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Abstract: We introduce the features of CD++, a toolkit for 
modeling and simulation based on the DEVS formalism. We 
show recent extensions that permit the users to write the 
models using state machines, and we show how to use it 
through application examples. The use of this formal ap-
proach allowed developing safe and cost-effective simula-
tions, reducing significantly the development times of simu-
lation software. 

 
1. INTRODUCTION 

 
In recent years, several efforts have been devoted to define 
new modeling paradigms, allowing improving the analysis 
of complex dynamic systems through simulation of these 
models. DEVS (Discrete Event systems Specifications) 
allows modular description of models that can be integrated 
using a hierarchical approach [1, 2].  

We have built a toolkit with the goal of developing mod-
els based on the DEVS formalism and simulating them. The 
core of the toolkit is the CD++ environment [3], which 
implements the DEVS theory. Here, we focus in the devel-
opment process of simulated models using a graph-based 
definition of DEVS models. Graphical-only notations have 
some limitations in building complex systems [4]. There-
fore, we permit the users to define intermediate functions in 
C++. Likewise, if the complexity of the models is such that 
graphical  notations are not adequate, the models can be still 
defined using a standard representation in C++, thus permit-
ting the integration of simple state-based specifications with 
more complex models defined in a programming language.  

 
2. THE DEVS FORMALISM 

 
DEVS was originally defined in the '70s as a discrete-event 
modeling specification mechanism [1]. It was derived from 
systems theory, and it allows one to define hierarchical 
modular models that can be easily reused. A real system 
modeled with DEVS is described as a composite of sub-
models, each of them being behavioral (atomic) or structural 
(coupled). Closure under coupling allows coupled models to 
be integrated to a model hierarchy.  

Each model is defined by a time base, inputs, states, out-
puts, and functions to compute the next states and outputs. 
A DEVS atomic model is formally described by: 

M = < X, S, Y, δint, δext, λ, ta > 
Each model is seen as having input (X) and output (Y) 

ports to communicate with other models. The input and 
output events determine the values to appear in those ports. 
The input external events are received in input ports, and the 
specification of the external transition function (δδδδint) defines 
the behavior under such inputs. The internal transition func-
tion (δδδδext) is activated after the lifetime of the present state 
has been consumed, which is defined by the time advance 
(ta) function. Its goal is to produce an internal event, which 
lead to a state change. The desired results are spread through 
output ports by the output function (λλλλ), which executes 
before the internal transition.  

A DEVS coupled model is composed of several atomic 
or coupled submodels. They are formally defined as: 

CM = < X, Y, D, {Mi}, {Ii}, {Zij} > 
Each model is seen as having input (X) and output (Y) 

ports to communicate with other models. Coupled models 
are defined as a set (D) of basic components (Mi atomic or 
coupled), which are interconnected. The translation function 
(Zij) is in charge of converting the outputs of a model into 
inputs for the others. To do so, an index of influencees (Ii) is 
created for each model. This index defines that the outputs 
of the model Mi are connected to inputs in the model Mj, 
where j is an element of Ii. 

The CD++ tool [3] allows defining models following 
these specifications. The tool is built as a hierarchy of mod-
els, each of them related with a simulation entity. Atomic 
models can be programmed and incorporated onto a basic 
class hierarchy programmed in C++. New atomic models 
must be incorporated into this class hierarchy as subclasses 
of the Atomic Model class.  

Defining models in C++ allow the users to have great 
flexibility to define behavior. Nevertheless, a non-
experienced user can have difficulties in defining models 
using this approach. Likewise, having a graphical specifica-
tion enhances the interaction with customers during system 
specification [5]. Graph-based notations have the advantage 
of allowing the modeler to think about the problem in a 
more abstract way. Therefore, we have used an extended 



graphical notation to allow the user define atomic models 
behavior [6]. Each DEVS graph defines the state changes 
according to internal and external transition functions, and 
each is translated into an analytical definition. DEVS graphs 
can be formally defined as: 

GGAD = < X M , S, Y M , δ int, , δ ext , λ, D > 
X M = {(p,v)| p ∈ IPorts, v ∈ X p }  set of input ports; 
Y M = {(p,v)| p ∈ OPorts, v ∈ Y p } set of output ports; 
S = B x P(V)  states of the model, 
B = { b |  b ∈ Bubbles } set of model states. 
V = { (v,n) | v ∈ Variables, n∈ R0 } intermediate state vari-
ables of the model and their values. 

δint, δext, λ, and D have the same meaning as in tradi-
tional DEVS models.Each model is defined by a unique 
identifier, and it can include a graphical specification or 
C++ code. When we use the state-based notation, states are 
represented by bubbles including an identifier and a state 
lifetime. When the lifetime is consumed, an internal transi-
tion function is executed.  

 

 

Figure 1: An atomic model defined as a DEVS graph. 
 
Figure 1 shows a simple atomic model using this nota-

tion. The model includes three states: A, B and C. Dotted 
lines represent internal transitions, while full lines define 
external transitions. In this case, if the model is in state A 
and it receives an external event through the rep input port 
(shown in the left panel), the any function is evaluated. If 
the result of this evaluation is 1, the model changes to the 
state B. While in B, the model waits its lifetime to be con-
sumed. It then executes the output function, which will send 
the value of the intermediate state variable counter through 
the output port ok. After that, the internal transition function 
executes, and the model changes to the state C.  

While graphical models are best for design, simulators 
require text representations (or extended notations in XML 
or other high level modeling languages). Thus, we defined a 
textual representation for each of the elements in the graphi-
cal notation. Every GGAD model is converted into this 
language, called GADscript. GGAD models are then simu-
lated by CD++, as shown in Figure 2.  

In order to translate DEVS graphs into text specifica-
tions, we use the following syntax [7]: 

[modelname] defines the atomic or coupled model 
name, which will be used subsequently. Model states are 
declared as: state: state1 state2 ... 

States are associated to a time advance value. This at-
tribute are initialized with the name of the object and the list 
of valid attributes for that object, as follows: 

state1 : time-expression 

One of the states must be declared as the initial state of 
the model: initial: statename 

Then, I/O ports are declared either as follows: 
in :  inport1 inport2 ... 
out : outport1 outport2 ... 

 
Temporary variables are declared by: 
var : var1 var2 var3 ... 

and they can be optionally initialized as: 
var1 : value1 
var2 : value2 

 
The internal transitions use the following syntax: 
int:source destination [outport!value]* ( { 

(action;)* } )? 

Here, the source and destination represent the initial and 
final states associated with the execution of the transition 
function. As the output function should also execute before 
the internal transition, an output value can be associated 
with the internal transition. Finally, if the user wants to 
execute a complex function to generate an output, one or 
more actions can be defined. External transitions are defined 
using the following expression: 

ext : source destination EXPRESSION ( { (ac-
tion;)* } )? 

In this case, the expression should hold, and then the 
model will change from state source to state destination, 
while also executing one or more actions. 

As we can see, transition functions have associated ac-
tions to modify the value of the intermediate variables in the 
model. Each action is an assignment to a variable of the 
result of evaluating an expression. Actions are defined using 
simple mathematical expressions. They can include con-
stants, variables and functions. The value of a message in a 
port can be referenced by the name of the port, like a vari-
able.Functions are actually evaluated in native C++ code. It 
is possible to incorporate new functions by programming 
them into CD++. The current version of the simulator in-
cludes a library of basic arithmetic and Boolean functions, 
presented in the following figure. 



Function Description 
Add(n1,n2) sum of n1 and n2. 
And(n1,n2) true if both arguments are true. 
Any(port) true if the port has a valid value. 
Between(n1,n2,n3) true if n1 <= n2 <= n3 
Com-
pare(n1,n2,n3,n4,n5) 

n3, n4 or n5 if n1 is reater, equal 
or less than n2 respectively. 

Divide(n1,n2) n1 divided by n2 
Equal(n1,n2) true if n1 = n2, false else. 
Greater(n1,n2) true if n1 > n2, false else. 
Less(n1,n2) true if  n1 < n2, false else. 
Minus(n1,n2) n1 - n2 
Multiply(n1,n2) n1 multiplied by n2 
Not(n) negation of n. 
NotEqual(n1,n2) true if n1 is different of n2. 
Or(n1,n2) true if one of the parameters true. 
Pow(n1,n2)  returns n1 power n2 
Rand(n1,n2)  random value between (n1,n2) 
Value(n)  returns n. 

Figure 2: Action functions available. 
 

3. MODELS OF DISCRETE EVENT SYSTEMS 
 

We will exemplify the use of the toolkit by using a 
model of a traffic light radar. This device takes photos of 
cars violating red lights or speeding in a crossing. For doing 
this, it uses a radar sensor and a presence sensor. Figure 4 
shows the structure of the topmost model in this application.  

 
 

Figure 3: Structure of the photographic radar model. 
 
The top level coupled model is composed is composed 

of the following submodels. 
 

Model Description 
Control Manages the system. 
TrafficLight Cycles the red, yellow and green lights. 
Camera Takes the shots. 
IO Does communications tasks. 

 
The Control atomic model instructs the Camera atomic 

model to take a photo. This coupled model uses two external 
ports. The first one, called lane, detects the presence of a car 
over the pedestrian zone at the corner of the street. A second 
one, called radar, represents a sensor detecting a car 
running faster than the maximum speed. This sensor is 
active when the lane sensor warns about a car over the 
pedestrian zone and the traffic light is red (traffic light 
atomic model). If the memory of the digital camera is full, it 
warns the Control atomic model to request to download the 
pictures and to empty the memory IO atomic model. 

As we can see in the leftmost panel, this model uses the 
following input-output ports: 

 
Port Description 

Lane (in) Receives a signal alerting the presence a 
vehicle on the pedestrian crossing. 

Radar (in) Alerts a vehicle over the speed limit. 
Ext (in) Commands controller 
Count (in) Count memory available. 
Central (out) Alerts to the Central. 

 
Using this specification, the graphic tool generates a 

CD++ specification of the coupled models, as showed in the 
following figure. As we can see, the specification represents 
the model coupling (link sentences), and it defines the 
atomic models as cdd files. Each of these files contain the 
description of the atomic models using GGAD notation. 

 
[Top] 
components : trafficlight@GGad control@GGad 
camera@GGad IO@GGad 
out : central     in : lane radar ext count 
Link : lane lane@control 
Link : radar radar@control 
Link : light@trafficlight trafficlight@control 
Link : photo@control take@camera 
Link : ready@camera ready@control 
Link : count count@IO 
Link : empty@control empty@IO 
Link : restart@IO full@control 
Link : ext extern@IO 
Link : central@IO central 
[trafficlight] source : trafficlight.cdd 
[control]      source : control.cdd 
[camera]       source : camera.cdd 
[IO]           source : IO.cdd 

Figure 4: Text specification of the radar coupled model 
 
Let us show the details of the Control atomic model. 

Figure 6 represents its graphical design: 



 
Figure 5: DEVS graph for the Control model. 

 
This atomic model starts in the Active state. If the Radar 

ports receive messages with high speed or over the lane 
when the traffic light is in red, then it commands the Cam-
era to take a shot and returns to Active. If the remaining 
shots counter gets to zero sends a warning on Empty port 
and waits the memory to be emptied on the port Full. Every 
time the traffic light cycles the model updates the value of 
the variable light. The graphic tool generates the following 
GADscript code that can be simulated using CD++. 

  
[control] 
in: lane radar trafficlight ready full 
out: photo empty 
var: light qph 
state: active speed void inactive redlight up-
date click update2 aux ignore ignore2 
initial: active 
int: speed click photo!1 {qph = minus(qph,1);} 
int: redlight click photo!1 {qph = mi-
nus(qph,1);} 
... 
ext: active speed Value(radar)?1 
ext: click active and(equal(ready,1), 

notequal(qph,0))?1 
... 
active: infinity 
speed:00:00:00:00 
void:00:00:00:00 
inactive: infinite 
... 
light:0 
qph:2 

Figure 6: Text specification of the control atomic model 
 
We also need to define the remaining submodels. We 

will briefly describe their behavior (for a detailed descrip-
tion, see [8]): 
- Camera is in StdBy state until receives the shot order 

on the port Take. The time spent storing the picture is 
represented by the time advance of state Prepare. When 
the picture is stored, a message is emitted in the port 
Ready.  

- Traffic Light is a simple timed cycle between the three 
states of the traffic lights. Each change of lights is an-
nounced on the port light. There are no input ports.  



- IO takes the responsibility of communicating with the 
traffic central, in order to inform the lack of memory 
available for new pictures and downloading them. If a 
signal is received on port Empty, it sends the informa-
tion through the port central to communicate the lack of 
memory available for new pictures. 

After defining each submodel, we can execute the simu-
lation in order to analyze the behavior of this system. We 
log the following information:  
- Event Types. 
- Simulated time. 
- Details (varies upon the event being considered): 

- Model initialization (type : C): init state, { (var, 
initial value),(var2, initial value),... } 

- Input Message (type : ?): recorded every time a mes-
sage is received on an input port. {port receiving 
the message, value received}. 

- Output Message (type : O): recorded each time the out-
put function is executed. {output port, value}. 

- Internal Transition Function (type : I): {init, final, 
{(var-before,val),(var-after, val) ,...} }. 

- External transition function (type : E): init state, 
final state, {(var1, value), (var2, value), 
... } 

By running a simulation of this model we can analyze 
the system behavior in detail. For instance, we simulated the 
complete system using the following inputs: 

 
Time Port Value 

00:00:02:00 lane 1 
00:00:04:00 radar 1 
00:00:12:00 lane 1 
00:00:15:00 lane 1 
00:00:19:00 lane 1 
00:00:24:00 radar 1 
00:00:26:00 ext 1 
00:00:26:00 count 10 
. . .    

 
The following log files show the execution of the four 

atomic models that compose the coupled system. By analyz-
ing these log files we can completely study the model be-
havior and their interaction. 

 
Control 

C 00:00:00:000 : active , (qph=2) (light=0) 
? 00:00:02:000 : lane , 1 
E 00:00:02:000 : active ,redl(qph=2) (light=0) 
O 00:00:02:000 : photo , 1 
I 00:00:02:000 : redl,click (qph=1),(light=0) 
? 00:00:04:000 : radar , 1 
? 00:00:04:000 : ready , 1 
E 00:00:04:000 : click, active(qph=1),(light=0) 
? 00:00:05:000 : trafficl, 2 
E 00:00:05:000 : active,update(qph=1),(light=2) 
I 00:00:05:000 : update,active(qph=1),(light=2) 
? 00:00:06:000 : trafficl , 0 

E 00:00:06:000 : active, update(qph=1)(light=0) 
I 00:00:06:000 : update,active(qph=1),(light=0) 
... 
? 00:00:19:000 : lane , 1 
E 00:00:19:000 : active,redl(qph=1),(light=0) 
O 00:00:19:000 : photo , 1 
I 00:00:19:000 : redl , click (qph=0),(light=0) 
? 00:00:21:000 : ready , 1 
E 00:00:21:000 : click , void (qph=0),(light=0) 
O 00:00:21:000 : empty , 1 
I 00:00:21:000 : void,inact(qph=0),(light=0) 
? 00:00:22:000 : trafficl , 1 
E 00:00:22:000 : inact,aux(qph=0),(light=1) 
I 00:00:22:000 : aux,inact(qph=0),(light=1) 
? 00:00:24:000 : radar , 1 
E 00:00:24:000 : inact,ignore2(qph=0) (light=1) 
I 00:00:24:000 : ignore2,inact(qph=0) (light=1) 
? 00:00:26:000 : full , 10 
E 00:00:26:000 : inact,active(qph=10) (light=1) 
? 00:00:27:000 : trafficl , 2 
E 00:00:27:000 : active,update(qph=10)(light=2) 
I 00:00:27:000 : update,active(qph=10)(light=2) 
? 00:00:28:000 : trafficl , 0 
E 00:00:28:000 : active,update(qph=10)(light=0) 
... 

 
Camera 
C 00:00:00:000 : stdby ,  
? 00:00:02:000 : take , 1 
E 00:00:02:000 : stdby , run 
I 00:00:02:000 : run , prepare 
O 00:00:04:000 : ready , 1 
I 00:00:04:000 : prepare , stdby 
? 00:00:19:000 : take , 1 
E 00:00:19:000 : stdby , run 
I 00:00:19:000 : run , prepare 
O 00:00:21:000 : ready , 1 
I 00:00:21:000 : prepare , stdby 
... 

 
IO 
C 00:00:00:000 : receive ,  (qph=0) 
? 00:00:21:000 : empty , 1 
E 00:00:21:000 : receive , send (qph=0) 
O 00:00:21:000 : central , 1 
I 00:00:21:000 : send , receive (qph=0) 
? 00:00:26:000 : count , 10 
? 00:00:26:000 : extern , 1 
E 00:00:26:000 : receive , resume (qph=10) 
... 

 
TrafficLight 
C 00:00:00:000 : green ,  
O 00:00:05:000 : light , 2 
I 00:00:05:000 : green , yellow 
O 00:00:06:000 : light , 0 
I 00:00:06:000 : yellow , red 
O 00:00:11:000 : light , 1 
I 00:00:11:000 : red , green 
O 00:00:16:000 : light , 2 
I 00:00:16:000 : green , yellow 
O 00:00:17:000 : light , 0 
I 00:00:17:000 : yellow , red 
O 00:00:22:000 : light , 1 
I 00:00:22:000 : red , green 
... 



As we can see, the control model starts in the state "ac-
tive". There are 2 photos left (qph = 2) and the traffic light is 
in red (light = 0, the light is encoded as red=0, green=1, 
yellow=2).  The camera starts in state "stdby" which means 
it is ready to take a shot.  

A message is received after 2 seconds on input port lane, 
with value 1. This event fires the external transition func-
tion. A suitable transition is found by the simulator from 
state active to state redlight. This state represents the fact 
that a car has crossed the lane when the light was red. An 
instantaneous (i.e. ta=0) internal transition is fired to send a 
message to the camera to take a photo. The message is gen-
erated by the output function through port photo. This out-
put port is connected at the coupled model level with the 
atomic model of the camera. As a result, When it receives a 
message on port take (from control model) it simulates the 
process of taking the photo and also of advancing to the next 
memory position to store a new photo. After evaluating the 
output function an internal transition is fired from state 
redlight to click, decrementing the count of remaining pho-
tos. A while later a message from the radar alerts of a car 
exceeding the speed limit at the same time the camera ends 
the previous request. Because the camera was not ready the 
car must be ignored. After that the control returns to active, 
so it can process new infractions. The traffic light sends its 
first message to indicate a light change. The control updates 
its internal variable trafficlight to match the status received. 
At 00:00:19:000 we have a real infraction; a car over the 
lane while the light is red. The control model commands the 
camera model to get a shot of the car. Then the model goes 
to state click to wait to the camera to complete the take. 

At 00:00:21:000 the camera sends its ready message, 
and the controller decrements the count of photos and dis-
covers that there are no more available photos, changing to 
state void. It could be observed that the controller takes the 
last photo and changes to the void state, sending a message 
on the port empty. This request is received by the model IO, 
which on time 00:00:26 warns on port full that the pictures 
are downloaded and there is enough more to store 10 new 
photos. On that lapse the controller was on inactive state, 
and only process messages incoming from the traffic lights 
to keep the light active. 

The trafficlight model just cycles over the three lights. 
Note that the yellow light has a 1 second time advance while 
the other two has a 5 second time advance. There are no 
variables or input ports. 

The IO model is activated when the control model want 
to communicate the central that needs is out of photos. The 
output port central of IO is connected at the coupled model 
level to the outside of the system. Now, IO receives a mes-
sage from count of 10 new photos, so it passes the news to 
the control model through output port restart, which is con-
nected to input port full of control. 

 

4.  CONCLUSION 
 
We have introduced several features CD++, a toolkit for 

DEVS modeling and simulation. The tool was built using 
the DEVS formal modeling technique, improving the devel-
opment time of simulations. The tool was used to develop 
different application examples, which allowed us to show its 
flexibility.  

Several types of models can be integrated in an efficient 
fashion, allowing multiple points of view to be analyzed 
using the same model. The tools are public domain and can 
be obtained at 
http://www.sce.carleton.ca/faculty/wainer/celldevs. 
At present we started studying the use of DEVS graphs to 
analyze temporal constraints of the DEVS models involved. 
In such a way, we will be able to provide analytical tools to 
study the execution times of the time constraints of the 
models, while having facilities to analyze the model execu-
tion in detail by analyzing the simulated results. We are also 
using the Eclipse platform [9] to integrate the existing tools 
and facilitate the definition of applications, their execution 
and analysis. 
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