
Modeling State-Based DEVS Models in CD++
Gastón Christen Alejandro Dobniewski

Computer Science Department
Universidad de Buenos Aires

Planta Baja. Pabellón I.
Ciudad Universitaria (1428)

Buenos Aires. Argentina.

Gabriel Wainer

Dept. of Systems and Computer Engineering
Carleton University

4456 Mackenzie Building
1125 Colonel By Drive

Ottawa, ON. K1S 5B6. Canada.
E-mail: gwainer@sce.carleton.ca

Keywords: DEVS, DEVS Graphs, CD++.

Abstract: We introduce the features of CD++, a toolkit for
modeling and simulation based on the DEVS formalism. We
show recent extensions that permit the users to write the
models using state machines, and we show how to use it
through application examples. The use of this formal ap-
proach allowed developing safe and cost-effective simula-
tions, reducing significantly the development times of simu-
lation software.

1. INTRODUCTION

In recent years, several efforts have been devoted to define
new modeling paradigms, allowing improving the analysis
of complex dynamic systems through simulation of these
models. DEVS (Discrete Event systems Specifications)
allows modular description of models that can be integrated
using a hierarchical approach [1, 2].

We have built a toolkit with the goal of developing mod-
els based on the DEVS formalism and simulating them. The
core of the toolkit is the CD++ environment [3], which
implements the DEVS theory. Here, we focus in the devel-
opment process of simulated models using a graph-based
definition of DEVS models. Graphical-only notations have
some limitations in building complex systems [4]. There-
fore, we permit the users to define intermediate functions in
C++. Likewise, if the complexity of the models is such that
graphical notations are not adequate, the models can be still
defined using a standard representation in C++, thus permit-
ting the integration of simple state-based specifications with
more complex models defined in a programming language.

2. THE DEVS FORMALISM

DEVS was originally defined in the '70s as a discrete-event
modeling specification mechanism [1]. It was derived from
systems theory, and it allows one to define hierarchical
modular models that can be easily reused. A real system
modeled with DEVS is described as a composite of sub-
models, each of them being behavioral (atomic) or structural
(coupled). Closure under coupling allows coupled models to
be integrated to a model hierarchy.

Each model is defined by a time base, inputs, states, out-
puts, and functions to compute the next states and outputs.
A DEVS atomic model is formally described by:

M = < X, S, Y, δint, δext, λ, ta >
Each model is seen as having input (X) and output (Y)

ports to communicate with other models. The input and
output events determine the values to appear in those ports.
The input external events are received in input ports, and the
specification of the external transition function (δδδδint) defines
the behavior under such inputs. The internal transition func-
tion (δδδδext) is activated after the lifetime of the present state
has been consumed, which is defined by the time advance
(ta) function. Its goal is to produce an internal event, which
lead to a state change. The desired results are spread through
output ports by the output function (λλλλ), which executes
before the internal transition.

A DEVS coupled model is composed of several atomic
or coupled submodels. They are formally defined as:

CM = < X, Y, D, {Mi}, {Ii}, {Zij} >
Each model is seen as having input (X) and output (Y)

ports to communicate with other models. Coupled models
are defined as a set (D) of basic components (Mi atomic or
coupled), which are interconnected. The translation function
(Zij) is in charge of converting the outputs of a model into
inputs for the others. To do so, an index of influencees (Ii) is
created for each model. This index defines that the outputs
of the model Mi are connected to inputs in the model Mj,
where j is an element of Ii.

The CD++ tool [3] allows defining models following
these specifications. The tool is built as a hierarchy of mod-
els, each of them related with a simulation entity. Atomic
models can be programmed and incorporated onto a basic
class hierarchy programmed in C++. New atomic models
must be incorporated into this class hierarchy as subclasses
of the Atomic Model class.

Defining models in C++ allow the users to have great
flexibility to define behavior. Nevertheless, a non-
experienced user can have difficulties in defining models
using this approach. Likewise, having a graphical specifica-
tion enhances the interaction with customers during system
specification [5]. Graph-based notations have the advantage
of allowing the modeler to think about the problem in a
more abstract way. Therefore, we have used an extended

graphical notation to allow the user define atomic models
behavior [6]. Each DEVS graph defines the state changes
according to internal and external transition functions, and
each is translated into an analytical definition. DEVS graphs
can be formally defined as:

GGAD = < X M , S, Y M , δ int, , δ ext , λ, D >
X M = {(p,v)| p ∈ IPorts, v ∈ X p } set of input ports;
Y M = {(p,v)| p ∈ OPorts, v ∈ Y p } set of output ports;
S = B x P(V) states of the model,
B = { b | b ∈ Bubbles } set of model states.
V = { (v,n) | v ∈ Variables, n∈ R0 } intermediate state vari-
ables of the model and their values.

δint, δext, λ, and D have the same meaning as in tradi-
tional DEVS models.Each model is defined by a unique
identifier, and it can include a graphical specification or
C++ code. When we use the state-based notation, states are
represented by bubbles including an identifier and a state
lifetime. When the lifetime is consumed, an internal transi-
tion function is executed.

Figure 1: An atomic model defined as a DEVS graph.

Figure 1 shows a simple atomic model using this nota-

tion. The model includes three states: A, B and C. Dotted
lines represent internal transitions, while full lines define
external transitions. In this case, if the model is in state A
and it receives an external event through the rep input port
(shown in the left panel), the any function is evaluated. If
the result of this evaluation is 1, the model changes to the
state B. While in B, the model waits its lifetime to be con-
sumed. It then executes the output function, which will send
the value of the intermediate state variable counter through
the output port ok. After that, the internal transition function
executes, and the model changes to the state C.

While graphical models are best for design, simulators
require text representations (or extended notations in XML
or other high level modeling languages). Thus, we defined a
textual representation for each of the elements in the graphi-
cal notation. Every GGAD model is converted into this
language, called GADscript. GGAD models are then simu-
lated by CD++, as shown in Figure 2.

In order to translate DEVS graphs into text specifica-
tions, we use the following syntax [7]:

[modelname] defines the atomic or coupled model
name, which will be used subsequently. Model states are
declared as: state: state1 state2 ...

States are associated to a time advance value. This at-
tribute are initialized with the name of the object and the list
of valid attributes for that object, as follows:

state1 : time-expression

One of the states must be declared as the initial state of
the model: initial: statename

Then, I/O ports are declared either as follows:
in : inport1 inport2 ...
out : outport1 outport2 ...

Temporary variables are declared by:
var : var1 var2 var3 ...

and they can be optionally initialized as:
var1 : value1
var2 : value2

The internal transitions use the following syntax:
int:source destination [outport!value]* ({

(action;)* })?

Here, the source and destination represent the initial and
final states associated with the execution of the transition
function. As the output function should also execute before
the internal transition, an output value can be associated
with the internal transition. Finally, if the user wants to
execute a complex function to generate an output, one or
more actions can be defined. External transitions are defined
using the following expression:

ext : source destination EXPRESSION ({ (ac-
tion;)* })?

In this case, the expression should hold, and then the
model will change from state source to state destination,
while also executing one or more actions.

As we can see, transition functions have associated ac-
tions to modify the value of the intermediate variables in the
model. Each action is an assignment to a variable of the
result of evaluating an expression. Actions are defined using
simple mathematical expressions. They can include con-
stants, variables and functions. The value of a message in a
port can be referenced by the name of the port, like a vari-
able.Functions are actually evaluated in native C++ code. It
is possible to incorporate new functions by programming
them into CD++. The current version of the simulator in-
cludes a library of basic arithmetic and Boolean functions,
presented in the following figure.

Function Description
Add(n1,n2) sum of n1 and n2.
And(n1,n2) true if both arguments are true.
Any(port) true if the port has a valid value.
Between(n1,n2,n3) true if n1 <= n2 <= n3
Com-
pare(n1,n2,n3,n4,n5)

n3, n4 or n5 if n1 is reater, equal
or less than n2 respectively.

Divide(n1,n2) n1 divided by n2
Equal(n1,n2) true if n1 = n2, false else.
Greater(n1,n2) true if n1 > n2, false else.
Less(n1,n2) true if n1 < n2, false else.
Minus(n1,n2) n1 - n2
Multiply(n1,n2) n1 multiplied by n2
Not(n) negation of n.
NotEqual(n1,n2) true if n1 is different of n2.
Or(n1,n2) true if one of the parameters true.
Pow(n1,n2) returns n1 power n2
Rand(n1,n2) random value between (n1,n2)
Value(n) returns n.

Figure 2: Action functions available.

3. MODELS OF DISCRETE EVENT SYSTEMS

We will exemplify the use of the toolkit by using a
model of a traffic light radar. This device takes photos of
cars violating red lights or speeding in a crossing. For doing
this, it uses a radar sensor and a presence sensor. Figure 4
shows the structure of the topmost model in this application.

Figure 3: Structure of the photographic radar model.

The top level coupled model is composed is composed

of the following submodels.

Model Description
Control Manages the system.
TrafficLight Cycles the red, yellow and green lights.
Camera Takes the shots.
IO Does communications tasks.

The Control atomic model instructs the Camera atomic

model to take a photo. This coupled model uses two external
ports. The first one, called lane, detects the presence of a car
over the pedestrian zone at the corner of the street. A second
one, called radar, represents a sensor detecting a car
running faster than the maximum speed. This sensor is
active when the lane sensor warns about a car over the
pedestrian zone and the traffic light is red (traffic light
atomic model). If the memory of the digital camera is full, it
warns the Control atomic model to request to download the
pictures and to empty the memory IO atomic model.

As we can see in the leftmost panel, this model uses the
following input-output ports:

Port Description

Lane (in) Receives a signal alerting the presence a
vehicle on the pedestrian crossing.

Radar (in) Alerts a vehicle over the speed limit.
Ext (in) Commands controller
Count (in) Count memory available.
Central (out) Alerts to the Central.

Using this specification, the graphic tool generates a

CD++ specification of the coupled models, as showed in the
following figure. As we can see, the specification represents
the model coupling (link sentences), and it defines the
atomic models as cdd files. Each of these files contain the
description of the atomic models using GGAD notation.

[Top]
components : trafficlight@GGad control@GGad
camera@GGad IO@GGad
out : central in : lane radar ext count
Link : lane lane@control
Link : radar radar@control
Link : light@trafficlight trafficlight@control
Link : photo@control take@camera
Link : ready@camera ready@control
Link : count count@IO
Link : empty@control empty@IO
Link : restart@IO full@control
Link : ext extern@IO
Link : central@IO central
[trafficlight] source : trafficlight.cdd
[control] source : control.cdd
[camera] source : camera.cdd
[IO] source : IO.cdd

Figure 4: Text specification of the radar coupled model

Let us show the details of the Control atomic model.

Figure 6 represents its graphical design:

Figure 5: DEVS graph for the Control model.

This atomic model starts in the Active state. If the Radar

ports receive messages with high speed or over the lane
when the traffic light is in red, then it commands the Cam-
era to take a shot and returns to Active. If the remaining
shots counter gets to zero sends a warning on Empty port
and waits the memory to be emptied on the port Full. Every
time the traffic light cycles the model updates the value of
the variable light. The graphic tool generates the following
GADscript code that can be simulated using CD++.

[control]
in: lane radar trafficlight ready full
out: photo empty
var: light qph
state: active speed void inactive redlight up-
date click update2 aux ignore ignore2
initial: active
int: speed click photo!1 {qph = minus(qph,1);}
int: redlight click photo!1 {qph = mi-
nus(qph,1);}
...
ext: active speed Value(radar)?1
ext: click active and(equal(ready,1),

notequal(qph,0))?1
...
active: infinity
speed:00:00:00:00
void:00:00:00:00
inactive: infinite
...
light:0
qph:2

Figure 6: Text specification of the control atomic model

We also need to define the remaining submodels. We

will briefly describe their behavior (for a detailed descrip-
tion, see [8]):
- Camera is in StdBy state until receives the shot order

on the port Take. The time spent storing the picture is
represented by the time advance of state Prepare. When
the picture is stored, a message is emitted in the port
Ready.

- Traffic Light is a simple timed cycle between the three
states of the traffic lights. Each change of lights is an-
nounced on the port light. There are no input ports.

- IO takes the responsibility of communicating with the
traffic central, in order to inform the lack of memory
available for new pictures and downloading them. If a
signal is received on port Empty, it sends the informa-
tion through the port central to communicate the lack of
memory available for new pictures.

After defining each submodel, we can execute the simu-
lation in order to analyze the behavior of this system. We
log the following information:
- Event Types.
- Simulated time.
- Details (varies upon the event being considered):

- Model initialization (type : C): init state, { (var,
initial value),(var2, initial value),... }

- Input Message (type : ?): recorded every time a mes-
sage is received on an input port. {port receiving
the message, value received}.

- Output Message (type : O): recorded each time the out-
put function is executed. {output port, value}.

- Internal Transition Function (type : I): {init, final,
{(var-before,val),(var-after, val) ,...} }.

- External transition function (type : E): init state,
final state, {(var1, value), (var2, value),
... }

By running a simulation of this model we can analyze
the system behavior in detail. For instance, we simulated the
complete system using the following inputs:

Time Port Value

00:00:02:00 lane 1
00:00:04:00 radar 1
00:00:12:00 lane 1
00:00:15:00 lane 1
00:00:19:00 lane 1
00:00:24:00 radar 1
00:00:26:00 ext 1
00:00:26:00 count 10
. . .

The following log files show the execution of the four

atomic models that compose the coupled system. By analyz-
ing these log files we can completely study the model be-
havior and their interaction.

Control

C 00:00:00:000 : active , (qph=2) (light=0)
? 00:00:02:000 : lane , 1
E 00:00:02:000 : active ,redl(qph=2) (light=0)
O 00:00:02:000 : photo , 1
I 00:00:02:000 : redl,click (qph=1),(light=0)
? 00:00:04:000 : radar , 1
? 00:00:04:000 : ready , 1
E 00:00:04:000 : click, active(qph=1),(light=0)
? 00:00:05:000 : trafficl, 2
E 00:00:05:000 : active,update(qph=1),(light=2)
I 00:00:05:000 : update,active(qph=1),(light=2)
? 00:00:06:000 : trafficl , 0

E 00:00:06:000 : active, update(qph=1)(light=0)
I 00:00:06:000 : update,active(qph=1),(light=0)
...
? 00:00:19:000 : lane , 1
E 00:00:19:000 : active,redl(qph=1),(light=0)
O 00:00:19:000 : photo , 1
I 00:00:19:000 : redl , click (qph=0),(light=0)
? 00:00:21:000 : ready , 1
E 00:00:21:000 : click , void (qph=0),(light=0)
O 00:00:21:000 : empty , 1
I 00:00:21:000 : void,inact(qph=0),(light=0)
? 00:00:22:000 : trafficl , 1
E 00:00:22:000 : inact,aux(qph=0),(light=1)
I 00:00:22:000 : aux,inact(qph=0),(light=1)
? 00:00:24:000 : radar , 1
E 00:00:24:000 : inact,ignore2(qph=0) (light=1)
I 00:00:24:000 : ignore2,inact(qph=0) (light=1)
? 00:00:26:000 : full , 10
E 00:00:26:000 : inact,active(qph=10) (light=1)
? 00:00:27:000 : trafficl , 2
E 00:00:27:000 : active,update(qph=10)(light=2)
I 00:00:27:000 : update,active(qph=10)(light=2)
? 00:00:28:000 : trafficl , 0
E 00:00:28:000 : active,update(qph=10)(light=0)
...

Camera
C 00:00:00:000 : stdby ,
? 00:00:02:000 : take , 1
E 00:00:02:000 : stdby , run
I 00:00:02:000 : run , prepare
O 00:00:04:000 : ready , 1
I 00:00:04:000 : prepare , stdby
? 00:00:19:000 : take , 1
E 00:00:19:000 : stdby , run
I 00:00:19:000 : run , prepare
O 00:00:21:000 : ready , 1
I 00:00:21:000 : prepare , stdby
...

IO
C 00:00:00:000 : receive , (qph=0)
? 00:00:21:000 : empty , 1
E 00:00:21:000 : receive , send (qph=0)
O 00:00:21:000 : central , 1
I 00:00:21:000 : send , receive (qph=0)
? 00:00:26:000 : count , 10
? 00:00:26:000 : extern , 1
E 00:00:26:000 : receive , resume (qph=10)
...

TrafficLight
C 00:00:00:000 : green ,
O 00:00:05:000 : light , 2
I 00:00:05:000 : green , yellow
O 00:00:06:000 : light , 0
I 00:00:06:000 : yellow , red
O 00:00:11:000 : light , 1
I 00:00:11:000 : red , green
O 00:00:16:000 : light , 2
I 00:00:16:000 : green , yellow
O 00:00:17:000 : light , 0
I 00:00:17:000 : yellow , red
O 00:00:22:000 : light , 1
I 00:00:22:000 : red , green
...

As we can see, the control model starts in the state "ac-
tive". There are 2 photos left (qph = 2) and the traffic light is
in red (light = 0, the light is encoded as red=0, green=1,
yellow=2). The camera starts in state "stdby" which means
it is ready to take a shot.

A message is received after 2 seconds on input port lane,
with value 1. This event fires the external transition func-
tion. A suitable transition is found by the simulator from
state active to state redlight. This state represents the fact
that a car has crossed the lane when the light was red. An
instantaneous (i.e. ta=0) internal transition is fired to send a
message to the camera to take a photo. The message is gen-
erated by the output function through port photo. This out-
put port is connected at the coupled model level with the
atomic model of the camera. As a result, When it receives a
message on port take (from control model) it simulates the
process of taking the photo and also of advancing to the next
memory position to store a new photo. After evaluating the
output function an internal transition is fired from state
redlight to click, decrementing the count of remaining pho-
tos. A while later a message from the radar alerts of a car
exceeding the speed limit at the same time the camera ends
the previous request. Because the camera was not ready the
car must be ignored. After that the control returns to active,
so it can process new infractions. The traffic light sends its
first message to indicate a light change. The control updates
its internal variable trafficlight to match the status received.
At 00:00:19:000 we have a real infraction; a car over the
lane while the light is red. The control model commands the
camera model to get a shot of the car. Then the model goes
to state click to wait to the camera to complete the take.

At 00:00:21:000 the camera sends its ready message,
and the controller decrements the count of photos and dis-
covers that there are no more available photos, changing to
state void. It could be observed that the controller takes the
last photo and changes to the void state, sending a message
on the port empty. This request is received by the model IO,
which on time 00:00:26 warns on port full that the pictures
are downloaded and there is enough more to store 10 new
photos. On that lapse the controller was on inactive state,
and only process messages incoming from the traffic lights
to keep the light active.

The trafficlight model just cycles over the three lights.
Note that the yellow light has a 1 second time advance while
the other two has a 5 second time advance. There are no
variables or input ports.

The IO model is activated when the control model want
to communicate the central that needs is out of photos. The
output port central of IO is connected at the coupled model
level to the outside of the system. Now, IO receives a mes-
sage from count of 10 new photos, so it passes the news to
the control model through output port restart, which is con-
nected to input port full of control.

4. CONCLUSION

We have introduced several features CD++, a toolkit for

DEVS modeling and simulation. The tool was built using
the DEVS formal modeling technique, improving the devel-
opment time of simulations. The tool was used to develop
different application examples, which allowed us to show its
flexibility.

Several types of models can be integrated in an efficient
fashion, allowing multiple points of view to be analyzed
using the same model. The tools are public domain and can
be obtained at
http://www.sce.carleton.ca/faculty/wainer/celldevs.
At present we started studying the use of DEVS graphs to
analyze temporal constraints of the DEVS models involved.
In such a way, we will be able to provide analytical tools to
study the execution times of the time constraints of the
models, while having facilities to analyze the model execu-
tion in detail by analyzing the simulated results. We are also
using the Eclipse platform [9] to integrate the existing tools
and facilitate the definition of applications, their execution
and analysis.

REFERENCES

[1] ZEIGLER, B. "Theory of modeling and simulation".
Wiley, 1976.
[2] ZEIGLER, B.; KIM, T.; PRAEHOFER, H. "Theory of
Modeling and Simulation: Integrating Discrete Event and
Continuous Complex Dynamic Systems". Academic Press.
2000.
[3] WAINER, G. "CD++: a toolkit to define discrete-event
models". G. Wainer. Software, Practice and Experience.
Wiley. Vol. 32, No.3. pp. 1261-1306. November 2002.
[4] MARCA, D. A., McGOWAN, C. L. “SADT - Structured
Analysis and Design Technique”, McGraw-Hill, New York,
New York, 1988.
[5] SOMMERVILLE, I. “Software Engineering”.
6th Edition. Addison-Wesley. 2000.
[6] ZEIGLER, B.; SONG, H.; KIM, T.; PRAEHOFER, H.
"DEVS Framework for Modelling, Simulation, Analysis,
and Design of Hybrid Systems". In Proceedings of HSAC,
1996
[7] WAINER, G.; CHRISTEN, G.; DOBNIEWSKI, A.
"Defining DEVS models with the CD++ toolkit". In Pro-
ceedings of the European Simulation Symposium, Marseille,
France. 2001.
[8] CHRISTEN, G.; DOBNIEWSKI, A. "Extending the
CD++ toolkit to define DEVS graphs". M. Sc. Thesis. Com-
puter Science Dept. Universidad de Buenos Aires. 2003.
[9] OBJECT TECHNOLOGY INTL. INC. “Eclipse Plat-
form Technical Overview”.
http://www.eclipse.org/whitepapers/eclipse-overview.pdf.
2001.

