Modelling a Sand Pile Application Using Cell-DEVS

Hesham Saadawi

Gabriel Wainer

Dept. of Systemsand Computer Engineering
Carleton University
4456 M ackenzie Building
1125 Colonel By Drive
Ottawa, ON. K1S5B6. Canada.

Keywords:. cellular automata, cellular models, Cell-DEVS,

DEVS models.

Abstract

Cell-DEVS formalism extends cellular automata modeling. In this
paper, we present a simple model for landslides using a model of a
sand pile. The model uses Cell-DEVS formalism and CD++ tool
to model and simulate landslides. Using this simple model, we
present how Cell-DEVS formalism can be used to model systems
that involve material accumulation and flow. Material flow and
accumulation need special modeling consideration with Cell-
DEVS to preserve mass conservations law. In modeling such
systems, not only model updating rules would be important for
correct behavior, but also choosing the model characteristics as
type of delay would affect that behavior.

1. INTRODUCTION.

In recent years, computer simulation has playeeyaréle in the
analysis of complex natural systems. The cellulatofnata (CA)
formalism has recently gained popularity to descgbmplex
physical systems [1]. CA is defined as infiniteimensional
lattices of cells whose values are updated accgrtdira local rule.
This is done simultaneously and synchronously usiegcurrent
state of the cell and the state of a finite setezrby cells (known
as the neighborhood). Unfortunately, CA has showdthve
different problems to model physical systems: theyally require
large amounts of computational time, mainly duggo
synchronous nature.

The Cell-DEVS formalism [2] solved these problenysulsing the
DEVS (Discrete EVents Systems specifications) fdisma[3] to
define a cell space where each cell is defined BEYS model.
This technique permits to build discrete-event csflaces,
improving their definition by making the timing sgpfication more
explicit. Besides this, discretizing the model into a bidisienal
grid poses constraints on the precision that caachéeved by the

model. Finite element analysis, instead, is ableravide higher
precision due to the characteristics of the tealmiq

Here we are going to show how to use Cell-DEVS &ald pile
model. Sand pile models provide means to analyzthqaake
phenomena, as major earthquakes often cause ldesislh [4] an
effort for modelling such an event using cellulatanata was
presented, and we will show how a model of thisuratan be
modeled using Cell-DEVS.

2. THE DEVSFORMALISM

Cell-DEVS defines cell spaces in which each celliefined as a
DEVS model. The DEVS formalism was originally prepd to
model discrete events systems. A DEVS model ig lbigihg a set
of behavioral models calledtomic, which can be combined to
form Coupled ones. A DEVS atomic model is defined as:

M=< Xv Sva 6intx 69)(11 }\1 D>

Input external events are considered to be recaivéaput ports

(X). When an event arrives, the model executes therrey
transition functiomd., to produce a state change. Each state has an
associated duratioD. When this lifetime is consumed, the internal
transition function §,,; is activated to produce internal state
changes. The internal st&ean be used to provide model outputs,
which are sent through the output port3. (They are sent by the
output function\, which executes before the internal transition.

A DEVS coupled model is defined as:
CM=<XY, D, {Mi}, {l }{Z}>.

Each coupled model consists of a setDbfbasic modelsM;

connected through input/output ports. The listdiiencees; of a
given model is used to determine the models to kvtoatputs
must be sent. These sets are used to build theldtem function
Z;;, which is in charge of translating outputs of adeldnto inputs
for the others. An index of influencees is credimdeach model

(I;). For everyj in the index, outputs of mod®; are connected to
inputs in modeM,;.

In Cell-DEVS, each cell of a cellular model is defil as an atomic
DEVS model. Cell-DEVS atomic models are specifisd a
TDC =<X,Y, S, N, delay, A, Oext» T, A, D >.

Each cell will use th&\ inputs to compute the future st8eising

redistributing its content to its four non-diagdpaheighboring
cells, whenever it contains four or more sand pladi In case of
four particles, the cell would be empty after rédhsition. For any
number above four particles, the cell would onlgtidbute four
sand particles to its neighbors and keep the refit iThe model
can be described as:

1. The model is initially loaded with some sand p&tdn some

the functiont. The new value of the cell is transmitted to the of its cells, or it can be empty.

neighbors after the consumption of the delay fumctiAtransport
delay allows us to model a variable commuting tioreeach cell
with anticipatory semantics (every scheduled evergxecuted).

2. A particle would arrive at a random time intervadsthe cell
at the center of the model.
3. Every cell has a maximum capacity of four particéen a

Usinginertial delays, the semantics is preemptive: some schedulecell reaches this capacity, a redistribution openatvould begin

events are not executed due to a small intervavdsst two input
events. Therefore, the outputs of a cell are nahsmitted
instantaneously, but after the consumption of teéayd Delay
defines the kind of delay for the cell, andits duration. This
behavior is defined by th&, ., A andD functions, as in other
DEVS models.

Once the atomic cell model is defined, a numberedis they can
be put together to form a coupled model, built asaaray of

atomic cells. A Cell-DEVS coupled model is defirted

GCC=< Xistv Y|iSlv Xv Yv n, {tlx--.lm}r Nx Cx Bx Z>,

The cell space& defined by this specification is a coupled model

composed by an array of atomic cells with sizex{..x t,}. Each
cell in the space is connected to the cells defilgd the

neighborhoodN. The cell space can be “wrapped”, meaning that

cells in a border are connected with those in thposite one.

Otherwise, the bordeB should have a different behavior than the

remaining cells. Th& function allows one to define the internal
and external coupling of cells in the model. Thisndtion
translates the outputs of output parin cell Cij into values for the
m input port of cellCkl. The input/output coupling lists can be
used to interchange data with other models.

CD++ [5] is a tool that allows a user to implem&&EVS models.

The tool is built as a hierarchy of models, eachthaim related
with a simulation entity. Atomic models can be pegmed in

C++. A specification language allows defining theodal's

coupling, including the initial values and exterpaknts. The tool
also enables a user to build Cell-DEVS models. Emyuage

provides a set of primitives to define the sizehaf cell-space, the
type of borders, a cell's interface with other DEW®dels and a
cell's behavior. In the following sections we wshow how to use
Cell-DEVS to model a sand pile model.

3. ASAND PILE MODEL

This model represents a sand pile on a table hegas divided to
a grid of cells. Sand particles are added to thequntinuously at
the middle cell at discrete time intervals. Each emuld start

that results in emptying this cell and adding omaetiple to each
non-diagonal neighboring cell.

4. The redistribution operation can trigger another
redistributions among neighboring cells, which umnt can do the
same for their neighbors.

5. Boundary cells would lose particles to the envirenmat
sides were there are no neighboring cells.

6. The redistributions would represent avalanchefhémodel.
Severity of an avalanche can be measured eitheuimper of cells
participating in a redistribute operation, or bymher of particles
lost from border cells.

01

op

0,1

Figure 1: Neighborhood cells.

A Cell-DEVS model will represent the sand pile hyiding the

model area in a grid of 10 by 10 cells. The neighbod cells are
defined as the diagram shows in Figure 1. The fospecification

for the corresponding Cell-DEVS model is defineddai®ws:

M=<I,X,Y,Xlist,Ylist, n, N,{f,c}, C, B, Z, select>

I=<PX Py> with PX={(N(5,5), binary) }, Py={®};
X=1; Y= ®; Xlist={IN}; Ylist=®

n=5; N={(0,0),(0,1),(1,0),(0,-1),(-1,0)}

f=10; ¢ =10; C={Cij/e[1,1], je[1,c]}

B={ (Cij | i = 1,10; je[1,10]) , (Cij | j = 1,10;4[2,9]}

Z:

P, Py CTREICEE
P, 2Py Ry 2P
PP Rjr Py
Pij¥4.p,, X Pay,V 4P
Pij¥4.p, % P, 4P

Select={(0,1), (1,0), (O,-l),(-i,O), (0,0)}

This model can be defined in the CD++ tool as showFigure 2.

[top]

conponents : sandpile particl eGenerator @ener at or
link : out @articleGenerator in@andpile

out out

link : out @articleCGenerator out

[sandpi | e]

type : cell

dim: (10, 10)

delay : inertial border : now apped

nei ghbors : (0,1) (1,0) (0,-1) (-1,0) (0,0
in: in

link : in in@andpile(5,5)

localtransition :
portlnTransition :
rule

sandpil e-rul e
i n@andpi | e(5,5) NewParticle-

[sandpi | e-rul e]

rule : { statecount(4)+statecount(5)+
statecount (6) +statecount(7)- 1 } 100 { (0,0) =
rule : { statecount(4)+ statecount(5)+

st at ecount (6) +st at ecount (7) +(0,0)} 100 {(0,0)< 4}
rule : { (0, 0)+stat ecount (4)+statecount (5)+

st at ecount (6) +statecount (7)-1-4} 100 { (0,0) > 4}
rule : {(0,0)} 100 { t }

4}

[NewParticl e-rul e]

rule : { statecount(4)+ statecount(5)+

st at ecount (6) +statecount (7) +(0,0) + 1} 2 {(0, 0)<4}
rule : { statecount(4)+ statecount(5)+

st at ecount (6) +statecount (7)+(0,0)} 2 {(0, 0)>=4}
rule : {(0,0) + 11} 2 {t}

[particl eGenerator]
distribution : exponential
mean : 2 initial : 1

increment : 0

Figure 2. CD++ tool model definition file

For each cell, it can take one of the followingueal (states). These
values and their meaning are described in Table 1.

Meaning

An empty cel

A cell filled with one sand partic

A cell filled with two sand particle

A cell filled with three sand particl

A cell filled with four sand particles — It
starts to distribute all 4 particles to neighbors
in next time stej

5 A cell filled with five sand particles — It
distributes four particles and keeps one in
next time stey

Value

HIWIN[FR|O

6 A cell filled with six sand particles - It didbates
Four particles and keeps two in next time ¢
7 A cell filled with seven sand particles —

It distributes four particles and keeps three
in next time stey

Table 1. Cell's state description.

The first rule insandpile states that for a cell with exactly four
particles in it, the cell would take a new valueigdgo the sum of
neighboring cells that are distributing, minus ¢aeount to itself
in statecount(4). As we only have 4 neighbors, tieev value

assigned would be between 0 (in case no neighbostigs giving
me any particle) to 4 (in case the cell has distet its particles to
neighbors, and taking one particle from each neigttat has 4 or
more particles). This can be shown in Figure 3this case, the
cell is to distribute to 4 neighboring cells, eaglth less than 4
particles.

-

/

Figure 3. Rule 1 at (0,0), Rule 2 at all others

Figure 4 shows the case of a cell distributing ééghbors, and
three of its neighboring cells are having 4 or nqmadicles. Hence,
it will get one particle from each overflowing c@ith 4 or more
particles in it).

/

S EACE

N P
O‘ L]
)

Figure4. Rule 1 at (0,0) and (1,0); Rule 2 at (0,1); Rukz 81,0)
and (0,-1)

The second rule ofandpile tells that if the cell has less than 4
particles, then it will not redistribute to its ghbors. The cell will
only receive one particle from each overflowingghdior (which
has 4 or more particles), and will add receivedtigas to its
current value.

The following rule states that if the cell containore than 4
particles, then it will redistribute only 4 partsl to the neighbors,
and retain the rest. Add to that any particlesrithisted from over
flown neighbors. We subtract 1 to count for seditstas it would
be counted (self value is more than 4), and weraob# to count
for 4 particles distributed to neighbors.

Finally, we define a default rule to keep the osdintents of
particles if none of the previous rules is held.

The NewParticle rule is used for arrived sand articles generated by
the DEVS generator model. If contents are less thparticles, for
any arrival from the generator, the cell will ingrent its contents
by 1 particle. Add to this any particles comingnfr@verflowing

neighbors. Likewise, if the cell's contents arer4nore particles,
the cell will add 1 to its contents, plus any pdes from

overflowing neighbors. We subtract one from finegult to count
for the self state (I contain more than 4 particlés the

“statecount()”.

4. TESTING THE MODEL

We test the simulation results of our model in orgeverify that
the desired behavior is obtained. We selected rdiffe initial

values to test different possible situations antbstuFirst, we
checked that the behavior of the model cells wastidal to the
required behavior in the way distribution is handi8econd, we
tested that no sand particles were lost or crefatethe whole grid
after every redistribution, i.e. the total numbésand particles on
the grid remained constant after redistribution.

In our first test case, we initialized some cellshw4 or 5 sand
particles, keeping the others empty. The input frdva Sand
Generator was disabled as we intended to testtbeiSand Pile
Cell-DEVS model. The results of this test can bense Figure 5.
We can see that all cells with initial value of vk distributed
their contents to neighboring cells and contair gearticles (Rule
1). Only the cells which initially contained 4 oone particles and
a neighbor with 4 or more particles (distributiredls) would get a
particle from each distributing neighboring cels @,2), (1,3)). A
cell like (2,6) would get a particle from each dksaiting neighbor
(2 in this test). In addition, for all cells wittoetent of less than 4
particles (Rule 2), their content has increased wite particle
arriving from each distributing neighbor. The réswdre correct as
per our model specifications. Total number of spadicles on the
grid before and after redistributions is the safr2loparticles.

Line : 244 - Tinme: Line : 2124 - Tine:
00: 00: 00: 000 00: 00: 00: 100
0123456789 0123456789
S + S +
0] | 0] 11 |
1| 45 | 1] 11211 1 |
2| 4 4 | 2| 111 2 1
3| | 3| 111 |
4| 4 | 4 11 |
5| | 5 1 |
6| [6| [
7| | 7| |
8| | 8| |
9 [9 [
S + S +

Figure5. Test case 1 results.

Our second test included checking the Generator ®Edel,

and execution results of this test can be seergur& 6. At each
time interval, the Sand Generator would generat®wput with

value of 1 to represent a new sand particle. Tmervals between
generated outputs can be chosen to be one of mafmbalglity

distributions. In this example, we used an expaaédtistribution

with mean of two time units.

00: 00: 00: 000 out 1 | 00:00:33:429 out 1
00: 00: 00: 082 out 1 | 00:00:37:892 out 1
00: 00: 01: 274 out 1 | 00:00:38: 674 out 1
00: 00: 01: 628 out 1 | 00:00:38:761 out 1
00: 00: 01: 683 out 1 | 00:00:39:702 out 1
00: 00: 08: 724 out 1 | 00:00:42:120 out 1
00: 00: 10: 657 out 1 | 00: 00: 45: 428 out 1
00: 00: 12: 120 out 1 | 00:00:46:175 out 1
00: 00: 15: 903 out 1 | 00:00:47:403 out 1
00: 00: 16: 234 out 1 | 00: 00: 49: 485 out 1
00: 00:17:199 out 1 | 00:00:50: 344 out 1
00: 00: 18: 745 out 1 | 00:00:53: 125 out 1
00: 00: 19: 115 out 1 | 00: 00: 55: 747 out 1
00: 00:20: 089 out 1 | . . .

00: 00: 24: 063 out 1 | 00:09:55:741 out 1
00: 00: 25: 517 out 1 | 00:09:59:545 out 1
00: 00: 25: 663 out 1 | 00:09:59: 645 out 1
00: 00:27:692 out 1 | 00:09:59:875 out 1

Figure 6. Sand Generator test results.

In Figure 7: test case 2 results., we show thelteest a test in
which the Generator is disabled, as we want tortdst1 (for cells
containing 4 particles) and rule 3 (for cells camitey more than 4
particles). In this test, cell (1,3) takes valueSoparticles along
with other cells containing some other values. \& is next time
step all cells having 4 or more are distributingell@1,3) has
distributed 4 particles and kept one, plus 4 plagicfrom

distributing neighbors (Rule 3). In next time stemll (1,3)

redistributes all its 4 particles and stays empByl¢ 1). The model
starts with 42 particles and ends with the samebmuraf particles
after all redistributions, thus it conforms to #pecifications.

Line : 251 Line : 414 - Line : 2202 -
Ti me: 00: 00: 000 Ti me: 00: 00: 100 Ti me: 00: 00: 200
0123456789 0123456789 0123456789
F + B + B +
0] | 0] 1111 | 0| 1121 |
1| 5454 | 1) 122412 1 | 1)123 22 1 |
2| 544 | 2| 1223 2 1 | 2] 1233 2 1
3] | 3| 221 | 3| 221
4 47 | 4 1231 | 4 1231 |
5] | 5] 11 | 5] 11 |
6] | 6| | 6| |
7] | 7| | 7| |
8| | 8| | 8| |
9| | 9| | 9| |
e + e o + e +

Figure 7: test case 2 results.

In the third test case, we tested the model witliilled cells each
with 4 particles or more. The cells are all intéroa the grid so
that no sand particles would escape the grid fronddr cells. As
shown in Figure 8, the cells are distributing theontent to
neighbors until a steady state is reached. In fthige, the first
three time steps are shown along with the finap ste model
execution. We begin the test with 56 sand partictethe grid, and
finish the test with the same number after redistion. This result
confirms the model behavior as specified. The infsatn the
Generator is disabled as we test only Sand PileIEVS model.

Line : 246 - Tinme: Line : 401 - Tine:
00: 00: 00: 000 00: 00: 00: 100
0123456789 0123456789
Fommmm e n + Fommm e +
0l | 0l 1
1] 43 | 1] 112 5 |
2| 674 4 | 2| 14623 1 |
3| 676 | 3| 157411 |
4| 45 | 4] 1232 |
5] | 5] 11 |
6| [6| |
7| | 7| |
8| | 8| |
9| [9 |
o m e e e o + o m e +
Line : 749 - Tinme: Line : 3034 - Tine:
00: 00: 00: 400 00: 00: 01: 200
0123456789 0123456789
Fommmm e n + Fommm e +
0| 11 | o] 11111 |
1] 233211 | 1] 2131311 |
2| 2432 21 | 2| 111 3221 |
3] 321531 | 3] 1123 12 |
4] 214 1 | 4] 33132 |
5] 221 | 5] 231 |
6| | 6| |
7| [7| |
8| | 8| |
9 [9 |
T + o m e +

Figure 8. Test case 3 results.

5. SAND PILE MODEL EXECUTION

RESULTS

The complete model is composed of a Generator (@D&Eodel)

and SandPile sub-models as shown in Figure 9. The Generatg

generates sand particles in discrete time inteasadsdelivers them
to the SandPile model. These time intervals for arriving sand
particles are simulated by exponential distributidn each
interval, one or more patrticles can be added t&thdPile model.

In our example run, only one sand particle is geteer at each

time interval.

Sand
(rerierator

DEVSmodel

L 4

Cell- DEVS miodel

Figure 9. Sand Generator and SandPile models connected.

The sand particle is put into center cell (5,5)e Tell (5,5) would
accumulate sand particles to the overflowing liofit4, and then
start redistributing its contents to neighbors. eAfneighboring
cells get 4 particles, they start redistributing @thers. An
avalanche as defined per [4], can be measured impeuof sand
particles escaping from border cells or by numbeedistributing
cells in one avalanche. More work on how to gats@tistics
information can be done on the model. Some of ttecugion

results are shown in Figure 10. In order to traosé results, times
of sand particles arriving from the Sand Genera®rshown in

Figure 6 should be consulted with Figure 10. Whenevparticle

arrives from the generator, it appears in middlé &5) after a

delay of 2 time units, as seen in 00:00:00:002 tstep. Cells

would react to changes in their neighbors after i®@ units as

specified in our model. This can explain cell (5;&ching value
of 5 at time step 00:00:01:685 before redistribyiths according to
the rules, redistribution happens after 100 umits)e arrival of a

new particle shows in 2 time units.

Line : 221 - Line : 248 - Tine: Line : 275 -
Ti me: 00: 00: 000 00: 00: 002 Time: 00:00: 084
0123456789 0123456789 0123456789
Fommemmaaa + Hommemmaaa + Fommmme o +
0| | 0l | 0| |
1 | 1] | 1 |
2| | 2| | 2| |
3 | 3| | 3 |
4 | 4 | 4 |
5] | 5| 1 | 5] 2 |
6] | 6| | 6| |
7] | 7| | 7] |
8| | 8| | 8| |
9| | 9| | 9| |
T + L + S +
Line : 349 - Line : 388 - Tine: Line : 408 -
Time: 00:01: 685 00: 01: 730 Time: 00:01:785
0123456789 0123456789 0123456789
Fommemmaaa + Hommemmaaa + Fommmme o +
0| | 0l | 0| |
1 | 1] | 1 |
2| | 2| | 2| |
3 | 3| | 3 |
4 | 4 1 | 4 1 |
5] 5 | 5] 151 | 5] 111 |
r 6l | 6| 1 | 6| 1 |
7] | 7| | 7] |
8| | 8| | 8| |
9| | 9| | 9| |
T + L + S +
Line : 511 - Line : 58549 -
Time: 00:10: 659 Time: 09:59: 947
0123456789 0123456789
Fommemmaaa + Fommmme o +
0] | 0] 21123 321 |
1| | 1|1 33241212|
2| | 2| 13222 4331|
3] | 3| 2324 224 3|
4] 1 | 4] 322 442 33|
5| 131 | 5| 4 2463213|
6] 1 | 6] 314223 413|
7 | 7| 2234 24 31|
8| | 8| 113 311323|
9| | 9| 213333132
Fommemmaaa + Fommmme o +

Figure 10: Some Execution results of SandPile model

6. CONCLUSION

In this paper, we have seen how to model naturaldiédes using
Cell-DEVS formalism. As all material flow betweeslls is done
through changes in cell value, care needed tokemti guarantee
consistency of the model results through the of lewass
conservation.

The model behavior is found to be best represemteeh using
Inertial delay. This is because some rules thatraatate sand
particles into a cell as Rules 2 and 3, need t@Xeeuted only
once in one time step. Executing these rules niwe dnce would
increment cell's value unnecessarily. Inertial glela found to
solve this problem because if a cell is notifiedesal times in one
time step due to changing neighbors, its valuevauated and
incremented only once for all notifications as thalyfall in the
same time step. In transport delay however, evalsitof cell’s
value would be made sequentially without preempiimgvious
value, thus accumulating a false value in the cell.

The above problem may also be solved if the CeN/BHEnodel
allows us to notify neighbors at only some preuedi states (like
a threshold states). All other intermediate statest are not
important to neighboring cells can be kept withoatifying them.
This would be the case when a cell changes itevialim 0 to 1,2,
or 3. As all these changes do not involve redistiin to other
cells, hence, we don't need to notify neighborslitese changes.
This would not only enhance efficiency of executibut would
also prevent such errors as described in the prs\point.

This model as implemented would need some mechaitisiake
statistics for getting simulation results. Such ethrod may be to
attach each cell’'s output to a counter componenbtmt if the cell
is distributing and hence an avalanche has stafftieid. counter
component can count all cells participating in amlanche to
estimate its severity. Alternatively, the counteuld be attached to
border cells to count sand particles escaping thard as a
measure of avalanche severity. Both ways would need
considerable effort for defining the connectionstween the
counter and the cells especially when the modekgiia size.

REFERENCES

[1] WOLFRAM, S. "A new kind of science". Wolfram M@, Inc.
2002.

[2] WAINER, G.; GIAMBIASI, N. "N-Dimensional Cell-[EVS".
In Discrete Events Systems. Theory and Applications, Kluwer.
Vol. 12, No. 1. January 2002. pp. 135-157.

[8] ZEIGLER, B.; KIM, T.; PRAEHOFER, H. "Theory of
Modeling and Simulation: Integrating Discrete Eveand
Continuous Complex Dynamic Systems". Academic P2330.

[4] MALAMUD, B.; TURCOTTE, D. “Cellular-Automata Mdels
Applied to Natural Hazards”Earth System Science, May/June
2000, P. 42-51.

[5] WAINER, G. "CD++: a toolkit to define discretrent
models". G. WainerSoftware, Practice and Experience. Wiley.
Vol. 32, No.3. pp. 1261-1306. November 2002.

