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Abstract 
Cell-DEVS formalism extends cellular automata modeling. In this 
paper, we present a simple model for landslides using a model of a 
sand pile. The model uses Cell-DEVS formalism and CD++ tool 
to model and simulate landslides. Using this simple model, we 
present how Cell-DEVS formalism can be used to model systems 
that involve material accumulation and flow. Material flow and 
accumulation need special modeling consideration with Cell-
DEVS to preserve mass conservations law. In modeling such 
systems, not only model updating rules would be important for 
correct behavior, but also choosing the model characteristics as 
type of delay would affect that behavior.  
 
 
1. INTRODUCTION.  
 
In recent years, computer simulation has played a key role in the 
analysis of complex natural systems. The cellular Automata (CA) 
formalism has recently gained popularity to describe complex 
physical systems [1]. CA is defined as infinite n-dimensional 
lattices of cells whose values are updated according to a local rule. 
This is done simultaneously and synchronously using the current 
state of the cell and the state of a finite set of nearby cells (known 
as the neighborhood). Unfortunately, CA has showed to have 
different problems to model physical systems: they usually require 
large amounts of computational time, mainly due to its 
synchronous nature.  
 
The Cell-DEVS formalism [2] solved these problems by using the 
DEVS (Discrete EVents Systems specifications) formalism [3] to 
define a cell space where each cell is defined as a DEVS model. 
This technique permits to build discrete-event cell spaces, 
improving their definition by making the timing specification more  
explicit. Besides this, discretizing the model into a bidimensional 
grid poses constraints on the precision that can be achieved by the 

model. Finite element analysis, instead, is able to provide higher 
precision due to the characteristics of the technique. 
 
Here we are going to show how to use Cell-DEVS to a sand pile 
model. Sand pile models provide means to analyze earthquake 
phenomena, as major earthquakes often cause landslides. In [4] an 
effort for modelling such an event using cellular automata was 
presented, and we will show how a model of this nature can be 
modeled using Cell-DEVS. 
   
 
2. THE DEVS FORMALISM 
 
Cell-DEVS defines cell spaces in which each cell is defined as a 
DEVS model. The DEVS formalism was originally proposed to 
model discrete events systems. A DEVS model is built using a set 
of behavioral models called Atomic, which can be combined to 
form Coupled ones. A DEVS atomic model is defined as: 
 
M = < X, S, Y, δint, δext, λ, D > 
 
Input external events are considered to be received in input ports 
(X). When an event arrives, the model executes the external 
transition function δδδδext to produce a state change. Each state has an 
associated duration D. When this lifetime is consumed, the internal 
transition function δδδδint is activated to produce internal state 
changes. The internal state S can be used to provide model outputs, 
which are sent through the output ports (Y). They are sent by the 
output function λλλλ, which executes before the internal transition. 

 
A DEVS coupled model is defined as: 

 
CM = < X, Y, D, {Mi}, {I i}, {Z ij} >. 
 
Each coupled model consists of a set of D basic models Mi 

connected through input/output ports. The list of influencees Ii of a 
given model is used to determine the models to which outputs 
must be sent. These sets are used to build the translation function 
Zij, which is in charge of translating outputs of a model into inputs 
for the others. An index of influencees is created for each model 



(I i). For every j in the index, outputs of model Mi are connected to 
inputs in model Mj.  
 
In Cell-DEVS, each cell of a cellular model is defined as an atomic 
DEVS model. Cell-DEVS atomic models are specified as: 
TDC = < X, Y, S, N, delay, d, δint, δext, τ, λ, D >. 

 
Each cell will use the N inputs to compute the future state S using 
the function ττττ. The new value of the cell is transmitted to the 
neighbors after the consumption of the delay function. A transport 
delay allows us to model a variable commuting time for each cell 
with anticipatory semantics (every scheduled event is executed). 
Using inertial delays, the semantics is preemptive: some scheduled 
events are not executed due to a small interval between two input 
events. Therefore, the outputs of a cell are not transmitted 
instantaneously, but after the consumption of the delay. Delay 
defines the kind of delay for the cell, and d its duration. This 
behavior is defined by the δδδδint, δδδδext, λλλλ and D functions, as in other 
DEVS models. 

 
Once the atomic cell model is defined, a number of cells they can 
be put together to form a coupled model, built as an array of 
atomic cells. A Cell-DEVS coupled model is defined by: 
 
GCC = < Xlist, Ylist, X, Y, n, {t1,...,tn}, N, C, B, Z >. 
 
The cell space C defined by this specification is a coupled model 
composed by an array of atomic cells with size {t1 x...x tn}. Each 
cell in the space is connected to the cells defined by the 
neighborhood N. The cell space can be “wrapped”, meaning that 
cells in a border are connected with those in the opposite one. 
Otherwise, the borders B should have a different behavior than the 
remaining cells. The Z function allows one to define the internal 
and external coupling of cells in the model. This function 
translates the outputs of output port m in cell Cij into values for the 
m input port of cell Ckl. The input/output coupling lists can be 
used to interchange data with other models. 
 
CD++ [5] is a tool that allows a user to implement DEVS models. 
The tool is built as a hierarchy of models, each of them related 
with a simulation entity. Atomic models can be programmed in 
C++. A specification language allows defining the model's 
coupling, including the initial values and external events. The tool 
also enables a user to build Cell-DEVS models. The language 
provides a set of primitives to define the size of the cell-space, the 
type of borders, a cell’s interface with other DEVS models and a 
cell’s behavior. In the following sections we will show how to use 
Cell-DEVS to model a sand pile model. 
 
 
3. A SAND PILE MODEL 
 
This model represents a sand pile on a table area that is divided to 
a grid of cells. Sand particles are added to the pile continuously at 
the middle cell at discrete time intervals. Each cell would start 

redistributing its content to its four non-diagonally neighboring 
cells, whenever it contains four or more sand particles. In case of 
four particles, the cell would be empty after redistribution. For any 
number above four particles, the cell would only distribute four 
sand particles to its neighbors and keep the rest in it. The model 
can be described as:  
  
1. The model is initially loaded with some sand particles in some 
of its cells, or it can be empty. 
2. A particle would arrive at a random time intervals to the cell 
at the center of the model.  
3. Every cell has a maximum capacity of four particles. When a 
cell reaches this capacity, a redistribution operation would begin 
that results in emptying this cell and adding one particle to each 
non-diagonal neighboring cell. 
4. The redistribution operation can trigger another 
redistributions among neighboring cells, which in turn can do the 
same for their neighbors. 
5. Boundary cells would lose particles to the environment at 
sides were there are no neighboring cells. 
6. The redistributions would represent avalanches in the model. 
Severity of an avalanche can be measured either by number of cells 
participating in a redistribute operation, or by number of particles 
lost from border cells. 
 

 
Figure 1: Neighborhood cells. 

 
A Cell-DEVS model will represent the sand pile by dividing the 
model area in a grid of 10 by 10 cells. The neighborhood cells are 
defined as the diagram shows in Figure 1. The formal specification 
for the corresponding Cell-DEVS model is defined as follows:  

 
M=<I,X,Y,Xlist,Ylist, η, N,{f,c}, C, B, Z, select> 

 
I=<PX,Py>,with PX={(N(5,5), binary) }, Py={Φ}; 
X=1;  Y= Φ; Xlist={IN}; Ylist= Φ 
η=5; N={(0,0),(0,1),(1,0),(0,-1),(-1,0)} 
f=10; c =10; C={Cij/iε[1,f], jε[1,c]} 
B={ (Cij  | i = 1,10; jε[1,10]) , (Cij | j = 1,10; iε[2,9]} 
Z: 
Pij

Y1→Pi,j+1
X1  Pi,j-1

Y1→Pij
X1   

Pij
Y2→Pi+1,j

X2         Pi-1,j
Y2→Pij

X2   
Pij

Y3→Pi,j-1
X3     Pi,j+1

Y3→Pij
X3   

PijY4→Pi-1,j
X4  Pi+1,j

Y4→Pij
X4   

PijY4→Pi,j
X4  Pi,j

Y4→Pij
X4   

Select={(0,1), (1,0), (0,-1),(-1,0), (0,0)} 
 
 
This model can be defined in the CD++ tool as shown in Figure 2. 
 



[top] 
components : sandpile particleGenerator@Generator 
link : out@particleGenerator in@sandpile 
out :  out 
link : out@particleGenerator out 
 
[sandpile] 
type : cell    
dim : (10, 10)  
delay : inertial border : nowrapped  
neighbors : (0,1)   (1,0)  (0,-1) (-1,0)  (0,0)   
in : in  
link : in in@sandpile(5,5) 
localtransition : sandpile-rule 
portInTransition : in@sandpile(5,5) NewParticle-
rule 
 
[sandpile-rule] 
rule : { statecount(4)+statecount(5)+ 
statecount(6)+statecount(7)- 1 } 100 { (0,0) = 4} 
rule : { statecount(4)+ statecount(5)+ 
statecount(6)+statecount(7)+(0,0)} 100 {(0,0)< 4} 
rule : { (0,0)+statecount(4)+statecount(5)+ 
statecount(6)+statecount(7)-1-4} 100 { (0,0) > 4 } 
rule : {(0,0)} 100 { t }  
 
[NewParticle-rule] 
rule : { statecount(4)+ statecount(5)+ 
statecount(6)+statecount(7)+(0,0) + 1} 2 {(0,0)<4} 
rule : { statecount(4)+ statecount(5)+ 
statecount(6)+statecount(7)+(0,0)} 2 {(0,0)>=4} 
rule : {(0,0) + 1 } 2 {t} 
 
[particleGenerator] 
distribution : exponential 
mean : 2 initial : 1 increment : 0 

Figure 2. CD++ tool model definition file 
 
For each cell, it can take one of the following values (states). These 
values and their meaning are described in Table 1. 
 

Value Meaning 
0 An empty cell 
1 A cell filled with one sand particle 
2 A cell filled with two sand particles 
3 A cell filled with three sand particles 
4 A cell filled with four sand particles –  It  

starts to distribute all 4 particles to neighbors 
 in next time step. 

5 A cell filled with five sand particles – It  
distributes four particles and keeps one in  
next time step. 

6 A cell filled with six sand particles - It distributes 
Four  particles and keeps two in next time step. 

7 A cell filled with seven sand particles – 
 It distributes four  particles and keeps three  
in next time step. 

Table 1. Cell's state description. 
 

The first rule in sandpile states that for a cell with exactly four 
particles in it, the cell would take a new value equal to the sum of 
neighboring cells that are distributing, minus one to count to itself 
in statecount(4). As we only have 4 neighbors, the new value 

assigned would be between 0 (in case no neighboring cell is giving 
me any particle) to 4 (in case the cell has distributed its particles to 
neighbors, and taking one particle from each neighbor that has 4 or 
more particles). This can be shown in Figure 3. In this case, the 
cell is to distribute to 4 neighboring cells, each with less than 4 
particles. 

 
Figure 3. Rule 1 at (0,0), Rule 2 at all others 

 
Figure 4 shows the case of a cell distributing to neighbors, and 
three of its neighboring cells are having 4 or more particles. Hence, 
it will get one particle from each overflowing cell (with 4 or more 
particles in it). 

 
Figure 4. Rule 1 at (0,0) and (1,0); Rule 2 at (0,1); Rule 3 at (-1,0) 

and (0,-1) 
 
The second rule of sandpile tells that if the cell has less than 4 
particles, then it will not redistribute to its neighbors. The cell will 
only receive one particle from each overflowing neighbor (which 
has 4 or more particles), and will add received particles to its 
current value. 
 
The following rule states that if the cell contains more than 4 
particles, then it will redistribute only 4 particles to the neighbors, 
and retain the rest. Add to that any particles distributed from over 
flown neighbors. We subtract 1 to count for self-state as it would 
be counted (self value is more than 4), and we subtract 4 to count 
for 4 particles distributed to neighbors. 
 
Finally, we define a default rule to keep the cell contents of 
particles if none of the previous rules is held. 
 
The NewParticle rule is used for arrived sand articles generated by 
the DEVS generator model. If contents are less than 4 particles, for 
any arrival from the generator, the cell will increment its contents 
by 1 particle. Add to this any particles coming from overflowing 
neighbors. Likewise, if the cell's contents are 4 or more particles, 
the cell will add 1 to its contents, plus any particles from 
overflowing neighbors. We subtract one from final result to count 
for the self state (I contain more than 4 particles) in the 
“statecount()”.  

 
 
 



4. TESTING THE MODEL 
 
We test the simulation results of our model in order to verify that 
the desired behavior is obtained. We selected different initial 
values to test different possible situations and rules. First, we 
checked that the behavior of the model cells was identical to the 
required behavior in the way distribution is handled. Second, we 
tested that no sand particles were lost or created for the whole grid 
after every redistribution, i.e. the total number of sand particles on 
the grid remained constant after redistribution.  
 
In our first test case, we initialized some cells with 4 or 5 sand 
particles, keeping the others empty. The input from the Sand 
Generator was disabled as we intended to test only the Sand Pile 
Cell-DEVS model. The results of this test can be seen in Figure 5. 
We can see that all cells with initial value of 4 have distributed 
their contents to neighboring cells and contain zero particles (Rule 
1). Only the cells which initially contained 4 or more particles and 
a neighbor with 4 or more particles (distributing cells) would get a 
particle from each distributing neighboring cell (as (1,2), (1,3)). A 
cell like (2,6) would get a particle from each distributing neighbor 
(2 in this test). In addition, for all cells with content of less than 4 
particles (Rule 2), their content has increased with one particle 
arriving from each distributing neighbor. The results are correct as 
per our model specifications. Total number of sand particles on the 
grid before and after redistributions is the same of 21 particles.  
 
Line : 244 - Time: 
00:00:00:000 
     0123456789  
    +----------+ 
   0|          | 
   1|  45      | 
   2|     4 4  | 
   3|          | 
   4|   4      | 
   5|          | 
   6|          | 
   7|          | 
   8|          | 
   9|          | 
    +----------+ 

Line : 2124 - Time: 
00:00:00:100 
     0123456789  
    +----------+ 
   0|  11      | 
   1| 11211 1  | 
   2|  111 2 1 | 
   3|   1 1 1  | 
   4|  1 1     | 
   5|   1      | 
   6|          | 
   7|          | 
   8|          | 
   9|          | 
    +----------+ 

Figure 5. Test case 1 results. 

Our second test included checking the Generator DEVS model, 
and execution results of this test can be seen in Figure 6. At each 
time interval, the Sand Generator would generate an output with 
value of 1 to represent a new sand particle. Time intervals between 
generated outputs can be chosen to be one of many probability 
distributions. In this example, we used an exponential distribution 
with mean of two time units.  
 

00:00:00:000 out 1 
00:00:00:082 out 1 
00:00:01:274 out 1 
00:00:01:628 out 1 
00:00:01:683 out 1 
00:00:08:724 out 1 
00:00:10:657 out 1 
00:00:12:120 out 1 
00:00:15:903 out 1 
00:00:16:234 out 1 
00:00:17:199 out 1 
00:00:18:745 out 1 
00:00:19:115 out 1 
00:00:20:089 out 1 
00:00:24:063 out 1 
00:00:25:517 out 1 
00:00:25:663 out 1 
00:00:27:692 out 1 

00:00:33:429 out 1 
00:00:37:892 out 1 
00:00:38:674 out 1 
00:00:38:761 out 1 
00:00:39:702 out 1 
00:00:42:120 out 1 
00:00:45:428 out 1 
00:00:46:175 out 1 
00:00:47:403 out 1 
00:00:49:485 out 1 
00:00:50:344 out 1 
00:00:53:125 out 1 
00:00:55:747 out 1 
. . . 
00:09:55:741 out 1 
00:09:59:545 out 1 
00:09:59:645 out 1 
00:09:59:875 out 1 

Figure 6. Sand Generator test results. 
 
In Figure 7: test case 2 results., we show the results of a test in 
which the Generator is disabled, as we want to test rule 1 (for cells 
containing 4 particles) and rule 3 (for cells containing more than 4 
particles). In this test, cell (1,3) takes value of 5 particles along 
with other cells containing some other values. We see in next time 
step all cells having 4 or more are distributing. Cell (1,3) has 
distributed 4 particles and kept one, plus 4 particles from 
distributing neighbors (Rule 3). In next time step, cell (1,3) 
redistributes all its 4 particles and stays empty (Rule 1). The model 
starts with 42 particles and ends with the same number of particles 
after all redistributions, thus it conforms to the specifications.  
 
Line : 251 

Time:00:00:000 

     0123456789  

    +----------+ 

   0|          | 

   1| 5454     | 

   2|   5 4 4  | 

   3|          | 

   4|   4 7    | 

   5|          | 

   6|          | 

   7|          | 

   8|          | 

   9|          | 

    +----------+ 

Line : 414 - 

Time:00:00:100 

     0123456789  

    +----------+ 

   0| 1111     | 

   1|122412 1  | 

   2| 1223 2 1 | 

   3|   2 2 1  | 

   4|  1 231   | 

   5|   1 1    | 

   6|          | 

   7|          | 

   8|          | 

   9|          | 

    +----------+ 

Line : 2202 - 

Time:00:00:200 

     0123456789  

   +----------+ 

  0| 1121     | 

  1|123 22 1  | 

  2| 1233 2 1 | 

  3|   2 2 1  | 

  4|  1 231   | 

  5|   1 1    | 

  6|          | 

  7|          | 

  8|          | 

  9|          | 

   +----------+ 

Figure 7: test case 2 results. 

In the third test case, we tested the model with 11 filled cells each 
with 4 particles or more. The cells are all internal on the grid so 
that no sand particles would escape the grid from border cells. As 
shown in Figure 8, the cells are distributing their content to 
neighbors until a steady state is reached. In this figure, the first 
three time steps are shown along with the final step in model 
execution. We begin the test with 56 sand particles on the grid, and 
finish the test with the same number after redistribution. This result 
confirms the model behavior as specified. The input from the 
Generator is disabled as we test only Sand Pile Cell-DEVS model. 
 



Line : 246 - Time: 
00:00:00:000 
     0123456789  
    +----------+ 
   0|          | 
   1|      43  | 
   2|   674 4  | 
   3|   676    | 
   4|   45     | 
   5|          | 
   6|          | 
   7|          | 
   8|          | 
   9|          | 
   +----------+ 

Line : 401 - Time: 
00:00:00:100 
     0123456789  
    +----------+ 
   0|      1   | 
   1|   112 5  | 
   2|  14623 1 | 
   3|  157411  | 
   4|  1232    | 
   5|   11     | 
   6|          | 
   7|          | 
   8|          | 
   9|          | 
    +----------+ 

Line : 749 - Time: 
00:00:00:400 
     0123456789  
    +----------+ 
   0|      11  | 
   1|   233211 | 
   2|  2432 21 | 
   3|  321531  | 
   4|  214 1   | 
   5|   221    | 
   6|          | 
   7|          | 
   8|          | 
   9|          | 
    +----------+ 

Line : 3034 - Time: 
00:00:01:200 
     0123456789  
    +----------+ 
   0|   11111  | 
   1|  2131311 | 
   2| 111 3221 | 
   3| 1123 12  | 
   4|  33132   | 
   5|   231    | 
   6|          | 
   7|          | 
   8|          | 
   9|          | 
    +----------+ 

Figure 8. Test case 3 results. 

 
5. SAND PILE MODEL EXECUTION 

RESULTS 
 
The complete model is composed of a Generator (a DEVS model) 
and SandPile sub-models as shown in Figure 9. The Generator 
generates sand particles in discrete time intervals and delivers them 
to the SandPile model. These time intervals for arriving sand 
particles are simulated by exponential distribution. In each 
interval, one or more particles can be added to the SandPile model. 
In our example run, only one sand particle is generated at each 
time interval.  

 
Figure 9.  Sand Generator and SandPile models connected. 

 
The sand particle is put into center cell (5,5). The cell (5,5) would 
accumulate sand particles to the overflowing limit of 4, and then 
start redistributing its contents to neighbors. After neighboring 
cells get 4 particles, they start redistributing to others. An 
avalanche as defined per [4], can be measured by number of sand 
particles escaping from border cells or by number of redistributing 
cells in one avalanche. More work on how to gather statistics 
information can be done on the model. Some of the execution 

results are shown in Figure 10. In order to trace those results, times 
of sand particles arriving from the Sand Generator as shown in 
Figure 6 should be consulted with Figure 10. Whenever a particle 
arrives from the generator, it appears in middle cell (5,5) after a 
delay of 2 time units, as seen in 00:00:00:002 time step. Cells 
would react to changes in their neighbors after 100 time units as 
specified in our model. This can explain cell (5,5) reaching value 
of 5 at time step 00:00:01:685 before redistributing as according to 
the rules, redistribution happens after 100 units, while arrival of a 
new particle shows in 2 time units.  
 
Line : 221 - 

Time:00:00:000 

     0123456789  

    +----------+ 

   0|          | 

   1|          | 

   2|          | 

   3|          | 

   4|          | 

   5|          | 

   6|          | 

   7|          | 

   8|          | 

   9|          | 

    +----------+ 

Line : 248 - Time: 

00:00:002 

     0123456789  

    +----------+ 

   0|          | 

   1|          | 

   2|          | 

   3|          | 

   4|          | 

   5|     1    | 

   6|          | 

   7|          | 

   8|          | 

   9|          | 

    +----------+ 

Line : 275 - 

Time: 00:00:084 

     0123456789  

   +----------+ 

  0|          | 

  1|          | 

  2|          | 

  3|          | 

  4|          | 

  5|     2    | 

  6|          | 

  7|          | 

  8|          | 

  9|          | 

   +----------+ 

Line : 349 - 

Time: 00:01:685 

     0123456789  

    +----------+ 

   0|          | 

   1|          | 

   2|          | 

   3|          | 

   4|          | 

   5|     5    | 

   6|          | 

   7|          | 

   8|          | 

   9|          | 

    +----------+ 

Line : 388 - Time: 

00:01:730 

     0123456789  

    +----------+ 

   0|          | 

   1|          | 

   2|          | 

   3|          | 

   4|     1    | 

   5|    151   | 

   6|     1    | 

   7|          | 

   8|          | 

   9|          | 

    +----------+ 

Line : 408 - 

Time: 00:01:785 

     0123456789  

   +----------+ 

  0|          | 

  1|          | 

  2|          | 

  3|          | 

  4|     1    | 

  5|    111   | 

  6|     1    | 

  7|          | 

  8|          | 

  9|          | 

   +----------+ 

Line : 511 - 

Time: 00:10:659 

     0123456789  

    +----------+ 

   0|          | 

   1|          | 

   2|          | 

   3|          | 

   4|     1    | 

   5|    131   | 

   6|     1    | 

   7|          | 

   8|          | 

   9|          | 

    +----------+ 

. . . Line : 58549 - 

Time: 09:59:947 

     0123456789  

   +----------+ 

  0|21123 321 | 

  1|1 33241212| 

  2|13222 4331| 

  3|2324 224 3| 

  4|322 442 33| 

  5| 4 2463213| 

  6|314223 413| 

  7|2234 24 31| 

  8|113 311323| 

  9| 213333132| 

   +----------+ 

Figure 10: Some Execution results of SandPile model. 

 
 
 
 



6. CONCLUSION 
 
In this paper, we have seen how to model natural landslides using 
Cell-DEVS formalism. As all material flow between cells is done 
through changes in cell value, care needed to be taken to guarantee 
consistency of the model results through the of law mass 
conservation.  
 
The model behavior is found to be best represented when using 
Inertial delay. This is because some rules that accumulate sand 
particles into a cell as Rules 2 and 3, need to be executed only 
once in one time step. Executing these rules more than once would 
increment cell’s value unnecessarily. Inertial delay is found to 
solve this problem because if a cell is notified several times in one 
time step due to changing neighbors, its value is evaluated and 
incremented only once for all notifications as they all fall in the 
same time step. In transport delay however, evaluations of cell’s 
value would be made sequentially without preempting previous 
value, thus accumulating a false value in the cell. 
 
The above problem may also be solved if the Cell-DEVS model 
allows us to notify neighbors at only some pre-defined states (like 
a threshold states). All other intermediate states that are not 
important to neighboring cells can be kept without notifying them. 
This would be the case when a cell changes its value from 0 to 1,2, 
or 3. As all these changes do not involve redistribution to other 
cells, hence, we don’t need to notify neighbors with these changes. 
This would not only enhance efficiency of execution, but would 
also prevent such errors as described in the previous point. 
 
This model as implemented would need some mechanism to take 
statistics for getting simulation results. Such a method may be to 
attach each cell’s output to a counter component to count if the cell 
is distributing and hence an avalanche has started. This counter 
component can count all cells participating in an avalanche to 
estimate its severity. Alternatively, the counter could be attached to 
border cells to count sand particles escaping the board as a 
measure of avalanche severity. Both ways would need a 
considerable effort for defining the connections between the 
counter and the cells especially when the model grows in size.  
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