Implementing Parallel Cdll-DEVS

Alejandro Troccoli

Departamento de Computacion.
Pabellon 1. Ciudad Universitaria
(1428). Buenos Aires.
Argentina.

Gabriel Wainer

Department of Systems and Computing
Engineering, Carleton University. 1125
Colonel By Dr. K1S 5BE. Ottawa, ON.

Canada

gwainer@sce.carleton.ca

Abstract

Cell-DEVS is a formalism intended to model complex
physical systems as cell spaces. Cell-DEVS alloseride
bing cellular models using timing delay construntp
allowing simple definition of complex timing. Thégmal
specificationw sere extended to permit parallelcjma-
tion of these models, and an associated simulatienha-
nism allows their execution. Here we present samnme-
mentation issues related with the definition of ghit
simulators for Cell-DEVS.

1. Introduction

The DEV S formalism [1] provides a framework for the
construction of hierachical models in a modular maan
allowing for model reuse and reducing developmanet
and testing. The execution of complex models regua
computing power that stand alone computers do rmt p
vide. Therefore, the original DEVS formalism wasised
and the Parallel DEVS (P-DEVS) [2] formalism was-r
posed. P-DEVS defines a function to handle traositi
collisions and eliminates the use of a sequentiattion to
resolve simultaneous events. The revision elimgatk
restrictions that forced the original DEVS defiaiti to
sequential execution.

A P-DEVS is composed by atomic models that can be

coupled in a hierarchical and modular fashion. BEYS
atomic is defined as:
M=< x! S! Y!dmv dxb d}OI’] ’ /]1 ta >

where

X: a set of input events.

S: a set of sequential states.

Y: a set of output events.

dn: S - S:internal transition function.

Oy QX X° _ S:external transition function,

X"is a set of bags over elements in X,

ax(s . e@)=(s,e)
don SX XP _ S:confluent transition function.
A:S — Y°: output function.
Ta: S > Ry . »: time advance function,
where Q ={(s,e)|ES,0<e<ta(s)}
e is the elapsed time since last state transitio

Internal transitions execute at the next event tfore
all imminent components receiving no external event
Likewise, external events generated by these immbéne
trigger external transitions at receptive non-imenits
(those components for which there are no intenraadsi-
tions scheduled for the receiving time). However,those
components which the internal and external traorssti
collide, theconfluent transition functioris employed in-
stead of either the internal or external transifiomction to
determine the new state [2].

A coupled modek defined by:

DN=<X,Y,D{M}, {I},{Z, }>

X: a set of input events.

Y : a set of output events.

D : a set of components.

for eachi in D,

M; is a componment.

for eachi in D O { self}, |;is the influencees of

For eachj in|;,

Z jis the i to j output translation function.

The structure is subject to the constraints tbaeach
i In D! Mi =< Xiv Sv Yir dnti! dxtiv donivAi! tal > Isa P-
DEVS |;is a subset dD O { self}, i is not inl; , and

Zseif, i Xself — X
Zi, seiir Yi - Yserf
Ziqj: Xi — YJ

Hereselfrefers to the coupled model itself and is a de-
vice for allowing specification of external inputchexter-
nal output couplings.

In [3] the Cell-DEVS formalism was introduced. When
executing cellular models, large amounts of compiate
are required, and the use of a discrete time basesp
restrictions in the precision of the model. The &drCell-
DEVS formalism tries to solve these problems byngsi
the DEVS paradigm to define a cell space where ealth
is defined as a DEVS atomic model. The goal isuitdb
discrete event cell spaces, improving their deéinitby
making the timing specification more expressive[4hit
was revised to eliminate all the sequential retms the
original formalism presented. A parallel Cell-DE\&%o-
mic model can be formally defined as:

TDC =<X® Y°, 1, S,0, N, d,8t, Oexts Ocon Tr Teor A, D
>

Two confluent functions have been added to thei-orig
nal Cell-DEVS definition:d.,, andt.,, In addition, the
external transition and output functions have befeanged
to handle input/output bag¥®(andY®) for each cell. The
external transition function activates the locampata-
tion, whose result is delayed using one of botrhd&iof
constructions: transport or inertial delays. Thgaufunc-
tion executes prior to the internal transition fiima,
transmitting the present values to other modele &h
function is in charge of keeping the values forams$port
delay. The following figure shows a sketch of tlatents
of each cell.

g' f
1 [

Figure 1. Cell's definition [4].

[

The confluent transition functiody,, is activated when
there are collisions between internal and extegmahts. It
must activate the confluent local transition fuaetitg,,
whose goal is to analyze the present values foiirthet
bags, and to provide a unique set of input valwesHe
cell. In this way, the cell will compute the nexate by
using the values chosen by the modeler.

The external transition function activates the loca
computation, whose result is delayed using one ath b
kinds of constructions. The output function, whiek-
ecutes prior to the internal transition functionjn charge
to transmit the present values to other models.

In case of a collision, the confluent transitiomdtion
chooses members from the bag, and updates thesifgput
the cell. After, it deletes the unnecessary membéthe
bag. Aso = 0, an internal transition function is scheduled
immediately. The modeler should define the behafoor
the 1¢n function in each cell, thus allowing the definitio
for this behavior under collisions.

DEVS separates the model from the actual simulation
The simulation mechanism is implemented by abstract
simulators. In [5] an abstract simulator for therdHal
DEVS formalism was presented. Based on that woek, w
defined an abstract simulator for distributed sitioh,
which is the subject of this paper. In a distriloutmvi-
ronment, there is considerable communications @ath
which can not be ignored. Therefore, the abstiautistor
should restrict the communications over the networla
minimum. The goal of this work is to present antedd
simulator developed to execute DEVS and Cell-DEVS
models using standard tools for distributed andalfer
programming. Several abstract simulators were imple
mented to allow parallel execution in the CD++ katd9],
entitling to have efficient execution of cellulaodels.

2. Parallel DEVS Abstract Smulators

As it was mentioned earlier, the modularity of e
rallel DEVS formalism makes it possible to separte
model from the simulation mechanism. The originkd a
stract simulator mechanism [6] was revised to ¢l
Parallel DEVS formalism [2].

As in the existing definition of the abstract sitiolr
[2], the DEVS processors will be specialized intwot
different simulation enginessimulator and coordinator.
Basically, the role of theimulatoris to invoke an atomic
model transition and external event functions. @ndther
hand, acoordinatoris attached to a coupled model and has
the responsibility of translating its children’ put events
and of keeping the time of the next imminent/s depe
dants.

Every coordinator has a set of child DEVS processor
When a simulation run in distributed fashion, caosad
tor's children need not be executing on the sanoeqs-
sor. If every coupled model is associated to omly coor-
dinator, every message sent to child processorsrgron
a different CPU will require interprocess commutima
Figure 2(a) illustrates this case. It shows a cioatdr
sending a message to its 8 children distributedtvem
CPUs. Four interprocess messages are requirednhéor t
four children running on processor 1.

CFUOD CFU 1
Coced inatar . 5
o .
1 2] A 7
3 4 - B
(a)
CPO0 CPIO 1
Master 3lave
Coodinator Cootdinator
»>
1 2 5 2
3 4 & 7

(b)
Figure 2. (a) A single coordinator sending a message to all
its child processor. Dashed lines = interprocess messages. (b) A
master- slave pair sending messages to all their children proces-
sors.

If the number of children processors is high (for i
stance, in coupled Cell-DEVS), the number of messag
sent across the network will also be significarttisTcan
be avoided if every coupled model have more tha@ on
coordinator. Figure 2(b) illustrates this case. thar same
coupled model, there are two coordinators, oneracgs-
sor 0 and another in processor 1. In this case; oné
message is sent over the network.

For coupled models, coordinators will be required o
each processor where a child processor is run@hgdd-
ren processors will send messages to the locatiowaior,
which will decide how to handle the received mesesag
Upon receiving a message from a child, a coordmato
could forward this message to all the coordinaforsthe
model. This would require all coordinators to knalout
the others. For instance, if coupled modeis a child of
coupled modeB, thenB’s coordinators have to interact
with A’s coordinators. If handled uncarefully, this com-
munication can turn out producing the same numifer o
interprocess messages we wanted to avoid. In ssce-a
nario, a way of keeping the number of interprocess-
sages to a minimum is to have only one of the doatdrs
to handle all messages to the parent’s model tmaidi-

nator. This specialized coordinator will be knows a
master coordinatoand all other model coordinators will
be slaves.The master coordinatofor model A will then
be the only one that can receive or send messagg's t
local coordinatar

With the exception of the top level DEVS processor,
known asroot coordinator all DEVS processors will have
a parentcoordinator. To set the parent-child relationship
on a distributed environment, the following rulepky,

a. for eachsimulator, the parent coordinator will be
the parent’s model local processor (it is guarahtdet
this will exist)

b. for eachslave coordinatarthe parent coordinator
will be the model’amaster coordinator.

c. For eachmaster coordinatqrthe parent coordinator
will be the parent’'s model local processor; jusif éswere
asimulator.

DEVS processors exchange messages which can be
classified into two categories: synchronization seges
and content messages. The synchronization mesasgés
@ ,t) and (done t) and the contents messagsst() and
(qg,t). Itis assumed that any two messages sent fnem t
same source to the same destination will presdreg t
original ordering. The?-DEVSformalism states that all
imminent model's output functions must be executed
before any transition function. All outputs are leoted
and only after they have been sorted, the tramsftoc-
tions can be activated. These activities are caratdd
using the synchronization messages.

We will now proceed to describe the abstract sitoula
mechanism for thesimulator, master coordinatarslave
coordinatorandroot coordinator.

The simulator attached to an atomic model has been
implemented as in [2], with some minor changes:

when a (@ t) message is received
if t =ty then
y:=A(
send (y, t) to the parent coordinator
send (done t) to the parent coordinator
end if
elseraise error
end when

when a (g, t) message is received
lock thebag

Add eventqg to thebag

unlock thebag

end when

when a (* ,t) message is received
caset <t<ty

e=t-t

S 1= du(S € bag)

emptybag

end case
caset =ty andbagis empty
S = dnt(S)
end case
caset =ty andbagnot is empty
S = Gon(S, bag)
emptybag
end case
case t >tyort<t,
raise error
end case
L=t
ty:=ta(s)
send (done, {) to parent coordinator
end when

The implementation of anaster coordinatolis now
given.

when a (@ ,t) message is received from parent coor-
dinator

if t =ty then

L=t

for all imminent child processorsvith minimumty

send (@t) to childi

cache in thesynchronizeset

end for

wait until (done t)’s have been received from all im-
minent processors

send (done t) to parent coordinator

end if

elseraise error

end when

For amaster coordinatothe set of child processors is
made by the set ddlave coordinatorsthe set of local
child simulatorsand the set of child locahaster coordi-
nators. A processor is local if it is executing on the sam
processor.

To simplify the next description it is necessarydie
fine the functioncoordinator.

coordinator : M x P- C
where
M is a coupled model
Pis a DEVS processor
Sis acoordinator (master or slave)

coordinator (M, j) =i ,wherei is the coordinatoras-
sociated to couplei that is local to child. The follow-
ing restrictions apply for the function to be welfined:

jis a DEVS processor associated to a dependavit of

i is one of thecoordinatorsassociated witiv

Now we can describe the behavior ahaster coordi-
nator upon receiving an output message. Two cases need
to be distinguished:

an output messagey(, t) received from a child that
is not aslave coordinator

an output messagey(, i, t) forwarded from aslave
coordinatorthat received ¥, t) from a local child.
when a (y,t) message is received from child
for all influenceesj of childi
if j is a local processor
q:=1z;(y)
send (@, t) to childj
cachg in thesynchronizeset
else
s := coordinator(self,)
if s0O slave-synsetthen
send ¢, i, t) tos
cachesin theslave-synset
cachesin thesynchronizeset

end if
end if
end for
if selfd I; (y is to be transmitted upwarthen
Y =Z s (Y)
send (y, t) to parent coordinator
end if
clearslave-synset
end when

when a (y,i,t) message is received from a slave

cachesin theslave-sync seind proceed as if ay(, t)
message had been received from child

end when

Hereslave-synds used to avoid forwarding an output
message twice to slave coordinatar It is important to
note that instead of forwarding g, {) message to slave
coordinator, a {, i, t) is sent. This is done to reduce the
number of messages sent across the networlslage
coordinatormight be the parent coordinator for more than
one of the influencees of If (q , t) messages were to be
forwarded, then there will be ong, t) message for each
influencee ofi. For Cell-DEVS models, this can be an
important overhead. Instead, just oy i() message is
sent across the network and it will be the resjmlityi of
the slave coordinatorto generate the appropiateq, ()
messages.

As mentioned in [2], all children ready for a traius
are cached in aynchronizeset to later distinguish active
from inactive components.

when a (g, t) message is received from parent coor-
dinator

lock thebag

Add eventg to thebag
unlock thebag

end when

when a (* ,t) message is received from parent coor-
dinator
ift, <t<ty
for all g0 bag
for all receivers ofy, j O lge
if j is a local processor
q = Zeer,j(0)
send @, t) toj
cachg in the synchronize set
ese
s := coordinator(self,)
if s slave-synasetthen
send €,t)tos
cachesin theslave-synset
caches in thesynchronizeset
end if
end if
end for
clearslave-syneet
end for
emptybag
for all i in thesynchronizeset
send (*t) toi
end for
wait until all (done, t)’s are received
L=t
ty:= minimum of componentgy's
clear thesynchronizeset
send (done ty) to parent coordinator
elseraise an error
end when

When the output events are routed down to child pro
cessors, if the message is to be forwardeddlaze coor-
dinator the z translation will not be applied. Instead, the

send (done t) to parent coordinator
end if

elseraise error

end when

As it can be noticed, there is no difference on hoth
masterandslave coordinatordiandle a (@t). However,
the set of child processor ofstave coordinatotis differ-
ent For aslave coordinatorthe set of child processors is
made by the set of local chikimulatorsand the set of
local childmaster coordinatorsonly.

when a (y,t) message is received from child
sent_to_master :false
for all influenceesj of childi
if j is a local processor
q:=z;(y)
send (@, t) to childj
cachg in thesynchronizeset
else
if notsent_to_master
send (y, t) to parent coordinator
sent_to_master :true
end if
end if
end for
if selfd I; (y is to be transmitted upwarthen
if notsent_to_master
send (y, t) to parent coordinator
end if
end if
end when

when a (y, i, t) message is received from parent
coordinator

sent_to_master :true

proceed as if ayf, t) message had been received from
childi

end when

original g message will be sent. Therefore, care must be

taken not to forward a message twice &lave coordina-
tor. Here again, thelave-synds used for that purpose.

Theslave coordinatowill be introduced next.

when a (@ ,t) message is received from parent coor-
dinator

if t =ty then

L=t

for all imminent child processorswith minimumty

send (@t) to childi

cachei in thesynchronizeset

end for

wait until (done t)’s have been received from all im-
minent processors

When an output event is received from a chjldhe
slave coordinatosorts the message to the influenceeis of
If any influencee is local, thefunction is applied aq ,t)
message is sent. If there are non-local influendees the
output event is sent to thmaster coordinatgrwho will
then sort the message to otve coordinatorsf neces-
sary. Only one ¢, t) message should be forwarded to the
master coordinator.

When theslave coordinatorreceives an output event
that has been forwarded by timeaster coordinatoron
behalf of childi, it will handle the event as ifhad been
local, but no {/, t) messages will be forwarded back to the
master coordinatoif there is a non-local influencee. This

is to avoid infinite loops of messages being foeal
back and forth.

when (g,t) message is received from parent coordinator
lock thebag

Add eventg to thebag

unlock thebag

end when

when (*,t) message is received from parent coordinator
if t, <t<ty
for all g 0 bag
for all receivers ofy, j O lse
if j is a local processor
q = Zeer,j(0)
send @, t) toj
cachg in the synchronize set
ese
do nothing
end if
end for
end for
emptybag
for alli in thesynchronizeset
send (*t) toi
end for
wait until all (done, t)’s are received
L=t
ty:= minimum of componentgy’'s
clear thesynchronizeset
send (done ty) to parent coordinator
elseraise an error
end when

The root coordinator is a special processor that is
above the topmost coordinator. It is responsibiedfiving
the simulation and advancing the virtual simulatione.
Our root coordinator can also handle external esyesich
are stored in a sorted queue of events.

Root coordinator

load queueof external events and sort them by arrival
time.

t := minimum of ty of topmost coordinator ant, of
queue

whilet #Z
if t = tyof queue

for all gin queuewith timet

send (@, t) to topmost coordinator

end for

end if

if t = tyof topmost coordinator

send (@t) to topmost coordinator
wait until (done, 1) is received from it
end if

send (*,t) to topmost coordinator
wait until (done, t) is received from it

end while
raise simulation completed

This abstract simulator mechanism will be ablean-h
dle both, Parallel DEVS and Parallel Cell-DEVS mede
because the latter one is a specialization ofiteedne.

3. Paralld CD++

CD++ [7] is a modeling tool for the simulation of
DEVS and Cell-DEVS models. This tool has been ex-
tended into Parallel CD++RCD++), a tool for the simu-
lation of Parallel DEVS and Parallel Cell-DEVS misle
on a distributed environment.

PCD++ has been built on top of a modified version of
Warped [8]. All DEVS processors have been defined a
Warped objects. Warped defines a simulation APl and
provides a set of different simulation kernelseguential
kernel for the execution of models in standalonelena
TimeWarp kernel for parallel execution using opstid
synchronization mechanisms and a NoTime kernel, for
parallel and standalone simulation that uses nohsymi-
zation at all. In addition, we have developed ankkthat
uses pessimistic synchronization mechanisms. Fer th
parallel kernels, Warped uses MPI for communication
between CPUs. The curreARCD++ has been succesfully
tested with the NoTime kernel.

MODEL

PCD++

WARPED

MPI

Figure 3. PCD++ layered architecture

In the abstract simulator mechanism that we present
for distributed environments, the time advance é®-c
trolled by the root coordinator. Therefore, no syoniza-
tion is required because no processor will exeameut
of order event. The NoTime kernel is very well edifor
this case because it provides the necessary cormatiami
primitives and avoids the overhead of TimeWarpuFégs
shows the Warped API.

class TineWarp {

/1 Methods the user defines
virtual void initialize();
virtual void finalize();
virtual void executeProcess();
Basi cState* allocateState();

services

)

[/ Si nul ati on kernel
voi d sendEvent (Basi cEvent
Basi cEvent* get Event();

}

cl ass Basi cEvent {
int size;

Vtime sendTi ng;
Vtime recvTi ne;

i

int sender;
int dest;

}

class BasicState {
Basi cSt at e* copyState(BasicState*);

}

Figure 4. Warped API

To define new atomic models, PCD++ provides an ab-
stract classAtomic that the modeler has to extend using
inheritance. Coupled models, need no programming. |
stead, they are defined writing a model file usirgpecifi-
cation language PCD++ provides for that purposds Th
specification language is also used for the dédinitof
Cell-DEVS models.

class Atomc {

/1 Methods the user shoul d def

Mbdel & i nt ernal Function();

Mbdel & ext er nal Function (MessageBag&)
Model & out put Function();

Model & conf | uent Function();

Mbdel St at e* all ocateState();

// Simul ati on kernel services

void sendQutput (Port& BasicMsgVal ue*);
const Wtine& | ast Change();

void holdIn(state, Vtinme);

}

i

Figure 5. The Atomic class

Finally, having defined the model and the set dilav
able machines, it only remains to define how thelal®
will be distributed. The modeler has to create Hitan
file that tells PCD++ which machine each atomic elod
should run on. This tells PCD++ where eaimulator
should be placed. The location of tbeordinatorsis de-
cided by PCD++.

4. A heat diffusion mode

PCD++ has been used to simulate a heat diffusion

lation cycle, the temperature of the cell is upddie the
average of the values of the neighborhood. In &ddita
heat generator is connected to the cells (25, @8) (&0,

10), generating temperatures in the range [24, Wit}

uniform distribution. Also, a cold generator thatates
temperatures in the range [10, 15] with uniformtriisi-

tion, has been connected to the cells (10, 40)(406040).

Both generators create values afteseconds, where

follows an exponential distribution with mean 5@ads.
When any of the generators outputs a new valuecéhe
to which it is connected will take that value.

The definition of the model using the language pro-
vided by the tool is showed in Figure 6. The toplei@and
its components are defined between lines 1 anctvéen
lines 6 and 26, the model representing the surimake-
fined. It is composed of a cellular automata of EDxells
with an initial temperature of 24° C. In the lin2® and 29
the local transition function is defined.

Lines 31 and 32 define the transition function upen
ceiving an external event from the heat generaod
lines 34 and 35 for transition triggered by extémaents
coming from the cold generator. Lines 37 to 47 methe
distribution parameters for the generators.

01 [top]

02 conponents : surface generator Heat @sener at or
gener at or Col d@ener at or

03 link : out@eneratorHeat inputHeat@urface

04 link : out@eneratorCold inputCol d®urface

05

06 [surface]

07 type : cell

08 width : 50

09 height : 50

10 delay : transport

11 def aul t Del ayTi ne 100

12 border : w apped

13 nei ghbors : (-1,-1) (-1,0) (-1,1)

14 nei ghbors : (0,-1) (0,0) (0,1)

15 nei ghbors : (1,-1) (1,0) (1,1)

16 initialvalue : 24

17 in : inputHeat inputCold

18 link : inputHeat in@urface(25,25)

19 link : inputHeat in@urface(10,10)

20 link : inputCold in@urface(40, 40)

21 link : inputCold in@urface(10, 40)

22 localtransition : heat-rule

23 portinTransition : in@urface(25,25) setHeat

24 portinTransition : in@urface(10,10) setHeat

25 portinTransition : in@urface(40,40) setCold

26 portinTransition : in@urface(10,40) setCold

27

28 [heat-rul e]

29 rule : { ((0,0) + (-1,-1) + (-1,0) + (-1,1) + (0,-1)

+(0,1) + (1,-1) + (1,0) + (1,1)) / 9} 10000 { t }

30

31 [set Heat]

32 rule : { uniforn(24,40) } 1000 { t }

33

34 [set Col d]

35 rule: { uniforn{-10,15) } 1000 { t }

36

37 [gener at or Heat]

38 distribution : exponential

39 nmean : 50

40 initial : 1

41 increment : 0

42

43 [gener at or Col d]

44 distribution : exponential

45 nmean : 50

46 initial : 1

47 increment : 0

model. A surface is represented by a 50 x 50 eellau-
tomaton, each cell containing a temperature. I s&ou-

Figure 6. Definition of the heat diffusion model

The model has been simulated on a 12 PC network5. Conclusion

running Linux. Different tests were done, each wih
different model partition.

01
02
03
04
05

: generatorHeat generatorCold
: surface(0,0)..(24,24)

: surface(25,0)..(49, 24)

: surface(0, 25)..(24, 49)

. surface(25,25)..(49,49)

wNEFE oo

Figure 7. Model partition for 4 processors.

Figure 7 shows a model partition for running thathe
diffusion model on 4 machines. There are a tota%?
simulators that have to be assigned to 4 CPUs. line
defines the location for the simulators associdtedhe
generatorHeat and generatorCold atomic models.sLihe
to 5 set where the simulators for the cells of sheface
model will be running.

In addition, there are two coupled models: the top
For the surface mode

model and the surface model.
PCD++ will create four coordinators:naaster coordina-
tor running on processor 0 and threlave coordinators
each running in one of the CPUs 1 to 3. For thentoplel,
there will only be onenaster coordinatoon processor O.

The results of running the simulation on 1, 2, 4 &n
processors are shown below. For this test, thelation
was configured to use the NoTimekernel.

processors Time (sec)
1 590
2 476
4 383
8 369

Figure 8. Simulation execution time

As it can be appreciated, there is a significaducgion
in the simulation time as more processors are LBkd.
speedups are not exponential, but they add upeqén-
formance provided by Cell-DEVS. The following figur
shows the execution time of Cell-DEVS models (ACA)
against traditional Cellular Automata for this pautar
model.

@

o

(]

£ § 400

< » 300

o C

£ 8 200 d

g 100

w 0 » ——"
10 50 100

—*—AC | Cell's delay (milliseconds)

—=— ACA

Figure 9. Simulation execution times of Cell-DEVS models

CD++ is a tool for the simulation of Parallel DE#8d
Cell-DEVS models that implements this distributda a
stract simulator mechanism. The tool has provenredoice
the execution time models with a high nhumber ofudias
neous events.

Distributed environments have a communications
overhead that can be quite significant. The extenef the
Parallel-DEVS abstract simulator here presenteghkéee
a minimum the number of messages sent across neschin
This was possible by assigning each coupled model o
master coordinatoand zero, one or mosdave coordina-
tors. Messages that have to cross a processor bounaary a
always sent betweenasterandslavecoordinators ,which
then forward the received messages to their loepkd-
dants.

A new abstract simulator that will allow for out of-

Ider execution of events is being studied. For tiasv

mechanism the Warped TimeWarp kernel will be used.

References

[1] ZEIGLER, B.; KIM, T.; PRAEHOFER, H. "Theory dflode-
ling and Simulation: Integrating Discrete Event @ontinuous
Complex Dynamic Systems". Academic Press. 2000.

[2] ALEX C. CHOW; BERNARD P. ZEIGLER. Parallel DEVS
A parallel, hierarchical, modular modeling formatisin Winter
Simulation Conference Proceeding®rlando, Florida, 1994.
SCS.

[3] WAINER, G.; GIAMBIASI, N. "Timed Cell-DEVS: mod-
ling and simulation of cell spaces ". In "Discrégent Mode-
ling & Simulation: Enabling Future Technologiesy, lie publis-
hed by Springer-Verlag. 2001.

[4] WAINER, G. “Improved cellular models with patell Cell-
DEVS". In Transactions of the SC3une 2000.

[5] ALEX C. CHOW, DOO H. KIM; BERNARD P. ZEIGLER.
"Abstract Simulator for the parallel DEVS formalisnAl, Simu-
lation, and Planning in High Autonomy Systesc., 1994

[6] BERNARD P. ZEIGLER.Object Oriented Simulation with
Hierarchical, Modular Models.Academic Press, San Diego,
California, 1990.

[7] RODRIGUEZ, D.; WAINER, G. "New Extensions toeh
CD++ tool". InProceedings of SCS Summer Multiconference on
Computer Simulation999.

[8] MARTIN, D.; MCBRAYER, T.; RADHAKRISHNAN, R,;
WILSEY, P. "TimeWarp Parallel Discrete Event Simafé.
Technical Report. Computer Architecture Design Labary,
University of CincinnatiDecember 1997.

