order to enhance the usability of this tool, 

this thesis introduces many facilities, which are organized as a simulation client. The 

simulation client provides users with the ability to create a simulation model, send the 

simulation model to a remote CD++ server for execution and visualize the results with 

easy-to-use 2D and 3D interfaces locally. This client component also can support multi-

view visualization and run several different models simultaneously. The sophisticated 

user graphical interfaces in these facilities improve the analysis of simulation models. 

The simulation server can now be used by various users around the world to perform 

multi-observer simulation using remote execution of the models. 
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Chapter 1: Introduction 

 

Simulation is becoming increasingly important in the analysis and design of complex 

systems. Scientists and engineers have long used models to better understand the systems 

that they are studying: models have been used for analysis and quantification, design, 

prediction and the understanding of different complex phenomena. The simulation 

process begins with a practical problem needed solving or understanding. It might be the 

case of a transportation company trying to develop a new strategy for cargo and truck 

usage before putting it into effect, or a chemist trying to understand a complex chemical 

reaction taking years to complete. 

 

In most cases, these models can be defined as mathematical representations, and can be 

analyzed using mathematical techniques. However, at times these methods were also 

proved infeasible in studying some recent complex artificial systems, such as traffic 

controllers, digital systems, automated factories, robots, etc. Likewise, the complexity of 

the natural systems under analysis is growing, making it impossible to use analytical 

methods.   

 

The appearance of digital computers provided scientists and engineers with alternative 

methods of analysis. Since the early days of computing, they have started to translate 

their analytical models into computer simulations. A simulation process starts with the 

observation of a real system. Entities in the system are identified, and an abstract 
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representation (a model) is created with some modeling technique. Computer simulation 

enables scientists and engineers to experiment with “virtual” environments, elevating the 

analysis of natural and artificial systems to a new level of detail unknown in earlier stages 

of scientific development, and providing great help in the design and analysis of complex 

systems. Simulated models also can be used for training and many other purposes 

because they provide cost-effective and risk-free solutions. 

At present, there are a large number of modeling and simulation techniques, and various 

types of simulation tools have been developed to deal with complex systems and the 

interactions among their constituent parts. A formalism that is gaining popularity in 

recent years is called DEVS (Discrete Event Systems Specification) [41, 42]. DEVS 

provides a framework for the construction of discrete-event hierarchical models in a 

modular manner, which allows pre-defined models to be reused in new models to reduce 

development time. In DEVS, basic models (atomic models) are specified as black boxes 

with a state and duration for that state. When the duration time for the state expires, an 

output event is sent, an internal transition takes place and the model changes its current 

state. A change of state also can occur when an external event is received. An atomic 

model is defined by a set of states of the model, the internal and external transition 

functions, the output function and the state duration function. Several DEVS models can 

be integrated together to form a hierarchical structural model (coupled model). 

Cell-DEVS [32] extends the DEVS formalism and allows simulating discrete-event cell 

spaces. This approach extends traditional Cellular Automata (CA) [29], defined as a 

lattice of cells updated synchronously and simultaneously. Each cell in a CA holds a state 
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variable and can be in one of a finite number of possible states. The new state of a cell is 

computed based on the current state of the cell and the states of its neighboring cells. 

Cell-DEVS extends these concepts by defining a cell as a DEVS atomic model and a cell 

space as a DEVS coupled model.  

The CD++ tool [33] can be used to simulate DEVS and Cell-DEVS models. It has been 

used to create a variety of models in many different areas: biology (watersheds, fire 

spread, ant colonies), physics (crystal growth, lattice gases, heat diffusion), chemistry 

(solution diffusion in moving fluids), and artificial systems (autonomous robots, heat 

seekers, urban traffic) [2, 3, 30].  

While executing simulation models for these complex applications, it was found that the 

computing power provided by personal computers was not enough when the model size 

increased. Despite this fact, end users might not have access to high performance 

computing resources, or they might prefer to use personal computers with standard 

software packages for analysis and development. A solution to these problems is to 

enable the users to execute the simulation models in remote high-performance computers, 

while using their personal computers for development and analysis. In these cases, 

client/server architectures provide a very good solution for the remote execution of the 

model. The simulation software can be designed as a server and execute many simulation 

models simultaneously, and the users can communicate with this server through a 

network to request simulation services. The CD++ simulator was recently modified 

following these ideas and transformed into a simulation server. It can run on high 

performance computers, accepting the requests from the users and executing many 
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simulation models simultaneously. However, although the CD++ simulator can be used 

as a server, until recently it has only been used as an application running on a local 

machine because of the lack of a client application. 

 

Another problem of using CD++ for complex system analysis was the lack of adequate 

visualization mechanisms, that is, any means by which the users use simulation results to 

construct useful 2D or 3D images. Visualization tools are crucial in helping to better 

understand the behavior of complex systems, and they facilitate thinking, problem 

solving, and decision-making. Scientific visualization tools create visual displays, in 

which numeric values in data sets are represented visually as color classifications, shapes, 

or symbols [20, 22]. As illustrated in Figure 1.1 [10], visualization has become an 

integral part in modeling and simulation. Effective simulation tools must include good 

corresponding visualization tools. The user can do the observation and analysis of the real 

system or just modify the model again if he finds the result of the simulation is not 

correct. 

 

 

 

 

 

 

 

Figure 1.1 Flow-chart of a typical computer simulation 
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The goal of visualization is to provide a deeper understanding of the real systems being 

investigated, and to help in exploring the large set of numerical data produced in the 

simulation execution, which is a concern for model validation. Therefore, visualization 

has been now considered as essential to theory, modeling and experimentation. 

 

A useful visualization system should attempt to meet the following goals [36]: 

 

1. Display as much information as possible on the screen. 

2. Show relationships among different components. 

3. Show necessary parts of all the information on the screen: sometimes, attempting to 

display all the details to the users is not necessary or difficult, as there may be too 

many details. Moreover, it is hard for the user to keep these details in mind at one 

time.  Visualization tools attempt to address this by allowing the user to only display 

the important or necessary parts of the results.  

4. Show the results with the same sequence as the simulation does: stop and resume the 

display, or go to any point of the display: the users, seeking to better understand a 

system, also want to visualize the simulation behavior by animating the progress of 

the simulation processes. The users may also want to check the simulation by moving 

the logical processes in any direction, and beginning the continuous display at any 

logical point. 

 

This thesis challenges the issues in CD++ simulator mentioned above by providing the 

users with a series of tools, including a CD++ modeler, an interface to connect the CD++ 
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simulator on a remote server, and sophisticated visualization facilities. The following 

visualization facilities are provided to reach the above visualization goals [36]: 

 

1. Display Methods: they allow the users to visualize the results at any simulation time 

and in any direction of the simulation process. It may be forward or backward, and 

they allow the users to visualize the results continuously or step by step, or stop at a 

special time for detailed examination of the result. 

2. Context and Detail: they allow the users to focus on the details of a particular part of 

the result because sometimes the users only want to check an interesting part of the 

whole result. 

3. Navigation: when the model or result is too large for the screen, they allow the user to 

check the results more efficiently by moving through the scene. The display should 

change continuously, so the user can move to any position and orientation of the 

scene for detailed examination of the interesting part.  

4. Multi-View: they allow the users to visualize the results with multiple views in several 

different windows with different viewpoints at the same time, in order for them to 

investigate the simulation results from several different views. 

5. Remote multi-observer: many users can participate, and the simulation results can be 

distributed among many users as needed. Sometimes, the users in different places 

with different technical backgrounds need to participate in the analysis of the 

simulation result.  

6. Access to a Remote Server: the users can send model files to a remote server, receive 

and visualize the results locally. In this way, if the simulation needs computing power 
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that normal personal computers do not provide, the software running on a remote 

computer can be used.  

 

The thesis work started by upgrading significantly an existing 2D GUI (Graphical User 

Interface), the CD++ Modeler [38]. Various checking rules were introduced to validate 

the new model design to ensure the design conforms to the DEVS formalism. New 

features were added, and the 2D visualization GUIs were expanded to different types of 

result files (including 3D result files). 

 

A sophisticated 3D GUI was developed using VRML (Virtual Reality Makeup 

Language) [4, 19] and Java. The users can select different geometries to represent the 

results, assign different color classifications and navigate in the field of visualization. 

They also can edit all the nodes in the scene as a whole, or even individual layers and 

nodes in the scene to better understand the result. A multi-view GUI is provided with the 

goal of displaying multiple views of the result. Different viewing areas can be selected, 

so different areas of the same result file can be displayed and visualized simultaneously. 

 

Finally, the CD++ simulator was transformed into a client/server engine, able to provide 

visual simulation results and remote access to a high performance DEVS simulation 

server. The simulation server can receive model specifications from the clients, and send 

back results to the local computers. In addition, many users can run simulations 

simultaneously. Using these facilities, the users can now develop and test their models in 

local workstations, and send the models to a remote CD++ server executing in a high 
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performance platform.  

 

The client Interface enables the users to access a remote simulation server. It can send 

model files to the remote CD++ server, receive the result on the local machine, and then 

change the result format of the result stream to be visualized with the new visualization 

facilities. The design of this interface enables easy extension of this simulation system to 

a multi-observer remote simulation system in various kinds of environments. Using one 

client as the interface client to the server, many other clients can work together to act as 

multi-observers. Other clients can send models to the server through this interface client, 

which then sends models to the server, receives the results and distributes the results 

among other clients as required. In addition, all the joint clients can communicate with 

each other through this interface client. 

 

The provision of these tools enables to have a fully functional modeling and simulation 

environment for the CD++ simulator. It enables model definition with graph-based 

notations, 2D and 3D result visualization, and remote simulation execution. In DEVS-

based environments, models are completely independent from the simulation engines, 

and the simulators can be exchanged without doing any modifications to existing models. 

This feature facilitates all these tools to be organized together as a simulation client to be 

applied in the CD++ simulation environment. 
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The contributions of this thesis are summarized as follows: 

 

1. Contributions to the knowledge 

This thesis developed methods to map visualization entities with the simulation 

model. Different algorithms were developed to directly manipulate the 

visualization entities, update and navigate the simulation results. Algorithms to 

transform the 2D models to 3D models were also developed. The mechanisms for 

remote execution of simulation models were defined 

2. Practical contribution 

This thesis introduced a variety of tools to work as a full-functional simulation 

client. It extended the existing tool, CD++ Modeler with new methods to check 

the model design to ensure that it conforms to the DEVS formalism. 2D and 3D 

visualization GUIs was developed for simulation result visualization. Client 

Interface was developed for the access to a remote simulation server.  

 

The following sections will present the results of this effort. We first introduce basic 

aspects related to the modeling techniques we used. Then, we present the design and 

implementation of this remote simulation environment. Finally, we show several 

examples presenting the visualization facilities. 

 

The thesis is organized as follows.  
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- Chapter 2 introduction to the DEVS formalisms, the existing facilities of the CD++ tool, 

and a brief introduction to VRML. This chapter also gives a short review of the related 

research, and the main research contributions of this thesis are illustrated. 

- Chapter 3 describes the general design aspects of the client. 

- Chapter 4 describes the features of the client.  

- Chapter 5 describes the details of the design and implementation of the client, and 

explores the design goals.  

- Chapter 6 presents several simulations for the new client.  

- Chapter 7 presents conclusions, suggests directions for future work. 
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Chapter 2: Background 
 
 
 
The DEVS formalism provides a framework for the construction of hierarchical modular 

models [41]. This chapter introduces the DEVS formalism and we describe atomic 

models, coupled models and Cell-DEVS models. Then, we introduce the CD++ toolkit, 

and how to define DEVS and Cell-DEVS models. Several examples are introduced for 

better understanding of the CD++ tool. This chapter also briefly introduces the main 

features of the Virtual Reality Modeling Language (VRML), and the reasons why we 

choose it as our development tool. This chapter also gives a review of related research on 

DEVS tools, and visualization facilities for cellular models. Finally, the main research 

contributions of this thesis are presented. 

 

2.1 The DEVS Formalism 
 

 
The DEVS (Discrete Events Systems Specifications) formalism [41] was originally 

defined in the ‘70s as a discrete-event modeling specification mechanism. It is a 

theoretical approach that allows the definitions of hierarchical modular models that can 

be easily reused. A real system modeled with DEVS is composed of a composite of sub-

models, each of them being a behavioral model (called atomic) or a structural model 

(called coupled). Each model is defined by a time base, states, inputs, outputs, and 

functions to determine the next states and outputs. Tested models can be integrated into a 

modeling hierarchy, allowing model reuse, reducing testing time, and improving 

productivity. 
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Atomic Models 

A DEVS atomic model is described formally as:  
 

M = < X, S, Y, δint, δext, λ, D > 
 
Where 
 
X the set of input events set; 

Y the set of output events; 

S the state set; 

δint internal transitions; 

δext  external transitions;  

λ the output function; 

D  the duration function. 

 
The interface of the model consists of input (X) and output (Y) ports to interact with other 

models. Each state in the model has a corresponding lifetime defined by the duration 

function. The internal transition is activated to produce an external state transition after 

the model spends the corresponding lifetime on the present state. Before changing to the 

new state, the model generates the outputs using the current state values through the 

output ports. External input events from other models arrive through its input ports, and 

trigger an external transition specified by the external transition function. This function 

computes the new state of the model using the present state, the input values, and the time 

elapsed since the last event. The transition generates an internal state change after the 

results are sent out through the output ports. Every time a transition function is activated, 

a new lifetime is associated with the new state. 
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Coupled Models 

A DEVS coupled model is composed of several atomic or coupled sub-models, and can 

be defined as:  

CM = <X, Y, D, {Mi}, {Ii}, {Zij}, select >  
 
Where  
 
X the set of input events set; 

Y the set of output events; 

D an index of components; 

Mi  a basic DEVS model (atomic or coupled model), ∀ i ∈ D; 

Ii  the set of influences of model i (the models that can be influenced by outputs of 

model i), j ∈ Ii; and 

Zij  the model i to model j translation function; 

select the tie-breaking selector. 

 
Each coupled model consists of a set of basic components (atomic or coupled model), 

which interact with each other through the model’s interface. Each model i has its own 

set of influencees I i, defined as the models to which its output values must be sent. For 

each influencee j in model i, a translation function is defined as Z ij . It defines how the 

outputs of model Mi will be converted into inputs for model Mj. When two sub-models 

have simultaneous events, the Select function defines which one should be activated first. 

 

Cell-DEVS  

The Cell-DEVS formalism extends the basic behavior of DEVS models to allow the 

implementation of cellular models with timing delays [32]. A Cell-DEVS model can be 
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defined as an infinite n-dimensional lattice of cells. The state value of each cell in these 

spaces is updated according to a local rule, which considers its own state and those of a 

finite set of its nearby cells (called its neighborhood). Each cell is defined as an atomic 

model with timing delays, and can be integrated to a coupled model to represent a cell 

space.  

 

Cell-DEVS defines cells as atomic models. A Cell-DEVS atomic model is defined by: 

TDC = < X, Y, I, S, θ, d, δint, δext, τ, λ, D > 
 
where 

 
X  a set of external input events; 

 
Y a set of external output events; 

 
I the set of states for the input events; 

 
S the set of sequential states for the cell; 

 
θ the cell state definition; 

 
d the delay for the cell; 

 
δint the internal transition function; 
 
δext the external transition function; 

 
τ the local computation function; 

 
λ the output function; and 

 
D the state's duration function. 

 
 

A cell uses the input values I to obtain its next state by executing the local computation 

function τ. A delay function is associated with each cell, delaying the computed result to 

be sent to the neighbor cells.  There are two types of delays: inertial and transport delay. 
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For the transport delay, the next value will be added to a queue sorted by output time, 

therefore, the results can be stored until they have been sent out. On the contrary, inertial 

delay uses a preemptive policy, that is, if the cell state changes before the delay, the 

previously computed result is not transmitted. This basic behavior is provided by the δint, 

δext, λ, and D functions. 

 

After the basic behavior of a cell is defined, the whole cell space can be constructed by 

building a coupled Cell-DEVS model, defined by: 

 
GCC = < Xlist, Ylist, I, X, Y, {m, n}, N, C, B, Z, select> 

 
where 
 

Xlist  the input coupling list; 
 

Ylist the output coupling list; 
 

I the definition of the interface for the modular model; 
 

X the set of external input events; 
 

Y the set of external output events; 
 

{m, n} the dimension of the cell space; 
 

N the neighborhood set; 
 

C the cell space, where C = {Cij / i ∈ [1,m], j ∈ [1,n]}, Cij is a Cell-DEVS 
atomic model; 

 
B the set of border cells; 

 
Z the translation function; and 

 
 

Coupled models are built as an array of atomic cells. X list and Y list are the input/output 

coupling lists, and define the model interface I. X and Y represent the input/output event  
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sets. The space size is defined by {m, n}, and N defines the neighborhood scope. The cell 

space C, the set of border cells B, and the translation function Z define the cell space. 

Each cell is connected to the cells in its neighborhood. Since a cell space is finite, the 

cells on the borders should have a different neighborhood than the rest of the space. They 

can be “wrapped”, that is, cells on the border are connected to the cells in the opposite 

one. Otherwise, the border cells need to be provided with a behavior different from those 

of the rest of the model. Finally, the Z function defines the internal and external coupling 

of the cells in the model. This function translates the outputs of m-eth output port in cell 

Cij into values for the m-eth input port of cell Ckl. Each output port will correspond to one 

neighbor and each input port will be associated with one cell in the inverse neighborhood.  

 

2.2 The CD++ Toolkit 
 

 
The CD++ environment [33] was built to implement DEVS and Cell-DEVS theories. The 

toolkit includes a set of independent software pieces running in different platforms to 

facilitate modeling and simulation.  

 

The tool allows defining models according to the specifications introduced in the 

previous section. The models are built as a class hierarchy, and each of them is related 

with a specific simulation entity, which is activated whenever the model needs to be 

executed. New atomic models can be incorporated into this class hierarchy by writing 

DEVS models in C++. They can be defined by overloading the basic methods 

representing DEVS specifications: external transitions, internal transitions and output 
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functions. After an atomic model is tested, it can be stored in a model database and re-

used to build a multi-component model (coupled model).  

 

In CD++, coupled models are defined using a specification language specially defined 

with this purpose. The language was built by following the formal definitions for DEVS 

coupled models. The language is illustrated in the following sections. 

 

2.2.1 Definition of Coupled models in CD++ 

 

Model files are used to define coupled and Cell-DEVS models within the CD++ tool. A 

model file consists of a set of groups and definition clauses within these groups [34]. A 

group is identified by its name between two square brackets at the beginning of the 

definition. Every model file must have a top group, which identifies the top level coupled 

model. Each coupled model, is defined using four different parameters: 

 

Components with the following syntax: 

component : name1[@coupled_model1][name2[@atomic_cl ass2] … 

 
This construction lists the component models of the coupled model under consideration. 

A coupled model can have atomic models or other coupled model as its components. For 

atomic components, an instance name and a class name must be specified. This allows a 

coupled model to use more than one instance of the same atomic class. For coupled 

models, only the model name must be specified. This model name must be defined as 

another group within the same file. 
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Out, with the following syntax: 

out : portname1, portname2 … 

This construction represents the model’s output ports. This clause is optional 

In , with the following syntax: 

 in : portname1, portname2 … 

This construction represents the model’s input ports. This clause is also optional 

 

Link , with the following syntax: 

 Link: source_port[@model]  destination_port[@model]  

This construction represents the links between components in the coupled model. If the 

name of the model is omitted, it is assumed that the port belongs to the coupled model 

being defined. 

 

A coupled model example is shown in the following figure 2.1: 

[top] 
components : queue@Queue processor@CPU  
transducer@Transducer generator@Generator 
Out : throughput 
Out : cpuusage 
Link : out@generator arrived@transducer 
Link : out@generator in@queue 
Link : out@queue in@processor 
Link : out@processor done@queue 
Link : out@processor solved@transducer  
Link : throughput@transducer throughput 
Link : cpuusage@transducer cpuusage  
 

 

Figure 2.1 A Coupled-DEVS specification in CD++ 

 

As we can see in Figure 2.1, there are four basic DEVS models: queue, processor, 

generator and transducer, each of which is an instance of an existing model. For 
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instance, queue is an instance of the existing Queue atomic model. Links are established 

to connect the components and their influencees. For instance, the output port out in the 

generator model is connected to the in port of the queue model. Two output ports, 

throughput and cpuusage, are connected to the output ports of transducer.  

 

CD++ also can be used to define Cell-DEVS models. The tool includes an interpreter for 

a specification language that allows describing the behavior of each cell, including the 

local computing function and timing delays. In addition, it allows defining the size of the 

cell space, the border and the initial state of each cell. This language was defined by 

following the theoretical definitions for the Cell-DEVS formalism.  

 

The behavior specification of a cell is defined using a set of rules, each indicating the 

future value for the cell's state if a precondition is satisfied. A delay is associated with 

each of these rules, and the state changes will be distributed to the neighbors only after 

this delay. The local computing function evaluates the first rule, and if the precondition 

does not hold, the following rules are evaluated until one of them is satisfied or there are 

no more rules.  

 

Each cell in the cell space is built following Cell-DEVS specifications for atomic models. 

The X, Y, S, N, θ, δint, δext, λ, and D functions are built following Cell-DEVS definitions 

(see [35] for details). The user only needs to define the τ function (defined by the local 

transition) and the delay (defined by delay and the delay values in each rule). For 

instance, Figure 2.2 shows an example for a Cell-DEVS model developed using CD++. 
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The specification follows Cell-DEVS coupled model's formal definitions. In this case, 

Xlist = Ylist = { ∅ }. The set {m, n} is defined by width-height, and specify the size of 

the cell space (in this example, m = 20, n = 40). The neighborhood set N is defined by the 

lines starting with the neighbors keyword. The border (B) can be wrapped or no wrapped. 

Using this information, the tool builds a cell space (specified by C in the formal 

specification), I/O ports, and the Z translation function following Cell-DEVS 

specifications.  

[ex] 
type : cell 
width : 20 
height : 40 
delay : transport 
border : wrapped 
neighbors : (-1,-1) (-1,0) (-1,1) 
neighbors : (0,-1)  (0,0)  (0,1) 
neighbors : (1,-1)  (1,0)  (1,1) 
localtransition : tau-function 
 
[tau-function] 
rule : 1 100 { (0,0) = 1 and (truecount = 8 or true count = 10) }  
rule : 1 200 { (0,0) = 0 and truecount >= 10 } 
rule : (0,0) 150 { t } 

 

Figure 2.2 A Cell-DEVS specification in CD++  

 

In this example, the first several lines define the dimension parameters (20 × 40) of the 

cell space. Then the kind of the delay and the shape of the neighborhood are included. 

The border is defined as wrapped, so the cells in the border can use the same 

neighborhood and computing function as the others. Finally, the local computing function 

is included. The local computing function executes very simple rules. The first one 

indicates that, whenever a cell state is 1 and the sum of the state values in N is 8 or 10, 

the cell state remain in 1. This state change will be spread to the neighboring cells after 

100 ms. The second rule states that, whenever a cell state is 0 and the sum of the inputs is 

larger or equal to 10, the cell value changes to 1. In any other case (t = true), the result 
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remains unchanged, and it will spread to the neighbors after 150 ms. As we can see, cells 

evolve using a discrete-event approach. 

 

The CD++ simulator is message-driven, and each message represents an event being 

executed in a model with an associated timestamp. The simulation outputs can be 

recorded into a result file, which keeps a record of all the messages sent between 

components. Each line of the file shows the name of the component that received the 

message, the message type, the time of the event, the sender and the receiver. Using this 

file as input, we can reproduce the state of each model, and we can use it to analyze 

model outputs. For instance, figure 2.3 shows a fragment of a result file with different 

messages evolving in the DEVS coupled model defined in Figure 2.1 (a CPU connected 

to a queue, and a transducer that computes performance metrics). 

 
Message * / 00:00:08:686 / Root(00) to top(01) 
Message * / 00:00:08:686 / top(01) to processor(03)  
Message Y / 00:00:08:686 / processor(03) / out / 10 .00000 to top(01) 
Message D / 00:00:08:686 / processor(03) / ... to t op(01) 
Message X / 00:00:08:686 / top(01) / done / 10.0000 0 to queue(02) 
Message X / 00:00:08:686 / top(01) / solved / 10.00 000 to transducer(04) 

 
Figure 2.3 A fragment of an example result file 

 

There are four kinds of messages: X (inputs), Y (outputs), * (internal transitions) and D 

(done messages). In the second message of Figure 2.3, a sub-model called processor is 

activated due to an internal transition. The model generates an output (the value 

10.00000 , which is sent through the out port), and then executes the internal transition 

function. After that, a done message is generated, including the scheduled time for the 

following internal event (in this case, infinity, represented as "..." ). The Y message is 
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translated into an input message (X) that is transmitted to 2 different sub-models (queue 

and transducer). 

 

In order to better visualize the execution of Cell-DEVS models, the drawlog utility  [34] 

permits to view the state of the complete cellular model after each simulation cycle. 

drawlog utility is an existing tool of the CD++ to parse the messages in the result file. 

Using the result file as the input, drawlog parses the Y messages to get the state of every 

cell in the model, and stores all the cell states in another output file with different format. 

The output format of drawlog depends on the number of the dimensions of the cellular 

model, which can be two, three or more dimensional. Figure 2.4 shows a fragment of the 

output file generated by drawlog utility for a two-dimensional model of size 10 x 10. 

 

 

       Line : 1144 - Time: 00:00:03:050 
                0    1    2    3    4    5    6    7    8    9  
       +------------------------------------------- -------+ 
     0| 23.6 24.4 24.5 24.4 24.2 24.0 23.4 22.8 22. 3 22.8| 
     1| 23.5 24.7 25.1 24.7 24.4 24.0 23.2 22.4 21. 5 22.4| 
     2| 23.3 25.1 29.1 25.1 24.5 24.0 22.8 21.5 20. 3 21.5| 
     3| 23.5 24.7 25.1 24.9 24.7 24.5 23.5 22.5 21. 5 22.4| 
     4| 23.8 24.4 24.5 24.7 24.9 25.0 24.3 23.5 22. 8 23.2| 
     5| 24.0 24.0 24.0 24.5 25.0 28.2 25.0 24.5 24. 0 24.0| 
     6| 23.8 24.0 24.0 24.3 24.7 25.0 24.5 24.0 23. 5 23.7| 
     7| 23.7 24.0 24.0 24.2 24.3 24.5 24.0 23.5 23. 0 23.3| 
     8| 23.5 24.0 24.0 24.0 24.0 24.0 23.5 23.0 22. 5 23.0| 
     9| 23.7 24.0 24.0 24.0 24.0 24.0 23.7 23.3 23. 0 23.3| 

      +-------------------------------------------- ------+  
 

Figure 2.4 A fragment of an output file generated by drawlog utility 

 

This fragment shows the results of a heat diffusion model in a surface. The cells at (2, 2) 

and (5, 5) are connected to a heating generator (now they are receiving a heat flow of 

29.1 °C and 28.2 °C). The cells (8, 8) and (2, 8) are connected to a source of cold. The 



 31

initial temperature of all the cells is 24.0 °C. A cell's temperature value is obtained by 

computing the average of the temperature values of the cell's neighborhood. 

 

For the models with three or more dimensions, the results can be shown as matrixes, each 

of them representing a 2-dimensional plane in the model, and looks like the one in Figure 

2.4. For instance, in a 3D dimensional space, the first plane corresponds to (x, y, 0), the 

second one to (x, y, 1), etc. Figure 2.5 shows a model for the 3D simulation of the 'Life' 

game [18] with the original rules proposed by Conway. In this simple model, there are 

cells, which can be alive (1) or dead (0). A new cell is born when it has exactly three 

living neighbors. An existing cell survives if it has two or three neighbors that are alive. 

Otherwise, it dies. 

 
 
 
     Line : 247 - Time: 00:00:00:000 
           0123456      0123456        0123456  
       +-------+         +-------+      +-------+     
     0|1      |        0|       |    0|1      |    

    1|1 1  11|        1|11   11|    1|  111  |     
    2| 1   1 |        2|   11 1|    2| 1 11  |      
    3|       |        3|  1  11|    3|     11|       
  4|  1  11|        4|  1 1  |    4| 1   11|     
  5|  11  1|        5|   1 1 |    4| 11  1 | 
  6|1  1  1|        6| 1   1 |    4| 1 11 1| 
      +-------+         +-------+     +-------+     
 
     Line : 247 - Time: 00:00:00:100 
            0123456      0123456        0123456  
       +-------+         +-------+      +-------+     
     0| 1    1|        0|11    1|    0| 1    1|    
     1|1 1   1|        1|1     1|    1|1 11  1|     
    2|11  1 1|        2|1    1 |    2|11   11|      
    3|    111|        3|  1 1 1|    3|    1 1|       
  4|       |        4|     11|    4|       |     
  5|1  111 |        5|1 111 1|    4|1  11 1| 
  6|       |        6| 1     |    4| 1  1 1| 
      +-------+         +-------+     +-------+  

 
Figure 2.5 A fragment of a result file of a 3D model 
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2.3 Virtual Reality Modeling Language (VRML) 
 
 
VRML is a Web-based graphics language for building 3D models. VRML allows the 

users to interact with a scene through a variety of methods, such as viewpoints, 

movement, and rotation. It is an ISO standard designed for use on the World Wide Web. 

VRML is a scene description language. Though VRML is a computer language, it is not a 

programming language. VRML files are simple ASCII text files, which are not compiled, 

but parsed by a VRML interpreter. These interpreting programs are often called VRML 

browsers. 

 

VRML worlds are created using a scene-graph structure. Scene graphs are simply a 

hierarchical decomposition of components that will be rendered in a scene. Scene graphs 

are comprised of various groups of nodes, which together form a virtual world. These 

nodes are responsible for displaying shapes, interaction, and movement through the 

world. VRML worlds can be viewed with any VRML-capable browser such as Cosmo 

Player. Using Java and EAI [23], users can have full control of VRML World to create a 

dynamic 3D VRML World. Therefore, VRML is a file format for describing interactive 

3D objects and worlds.  

 
VRML has been successfully used in a variety of application areas, such as, engineering 

and scientific visualization, multimedia, entertainment, education, and shared virtual 

worlds. We decided to use VRML as the development tool, because of the following 

attributes: 
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1. VRML is the ISO standard designed for use on the World Wide Web, which makes it 

easy to be used on the Internet or local clients.  

2. It is platform independent, and it can be used in various operating systems and 

hardware configurations. 

3. It is scalable, enabling nodes to be dynamically added to or removed, thus building 

arbitrarily large dynamic 3D worlds. 

4. It is extensible: a user can introduce new node types. 

5. It is reusable: a previously saved VRML world can be used in a new VRML world. 

6. It is event enabled: the nodes can respond to the users’ action, and events on one node 

can be spread to other nodes in the world. 

 

These attributes make the VRML as a perfect tool to develop simulation visualization 

software to be used on the Internet, Intranet, and local clients. However, VRML has some 

disadvantages, such as 

 

1. Relatively slow rendering speed because the Java program controls the VRML world 

through EAI. 

2. A VRML world is controlled with an applet, which not allowed accessing local file 

and making connection to other computers. 

 

Therefore, effective algorithms should be developed to facilitate the scene rendering, and 

a standalone application is needed to communicate with the remote computers. 
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For more information about VRML, how to create a VRML scene and interact with Java 

programs, please refer to on-line report [6]. 

 

2.4  Related Work  
 

 

At present, a number of efforts have been devoted to develop DEVS models and cellular 

models, but none of them meets our requirements. We intend to provide tools for the 

users to build the models of complex physical systems and visualize the results locally 

with basic workstations, while executing the models remotely in a high performance 

platform anywhere in the world. 

 

A number of efforts also have been devoted to build tools for modeling CA. Some of 

them provide good visualization facilities while others enable remote execution of the 

models. Some of the existing tools are described following. 

 

• MJCell  [40] is a Java applet to simulate CA. Its main purpose is to explore existing 

and creating new rules and patterns of 1-D and 2-D CA. It can use rules from thirteen 

different CA rules families, and allow experimenting with new rules. The users can 

select one of the eleven available families of rules, and the desired rule. They also can  

change the size of the model, initiate and run the model. It includes advanced editing 

features and many analysis tools.   

• Cellsprings [13] is a powerful 2D CA Java applet. It comes in two editions, 

Cellsprings/Web, a Java applet, and Cellsprings/DT, a Java desktop application. More 
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than seventy CA rules are predefined, and the users can define, run, and save their 

own arbitrary rules. The applet version saves the new rules in the server, so they can 

be accessed by other users. The users also can change the size of the model and the 

color palette map, specify some characters of the model, then initiate and run the 

model. 

• Trend [9], is a general-purpose 1D or 2D CA simulation system. It is very flexible 

about the space sizes, cell and neighborhood structures and cellular automata rules. It 

also has a smart backtracking feature that simplifies rule set development by allowing 

users to return to previous stages of the simulation. 

• SpaSim [24] allows the user to build, simulate and perform spatial and spatial-

temporal analysis on the same environment using a friendly user interface. To 

visualize the 3D model, it includes a dynamic window dialog containing several tabs, 

one for each of the automata layers. For each layer, the user selects the time and color 

palette to be used, and the layers can be exported, imported or saved as independent 

layers. Therefore, it actually is a 2D visualization tool.  

 

Some of the existing tools enable 3D visualization of the executing cells. Some of them 

are described following: 

 

• Capow [27], is a program for evolving 1D and 2D CA. The user can control the 

simulation with parameters, control the visualization with color classifications, and 

select the type of view and 3D view details. However, for 3D visualization, it needs to  
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create a VRML output file used to visualize the result. In addition, it only displays the 

surface of 3D images, so the user cannot see the inside states.  

• PascGalois [17] can produce innovative 3D visualization of 2D CA. It lays different 

results over together, or changes the 2D raster images to 3D (rolling a 2D (graph) 

raster images to implement the idea in 3D).  

• CASim [14] is an environment for simulating 1D, 2D and 3D cellular automata. The 

user designs the model by giving the names and number of states, state transition 

rules, color classifications and icons. After initializing some selected cells, the user 

can run the model.  

• Different 3D tools have been applied to simulate 3D versions of the 'Life' game. For 

instance, 3-D Life Visualization [31] simulates a 3D-life game developed with 

OpenGL. A 3-D Life is played on a three-dimensional grid of cubic cells. It tries to 

visualize the development of the cells from generation to generation with appropriate 

graphics techniques. The Game of Three Dimensional Life [5], is also sophisticated 

software to simulate the 3D-life game developed with 2D images. The user can 

design the game, and change the color classifications of the sides of the boxes. The 

user also can rotate the image, and see the game in different viewpoints. In spite of 

these, the images are actually 2D, so no navigation can be made through the images. 

In 3D Cellular Automata [1], the user can select the initial state, grid size, delay 

between generations, and growing algorithm. The image is actually 2D, and no 

navigation can be made through the graphics.  
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These tools do not meet our goals for visualization and remote execution, and they have 

problems related with the definition of the cellular models. In [35], it was demonstrated 

that the use of a discrete time base poses restrictions in the precision and efficiency of the 

simulated models. If complex CA are considered, higher precision can only be achieved 

by reducing the activation period for each time step. Therefore, large amounts of compute 

time will be wasted to obtain the desired results. Furthermore, in several cases most cells 

of the automaton do not need to be updated in each time step. These "quiescent" states 

allow defining modifications in which the automaton advances using instantaneous 

events that can occur at unpredictable times.  

 

As mentioned in section 1, using DEVS as a basic formalism, we can improve 

performance execution. As DEVS and Cell-DEVS are discrete event formalisms, they 

provide higher precision and speedup in the simulations than the discrete time approaches 

used by CA. In [43], the authors showed that DEVS combined with parallel simulation 

techniques can produce speedups of up to 1000 times. In [35], the authors showed that 

Cell-DEVS also provides these advantages. Besides this, Cell-DEVS models enable 

integration with other models defined with different techniques, improving model 

definition.  

 

Therefore, we also investigated existing DEVS tools, in order to see if any of the existing 

tools completely satisfy our requirements. At present, many tools have implemented 

DEVS formalism, but none of them is able to meet our goals. Most of them do not 

provide facilities for the execution of cellular models. In addition, some of them do not 
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provide visualization facilities and remote execution service. Although they provide 

much flexibility for the users to develop their own models, they are not easy to use: 

 

• ADEVS [25] provides a C++ class library based on the DEVS formalisms. No 

practical distributed environment, and visualization tools have been implemented. 

To use it, the users should have basic familiarity with DEVS, and use the classes 

in the library to construct their own model. The users should decide how to output 

the result files, and design the corresponding visualization tools.  

• Python DEVS [11] uses the ATOM3-DEVS tool to construct DEVS models. The 

models are represented as a graph that is used to generate Python code. The users 

can add nodes, ports and links, and edit them according to the real system. The 

model files are saved in a directory structure matching the hierarchical structure 

of the model. For each atomic or coupled DEVS model, a Python file is created. 

Python DEVS deals with the graph model, the code generation and execution, and 

does not introduce remote execution environment or visualization tools.  

• Neuro-DEVS [15] is an Object Oriented Modeling and Simulation environment 

that can be used to model a system whose behavior is unpredictable, and its 

knowledge is collected in empirical data. It introduces some items in the model 

description, such as, a learning function, but it does not introduce remote 

execution or advanced visualization tools. 

• DEVS/C++ [44] is a DEVS-based modeling and simulation environment written 

in C++, which supports parallel execution. It provides classes for the users to 

implement their own DEVS models. No client/server simulation environment and 
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no result visualization are considered.  

• GALATEA  [12] is also a DEVS-based simulation platform that offers a language 

to model multi-agent systems. It describes a real system as interacting agents. The 

model program describes all the entities in the system, the propagation of events 

in the system and the relationship between agents. The simulator can trigger the 

events, and coordinate the execution of the pieces of codes in the related agents. 

The users analyze their systems and identify the entities and their relations, then 

use the provided specific language to build the model as multi-agent systems. The 

users should design their own visualization tools. 

 

Other existing DEVS modeling tools provide some basic visualization tools: 

 

• SimBeams [26] is a component-based software architecture based on Java and 

JavaBeans. The idea is to provide a set of components that can be used in model 

creation, result output, analysis and visualization using DEVS. For actual simulation 

applications, the users need to select suitable components and place them on a 

worksheet to build models and connect them with external events. No remote 

execution facility is introduced, and the users should realize their own special-

purpose simulation environments for particular application domains. All the 

components are displayed in 2D images.  

• JDEVS [16] is a DEVS simulation engine written in Java. It enables general 

purpose, component based, GIS connected, visual simulation model development 

and execution. It was developed mainly to interact with Geographic Information 
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Systems. It also provides easy-to-use 2D and 3D visualization tools. However, it has 

no powerful navigation functions and visualization edition functions to better check 

the visualization contents. In addition, no remote execution is considered here. 

 

Two of the existing DEVS environments are suitable to meet our goals. Unfortunately,  

none of these environments is able to run Cell-DEVS models in remote environments, 

and visualize 3D models. Some of them were provided with extensions for visualization 

of particular problems, but no generic visualization facilities are provided. 

 

• DEVS/Java [28] is a DEVS-based modeling and simulation environment written in 

Java that supports parallel execution. It provides classes for the users to implement 

their own DEVS models. The users can use the interface to visualize the state of the 

components in the model, their ports and couplings. A model can execute in a web 

browser, but it does not provide client/server facilities. 

• DEVS/HLA  [45] is based on the High Level Architecture (HLA) and DEVS. It is 

used to demonstrate how an HLA-compliant DEVS environment can significantly 

improve the performance of large-scale distributed modeling and simulation 

environments. The HLA has been proposed and developed to support the reuse and 

inter-operation of simulations, and establish a common technical framework 

facilitating the inter-operability of all types of models and simulations. The user 

should implement DEVS/HLA  models using a standard programming language, 

such as, C++. The tool does not provide visualization facilities, but it can be 

integrated with powerful visual displays.  
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2.5 Research description 

 

As we indicated before, simulation is becoming increasingly important in the analysis 

and design of natural and artificial systems. DEVS is a formalism that is gaining 

popularity in recent years, and it has found applications in many areas. However, as we 

can see from the related work, no practical tool for 3D visualization has been developed 

in Cell-DEVS simulation. In addition, no practical integrated distributed DEVS 

simulation environment has been developed in DEVS simulation.  

 

The contribution of this thesis is to introduce a practical integrated remote DEVS 

simulation and visualization environment for the users with functions in every aspect of 

the modeling and simulation, which includes: 

 

1. A DEVS Modeler [38] to build DEVS models using a graph-based notation. New 

methods were added to this existing utility to check the model design to ensure that it 

conforms to the DEVS formalism. 

2. 2D Cell-DEVS visualization tools 

3. 3D Cell-DEVS visualization tools 

4. An interface with the simulation server, enabling users to remotely invoke the CD++ 

simulation engine in server mode 

 

With sophisticated user graphical interfaces in above four components, this simulation 

environment can be used by various users with varied expertise around the world. In 



 42

addition, with the design of this simulation environment, the users even can set up a 

remote simulation environment in their own computing environment, such as, the Intranet 

within their company.  

 

The users may not be familiar with the simulation and visualization theory, but they can 

rapidly obtain the results and visualizations to assist in analysis for scientific and 

technical purposes. Nevertheless, with this simulation environment, they can build 

models locally, send the models to a remote CD++ server, and receive the results locally. 

Then the 2D and 3D visualization GUIs can be used to visualize the results. These 

visualization tools enable the user to navigate in the visualization with many ways, select 

the shape and color palette of the cells, and edit the cell matrix to check the results more 

effectively.  
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Chapter 3: Design of a Client/Server 
Simulation Platform for CD++ 
 

According to the research description information in the previous chapter, we decided to 

develop a set of tools for the CD++ simulator to facilitate the definition of DEVS 

simulation models, visualization of the results, and the access to a remote simulation 

server for execution. These toolkits provide easy-to-use graphical user interfaces that 

insulate the users from the requirements of knowing the simulation implementation 

details and much programming knowledge. The goal is to develop a full-functional 

client/server simulation environment for the users with all these toolkits.  

 

As indicated before, the CD++ simulator was extended to run as a stand-alone application 

or as a server. This chapter will describe the main components and their inter-relationship 

in our simulation environment when CD++ simulator runs as an application and a server 

respectively. Finally, we will discuss the general design guidelines used in the design of 

our client/server simulation environment and user interfaces. 

 

3.1 CD++ simulator works as a stand-alone application 

 

When CD++ simulator works as an application (stand-alone mode), it runs on a local 

machine. The users build the model first, and then activate the CD++ simulator to 

execute the model. After the execution, a result file will be generated, and then the users 

launch the drawlog facility to change the result stream to another type of result stream, 
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which can be visualized with the visualization tools (2D and 3D visualization GUIs). 

According to above description, when CD++ simulator works as an application, the 

simulation procedure involves following four steps: 

 

1. The user builds model 

2. The user activates CD++ simulator  to  execute the model 

3. The user changes the result format 

4. The user visualizes the result with 2D and 3D GUI 

 

The components in the CD++ simulation environment and their relationships can be 

illustrated with the following figure 3.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 CD++ running as stand-alone application 
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As we can see, there is a separation between model definition, simulation execution, and 

visualization tools, and the interaction is done through input/output streams. A user can 

build a model with the CD++ Modeler according to the DEVS and Cell-DEVS 

specifications, and execute the model with the CD++ simulator running on the local 

machine. After the simulation is over, a result stream is generated. Using the drawlog 

facility, the result stream can be changed to a stream with different format that can be 

used to generate graphical outputs using different GUIs.  

 

3.2 CD++ simulator works as a server application  

 

When CD++ works as a server, it runs on the remote machine, and can accept simulation 

requests and provide simulation service for the clients. The client should send model 

file(s) through the network. When a request is received, the CD++ server executes the 

model and returns the result. The client will save the results on the local disk as a result 

file, and then activate the CD++ drawlog facility to change its format into another text 

stream that can be used with the visualization purposes. 

 

According to above description, when the CD++ simulator works as a server, the 

simulation procedure involves the following steps: 

 

1.   The user builds a model 

2. The client sends the model to the remote CD++ simulator, and the model is 

executed on the server 
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3. The client receives the result stream from the server, and save it in a result file 

on the local machine 

4. The client changes the stream format 

5. The user visualizes the results with 2D and 3D GUI 

 

The components in the CD++ simulation environment and their relationship can be 

illustrated with the following figure 3.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 CD++ running as client/server application 
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interface should be added in the client side to communicate with the server. A user can 

send models to the remote server for execution, and receive a result stream on the local 

machine. As illustrated in Figure 3.2, there is still a separation between model definition, 

simulation execution, and result visualization, and the interaction is done through 

input/output streams. 

 

When CD++ runs as a server, it expects to receive a model specification on a given TCP 

port.  Whenever it accepts a simulation requirement, a child process is created to serve 

the specific requirement. When a new simulation requirement arrives, the described 

process is repeated. 

 

3.3 Guidelines for GUI Design 

 

From above, we can see that the simulation client consists of the CD++ Modeler, the 

drawlog utility, the result visualization GUIs and the Interface with the remote server. 

The CD++ Modeler is responsible for the model input and model file generation. The 

visualization GUIs are responsible for the visualization process, deal with presentation 

issues and provide a visualization environment. The Interface is used to communicate 

with server. They ensure that the users are presented with a simulation system that 

consists of familiar and easy-to-use interfaces, and requires little training overhead. In 

this way, CD++ can be presented to a wider range of users around the world, and learning 

times and training costs can be significantly reduced. 
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The user interface is extremely important in a simulation and visualization system for all 

sorts of users. It has to be both simple and intuitive. The user interfaces provides a 

communication bridge between users and computer software. User interface designers 

should identify the types of the users of the application under development, and fully 

understand the purposes of the application, and design the interface with the user’s 

attitudes in mind. 

 

The whole aim of the GUI is to create user interface components that can be easily 

manipulated by the user. By building the operation procedures that take place in all the 

elements of the underlining software into the GUI, it can make complex systems easier to 

learn, and makes the users more productive.  

 

We developed our simulation system to be used by various users around the world. With 

this idea in mind, the following provisions were considered: 

 

• The end users have much more varied expertise, so although they may be familiar 

with the particular technical area the simulation system deals with, they are not 

familiar with the simulation and visualization system itself. 

• The end users are interested in rapidly obtaining data visualizations to assist in 

analysis for scientific and technical purposes. They do not want to spend time on 

installing or learning special software. 

 

The average end user usually conducts some research in a scientific area and requires 

simulation and visualization services to assist with the research and analysis of a real 
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system. These users may be quite limited in software programming, even in normal 

computer graphical tools. Therefore, when we develop our simulation system, the 

following  criteria should be followed.  

 

• Easy to use: The average users should not need special knowledge to install the 

software. They also need an appropriate visualization environment to promote rapid 

learning. End users should see the environment as an extension to the tools with 

which they are already familiar, allowing them to focus on the visualization task 

rather than on learning how to use the system. 

• Interactive: End users should be able to control some important visualization 

parameters as well as directly manipulate and navigate the visualization.  

• Multiple platforms: The average user can use any particular platform, to provide a 

public service. Therefore, the program is necessary to run on most popular operating 

systems and platforms. 

 

Consequently, a visualization environment should rely as much as possible on standard 

interface conventions, and where appropriate, allow the user to interact directly with 

images that provide concrete representations of real-world objects rather than text or 

forms.  

 

Besides above considerations, the following characteristics also should be considered in 

the visualization environment to facilitate the user. 
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• Interactive display: The visualization software should provide a responsive 

environment, and have functions for the navigation in the visualization, and the 

edition capabilities. 

• Appropriate tools: provide tools for input, such as a slider for changing color 

classifications, not just text fields for user input. 

• Message boxes: provide message boxes for communication with the user.  

 

In our user interface design, all above rules were followed. The program, coded in Java, 

can run in various environments. The user can specify many parameters for the 

visualization, and even edit the graphical representation of the results. The user also can 

navigate in the visualization with many methods. The use steps are built into the program, 

so the user only needs to follow the sequence in the interface to use the program. In 

addition, various dialogs are included to communicate with the users and the slider 

components are used as many as possible for the value input in the interface. 
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Chapter 4: A Simulation Client for CD++ 

 

In this chapter, we will give an overview of a simulation client for the CD++ simulator. 

This client provides a series of capabilities to use the CD++ simulator as an application or 

as a server. It provides users with the following three main capabilities: 

 

1. Building DEVS models. 

2. Submit a model to a remote CD++ simulation server, receive the execution results 

locally, and change the result format with the drawlog utility. 

3. Visualize the results. 

 

The above three capabilities also illustrate the main components in the client. As 

illustrated in Chapter 3, the main components include the CD++ Modeler, the drawlog 

utility, the Interface between the client and the server, and the result visualization GUIs. 

Because the drawlog utility is an existing tool of the CD++, we just introduce the other 

three main components below. 

 

4.1 CD++ Modeler 

 

The CD++ tool uses model files to represent coupled models and Cell-DEVS models. As 

indicated before, the model file details the model components and their relationships. To 

improve model definition, the client includes a component for model input to create 

atomic or coupled models. This basic component is the CD++ Modeler, which consists 
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of a set of facilities to enable the users to define DEVS models using graphical notations. 

This application can be used to create atomic or coupled models, which can be executed 

by the CD++ simulator. The basic functions of the CD++ Modeler include: 

 
1. Building DEVS atomic models using DEVS graphs. 
 
2. Building DEVS coupled models using directed graphs. 
 
3. Saving the newly created models. 
 
4. Loading previously saved models or integrating them as components of a new model. 
 
5. Validating the design and ensuring it conforms to the DEVS rules. 
 

The CD++ Modeler also includes a text editor to write and modify Cell-DEVS models. 

The application, coded in Java, looks like Figure 4.1 when it starts. There are four 

components for model input: the Design Space, the Internal transition and external 

transition selector, the Information Space, and the Design Space Selector. The most  

 
 

 
 

Figure 4.1 CD++ Modeler initial view 
 

Design space 

Design space selector: 
Atomic or Coupled 
model 

Information 
space 

Internal transition and 
external transition selector 
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important component of the application is the design space where we can build our 

models. 

 

Before creating the model, the user should select the proper design space according to 

which type of model (atomic or coupled) is needed. Atomic models can be defined using 

DEVS graphs, which specify all the states the model goes through, and the state transition 

relations. Every state in a DEVS graph is specified by an identification and a lifetime as 

shown in Figure 4.2. The user should assign the state a name for its identification and a 

value for its lifetime when adding it to the model. As we can see, the states are defined as 

circles with a name and a lifetime, and their coordinate values in the design space are 

shown just behind them in the Information space. For instance, the state assigned a name 

as end has a lifetime of 10 time units. Every state transition can be associated with 

input/output activities using specified ports that can be associated to each state. For 

instance, the state assigned a name as start is associated with the input port in and the 

output port out.  

 

States are interconnected using different links to represent the transition relations. 

Internal transitions are represented by full lines and external transitions by dotted lines. 

An external transition is activated when an input is received, and it can be associated with 

an input port, which represents an input event for the model. For instance, figure 4.2 

shows that whenever the model receives an input through the in port and the model is in 

start state, the model will execute an external transition and change to the end state. 

Internal transition is activated after the model stays in a state for its corresponding 



 54

lifetime, and can be associated with an output port to represent the execution of the 

output function. For instance, if the lifetime (5 time units) of state mid is consumed, the 

output function is executed and the current state and time of the model are sent through 

the out port. After the internal transition completes, the model state changes to end. 

  

 

 

Figure 4.2 CD++ atomic model definition 

 

The user also can refer to models previously coded in C++ after they have been added to 

the CD++ model database. Once atomic models have been created using any of these 

methods, the tool permits defining coupled models on the workplace. Coupled models are 

defined as directed graphs connecting internal component models and the input/output 

ports of the new model. The first step to build a coupled model is to select the atomic 

and/or coupled sub-components for the coupled model being built. These sub-component 
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models can be chosen from the ones previously defined and added to the model database. 

As it can be seen in Figure 4.3, the component models within the coupled model under 

definition are represented as squares and the input and output ports of the new model are 

represented as circles, and their names are shown just beside their corresponding figures. 

For instance, the queue model is an instance of the Queue atomic model previously 

defined. The user can define different instances of the same model. Once all the 

component models have been created, we can establish links to connect the input/output 

ports of these component models to indicate the message transformation relations. For 

 

Figure 4.3 Graph representation of a coupled model 

 

instance, Figure 4.3 shows that the output port out in the generator model is connected to 

the in port in the queue model. Finally, we can establish links between output ports in a 

component and the input/output ports of the coupled model under definition. For 

instance, the throughput port in the transducer model of figure 4.3 is connected to the 

throughput port of the coupled model being defined (represented by a circle).  
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After the graph representing the coupled model is finished, it can be exported as a model 

file. To ensure that the design conforms to the DEVS formalism, we check the design 

with the following rules: 

 

1. There is no isolated nodes or links. 

2. Every port is connected with at least one link. 

3. Each end of a link should be connected with just one port. 

4. A link should start from an output port to an input port. 

  

If there is any violation of these rules, a dialog will prompt and show what and where the 

violation is, so the user can correct the error easily. This checking is done only when the 

file is exported to a model file to be run in CD++. If the design is just saved to a file, no 

check is performed because the user may need to continue defining the model later. 

 

4.2 Interfacing with CD++ Server 

 

To execute a simulation model in a remote server, the client must send the model file, an 

optional external event list and an optional stop time to a remote server through the 

network. When a request is received, the CD++ server uses a system call to produce a 

child process before running the specific simulation. Therefore, the server can execute 

many models simultaneously. The server returns the execution results through the same 

port. The client will save the results on a local result file, and then activate the CD++ 
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drawlog facility to change its format into another that can be used with visualization 

purposes. 

 

We developed an Interface on the client side to enable the users to specify the IP 

addresses of the simulation providers, and send models to them for execution. The 

following Figure 4.4 shows the StartDialog of this interface. We can see that the model 

file calor.ma is selected, the simulation end time is specified as 00:01:20, and the result 

format to be used by drawlog is specified as 5-digit long with one decimal digit. 

 

To run a model using these facilities, the user should follow the following steps [7]:  

 

a) Set a Configuration File: this file stores the default server address, a port number to be  

 

Figure 4.4 StartDialog (select model file, simulation time, and result format) 
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used, and a file to save this default information. When the client starts, this file will be 

read and a default server, port and directory will be set up. 

b) Select the model stream(s) that will be sent to the server for simulation. 

c) Change the Server and input socket: a user can choose server and port addresses 

different from those defined as default in the configuration file. 

d) Input the stop time and result format. 

e) Connect to the server. 

 

Using this interface, a client can communicate with any computer with an IP address on 

the Internet/Intranet. The users even can execute the same model or several different 

models on different servers at the same time. In addition, as illustrated in Figure 4.5, if 

one of the clients is used as a hub client to communicate with the server, a remote multi-

observer CD++ simulation environment can be easily set up.  

 

 

 

 

 

 

Figure 4.5 Remote multi-observer simulation environment digraph 

 

The hub client can send model files to the server, receive the results, and distribute the 

results among the other clients as needed. Moreover, the comments of the users can be 
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distributed among other users through this hub client. Therefore, many users in different 

locations can observe in the same simulation result. 

 

4.3 Visualization GUIs 

 

As we indicated earlier, the users can use the CD++ simulator as a local application or as 

a remote server. After the simulation finishes, the user can analyze the simulation results 

using different visualization tools. A set of visualization tools was introduced and now it 

is an integral part of the CD++ modeling and simulation toolkit.  

 

For the main part of this thesis work, sophisticated 2D and 3D visualization tools have 

been developed for the CD++ simulator. With the 2D visualization tools, the users can 

check the results with 2D s, navigating in the visualization and selecting parameters to 

specify the items to visualize. With the 3D visualization tools, the users can check the 

results in a 3D scene. The users can navigate in the visualization with many ways, select 

the color palette and shape for the nodes, and edit the node matrix or individual nodes. 

The users also can filter the nodes with specific value ranges to check the results more 

effectively.  

 

4.3.1 2D Visualization GUI 

 

The 2D visualization GUIs [39] are used to visualize the results of atomic models, 

Coupled DEVS models, and Cell-DEVS models. In each of these GUIs, navigation 
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methods are provided for the users to understand the results better.  

 

One of the visualization facilities introduced here enables the users to analyze the 

input/output values transmitted from/into each of the input/output ports of an atomic 

model by displaying these values on a graphical display. The information transmitted 

through each of them is collected in a result file during the simulation. Therefore, the 

result file stores all the messages sent between the DEVS components. 

 

The visualization routines extract all the messages related to the atomic models and their 

results, so the user can select any of the atomic models for visualization. As illustrated in 

Figure 4.6, all the atomic models are listed in the Choice component and the name of the  

 

Figure 4.6 An example for atomic model visualization 
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currently visualized model is displayed below the buttons. The user can select any of 

models for visualization. The timeline lists all the port on the left and the times on the 

bottom. The value is shown as a piecewise constant signal, whose height is related to the 

value displayed. 

 

Each signal starts when the port receives (input port) this value, or sends out this value 

(output value) and ends when the model generates a new output. The character (*) just 

above the time means that there was an internal transition at this time. With this graphical 

display, the user can check all of the input/output values of an atomic model through the 

whole simulation process.  

 

The execution of coupled models also can be visualized by associating the graphs 

representing coupled models with the result stream generated during the execution of the 

coupled model. The user should specify a model file created with the CD++ Modeler and 

the result file resulting from the execution of the model. The graphical specification for a 

coupled model defined using the CD++ Modeler, is combined with the result file that 

contains the information needed for displaying. Figure 4.7 shows an example of 

execution of this facility. We can see that the model file is displayed on screen, and the 

values received or sent out by the ports are extracted from the result file and displayed 

near the corresponding ports. In addition, the timing of the events is included. Therefore, 

we are able to see the input/output values transmitted during the simulation within a 

coupled model. 
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Figure 4.7 CD++ coupled model definition and execution 

 

Cell-DEVS spaces are defined as DEVS coupled models. To better understand the results 

of Cell-DEVS models, we also added a new facility to visualize the outputs generated by 

the drawlog tool with a graphical interface. Figure 4.8 is an example of 2D Cell-DEVS 

model visualization. Simulation results for 2D Cell-DEVS models are shown in one plane 

by giving different color classifications to the different cell values. Simulation results for 

3D models are shown by displaying the values of all the planes comprising the model 

simultaneously. In addition, different color classifications are given to different cell 

values in order to improve model visualization.  
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Figure 4.8 Examples for 2D Cell-DEVS model visualization 

 

4.3.2 3D Visualization of Cell-DEVS Model 

 

The 2D Cell-DEVS model visualization tool can be used to visualize 3D Cell-DEVS 

models, but it has many limitations, which can be analyzed in the output example in 

above figure 4.8. The result is displayed in several raster images, and the users should 

keep track of each of them. The users must understand intellectually the relationships 

between the raster images and compare several 2D raster images to figure out how the 

real system looks like. In this section, we introduce a 3D GUI for the model result 

visualization. In this GUI, the users can see the result in a 3D environment. In addition, 

the user can check the same result in several different viewpoints at the same time.  

 

The 3D visualization GUI is a sophisticated visualization GUI for Cell-DEVS model 
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result visualization. The results are displayed as a node matrix with the same size as the 

model. The functions introduced in this GUI are classified into four categories: 

 

1. Navigating the visualization. 

2. 3D node matrix (scene) and individual node edition. 

3. Shape selection, color palette selection, scale selection for all the nodes in the scene. 

4. Filtering the nodes with specific value ranges. 

 

The 3D visualization interface looks like following Figure 4.9 when it starts. 

 

                 

Figure 4.9 3D visualization GUI execution 

 

The left is the VRML scene where the result will be displayed, and the right is the panels 

to control the scene. There are four panels, InfoPanel, EntityPanel, ResultPanel and 

NavigatePanel. Each of them is explained in the following sections. 
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4.3.2.1 InfoPanel 

 

The InfoPanel is shown when the application starts. The text field can be used to display 

debugging information and a label is used to display status information, which will be 

updated accordingly. It includes methods to select the result file to be visualized. After a 

result file is loaded, an associated color palette also will be loaded (if it exists). The color 

palette specifies the color classifications chosen for different value ranges. If the 

corresponding color palette does not exist, default color classifications and default value 

ranges will be used. In this panel, a color palette dialog also can be loaded to specify the 

color classifications for different value ranges. 

 

The color palette is selected with a color palette selection dialog. The user can select 

default color classifications. The user also can specify the value ranges by providing any 

two of the following three parameters: 

 

1. Maximum value 

2. Minimum value 

3. Interval 

 

With these two parameters, the minimum value and interval can be obtained, and then the 

values for all the value ranges can be calculated. In addition, the users can assign specific 

color classifications to different value ranges. 
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4.3.2.2 EntityPanel 

 

This panel allows editing individual nodes in the scene. A list of currently displayed 

nodes is populated by the NavigatePanel every time it updates the nodes in the scene. 

Before a node can be edited, it should become the editable node (i.e., the only node that 

can be edited in the scene). A node can become the editable node when the user clicks it 

in the scene, or selects its corresponding item in the list. After being the editable node, it 

can be edited with the related methods of the node and the methods in this class. The 

methods included in the node permit to change the shape, color palette, and size of the 

selected node. The methods in this class permit to add or remove the individual node in 

the scene. All the editions on the nodes will be kept during the later visualization process, 

so the edited nodes can be used to highlight some special nodes. The users also can 

remove some nodes for better investigation on some interested nodes inside the model.  

 

4.3.2.3 ResultPanel 

 

The ResultPanel is used to navigate in the VRML world. Figure 4.10 shows this panel 

when it is executed. Different methods are defined to control the navigation: a) a start 

method to start the execution; b) a resume method to continue if stopped; c) a go back 

method to go to the previous timestamp; d) a go next method to go to the next time; e) a 

stop method to stop the visualization at a given time; f) a continuous display method (this 

iteration will end only at the end of file); g) a method to go to any selected timestamp; h) 

a method to remove layer(s); i) a method to display the removed layer(s). These methods 

call the corresponding methods in the ResultPanel Class, which activates the 
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corresponding methods in the NavigatePanel Class. 

 

 

Figure 4.10 ResultPanel execution 

 

4.3.2.4 NavigatePanel 

 

NavigatePanel is the main panel in the application. It stores the currently displayed 

result, the currently displayed nodes, and the names of every displayed node. Their 

contents change whenever a scene is updated with a new result or a new color palette. It 

first initiates the scene as a matrix of transparent nodes with the same size as the model. 

Therefore, the matrix can map with the model, and any node in the matrix can be 

associated with a value in the result stream. The class includes methods to add or remove 

nodes in the scene, to change the shape, color palette, and size of the nodes, and to check 

the results from a favorite viewpoint. 
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Chapter 5: Implementation 

 
From previous sections, we know that the client mainly includes three components: 

CD++ Modeler, result visualization facilities and the client Interface for the remote 

simulation server. In this chapter, we will give a general overview of the implementation 

of the 3D VRML visualization GUI and the client Interface. In the end of this chapter, we 

will introduce the algorithms to transform 2D model to 3D VRML model. 

 

5.1 3D VRML Visualization GUI 

 

The 3D VRML visualization GUI is used to visualize the result in a 3D environment. As 

illustrated in Chapter 4, we use visible nodes in the VRML scene to represent the results. 

A node is the basic standalone element in VRML. There are many kinds of nodes in the 

VRML, some of them are used to define the environment of the scene, and some of them 

are used to describe a visible object in the scene. The nodes in a VRML scene have a 

hierarchical relationship  (please refer to the on-line report [6] for more detailed 

explanation of VRML nodes). To display different results in the VRML scene, the visible 

nodes should be added to the scene and removed from the scene dynamically according 

to the results being visualized. In addition, the user should be able to navigate in the 

scene, and edit the nodes for convenient investigation of the result.  

 

To implement this GUI, we need an empty VRML scene, which will be used to hold the 
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nodes. The VRML scene is the whole VRML displaying area including its environment 

and all the visible nodes in it. The nodes will be added to or removed from it dynamically 

to represent the current results. This empty VRML scene is embedded in an HTML file as 

a root file, and the HTML file should include an applet to control the scene. The applet 

must include all the functions to update the scene, navigate in the scene, and edit the 

nodes in the scene. The applet we implemented includes the following functions: 

 

1. Load the result file and its corresponding color palette. 

2. Add nodes into the scene or remove nodes from the scene. 

3. Change the shape and the size of the nodes, and the interval between them. 

4. Select the color classifications for the value ranges, so nodes with different values can 

be displayed with different color classifications, or nodes with special values are 

hidden. 

5. Navigate in the visualization. 

6. Edit the scene and the individual node. 

 

These functions are organized into four groups, each of which is implemented in a 

different class. These classes are InfoPanel, EntityPanel, ResultPanel and NavigatePanel. 

They extend the Panel class in Java to be used as a panel in the 3D visualization GUI. 

The class diagram and their inheritance relationships are:  
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Figure 5.1 Class diagram of the entire VRML visualization applet 

 

 

 
Figure 5.2 Class diagram of the class extending Applet 

 

 

 

Figure 5.3 Class diagram of the class extending Object 

 

Applet SimuUserClient 

Object VRMLNode 

SimuUserClient 

ColorDialog 

ReadDrwFile 

Association 1 

SelectorPanel 

EntityPanel 

1 

1 

Association 

Association 

StatusPanel 

ResultPanel 

NavigatePanel 

InfoPanel 



 71

 

 

 

 

 

 

 

 

Figure 5.4 Class diagram of the classes extending Panel 

 

From figure 5.1, we can see that the GUI consists of a VRML scene and an applet called 

SimuUserClient. The applet includes six panels, NavigatePanel, InfoPanel, EntityPanel, 

SelectorPanel, StatusPanel and ResultPanel. The StatusPanel is used to display status 

information of the program. SelectorPanel is used for the buttons to select the panels. 

ColorDialog is used to specify color classifications for the values, and can be brought up 

in InfoPanel. ReadDrwFile class is used to get the result at a time for display; the 

WarnDialog class is used to display various information to the users. We will now 

introduce the other four classes (NavigatePanel, InfoPanel, EntityPanel, and 

ResultPanel) later. 

 

The inheritance relationships of most of the classes are straightforward (such as, 

InfoPanel class extends Panel class in Java) except by two classes: SimuUserClient and 

VRMLNode. The SimuUserClient class extends the Applet class in Java. VRMLNode is 
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used to represent a visible object in the VRML scene, it extends the Object class in Java, 

and implements the EventOutObserver interface for the callback method. It will be called 

when the node in the VRML scene is clicked. 

 

We will only introduce six important classes, VRMLNode, ReadDrwFile, NavigatePanel, 

InfoPanel, EntityPanel, and ResultPanel. The main relationship of these six classes is 

illustrated as follows.  

 

 

 

 

 

 

 

Figure 5.5 Class relationship diagram 

 

The NavigatePanel is the only class to control the VRML scene and all the other classes 

control the VRML scene through this class. Therefore, it should have all the functions to 
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the scene, navigating in the scene, and editing the nodes in the scene. 
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5.1.1 The VRML Root File 

 

The VRML root file is embedded in the HTML file, and loaded as an empty scene to hold 

the nodes representing the result. The root file should have a Group node to hold the 

nodes in the scene. Since the scene is empty at first, different node matrix should be built 

dynamically for different models. Any node in the matrix should be authored as a child to 

this Group node. This is because the nodes defined in the VRML file cannot be removed 

and we cannot add any node in the scene through the VRML file with the program 

(applet). Adding nodes to a child field in a group node is the only way to build the 3D 

node matrix from an empty scene dynamically. In addition, only the nodes in the child 

field can be removed dynamically from the scene. The root VRML file can be defined 

simply as follows: 

 
#VRML V2.0 utf8 
DEF Root Group {} 
 
 

Here a simple Group node, the Group, is used, and it is defined as “Root” for the access 

to this node.  

 
This file can contain an actual VRML world, but the only requirement is that a group 

node, such as, Group, named “Root” must be present. To facilitate identifying the nodes 

in the scene and visualizing the results, the following two nodes are also included in this 

root file. 

 

Background node: The background node allows defining the background of the VRML 
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world. To identify the nodes in the scene easily, we used white as the background color 

palette for the result visualization. 

 
Viewpoint node: A viewpoint describes a predefined viewing position and orientation in 

the VRML world. It just acts as a camera in the real world. A VRML world can have any 

number of viewpoints (or cameras), that is, the interesting positions from which the user 

might wish to check the world. To facilitate the result visualization, we define a 

Viewpoint named UserEye, and a group of Viewpoints named Viewpoints. We will use 

these viewpoints to switch to different viewing areas of the scene. 

 

5.1.2 VRMLNode Class 

 

The VRMLNode class is used to create visible nodes in the scene to represent the 

simulation result. Since the nodes should be arranged as a 3D matrix (such as in Figure 

5.3) in the scene to represent the results of Cell-DEVS models, the node should have a 

translation function to be located in the scene. As illustrated in on-line report [6], we can 

use a Transform node because it not only includes a translation function, it also has all 

the other necessary attributes to represent a node in the scene as well, such as, containing 

a visible node displayed in the scene. In addition, it also allows manipulating a node’s 

size and orientation.  

 

To construct a Transform node to represent a node in the scene, the hierarchy structure 

should be built in this VRMLNode Class according to its definition as in the example file 

in on-line report [6]. For Transform node, we can use the set-value function and get-value 
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functions of its translation, rotation and scale fields. The get-value function can be used 

to get the current value of the field. The set-value function can be used to change the 

value of the field. If the value of a field changes, the corresponding attribute of the node 

also will change. Such as, if the translation field of a node changes, it will move to a new 

location. Therefore, the position, orientation and size of the nodes can be modified as 

needed with these set-value functions, and their recent values can be obtained with these 

get-value functions. In addition, to shown as a visible node, a Geometry node or an Inline 

node should be added to its children field because these two nodes are the only nodes to 

represent visible objects in the VRML scene. We designed two types of VRML Node 

classes. One is for primitive shape nodes and the other is for Inline nodes. Therefore, we 

can use both primitive shape nodes and Inline nodes to represent visible objects in the 

VRML scene. In addition, a callback method is implemented to respond to the clicking 

on these two kinds of nodes. 

 

5.1.2.1 Primitive VRML Node Class 

 

The Primitive VRML Node can be used to display a primitive shape in the VRML scene. 

For this kind of node, we can get the set-value and get-value functions for color palette, 

texture and transparency fields. Therefore, we can change the color palette, texture and 

transparency of the node with the set-value functions. In addition, we can get the current 

values of the color palette, texture and transparency of the node with the get-value 

functions.  
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5.1.2.2 Inline VRML Node Class 

 

To translate and rotate the Inline node easily, the Inline node can be used as a child node 

in a Transform node. Then if the translation and rotation of its parent Transform node 

change, the child Inline node will be relocated and rotated accordingly. The Inline node 

includes all the nodes defined in another VRML file, and uses them as a single node. 

Since the Inline node refers to the nodes that exist in another VRML file, the size and 

appearance of these nodes cannot be changed. Only translation and rotation operations 

can be applied to these nodes to locate them in the VRML scene. The VRML file for the 

Inline node is specified with an url address, and this class has the function to change the 

url address of the VRML file to be used as the Inline node. Therefore, the user can select 

a different VRML file to describe this child node. It also includes functions to change the 

position and orientation of the node.  

 

5.1.3 ReadDrwFile class 

 

This class is in charge of reading the values to be displayed from the result stream. It is 

called by the NavigatePanel when the user decides to view the new result. The new result 

can be one of the following cases: 

 

1. The result at the next timestamp in the result stream. 

2. The result at the previous timestamp. 

3. The result at any user-selected timestamp. 
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For case 1, the read pointer is in the right place, so we just need to read the result. For 

case 2 and 3, we should re-locate the read pointer to the right place first, then we can read 

the result. The general idea is that we reset the read pointer to the beginning of the result 

file, and then check the timestamps from the beginning. When we find the timestamp we 

need, we read the result. In case 2, we have two read pointers, one pointing to the recent 

timestamp, and the other pointing to the previous timestamp. 

 

Therefore, this class includes the following functions: 

 

1. Reset the read pointer to point to the beginning of the file. 

2. Get the number of rows, columns and layers for the initialization of the VRML scene. 

3. Read the result and return as a string. 

 

Some separators are inserted in the returned string to facilitate the separation of the whole 

string into individual values. In this string, all the not displayed zero values are added. 

This is very important because sometimes the value of zero is not displayed in the result 

file.  

 

5.1.4 InfoPanel Class 

 

InfoPanel is a subclass of Panel. When the users specify a result file for visualization, it 

checks the result file and its corresponding color palette. If their formats are correct and 

the corresponding color palette exists, the color palette will be loaded. Then it will call 



 78

the reset function to clear the VRML scene and all the information about current display. 

Finally, it will call a function in NavigatePanel class to initialize the VRML scene and 

begin the visualization. 

 

5.1.5 NavigatePanel Class 

 

NavigatePanel is a subclass of Panel. It stores the recently displayed result, recently 

displayed nodes in the VRML scene, and the names of all the recently displayed nodes. 

This information changes whenever the scene is updated with the new result or new color 

palette selection. This class includes the following functions: 

 

1. Initiate the scene. 

2. Add or remove the node in the scene. 

3. Change the shape, color palette, and size of the nodes. 

4. Move to the next result, the previous result, any selected time, or any input time. 

5. Begin the visualization from the beginning again. 

6. Delete and re-display layers. 

 

At first, it gets the number of rows, columns and layers of the model. It then initiates the 

scene as a 3D matrix of transparent nodes with the same size as the model. Therefore, 

each node in the matrix can be associated with a value in the result stream, that is, each 

value in the result can be represented by a node in the matrix. There are two main reasons 

to define all the nodes as transparent nodes. a). after a user selects a favorite view area, 
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the view area is retained when the scene is updated because VRML browsers can 

remember the viewing point automatically. b). it is easier to add or remove nodes in the 

scene. With this design, we just need to set the transparency attribute of the nodes to add 

or remove them. If a node is set as transparent, it is removed from the scene. If a node is 

set as non-transparent, it is added to the scene. The navigation is implemented with the 

viewpoint in two methods. First, the viewpoint can be a child of Transform node, its 

position and orientation are changed with those in this Transform node.  Second, a user 

can select different viewpoints. A viewpoint is defined as a type of bindable node. For 

each type of bindable nodes the VRML browser encounters, the first one is bound (used) 

at first. Moreover, among all the bindable nodes of the same type only one can be bound 

at any time, so if another one is bound, the recently bound (used) one will be unbound 

automatically. Therefore, though several viewpoints can exist in a VRML world, only 

one viewpoint can be used at any time. As in the root file mentioned before, UserEye, 

and a group of viewpoints named Viewpoints are defined in the root file. Among these 

viewpoints, UserEye will be bound first, that is, the first used viewpoint. To bind another 

viewpoint, we just need to get the interested viewpoint in the Group node Viewpoints, and 

set its bind attribute. If another viewpoint is bound, the recent active viewpoint will be 

unbound automatically, and the scene will be updated according to the newly bound 

viewpoint.   

 

To change the shape, color palette, and size of the nodes, we call the set-value methods of 

the node with new values. In this panel, the shape, color palette, and size of all the nodes 

in the scene will be changed. To move to the next time, the previous time, any selected 
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time, or any input time, we search the time first, and then read the result at that time and 

display it. To delete a layer, we just need to set the nodes in this layer as transparent, and 

do not update them at following display. If we set the nodes as non-transparent, then the 

nodes in this layer will be re-displayed. 

 

5.1.6 EntityPanel Class 

 

EntityPanel is a subclass of Panel. It is used to edit individual node in the scene. There is 

a list on this panel to display the names of all the visible nodes in the scene. Whenever 

NavigatePanel class updates the scene, it will call a method in EntityPanel Class to 

update the entity list. There are many slide components for the edition of the nodes. The 

current node can be removed or re-displayed. 

 

The functions included in this class are: 

 

1. Change the shape, color palette, and size of the selected node 

2. Add or remove the individual node in the scene. 

3. Set the slides according to the values of the selected node. 

 

The set-value methods of the node are used to change its color palette, size and 

translation. When the users want to remove the current node or re-display it, the program 

will call the corresponding methods in NavigatePanel Class. 
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When a node becomes the current node, the values of its color palette, size and 

translation can be obtained with the get-value method, and then all the slides on this panel 

can be set according to these values. Therefore, when the users edit the current node, its 

color palette, size and translation will change continuously, not abruptly. After a node is 

edited, the VRML can remember the changes automatically. Therefore, the node can 

remain all the changes later, and the users can specify some interested nodes and check 

them carefully. 

 

5.1.7 ResultPanel Class 

 

ResultPanel is a subclass of Panel. This class controls the result display. There is a text 

field on this panel used to display the current result. This text field is updated whenever 

NavigatePanel class reads new result for display. There are two lists, one is level list and 

the other is time list. The level list is updated at first when the program gets the number 

of levels of the model. A new time item will be added to the time list whenever the result 

at this time has been displayed in the scene. Different methods are defined to control the 

navigation, including: 

 

1. Start, stop and resume the visualization. 

2. Go to the next time, or go back to the previous time step by step. 

3. Continuously display method. 

4. Go to any time selected in the time list, or the time input in the text field. 

5. Remove layers in the scene or re-display the removed layers. 
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6. Rest the scene, display all the layers including the removed layers. 

 

To facilitate controlling the display, the display process is implemented as a thread. We 

can control the display through this thread, which includes start, stop, suspend and 

resume functions. The continuous display is implemented by the run function of the 

thread, this function is called when the thread starts. The run function is designed as an 

endless iteration until the end of the file. The sleep function in this run function can be 

used to control the display speed. In this thread, there are also other functions to start, 

stop and resume the display, move to next time, go back to the previous time. These 

functions will call the related ones in the ResultPanel class, which will then call the 

related functions in the NavigatePanel class.  

 

5.2 Client Interface 

 

As indicated in Chapter 3, running a model on a remote server involves five steps: (1) the 

user builds the model and sends it to the remote server, (2) the server executes the model, 

(3) sends back the simulation results, (4) the client receives the result stream and (5) 

changes it to another format, which can be visualized with the 2D and 3D GUIs. All the 

necessary functions of this interface are listed in section 4.2, and this interface is 

implemented according to these functions. This interface is designed as an application 

because it uses a socket to communicate with the CD++ server and saves the result file 

locally. As an application, this interface can run in various environments without any 

violation to the security requirements of the computer systems. It also should be 
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remembered that the design of this interface is based on the recent CD++ simulator 

design. To implement these functions, we design many classes. The entire class diagram 

and their inheritance relationships are shown in Figure 5.7:  

 

 

 

 

 

 

 

 
 

 

 

 

Figure 5.6 Class diagram of the client Interface 

 

 

 

 

 

Figure 5.7 Class inheritance diagram of the classes extending Dialog 
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Figure 5.8 Class inheritance diagram of the classes extending Thread 

 

 

Figure 5.9 Class inheritance diagram of the classes extending TextField 

 

This interface includes three main dialogs: ConfigDialog, ServerPortDialog and 

StartDialog. The warning dialogs appear accordingly when needed. It is implemented as 

a menu bar with three menus, each of which corresponds to one of the three main dialogs. 

The user only needs to follow the sequence of menus to use this interface. He can bring 

up the dialogs by selecting the menu item under the menu. Under the first menu, there is 

another useful menu item, it is used to save the choices of the users, which will be used as 

the default choices next time. 

 

The inheritance relationships of most of the classes are straightforward, except three 

classes, SendToServer, Listen and FileProducer (which extend the Thread class). The 

Queue is actually a vector, and we add many synchronized functions to manipulate it. 

The SizedTextField class is sized text field. It is used to ensure the correct format of the 

simulation time by controlling the number of the characters in this text field. 

FileProducer Listen SendToServer 

Thread 

TextField SizedTextField 



 85

The client sends model file(s), an event file (optional) and a stop time (optional) with a 

specific stream to the specified TCP port on the server as follows: 

 

1. Send the model text file, line by line. 

2. Send a delimiter line using only a dot character (“.”). 

3. Send the event list file (send a blank line if the top model does not need external 

events). 

4. Send a delimiter line using only a dot character (“.”). 

5. Send a line specifying the stop time (format: 00:00:00:00). 

 

The CD++ Server returns the result thought the same TCP port with the following 

format: 

 

      1. The result (log) file (X, Y, * and done messages among components). 

      2. A delimiter line using only a dot character. 

      3. The output file. 

 

The main function of this interface is to provide the service to connect with the server. 

The application gets ready to receive the results before sending the model file(s) to the 

server. The results will be saved to a queue. After every certain period, the results in the 

queue will be taken out and saved to a file, and the queue will be reset. After all the 

results have been saved in the result file, the drawlog facility will be launched. 

 
Several threads are started for listening on the port and saving the result. 
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Listening thread: Always listening on the port, once a result arrives, it starts a read 

thread. 

Read thread: Read the result, and save the result in a vector. Start a saving thread if 

there are a certain number of results in the vector, and reset the vector. 

Saving thread: Save the result in the behind of the result file 

 

5.3 Algorithms to Transform 2D Model to 3D VRML 
Model 
 

As mentioned in Section 4, a DEVS model can be created using the CD++ Modeler tool 

(as in Figure 4.2). The model created can be saved into a graphical file, which is the 

graphical representation of the model as in Figure 4.3. The graphical file stores the 

coordinates and all the other related information for all the nodes, and the links between 

these nodes of the model. We can use this graphical file, and transform the 2D model into 

a corresponding 3D VRML model. The algorithms introduced here can be used to 

transform a DEVS atomic or coupled model built with the CD++ Modeler into a 3D 

definition of the same model in VRML. Therefore, the user can transform the 2D model 

graphical file to a 3D VRML model or file, which can be used as an Inline component, or 

as the start point in new model definition. This is very useful in the model definition with 

a 3D VRML environment. The reason is that DEVS coupled models usually include 

many other atomic models and coupled models as its components. These component 

atomic models and coupled models may exist, but they may have been designed in 2D 

with 2D Modeler. 
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The algorithms include three main parts: 

(1) Coordinate Value Transformation: locate the transformed 3D VRML model in the 

center of the VRML scene. 

(2) Node Transformation: how to transform the nodes in 2D model. 

(3) Link Transformation: how to transform the links in 2D model. 

 

Coordinate Value Transformation: 

In the corresponding 3D VRML model file, we can use the same coordinate x and y 

values as in 2D graphical file, and leave the z value to be decided by the users when 

needed. For our algorithms, we suppose the z value is zero. However, to allocate the 

center of the transformed VRML model to the center of the 3D VRML scene, we 

transform the 2D model graph first, as indicated in Figure 5.11. 

 

Where 
 
x2: the x coordinate value in 2D graphical file; 

y2: the y coordinate value in 2D graphical file; 

x3: the transformed x coordinate value in 2D graphical file; 

y3: the transformed y coordinate value in 2D graphical file; 

min: the minimum value; 

max: the maximum value; 

 

From above figure 5.11, we can see that to locate the 2D model graph to the origin (that 

is, the transformed VRML model to the center of the 3D VRML scene), the following 
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  Central lines of the 2D graph 

 

                                  Original graph area 

     

        Origin point (0, 0) 

 

Transformed graph area 

 

 

 

Figure 5.10 Coordinate transformation digraph 

 

transformation equations should be applied: 

 

x3 = x2 - (max x2 + min x2) / 2 

 y3 = y2 - (max y2 + min y2) / 2 

 

After this transformation, the central point of the 2D model graph will be relocated to the 

origin, and all the nodes and links in the model graph will be relocated with the same 

transition accordingly. Therefore, we can use the new coordinate values for our 3D 

VRML model, and calculate the geometric parameters with the new coordinate values. 

 

Node Transformation:  

(max x2, max y2) 

(min x2, min y2) 

(max x2 + min x2) / 2 

(max y2 + min y2) / 2 
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For a node in a 2D graphical file, as we indicated before, we can use a primitive node or 

an Inline node to represent it in 3D VRML scene. To locate it in the VRML scene, we 

can use it as a child node of a Transform node, and we just need to set the translation 

field of this Transform node with the results of above transformation equations.  

 

Link Transformation: 

The links in the model graph are used to represent the message transformation relations 

between the nodes. For each link in 2D model, we will use a cylinder and a cone on the 

cylinder to represent it in 3D VRML scene. The cone is used to indicate the direction of 

message transformation. Since we use a cylinder and a cone to represent a link, we need 

to know the default cylinder and cone in VRML because all the cylinders and cones in 

VRML scene are transformed from the default cylinder and cone. As illustrated in Figure 

5.12, the default cylinder in VRML has one unit in radius, 2 units in length, and its center 

at the origin and the default cone has one unit in bottom radius, 2 units in length, and its 

center at the origin. 

 

Figure 5.11 Default Cylinder node and Cone node in VRML 

 

In order to use them to represent links in VRML scene, first we need to transform the 

default cylinder to let it have the same length as the corresponding link, and then arrange 
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it to the same position and orientation as the corresponding link. To implement these 

transformations, we should calculate the length l link and the orientation α link of the 

corresponding link. First, we should obtain the transformed coordinates (x3_start, y3_start), 

(x3_end, y3_end) with above equations for the two ends of the link. Then, calculate the 

length l link and the orientation (the angle α link between the link and the x coordinate) 

with the following equations: 

 
 

Llink = √ (x3_end – x3_start)
2  +  (y3_end – y3_start)

2 

α link =  tan -1((y3_end – y3_start) / (x3_end – x3_start)) 
 

With the length Llink of the link, we can transform the default cylinder to let it have the 

same length as the corresponding link with the height field in the Cylinder node. Its 

radius also can be specified with the radius field in the Cylinder node as needed. With the 

orientation of the link, we can calculate the necessary rotation angle θ link of the 

transformed cylinder, as illustrated in following figure 5.13. In VRML, counterclockwise 

rotation angle is positive, and the clockwise rotation angle is negative. The calculation 

has four conditions as in figure 5.13. We suppose that the black cylinder is the 

transformed cylinder with the same length as the corresponding link. We rotate this 

transformed cylinder with θ link to let it have the same orientation as the corresponding 

link, and now the transformed cylinder, represented as the gray cylinder, has the same 

length and orientation as the corresponding link. The arrow end (x3_end, y3_end) just 

indicates the input port of the link, which is one of the ends of the link.  
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        (1)            (2) 
  
  x3_end – x3_start  > 0    x3_end – x3_start  > 0 
  y3_end – y3_start  > 0    y3_end – y3_start  < 0 
  α link > 0     α link < 0 

  θ link = - (π / 2 - α link )   θ link = - (π / 2 -  α link ) 

 

 

 

 

 

 

 

 

        (3)            (4) 
  
  x3_end – x3_start  < 0    x3_end – x3_start  < 0 
  y3_end – y3_start  < 0    y3_end – y3_start  > 0 
  α link > 0     α link < 0 

θ link = π / 2 + α link    θ link = π / 2 + α link 
 

 
Figure 5.12 Calculate the rotation angle 
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After these transformations, the cylinder has the same length and orientation as the 

corresponding link, and we just need to relocate the cylinder to the same location (xcenter, 

ycenter) as the corresponding link, as indicated in figure 5.14. The central point (xcenter, 

ycenter) of the link can be calculated with following equations: 

 

xcenter = (x3_start + x3_end) / 2 

ycenter = (y3_start + y3_end) / 2 

 
 

 
 

 

 

 

 

Figure 5.13 Link transformation 
 

 
After the link transformation, we can add the cone to indicate the direction of the 

message transformation. The cone will have a radius several times of the radius of the 

cylinder, and a length comparable with its bottom diameter. It is at the central line of the 

link and has the same orientation as the cylinder. To get all these transformations, we just 

need to set the corresponding translation, rotation and scale attributes of the Transform 

node for the link. 

X 

Y 
(xcenter, ycenter) 
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Chapter 6: Execution Examples 

 
 

In this chapter, we will show different functions of the client with some examples. All 

components in the client have been tested thoroughly with various models. In this 

chapter, we will focus on examples of our 3D result visualization facilities, presenting 

different viewpoints, geometries, scales and color classifications. Finally, we will give an 

example about access to a remote server. For detailed steps about how to use these GUIs, 

you can refer to [7].  

 

6.1. 3D Result Visualization 
 
 
As illustrated in Chapter 2, the result stream obtained when executing a Cell-DEVS 

model can be changed to another output format using the drawlog facility. This new 

output format is a series of two, three or more dimensional matrices depending on the 

number of the dimensions of the cellular model. In 3D result visualization facility, it is 

shown as a three-dimensional matrix of colored nodes with the same size. Each node 

corresponds to a value in the result matrix at a time, and the color palette of the node is 

specified by its value and can be set with a color palette selection facility. If the model 

has more than three dimensions, the drawlog facility can choose the 3D model to show 

by ignoring one, two, three or more dimensions until the results becomes 3D matrices. 

Therefore, it also can be visualized with these GUIs. 

 



 94

In the following examples, we will use a fragment of the result file of a 3D version of the 

heat diffusion model, as in following Figure 6.1. 

 
Line : 166 - Time: 00:00:00:000 
         0    1    2    3          0    1    2    3           0    1    2    3          0    1    2    3  
    +--------------------+    +-------------------- +    +--------------------+    +------------------- -+ 
   0| 24.0 24.0 24.0 24.0|   0| 24.0 24.0 24.0 24.0 |   0| 24.0 24.0 24.0 24.0|   0| 24.0 24.0 24.0 24. 0| 
   1| 24.0 24.0 24.0 24.0|   1| 24.0 24.0 24.0 24.0 |   1| 24.0 24.0 24.0 24.0|   1| 24.0 24.0 24.0 24. 0| 
   2| 24.0 24.0 24.0 24.0|   2| 24.0 24.0 24.0 24.0 |   2| 24.0 24.0 24.0 24.0|   2| 24.0 24.0 24.0 24. 0| 
   3| 24.0 24.0 24.0 24.0|   3| 24.0 24.0 24.0 24.0 |   3| 24.0 24.0 24.0 24.0|   3| 24.0 24.0 24.0 24. 0| 
    +--------------------+    +-------------------- +    +--------------------+    +------------------- -+ 
 
Line : 340 - Time: 00:00:01:000 
         0    1    2    3          0    1    2    3           0    1    2    3          0    1    2    3  
    +--------------------+    +-------------------- +    +--------------------+    +------------------- -+ 
   0| 24.0 24.0 24.0 24.0|   0| 24.0 24.0 24.0 24.0 |   0| 24.0 24.0 24.0 24.0|   0| 24.0 24.0 24.0 24. 0| 
   1| 24.0 24.0 24.0 24.0|   1| 24.0 24.0 24.0 24.0 |   1| 24.0 24.0 24.0 24.0|   1| 24.0 24.0 24.0-12. 5| 
   2| 24.0 24.0 24.0 24.0|   2| 24.0 24.0 71.4 24.0 |   2| 24.0 24.0 24.0 24.0|   2| 24.0 24.0 24.0 24. 0| 
   3| 24.0 24.0 24.0 53.5|   3| 24.0 24.0 24.0 24.0 |   3| 24.0 24.0 24.0 –1.6|   3| 24.0 24.0 24.0 24. 0| 
    +--------------------+    +-------------------- +    +--------------------+    +------------------- -+ 
 
Line : 644 - Time: 00:00:02:000 
         0    1    2    3          0    1    2    3           0    1    2    3          0    1    2    3  
    +--------------------+    +-------------------- +    +--------------------+    +------------------- -+ 
   0| 25.2 24.0 25.2 23.7|   0| 24.0 24.0 27.8 24.2 |   0| 23.0 24.0 23.0 21.5|   0| 22.5 24.0 22.5 22. 7| 
   1| 22.5 24.0 24.4 24.9|   1| 24.0 25.9 25.9 23.0 |   1| 22.5 24.0 24.4 20.5|   1| 22.5 21.1 22.5 22. 5| 
   2| 25.2 25.9 27.1 25.6|   2| 27.8 25.9 25.9 26.1 |   2| 23.0 25.9 24.9 23.4|   2| 22.5 24.0 26.3 22. 7| 
   3| 25.2 26.4 27.1 23.1|   3| 24.2 25.9 26.1 26.1 |   3| 23.0 22.0 24.9 25.3|   3| 24.2 24.0 24.2 21. 2| 
    +--------------------+    +-------------------- +    +--------------------+    +------------------- -+ 
 
Line : 968 - Time: 00:00:03:000 
         0    1    2    3          0    1    2    3           0    1    2    3          0    1    2    3  
    +--------------------+    +-------------------- +    +--------------------+    +------------------- -+ 
   0| 24.1 24.5 24.7 24.0|   0| 24.5 24.7 24.6 24.2 |   0| 23.4 23.8 24.0 23.5|   0| 23.1 23.6 24.0 23. 3| 
   1| 24.0 24.6 24.7 23.8|   1| 24.2 24.5 24.6 24.4 |   1| 23.3 23.5 24.0 23.6|   1| 23.2 23.8 23.8 22. 8| 
   2| 24.7 25.1 25.1 24.6|   2| 24.6 25.1 25.9 24.7 |   2| 24.0 24.4 24.4 24.1|   2| 24.0 24.2 24.2 23. 9| 
   3| 24.5 24.6 25.1 24.9|   3| 24.7 25.3 25.2 24.6 |   3| 23.9 24.4 24.5 23.4|   3| 23.6 24.0 24.2 23. 9| 
    +--------------------+    +-------------------- +    +--------------------+    +------------------- -+ 
 
 
Line : 1292 - Time: 00:00:04:000 
         0    1    2    3          0    1    2    3           0    1    2    3          0    1    2    3  
    +--------------------+    +-------------------- +    +--------------------+    +------------------- -+ 
   0| 24.1 24.3 24.4 24.2|   0| 24.2 24.4 24.5 24.2 |   0| 23.8 24.1 24.1 23.9|   0| 23.8 24.0 24.0 23. 8| 
   1| 24.1 24.3 24.4 24.2|   1| 24.2 24.5 24.5 24.2 |   1| 23.9 24.1 24.1 23.8|   1| 23.8 23.9 24.0 23. 8| 
   2| 24.4 24.6 24.6 24.4|   2| 24.5 24.6 24.7 24.5 |   2| 24.1 24.3 24.3 24.1|   2| 24.0 24.2 24.3 24. 0| 
   3| 24.4 24.6 24.6 24.3|   3| 24.4 24.6 24.7 24.5 |   3| 24.1 24.2 24.3 24.1|   3| 24.0 24.2 24.2 24. 0| 
    +--------------------+    +-------------------- +    +--------------------+    +------------------- -+  

 

 
Figure 6.1 A fragment of an example result file 

 
 
We also need to specify the color classifications for the values in the result file. The color 

palette selection can be brought up in the InfoPanel. Whenever the new color 

classifications have been selected, the nodes in the result space will be updated and 

displayed with the new color classifications corresponding to their values. In our 

examples, we will use the color palette selection illustrated in Figure 6.2.  
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Figure 6.2 Color palette selection 
 
 
6.1.1 Geometry Selection 
 
 

We can use different geometries to represent the nodes in the result space. The user can 

select box, sphere, cone or cylinder as the geometry of the nodes in the result space as in  

following Figure 6.3. It uses the result in Time: 00:00:03:000 in above example file. 

 
  

 
 



 96

 
 

          (1) Box         (2) Sphere 

 

      (3) Cone                                             (4) Cylinder 

 

Figure 6.3 Different geometries 

 

As we can see, the original result matrix is now shown as a 3D VRML model consisting 

of colored nodes with the same size. Each node corresponds to a value in the result 

matrix, and the color palette of the node is specified by its value and set with a palette 

selection facility.  
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6.1.2 Different Viewpoints 
 
 
Another facility available enables the users to select different viewpoints to visualize the 

results. This can be seen in figure 6.4. 

 
 
(1) User's Eye           (2) Side view 1 

 

 
(3) Side view 2          (4) Random viewpoint 

 
 

 
 

 
The user can select any viewpoint defined in the VRML file to visualize the result. Here, 

we select viewpoints User's Eye and the Side view 1 and Side view 2. In addition, the user 

can select any viewing area, that is, any viewpoint, as in (4). 

 

Figure 6.4 Different viewpoints 
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6.1.3 Continuous display 
 
 
The navigation facilities enable displaying the results following the sequence of the 

original simulation. The user can see the results continuously, advance step by step, move 

backwards, or jump to any certain time. Figure 6.5 shows the execution results obtained 

using these functions. 

 
 

    (1) Time: 00:00:02:000    (2) Time: 00:00:03:000 
 

 

    (3) Time: 00:00:04:000     (4) Time: 00:00:05:000 
 

Figure 6.5 Continuous advance 
 
 
If the result is displayed continuously with the same sequence as the simulation, the user 

can check the simulation progress. (1), (2), (3) and (4) respectively display the results in 
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time 00:00:02:000, 00:00:03:000, 00:00:04:000 and 00:00:05:000.  

6.1.4 Edit a Node in the Scene 
 
 

The user also can edit a single node in the scene, changing its shape, color palette or 

position, deleting it or re-displaying it, as shown in the following figure. 

 
 

 
 
  (1)      (2) 
 
 

Figure 6.6 Edit single node 
 
 
The edited node will keep the modified attributes. Therefore, the user can highlight the 

special nodes he wants to check. A user can modify a node with color palette, size, 

translation and rotation, or delete the node. In addition, the user can redisplay a 

previously deleted node.  
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6.1.5 Delete a Layer 
 
 

The user can remove any layer in the display to check the result of certain phenomena 

easily. In following figure 6.7, we show the previous examples, but level 1 was removed, 

which can be redisplayed later if needed. 

 
 
6.1.6 Scale Nodes  
 
 

The nodes in the scene can be scaled up or down, as shown in Figure 6.8, where the 

nodes have been scaled to the minimum distance and cannot be scaled further. The nodes 

also can be scaled to smaller size. 

 

 

Figure 6.7 Delete layers 

Figure 6.8 Scale nodes 
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6.1.7 Transparent Display 
 
 
Sometimes, the users do not want to display the nodes with special values. They can do 

this by setting the color palette as white in the color palette dialog as in figure 6.9. Then 

the nodes with the values within those special value ranges will not be displayed as in 

figure  

6.10. 

 
 
 

 

We can see the nodes whose values fall in the ranges 24.4 to 24.8 and 25.2 to 25.6 are not 

displayed. This is very useful if the user just wants to monitor the nodes with some 

special value ranges.  

          

Figure 6.10 Transparent display 

Figure 6.9 Color selection 
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6.2 Multi-View 

 
Multiple instances of the GUI can be activated to visualize the same result, using 

different viewing areas, as shown in the following figure 6.11. Different geometry or 

Inline nodes can be used if needed, as shown in the following figure 6.12. 

 

(1) Side View 1    (2) Entry View 

Figure 6.11 Use different viewpoints 

In Figure 6.11, two GUIs are used to visualize the same result with different viewpoints. 

In addition, different GUIs can use different geometry or Inline nodes, as in following 

Figure 6.12 

 

  (1) Use Cone in Side View 1        (2) Use Inline node in Entry View 

Figure 6.12 Use different geometry 
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6.3 Remote access  

 

When the CD++ simulator works as a server, the Client Interface should send model files 

to the server and the server will send back the result. All the results will be saved in a 

local file, as the one in Figure 2.3. Then the client will launch the drawlog facility to 

change its format to be visualized by the 2D and 3D GUIs. 

 

Figure 6.13 Remote access example 

 

The above figure 6.13 shows the client is receiving the results from the server. Each line 

is one of the messages sent between components in the model with a timestamp. At the 

same time, the results will also be saved in a buffer. When the buffer is full, the results 

are attached to the end of a local file and the buffer is reset. 
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6.4 Transform 2D model to VRML 3D Model 

 
A 2D DEVS model (saved as a graphical file) can be transformed to a VRML 3D model 

with a tool which implements the algorithms illustrated in section 5.3. This tool is a 

utility included in the VRML visualization GUI. For instance, the 2D model in Figure 4.3 

is transformed into the 3D VRML model in following Figure 6.14. 

 

Figure 6.14 Transformed VRML 3D model example with texture 

 

The coupled models are represented with box nodes. These box nodes can be textured 

with images to represent the components in the real system, such as, one of them is 

textured with a processor image to represent a processor in the real system. In addition, 

the coupled models also can be represented by Inline nodes. The input/output ports are 

represented with nodes with sphere shape, they also can be represented as other suitable 

shapes. There is a cone on each link to indicate the direction of the message 

transformation between the components. This utility can be used to transform a DEVS 

atomic or coupled model built with 2D Modeler into a 3D definition of the same model in 
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VRML. Therefore, the users can transform the old 2D models directly, and need not input 

them again, and use the transformed VRML 3D model as a start to build new models. 

 

The other utility is to transform 2D model (saved as a graphical file) to a VRML file. The 

VRML file in Figure 6.15 is translated from the 2D model in Figure 4.3. Any object in 

the scene is represented as a Transform node in the file.  

 

Figure 6.15  3D VRML model file (states/nodes) 

 

In Figure 6.15, the VRML file head and a viewpoint node are added. The nodes in the 

scene are shown as Inline nodes, and their positions are calculated with the algorithms 

mentioned in section 5.3. The link transformation is shown in Figure 6.16. It is 
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transformed as a long cylinder calculated with the algorithms mentioned before, and for 

each cylinder, a cone is added to indicate the direction of the message transformation 

between the components. Their positions and orientations are also calculated with the 

algorithms mentioned in section 5.3. This VRML file can be saved and used as an Inline 

node in the new model input later. 

 

Figure 6.16 3D VRML model File (links) 
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Chapter 7 Conclusion and Future Work 

 

7.1 Conclusion 

 

Simulation is becoming increasingly important in the analysis and design of complex 

systems. DEVS is a formalism for modeling and simulation gaining popularity in recent 

years and has found a variety of applications. CD++ implements the DEVS formalism 

and can be used to simulate DEVS and Cell-DEVS models. CD++ is a tool that can 

simulate complex physical systems, and can be used to simulate a variety of models.  

 

Visualization is also very important in modeling and simulation, it uses simulation results 

to construct useful 2D or 3D images. Visualization tools are crucial in helping to better 

understand the behavior of complex systems. Now visualization has become an integral 

part in modeling and simulation. Effective simulation tools must include good 

corresponding visualization tools.  

 

To facilitate the users to use the CD++ simulator, we extended its design to provide a 

number of services using a client/server approach. This client provides a series of tools, 

including the CD++ Modeler, 2D and 3D result visualization tools, and an Interface for 

remote simulation model execution. All these tools provide enough functions to be 

organized as a remote simulation environment in the CD++ simulation.  

 

The client is implemented with Java and VRML. Java is the most popular object-oriented 
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programming language, and VRML is a Web-based graphics language for building 3D 

models. Therefore, the client can run on a variety of operating systems and environments.  

 

The CD++ Modeler can be used to build atomic and coupled models, which can be 

executed with the CD++ simulator. It uses graph-based notation to represent the entities 

in the real system, and the relations between these entities. This facility has highly 

enhanced previously existing means for model definition in CD++ by defining the 

models with graph units, not using text edition tools as the previous ones.  

 

A 2D visualization tool can be used to visualize the results of executing atomic models, 

Cell-DEVS models and Coupled DEVS models. The 2D visualization provides a very 

simple method for understanding model execution, however the user must understand 

intellectually the relationships between several 2D raster images and compare them to 

figure out how the real system looks like. Therefore, a 3D visualization tool also has been 

developed, it can display the simulation results in a 3D format.  

 

The 3D visualization GUI enables sophisticated visualization of Cell-DEVS models. To 

better understand the results, the user can select different shapes to represent a node in the 

3D space, select different color classifications, or hide some nodes with specific values, 

edit individual node and remove layers. It also allows the users to navigate in the 

visualization with many ways he likes.  

 

The Interface in this client can send simulation models to a remote CD++ server, then 
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receive, and visualize the results locally. The user can access any remote CD++ 

simulation server in the Internet/Intranet around the world for simulation services.  

 

As indicated in Chapter 2, a number of recent efforts have been devoted to build DEVS 

models and cellular models. For CA tools, some are only for 1D or 2D models. They 

were designed as an applet or application, in which the users can change the size of the 

model and the color palette map, specify some characters of the model, select many 

existing rules or try their own rules, then initiate and run the model. Some enable 3D 

visualization of the executing cells, but they do not have the 3D visualization abilities we 

need. When we consider DEVS tools, we see that some of them have not visualization 

facilities, and the users have to develop themselves. Some provide some basic 

visualization tools, such as, SimBeams and JDEVS. SimBeams provides a set of visible 

components, and the users should select these components to build their own 

visualization tools for their specific models. JDEVS provides sophisticated visualization 

tool, but it is mainly for GIS, and only displays the data with the outside entities. 

DEVS/Java provides some interface to visualize the state of the components in the 

models although no powerful visualization methods are included, and can execute the 

model in a web browser, but does not provide client/server facilities. DEVS/HLA 

discusses the architecture about how to build large-scale distributed modeling and 

simulation environments, and it should be implemented with a programming language. 

 

As illustrated in this thesis, we attacked and solved these problems, and we developed 

four main components for a remote simulation and visualization system. The CD++ 
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Modeler provides an easy way to input model with graph units. The 2D visualization GUI 

provides a very simple method for understanding DEVS model execution with various 

navigation methods, and the users can control many important visualization parameters 

for better understanding the results. The 3D visualization GUI enables sophisticated 

visualization of 3D Cell-DEVS models with various navigation methods. The users can 

get into the inside of the model, edit the 3D VRML scene, even individual node for better 

understanding the results. The Interface provides an easy way to connect remote server, 

and can connect different users in many places together. 

 

Users can easily build the models and visualize the results locally on basic workstations 

with 3D visualization GUIs, while executing the models remotely in a high performance 

platform anywhere in the world. With this client, a remote simulation system can be 

easily established in various environments (such as, Windows, Unix, etc). In addition, 

this client also can run several different models simultaneously and easy to be extended 

to support multi-observer simulation. A series of examples were executed to demonstrate 

the feasibility of this approach. All of the research goals stated in section 2.5 have been 

reached. 

 

7.2 Future Work 

 

The facilities introduced in this thesis have significantly improved the user interaction in 

comparison to the previously existing tools, thus facilitating the users to build model and 

analyze the simulation results. There are still many ways to improve this client. The 
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following is a proposed list of improvement and extensions. 

 

• Model Consistency Checking 

It is very important to ensure that the model design conforms to the DEVS formalism. 

Although the CD++ Modeler can check the model consistency with the rules in 

section 4.1 when the design graph is exported as a model file, it is more convenient to 

check the model consistency during the model input. There are two methods to do 

this: a) check model consistency once a new link has been added to the new model, b) 

provide port choices for the users when a new link is added to ensure that it starts 

from an output port and ends at an input port. 

• Model Execution Exception Handling  

When CD++ works as a server, the model is executed on the remote server. However, 

when an error occurs and the simulation execution stops, the exception messages are 

only displayed on the server and no any reply are sent back to the user. It would be 

more convenient that the server checks the model file for consistency first before 

execution, and if there is any error in the model file, the server can send back a 

message and indicate the error. The server also should send back the exception 

messages to the clients and indicate the errors in model execution. 

• Visualizing Model Identification  

After the viewing area has been changed, or some nodes have been deleted in the 3D 

VRML scene. The user may be confused by the new display and finds it difficult to 

identify the nodes, that is, the node-value mapping again. Therefore, new methods 

should be developed, and the user can choose how to visualize the result to facilitate 
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the model identification. 

• Expanding the VRML Library 

More Inline files and images for texture feature should be found or designed to 

represent the objects in the real system. With these files and images, two libraries 

should be built and organized as databases to facilitate the management and selection 

of the Inline nodes and images. 

• Networking improvement 

Recent networking is point-to-point communication between the user and the server, 

that is, just the user who sends model to server can receive the result. In the multi-

observer simulation situation, many users should receive the same results at the same 

time. Instead of being implemented in client side as in this these, it is more 

convenient to be implemented in server side and the model sender just specifies all 

the receivers of the results when he sends the model. 

• Optimization Method for the Modeler 

If the model is complex, there will be many nodes and links in the design area. It 

would be very hard to identify the nodes and links in the model graph because these 

nodes, links and their names overlap each other. Therefore, it is necessary to use 

optimization algorithms, such as, Simulated Annealing (SA) [21], to optimize the 

arrangement of all these noses and links. The user can select several goals for the 

optimization, such as, minimizing the number of the link-link crossings. 

• Use new technologies, such as, XML (eXtensible Markup Language) [8] and X3D 

(Extensible 3D) [37] 
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XML: over the last few years the Web has evolved from HTML quite dramatically 

with revolutionary techniques for content and structural modeling, such as, XML. 

Compared to HTML, the content of XML documents is enriched with semantic and 

structural features, and is completely separated from its visual appearance. This 

allows a Web document to be displayed in any desired form. With such an 

unrestricted choice, many companies and end users prefer a graphically rich 

document appearance with effective visual access to semantic and structural 

information. 

X3D: a next-generation, extensible, 3D graphics specification that extends the 

capabilities of VRML97. X3D is building upon the success of the VRML 97 ISO 

standard with clearly defined backward compatibility with existing VRML content. 

Now X3D is a next-generation 3D standard that includes integration with XML, and 

defined as an interoperable set of lightweight, composable 3D standards that flexibly 

address the needs of a wide range of markets, including Internet and road cast 

applications.  
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