
Remote Execution and 3D Visualization of Cell-DEVS models  
 
 

Gabriel Wainer      Wenhong Chen       
 

Dept. of Systems and Computer Engineering  
Carleton University 

4456 Mackenzie Building. 1125 Colonel By Drive 
Ottawa, ON. K1S 5B6. Canada. 

gwainer@sce.carleton.ca 
 

 

Keywords: Cell-DEVS models, web-based simulation, cellular 
automata, Virtual Reality, VRML. 

 

Abstract 

The CD++ tool was created to simulate complex physical systems 
using a cell-based approach. The original visualization facilities of 
this tool were too limited. We extended them using VRML in order 
to provide a 3D graphical interface to allow the users to analyze 
execution results with ease. The tool was built using a client/server 
architecture, therefore, users can easily input a simulation, execute 
it in a remote CD++ server, then receive, visualize and analyze the 
results locally with easy-to-use web-based 2D and 3D interfaces. 
The client can also support multi-view simulation, and run several 
different models simultaneously. 
 
1. INTRODUCTION 
 
Simulation is becoming increasingly important in the analysis and 
design of complex systems. Scientists and engineers have long 
used models to better understand the systems they are studying, for 
analysis, understanding, prediction and design of different complex 
physical phenomena. At present, there is a large number of 
modeling and simulation techniques, and various types of 
simulation tools have been developed to deal with complex 
systems and the interactions among their constituent parts. A 
formalism that is gaining popularity in recent years is called 
Discrete Event Systems Specification (DEVS) [1], a framework 
for the construction of discrete-event hierarchical modular models, 
allowing for model reusing. In DEVS, basic models (atomic) are 
specified as black boxes, and they can be integrated together 
forming a hierarchical structural model (coupled). 
 
Cell-DEVS [2] extended the DEVS formalism allowing to simulate 
discrete-event cellular models. The approach extends traditional 
Cellular Automata (CA) [3], which are defined as a lattice of cells 
updated synchronously and simultaneously. Each cell in a CA has 
a state value and a local rule that defines how to obtain a new value 
based on the current state and the values of neighboring cells. Cell-
DEVS extends these concepts by defining a cell as a DEVS atomic 
model and a cell space as a DEVS coupled model, and by 
introducing a new way of defining the timing of each cell that is 
more flexible than the existing approaches.  
 
The CD++ tool [4] enables simulating DEVS and Cell-DEVS, and 

it has been used to create a variety of models in different areas: 
biology (watersheds, fire spread, ant colonies), physics (crystal 
growth, lattice gases, heat diffusion), chemistry (solution diffusion 
in moving fluids), and several artificial systems (autonomous 
robots, heat seekers, urban traffic, etc.) [5, 6]. While running these 
models, we found out that, when the complexity of the models 
increase, the execution requires a computing power that standard 
personal computers do not provide. Despite this fact, end users 
might not have access to high performance computing resources, 
and they might need to use workstations for analysis and 
development.  
 
A solution to these problems is to let the user to execute simulation 
software on a high-performance remote computer, while using a 
workstation for development and analysis. In any of these cases, a 
client/server architecture is adequate. The computer running the 
simulation software can be designed as a server and execute many 
simulation models simultaneously to serve many users at the same 
time. CD++ design was modified following this idea, and it was 
transformed into a simulation server that receives requests from 
many users and serves them simultaneously. The separation of 
concerns provided by the DEVS and Cell-DEVS formalisms 
permitted us to attack these changes with ease. In DEVS-based 
modeling environments, models are completely independent from 
the simulation engines, and simulators can be exchanged without 
doing any modifications to existing models. 
 
Another problem of CD++ was the lack of adequate visualization 
mechanisms. Visualization tools are crucial in helping to better 
understand the behavior of complex systems, facilitating thinking, 
problem solving, and decision making, scientific visualization 
tools create visual displays, in which numeric values in data sets 
are represented visually as colors, shapes, or symbols [7].  

 
We introduce an extension for CD++ that enables 2D and 3D 
visualization, and remote access to a DEVS simulation server. The 
end user tools are organized as a simulation client applied to the 
CD++ toolkit. A 3D visualization GUI is developed using VRML 
and Java, providing useful functions for the users. A multi-view 
GUI permits displaying multiple views of the result (any number 
of areas of interest of the same result can be displayed at the same 
time). Using these facilities, the users can now develop and test 
their models in local workstations, and send them to be simulated 
in a remote CD++ server executing in a high performance 
platform. Then, they can receive, visualize and analyze the result 
on the local computer, improving model definition and execution.  



2. DEVS AND CELL-DEVS 
 
The DEVS formalism [1] was originally defined in the ‘70s as a 
discrete-event modeling specification mechanism. A real system 
modeled with DEVS is defined of a composite of sub-models, each 
of them being atomic or coupled. Each model is defined by a time 
base, states, inputs, outputs, and the functions to determine the next 
states and outputs. Coupled models can be integrated into a model 
hierarchy, allowing model reuse, reducing testing time and 
improving productivity. 
 
A DEVS atomic model is described as:  

M = < X, S, Y, δint, δext, λ, D > 
 
The model is seen as having an interface consisting of input (X) 
and output (Y) ports to interact with other models. External input 
events arrive through input ports, and trigger the external transition 
function δext. The internal transition δint is activated after the model 
spends a specific duration at the present state S , which is defined 
by the duration function D. The transition will produce internal 
state changes after the results are sent out through output ports. 
These results are determined by the output function λ. 
 
A DEVS coupled model is composed of several atomic or coupled 
sub-models, and can be defined as:  

 
CM = < X, Y, D, {Mi}, {Ii}, {Zij} > 

 
The coupled models consist of a set of basic components D 
(atomic or coupled model), which interact with each other through 
the model’s interfaces(X, Y). The model Mi sends the outputs to its 
influencees Ii. The translation function Zij (∀ j ∈ Ii) converts the 
outputs of a model into inputs of the other models.  
 
The Cell-DEVS formalism extended this basic behavior to allow 
the implementation of cellular models with timing delays [2]. Each 
cell in these spaces holds a state variable, which is updated 
according to a local rule that considers the present cell state and 
those of a finite set of nearby cells (called the cell's 
neighborhood). Each cell is defined as an atomic model with 
timing delays, and it can be integrated to a coupled model to 
represent a cell space.  
 
Cell-DEVS defines cells as atomic model, specified as: 

 
TDC = < X, Y, I, S, θ, N, d, δint, δext, τ, λ, D > 

 
Where X is a set of ext ernal input events, Y a set of external output 
events, I the model's modular interface, S the set of sequential 
states for the cell, θ the cell state definition, N the set of input 
values, d the delay for the cell, δint the internal transition function, 
δext the external transition function, τ the local computation 
function, λ the output function; and D the state's duration function. 
A cell uses the input values N to compute its next state, which is 
obtained by applying the local computation function τ. A delay 
function is associated with each cell, deferring the computed result 
to be sent to the neighbor cells. There are two types of delays: 
inertial and transport delay. For the transport delay, the next value 
is added to a queue sorted by output time; therefore, the results can 

be stored until they have been sent out. On the contrary, inertial 
delay uses a preemptive policy, that is, any stored previous outputs 
will be deleted, if there are changes before the delay consumption. 
The δext function activates the local computation. 
 
After the basic behavior of a cell is defined, the whole cell space 
can be constructed by building a coupled Cell-DEVS model, 
defined by: 
 

GCC = < Xlist, Ylist, I, X, Y, n, {t1,...,t n}, N, C, B, Z> 
 
Where Xlist is the input coupling list, Ylist the output coupling 
list, I the definition of the interface for the modular model, X  the 
set of external input events, Y the set of external output events, n 
the dimension of the cell space, {t1,...,tn} the number of cells in 
each of the dimensions, N the neighborhood set, C the cell space, 
B the set of border cells; and Z the translation function. This 
specification defines a coupled model composed of an array of 
atomic cells. Each cell is connected to the cells in its 
neighborhood. Since a cell space is finite, the cells on the borders 
should have a different neighborhood than the rest of the space, 
they are "wrapped", that is, cells on the border are connected to the 
cells in the opposite one. Finally, the Z function defines the 
internal and external coupling of cells in the model. This function 
translates the outputs of m-eth output port in cell Cij into values for 
the m-eth input port of cell Ckl. Each output port will correspond to 
one neighbor and each input port will be associated with one cell in 
the inverse neighborhood.  
 
The CD++ environment [4] implements the DEVS and Cell-DEVS 
theory. The toolkit has been built as a set of independent software 
pieces, each of them independent of the operating environment 
chosen. There are versions running under Windows 95/NT, Linux, 
AIX, IRIX, HP-UX and Solaris. It allows defining models 
according to the specifications introduced in the previous section. 
A set of independent applications related with the tool allows the 
users to have a complete toolkit to be applied in the development 
of simulation models. CD++ can be used to define Cell-DEVS 
models. The tool includes an interpreter for a specification 
language that allows describing the behavior of each cell of a 
cellular model, including its delay and neighborhood. In addition, 
it allows defining the size of the cell space and their connection 
with other DEVS models, the border and the initial state of each 
cell. The behavior specification for a cell is defined using a set of 
rules, each indicating the value for the cell's state if a condition is 
satisfied. The output of the model should be delayed by using a 
specified time.  
 
For instance, Figure 1 shows an example for the specification of a 
Cell-DEVS model developed using CD++. The specification 
follows Cell-DEVS formal definitions. In this case, Xlist = Ylist = 
{∅}. The set {t1…tn} is here defined by width-height, which 
specify the size of the cell space (in this example, n=2, t1=20, 
t2=40). The N set is defined by the lines using the neighborhood 
keyword. The border (B) is wrapped. Using this information, the 
tool builds a cell space (specified by C in the formal specification), 
and the Z translation function. Each cell in the cell space is built 
following the Cell-DEVS specifications. The X, Y, S, N, θ, δint,  
δext, λ, and D functions are built following Cell-DEVS formal 
specifications (see [2] for details). The user only needs to define 



the τ function (defined by localtransition), and the delay (defined 
by delay and defaultDelayTime). In this example, the local 
computing function executes very simple rules. The first one 
indicates that, whenever a cell state is 1 and the sum of the state 
values in N is 8 or 10, the cell state remain in 1. This state change 
will be spread to the neighboring cells after 100 ms. The second 
rule states that, whenever a cell state is 0 and the sum of the inputs 
is larger or equal to 10, the cell value changes to 1. In any other 
case, the result remains unchanged (t = true), and it will be spread 
to the neighbors after 150 ms. As we can see, cells evolve using a 
discrete-event approach. 
 
[ex] 
type : cell 
width : 20 height : 40 
delay : transport border : wrapped 
neighbors : (-1,-1) (-1,0) (-1,1) 
neighbors : (0,-1)  (0,0)  (0,1) 
neighbors : (1,-1)  (1,0)  (1,1) 
localtransition : rules 
 
[rules] 
rule : 1 100 { (0,0) = 1 and (truecount = 8 or 
truecount = 10) }  
rule : 1 200 { (0,0) = 0 and truecount >= 10 } 
rule : (0,0) 150 { t } 

Figure 1. A Cell-DEVS specification in CD++  
 
CD++ generates a text file representing a 2-dimensional slice 
showing the execution of Cell-DEVS models as a matrix of values. 
In models of three or more dimensions, the results can be shown as 
slices representing 2-dimensional planes, each of them shown as a 
matrix. For instance, in a 3D dimensional space, the first plane 
shown corresponds to (x, y, 0), the second one to (x, y, 1), etc. 
Figure 2 shows a model executing a 3D simulation of the 'Life' 
game [8] with the original rules proposed by Conway. Each cell 
can be alive (1) or dead (0). A new cell is born when it has exactly 
three living neighbors. An existing cell survives if it has two or 
three neighbors that are alive. Otherwise, it dies. 
 
     Line : 247 - Time: 00:00:00:000 
          0123456     0123456        0123456 
    +-------+         +-------+      +-------+     
   0|1      |        0|       |    0|1      |    

1|1 1  11|        1|11   11|    1|  111  |     
   2| 1   1 |        2|   11 1|    2| 1 11  |      
   3|       |        3|  1  11|    3|     11|       
 4|  1  11|        4|  1 1  |    4| 1   11|     
 5|  11  1|        5|   1 1 |    4| 11  1 | 
 6|1  1  1|        6| 1   1 |    4| 1 11 1| 
      +-------+         +-------+     +-------+     
 
     Line : 247 - Time: 00:00:00:100 
          0123456      0123456        0123456
   

 +-------+         +-------+      +-------+     
  0| 1    1|        0|11    1|    0| 1    1|    
    1|1 1   1|        1|1     1|    1|1 11  1|     
   2|11  1 1|        2|1    1 |    2|11   11|      
   3|    111|        3|  1 1 1|    3|    1 1|       
 4|       |        4|     11|    4|       |     
 5|1  111 |        5|1 111 1|    4|1  11 1| 
 6|       |        6| 1     |    4| 1  1 1| 
      +-------+         +-------+     +-------+ 

Figure 2. A fragment of a 3D model 

As  mentioned in section 1, we are interested in running a 
simulation using a client/server architecture. Therefore, VRML 
(Virtual Reality Modeling Language) [9] appears to be a good 
choice to our goals. VRML is a web-based graphics language for 
creating 3D models. It is a file format for describing 3D objects 
and worlds, and allows user interaction within a scene through 
viewpoints, movement, and rotation. VRML worlds are created 
with a scene-graph structure. Scene graphs are comprised of 
various groups of nodes, which are responsible for displaying 
shapes, interaction, and navigation through the world. The External 
Authoring Interface (EAI) [10] is a Java Application Programming 
Interface (API) that enables a currently running applet to interact 
with, and dynamically update a 3D VRML scene. Using Java and 
the EAI, the users can have full control to create a dynamic 3D 
VRML World.  
 
3. CD++ SIMULATION CLIENT/SERVER 
 
Considering the background considered in the previous section, we 
decided to provide a set of tools for building Cell-DEVS 
simulation models, visualizing and analyzing the results, and 
accessing a remote simulation server for execution. The idea was 
to incorporate all of these components together as a simulation 
client in a client/server architecture. The inherent modularity of 
client/server systems leads to greater overall robustness, since 
computing responsibility is no longer concentrated in the server. 
Client/Server applications typically distribute the software 
components so that the data source resides on the server, the user 
interface resides on the client, and the logic resides in either side.  
 
Following these ideas, the CD++ simulator was modified to run as 
a stand-alone application or as a server. When CD++ runs as a 
server, the components are related as in figure 3. There is a 
separation between model definition, simulation execution, and 
visualization. A user run CD++ on a local machine and specifies a 
model file as the input. After the simulation is over, a log file like 
the one in figure 2 is generated. These files can be used to generate 
graphical outputs using different Graphical User Interfaces (GUI).  

 
Figure 3. CD++ running as client/server application. 



The client integrates components for model input and result 
visualization GUIs, which are the main interfaces on the client. 
They ensure that the user is presented with a visualization system 
that has a familiar, easy-to-use interface, requiring little training 
overhead. In this way, CD++ simulations can be presented to a 
wider range of users, and learning times and training costs can be 
significantly reduced 
 
When CD++ is running as a server, it is always listening on a 
specified TCP socket. The clients needing service will 
communicate with it and will send model files  through this port. 
The server allows to service several clients at the same time, and 
whenever it accepts a simulation requirement, a child process is 
created to serve the specific requirement. A child process created 
most recently takes the place of its parent and continues listening 
through the desired port. When a new incoming simulation arrives, 
the described process is repeated; the CD++ server is forked and 
the simulation request is satisfied. This process is terminated when 
the simulation is over. Concurrent simulation requests can be 

serviced. In order to execute a simulation, the server must send a 
model file like the one defined in Figure 1, an optional event list 
and an optional stop time. When a request is received, CD++ 
executes the model, and it returns the result through the same TCP 
port.  with the following format 
 
The CD++ server will send back the log file, and the client will 
receive and save it on the local disk. CD++ drawlog can be used to 
change the format of a log file to a text file that can be used for 
visualization.  
 
4. 3D VISUALIZATION ENVIRONMENT 
 
The 3D visualization GUI is used to visualize the result in a 3D 
environment. The results are represented using nodes in the VRML 
scene. The user can navigate in the scene, and edit the nodes in the 
scene for more convenient investigation on the result.  
 

 

 
Figure 4. NavigatePanel execution. 

 
We start with an empty VRML scene, holding nodes that can be 
added and removed from it to represent the results. This empty 
VRML scene is embedded in an HTML file as a root file, which 
also includes an applet to control the scene. The applet includes 
functions to add or remove nodes, update the scene, navigate, and 
edit the nodes in the scene. The applet has the functions: 
 
1. Add or remove a node from the scene 
2. Change the shape and colors of the nodes, or hide the nodes 
3. Select the colors for the value ranges of the nodes 
4. Change the scale of the nodes, and the interval between them 
5. Navigate in the Scene 
6. Edit the scene and the individual node 
7. Load a result file to be displayed 
8.  
These functions are classified into several categories:  

 
- ReadDrwFile class: it is in charge of reading the next recent 
result in the result file. It is used by the NavigatePanel to get the 
next result to be displayed. This result can be chosen to be: a) The 
result with the next timestamp in the result file; b) The result with 
the previous timestamp; c) The result at a chosen time. 
 
- InfoPanel: it is a subclass of Panel, which is shown when the 
application starts. It includes methods to select the result file, and 
an associated color palette. These files are checked for consistency, 
and a text area displays debugging and status information.  
 
- NavigatPanel: it is the main class in the application. It stores the 
currently displayed result, recent displayed nodes, and the names 
of all the displayed nodes. This information is updated whenever 
the scene is updated with a new result, or the color palette is 
changed. It first initiates the scene, using the number of rows, 



columns and layers. Then, the scene is initiated as a block of nodes 
corresponding to the size of rows, columns and layers. Each node 
in the block represents a value in the result. The class includes 
methods to add or remove a node in the scene, and to change the 
shape, color, and size of the nodes, or to check the result at a 
favorite viewpoint. In order to change the shape, color, and size of 
the nodes, we just need to call the functions in the node class. 
Another function provided by this class is the navigation, which is 
implemented as the possibility of having different viewpoints. 
First, the viewpoint can be a child of Transform node, its position 
and orientation are changed with those in this Transform node. 
Second, the user can select different viewpoints. If another 
viewpoint is bound, the active viewpoint will be unbound 
automatically, and the user will see the scene corresponding to the 
newly bound viewpoint.  This class has several methods for the 
navigation in the visualization. We just need to get the position of 
the next recent result, and call the method in the ReadDrwFile 
class. We can also read the next result, advance to the next result, 
move to the previous result, move to any selected time, or input 
time, reset the visualization again and pick a one node as the 
current node. Figure 4 shows the output generated by the 
NavigatPanel class. 

 

- EntityPanel: it allows editing individual nodes in the scene. The 
entity list is populated by the NavigatPanel class when it updates 
the nodes in the scene every time, and a  node can become the 
current node by clicking it or selecting the corresponding item in a 
list. After a node becomes the current node, it can be edited by 
calling the related methods in the node class and the methods in 
NavigatPanel class. The functions included in this class are: 
1. Change the shape, color, and size of the selected node 
2. Add or remove the individual node in the scene. 
3. Set the slides according to the values of the selected node.  
 
- ResultPanel: it is used to navigate in the VRML world. Different 
methods are defined to control the navigation, including: a) A start 
method; b) a resume method to continue if stopped; c) a go back 
method to go to the previous timestamp; d) a go next method to go 
to the next time; e) a stop method; f) a continuously display 
method (this iteration will end only at the end of file); g) a  method 
to go to any selected timestamp; a) a method to remove layers in 
the scene or add the removed layers; i) a reset method for the 
scene, displaying all the layers. These methods call the 
corresponding methods in the ResultPanel Class, which will call 
the corresponding methods in the NavigatPanel Class. 
 
 
5. VISUALIZING CD++ SIMULATIONS 
 
In this section, we show some examples of execution of models 
using the VRML 3D interface. We will not focus in the model 
execution results (see [4, 5] for details), but in the client 
functionality. 
 
The result matrix is now shown as a 3D matrix of colored nodes 
with the same size, and the layer displayed as an another node 
matrix with different value in z coordinate. Each node corresponds 
to a value in the result matrix, and the color of the node is specified 
by its value and set with a color selection. 
 

We can use different geometries to represent the objects in the 
result. The user can select boxes, spheres, cones or cylinders. Two 
examples can be seen in Figure 5. The result matrix is displayed as 
a node matrix, and the layer displayed as an another node matrix 
with different value in z coordinate. We can also see that different 
colors are assigned to the nodes using a palette selection. 
 

 
Figure 5. Changing geometry 

 
Another facility enables selecting different viewpoints to visualize 
the results. This can be seen in figure 6. 
 

 
Figure 6. Viewpoints 

 
A user can select any viewpoint defined in the VRML file to 
visualize the result. Here, we show the User's Eye and the Side 
view viewpoints. In addition, the user can select any viewing area, 
as shown in previous figures. The navigation facilities enable 
displaying the result continuously with a sequence same as the 
simulation. In this way, the user can see the results continuously, 
with the same sequence than the simulation. The user can also edit 
a single node in the scene, changing its shape, color or position, as 
shown in the following figure. 
 

 
Figure 7. Editing single nodes 

 
The edited node will keep the modified attributes, such as, color 
and size. Therefore, the user can highlight the special nodes he 



wants to check. (1) Modify a node with color, size and translation 
and rotation. (2) Delete the edited node. The user also can 
redisplay the deleted node, then the display will be as in (1), and 
all the modified attributes are remained.  
 
A user can also remove any layer in the display, in order to make 
easier the visualization of certain phenomena. In figure 8, we show 
the previous examples, but level 1 was removed, which can be 
redisplayed later if needed. 
 

 
(a)    (b) 

Figure 8. (a) Deleting layers (b) scaling nodes 

 
The nodes in the scene can be scaled up or down, as shown in 
Figure 8.b), where the nodes have been scaled to the minimum 
distance and cannot be scaled further. The nodes also can be scaled 
to smaller size. 
 
Finally, multiple instances of the GUI can be activated to visualize 
the same result, using different viewing areas, as shown in the 
following figure. Likewise, different geometry or Inline nodes can 
be used, if needed. 
 

 
Figure 9. Multiview: different shapes from different viewpoints. 

 
6. CONCLUSION 
 
CD++ is a tool for the simulation of complex physical systems that 
can be used to simulate a variety of models. To facilitate the users 
to use the CD++ simulator, this client provides a series of tools, 
including 3D simulation visualization and remote execution.  
 
The 3D visualization GUI enables sophisticated visualization of 
Cell-DEVS models. To better understand the results, the user can 
select shapes to represent a node in the 3D visualization, select 
different colors or hide for the nodes with different values, edit 
individual node and remove layers. The interface in this client can 
send the simulation model to a remote CD++ server, then receive, 

and visualize the results locally. With this client, a distributed 
simulation system can be easily established in various 
environments. This client also can support real-time multi-view, 
multi-user simulation, and run several different models 
simultaneously, improving the use of the previously existing tools.  
 
 
REFERENCES 
 
[1] ZEIGLER, B.; KIM, T.; PRAEHOFER, H. "Theory of 
Modeling and Simulation: Integrating Discrete Event and 
Continuous Complex Dynamic Systems". Academic Press. 2000. 
  
[2] WAINER, G.; GIAMBIASI, N. "Timed Cell-DEVS: modeling 
and simulation of cell spaces ". In "Discrete Event Modeling & 
Simulation: Enabling Future Technologies", Springer-Verlag. 
2001.  
 
[3] TOFFOLI, T. "Occam, Turing, von Neumann, Jaynes: How 
much can you get for how little? (A conceptual introduction to 
cellular automata)". Proceedings of ACRI'94. 1994. 
 
[4] WAINER, G. "CD++: a toolkit to define discrete-event 
models". G. Wainer. Software, Practice and Experience. Wiley. 
Vol. 32, No.3. pp. 1261-1306. November 2002. 
 
[5] AMEGHINO, J.; TROCCOLI, A.; WAINER, G. "Modeling 
and simulation of complex physical systems using Cell-DEVS". In 
Proceedings of 34th IEEE/SCS Annual Simulation Symposium. 
Seattle, U.S.A. 2001. 
 
[6] AMEGHINO, J.; WAINER, G. "Application of the Cell-DEVS 
paradigm using N-CD++". J. Ameghino, G. Wainer. In 
Proceedings of the 32nd SCS Summer Computer Simulation 
Conference. Vancouver, Canada. 2000.  
 
[7] KRAAK, M.-J.; MACEACHREN, A.M. Visualization for 
exploration of spatial data (editorial introduction to special issue). 
International Journal of Geographical Information Science, 13(4), 
285-287. 1999. 
 
[8] GARDNER, M. "The fantastic combinations of John Conway's 
New Solitaire Game 'Life'.". Scientific American. 23 (4). pp. 120-
123. April 1970. 
 
[9] AMES, A.; NADEAU, D.; MORELAND, J. “VRML 2.0 
Source (Second Edition)” John Wiley & Sons, Inc 1997 
 
[10] MARRIN, C. “External Authoring Interface Reference”, 
Silicon Graphics, Inc., 1997. 
http://www.web3d.org/WorkingGroups/vrml-
eai/history/eai_draft.html 


