
NEW TECHNIQUES FOR PARALLEL SIMULATION

OF DEVS AND CELL-DEVS MODELS IN CD++

By

Ezequiel Glinsky, B. Sc.

A thesis submitted to

The Faculty of Graduate Studies and Research

In partial fulfillment of

the requirements of the degree of

Master of Applied Science

Ottawa-Carleton Institute for Electrical and Computer Engineering

Department of Systems and Computer Engineering

Carleton University

Ottawa, Ontario

Canada

© Copyright 2004, Ezequiel Glinsky

 ii

The undersigned hereby recommends to the Faculty of Graduate Studies and Research

acceptance of the thesis

New techniques for parallel simulation

of DEVS and Cell-DEVS models in CD++

Submitted by Ezequiel Glinsky

In partial fulfillment of the requirements for the

Degree of Master of Applied Science

Thesis Supervisor

Dr. Gabriel Wainer

Chair, Department of Systems and Computer Engineering

Dr. Rafik A. Goubran

Carleton University

2004

 iii

ABSTRACT

DEVS is a sound formal modeling and simulation (M&S) framework based on generic

dynamic system concepts. Cell-DEVS is a formalism for cell-shaped models based on

DEVS. This work presents a new simulation technique for execution of DEVS and Cell-

DEVS models in distributed environments. The parallel simulator is based on Time

Warp, an optimistic synchronization protocol, and developed as a new simulation engine

for CD++, a M&S toolkit that implements DEVS and Cell-DEVS theory. The presented

technique uses a non-hierarchical approach that simplifies the structure of the simulator

and reduces the communication overhead. In order to analyze the performance of our

simulator, we introduce a synthetic benchmark to test DEVS-based simulators. The

performance analysis shows reasonable overhead in comparison to other simulators.

Using a distributed environment, our simulator outperforms other alternatives and

achieves considerable speedups.

 iv

ACKNOWLEDGMENTS

I want to start by thanking my supervisor, Prof. Gabriel Wainer, for his support and

guidance over the last years. Working with him has been a challenging yet rewarding

experience.

I am grateful to several people at Carleton University who helped me in many ways,

especially to Diane Berezowski, Laura Cohen, and Luc Lalande.

I have had a wonderful time with friends at the Graduate Students’ Association. I will

always keep those people, those moments, and that organization in my heart. In

particular, I want to thank my dream team: Cathy Anstey, Glen Bornais, Robert Johnson,

Phil Robinson, and Andrea Rounce.

Thanks to those who became my closest family in Canada. My biggest gratitude goes to

Juanca and Leo for our café mirón and our Argentinean friendship, and to my favourite

Chilean, Loreto. I am very grateful to many friends I met in Ottawa, especially to Abeer,

the Martino family, Thierry, José Merseguer and my unforgettable rumis Nestor and

Covy.

I am thankful to my dearest friends in Argentina: Alberto Siless, Leandro Resnik,

Lisandro Icardi, Luciano Tirantte, Martin Dragovetzky, Patricio Donato, and their

partners.

I love and admire my parents, Isabel Monzón and Gregorio Glinsky. I carry their love,

support and encouragement as a gift. Thanks to my brothers, Adrian and Fernando, who

are always with me.

This thesis is dedicated to the love of my life, Solange Epelman.

 v

TABLE OF CONTENTS

 Page

ABSTRACT...III

ACKNOWLEDGMENTS .. IV

LIST OF TABLES ...VII

LIST OF FIGURES ..VIII

LIST OF ACRONYMS .. XI

CHAPTER 1: INTRODUCTION .. 1

1.1 Contribution.. 8

1.2 Thesis Organization .. 11

CHAPTER 2: DISCRETE EVENT MODELING AND SIMULATION

TECHNIQUES 12

2.1 DEVS and Parallel DEVS formalisms.. 12

2.2 Modeling Cell Spaces ... 19

2.3 DEVS-based toolkits for M&S ... 23

2.4 The CD++ toolkit .. 28

2.5 Parallel and Distributed Simulation.. 38

2.5.1 Conservative Simulation.. 42
2.5.2 Optimistic Simulation.. 44

2.6 The Warped tool.. 47

CHAPTER 3: ENABLING NEW TECHNIQUES FOR PARALLEL SIMULATION

OF DEVS AND CELL-DEVS MODELS .. 51

CHAPTER 4: OPTIMISTIC PDES OF DEVS MODELS .. 56

4.1 Hierarchical and Flat Simulation in CD++ ... 58

4.2 Algorithms for Parallel and Distributed Simulation using a Flat Approach........... 66

4.2.1 Simulator .. 67
4.2.2 Flat Coordinator ... 69
4.2.3 Node Coordinator... 73

 vi

4.2.4 Root Coordinator ... 77
4.3 Sample Scenarios .. 80

CHAPTER 5: IMPLEMENTING THE ABSTRACT SIMULATORS 87

5.1 Execution of DEVS and Cell-DEVS models .. 98

CHAPTER 6: PERFORMANCE ANALYSIS .. 107

6.1 DEVStone ... 107

6.2 Performance Analysis for DEVS models ... 113

6.3 Performance Analysis for Cell-DEVS models ... 123

CHAPTER 7: CONCLUSIONS... 139

7.1 Future Work .. 141

REFERENCES ... 144

 vii

LIST OF TABLES

 Page

Table 1: Simulation parameters ...115

 viii

LIST OF FIGURES

 Page

Figure 1: Basic entities in M&S and their relationships [Zei00] ...2

Figure 2: DEVS semantics ...14

Figure 3: Sketch of a cellular automaton [Wai00] ...20

Figure 4: CD++ (a) Model hierarchy, (b) Processor hierarchy..28

Figure 5: Diagram of atomic model Controller Unit ...31

Figure 6: Specification of atomic model Controller Unit in CD++ (part 1)33

Figure 7: Specification of atomic model Controller Unit in CD++ (part 2)34

Figure 8: Diagram of the coupled model AMS ...35

Figure 9: Specification of coupled model AMS in CD++ ...36

Figure 10: Specification of Cell-DEVS model life in CD++...37

Figure 11: Automated Manufacturing System partitioned in two LPs40

Figure 12: Violation of local causality constraint in a distributed simulation...................41

Figure 13: Structure of LPs and simulation objects in Warped [Mar96]...........................48

Figure 14: Summary of Warped API [Mar97]...49

Figure 15: Layered architecture of the CD++ optimistic simulator...................................56

Figure 16: New processors’ class hierarchy in CD++ ...57

Figure 17: Layout of a sample DEVS model...59

Figure 18: Sample DEVS model in hierarchical CD++ (a) models, and (b) processors ...59

Figure 19: Processor hierarchy using a flat approach..61

Figure 20: Model partitioned in three blocks...62

Figure 21: Model partition file for CD++..63

Figure 22: Distributed processor structure for partitioned model......................................63

Figure 23: Sending an output to a remote simulator ..66

Figure 24: Message flow in a distributed simulation of DEVS and Cell-DEVS79

Figure 25: Initialization phase in sample Cell-DEVS model...81

 ix

Figure 26: Collect phase in sample Cell-DEVS model ...82

Figure 27: Straggler message received during the simulation of a Cell-DEVS model84

Figure 28: Reception of a straggler message in a node coordinator85

Figure 29: State of the node coordinator after the rollback...86

Figure 30: Some classes of the Warped API [Mar97] ...88

Figure 31: UML class diagram for the new DEVS processors..91

Figure 32: Class diagram for messages in CD++ ..94

Figure 33: Classes LogicalProcess and ParallelMainSimulator96

Figure 34: Sample CD++ event file ...99

Figure 35: flat coordinator log file for a sample Cell-DEVS model (partial)100

Figure 36: simulator log file for cell model life(0,2) (partial) ...103

Figure 37: simulator log file for a sample atomic model (partial)...................................104

Figure 38: node coordinator log file (partial) ..104

Figure 39: Sample output file for a DEVS model..105

Figure 40: Example of a LI model: (a) top level; (b) level 4 ...110

Figure 41: Model file generated by DEVStone for a LI model110

Figure 42: Execution times for LI models in a single CPU using the optimistic

parallel simulator and other simulation engines ..116

Figure 43: Overhead incurred by the optimistic parallel simulator and other

simulation engines for LI models ..116

Figure 44: Execution times for HI models in a single CPU using the optimistic

parallel simulator and other simulation engines ..119

Figure 45: Overhead incurred by the optimistic parallel simulator and other

simulation engines for HI models ..119

Figure 46: Execution times for HO models in a single CPU using the optimistic

parallel simulator and other simulation engines ..120

Figure 47: Overhead incurred by the optimistic parallel simulator and other

simulation engines for HO models ..121

Figure 48: Specification of Cell-DEVS model life in CD++...124

 x

Figure 49: Partition of 20x20 life model in 4 machines ..126

Figure 50: Execution times for life model (1 vs. 4 processors)126

Figure 51: Execution speedups for life model running in 4 processors...........................128

Figure 52: Execution times for life model using optimistic and conservative

simulators in 4 processors ..129

Figure 53: Execution times for 50x50 life model in 1 and 8 processors130

Figure 54: Execution speedups for 50x50 life model running in 8 processors................131

Figure 55: A different partition strategy for the life model ...133

Figure 56: Execution times for life model using 1, 3, 4 and 5 processors133

Figure 57: Speedups for life model distributed in 3, 4 and 5 processors134

Figure 58: Execution times for Cell-DEVS model using conservative and optimistic

simulators in 1 and 4 processors ..135

Figure 59: Speedup obtained by the optimistic simulator in 1 and 4 processors.............136

 xi

LIST OF ACRONYMS

AMS Automatic Manufacturing System
API Application Program Interface
CORBA Common Object Request Broker Architecture
CVDS Continuous Variable Dynamic Systems
DEDS Discrete Event Dynamic Systems
DEVS Discrete Event System Specification
GVT Global Virtual Time
HLA High Level Architecture
LP Logical Process
M&S Modeling and Simulation
MPI Message Passing Interface
OMG Object Management Group
PDES Parallel Discrete Event Simulation
P-DEVS Parallel Discrete Event System Specification
UML Unified Modeling Language

Chapter 1: INTRODUCTION

Modeling and simulation (M&S) methodologies have become essential for

understanding, analyzing and developing a wide variety of systems. In the last centuries

scientists and engineers have relied on the use of models to describe the properties of the

systems under study. Most of these models were defined with mathematical

representations, allowing mathematical analysis techniques. Nevertheless, these methods

are unsuitable for many complex artificial applications developed in the last 50 years,

such as traffic control systems, automated factories, computer architectures, or

biomedical devices. These methods are not appropriate for studying various natural

systems either, especially when the complexity or the required level of detail is high.

The development of computers has offered alternative methods; models can be

executed using computer simulation, allowing users to experiment different conditions

under risk-free environments. M&S is also frequently used for training and educational

purposes, using models previously developed by experts within an application domain.

Nowadays, M&S is a well-developed, well-proven approach to problem solving, which

advances steadily as more computing power becomes available at less cost.

The M&S process begins with a problem that needs to be solved or understood.

Figure 1 shows the basic entities in M&S and their relationships, as described in [Zei00]:

 2

Experimental frame

Source
System behavior

database

Model

Simulator

Modeling
relation Simulation

relation

Figure 1: Basic entities in M&S and their relationships [Zei00]

The source system is the environment under analysis. The elements observed in

the system and the conditions under which the system is observed establish the

experimental frame . A model is an abstract representation of such system that is

constructed using the acquired data. Generally, a model includes a set of instructions,

rules, or mathematical equations to duplicate the behaviour of the actual system. A

simulator is an agent capable of executing the model’s instructions, and thus generating

the model’s behavior.

Figure 1 shows the two fundamental relationships that connect the basic entities.

The modeling relation links the real system and the experimental frame with the model

in terms of validity. It is concerned with how well the model behaviour agrees with the

system behaviour under the conditions specified in the experimental frame. The

 3

simulator relation links a model and a simulator. This relation deals with how faithfully

the simulator executes the instructions of the model.

The separation between model and simulator enables to validate the model and to

verify the correctness of the simulator independently [Zei99b]. This distinction results in

simulation algorithms whose correctness has been rigorously established separately from

the model.

Nowadays, several formalisms coexist and are being used to model and simulate

different types of systems. In this work, we focus on the DEVS (Discrete Events systems

Specification) formalism [Zei76, Zei00], which has been proven to be a universal

formalism to represent DEDS (Discrete Event Dynamic Systems). DEVS was originally

defined in the 1970’s as a discrete-event M&S mechanism. DEVS is a sound formal

framework based on generic dynamic systems concepts that supports provably correct,

efficient, event-based simulation. The framework enables the construction of models in a

hierarchical, modular fashion, allowing component reuse and reducing development and

testing time. Parallel DEVS or P-DEVS [Cho94a] is an extension to DEVS that provides

a better way to handle simultaneously scheduled events, while keeping all the major

properties of the original formalism. Since P-DEVS eliminates serialization constraints

existing in the original DEVS formalism, it enables more efficient execution of models in

parallel and distributed environments.

The Timed Cell-DEVS formalism [Wai98] combines cellular automata [Wol86]

with DEVS theory, allowing individual cells to be defined as basic DEVS models and

 4

coupled together to form complete cell spaces. The formalism supports the definition of

complex cell behavior with simple constructions.

Numerous tools that implement these formalisms have been used in a variety of

industries and areas of expertise, including chemistry, biology, computer architectures,

telecommunication networks, decision support systems, military applications, and

transportation. CD++ [Wai02] is a M&S tool that implements DEVS and Cell-DEVS

theory. CD++ was revised and extended several times, and it currently supports stand-

alone [Rod99], real-time [Gli02a], and conservative parallel simulation [Tro01a]. CD++

has been used to model a variety of applications. The propagation of forest fires has been

simulated with CD++ [Ame01] using a Cell-DEVS model. Environmental and vegetation

conditions determine spread and intensity of fire. Three main groups of parameters are

specified: vegetation type (caloric content, mineral content and density), fuel properties

(the type of vegetation is classified according to its size), and environmental parameters

(wind speed, humidity and field slope). External factors are taking into consideration for

the spread of the fire in the region, such as the influence of rain or the activity of

firefighters. The movement of robots in an industrial plant has also been studied with

CD++ [Ame01]. Robots follow predefined one-way routes at a given speed with the risk

of colliding with other robots, in which case they apply a strategy to continue their way.

When a robot reaches its destination, the carried load is delivered and the robot is taken

off the floor. In this application, a DEVS component adds new robots to the simulation.

CD++ was used to study a watershed using Cell-DEVS [Ame01], based on a model

previously defined in [Zei96]. The equations that define the filtration of water through

 5

each layer of the soil were used to specify the rules of the Cell-DEVS model. The

simulation allows the study of the accumulation of water on a region after a period of

rain. A computer processor was simulated using a DEVS model defined in CD++

[Wai01]. This model includes the specification of components such as memory, registers,

and control unit. The reproduction of a marine germ was studied with CD++ [Ame03].

The concentration of bacteria over time was simulated using a Cell-DEVS model. The

variation of temperature was simulated using a DEVS model. The behavior of ants also

been studied with CD++ [Ame03]. The model analyzes how ants find an existing source

of food and carry the food back to the anthill. CD++ has been used to study the

movement of crowds in a metro station [Ame03]. The model shows how people try to

reach the doors of a railroad car. It also shows the conflict when they collide with people

trying to get out from the railroad car. Modeling and simulation of urban traffic has been

studied using ATLAS [Dia01]. ATLAS is a specification language to study the flow of

vehicles in a city, which gives modelers a simple means to describe intersections, streets,

and other constructions, such as railways, traffic lights and parking spaces. The flow of

cars and trucks was studied in detail in [Dav00a].

M&S has become a fundamental tool in a wide variety of fields. As a result, many

of the simulated systems are becoming more and more sophisticated. As these systems

become larger and more complex, the resources provided by a single-processor machine

become, in many cases, insufficient to execute those systems. Parallel and distributed

simulation (PADS) deals with the issues introduced by distributing simulations over

multiple processors. Parallel discrete event simulation (PDES) studies the execution of

 6

discrete event models in parallel or distributed computers. A PDES simulation advances

by the occurrence of events that take place at discrete points in time. Fujimoto identified

three major research communities involved in the field of parallel and distributed

simulation [Fuj01]. The first group is the high performance computing community,

whose work started in the late 1970’s and 1980’s. This group’s main concern was to

reduce execution time of applications by using multiple processors. Several

synchronization algorithms developed by this community, such as Chandy-Misra-Bryant

[Bry77, Cha79] and Time Warp [Jef85], introduced fundamental ideas that are still being

applied. The second group is the defense community, mainly interested in integrating

separate training simulations to facilitate interoperability and software reuse. The third

group is the gaming and Internet community. Their efforts are mostly focused on

developing realistic scenarios in distributed environments.

Parallel and distributed simulation can provide four major advantages [Fuj99]:

1. Enabling execution of simulations that otherwise could not be performed.

Executing a large system after subdividing it in simpler, smaller parts enables

shorter execution times. This enables using real-time simulations to support time-

critical decision-making processes in cases where a single computer cannot

achieve the required performance. Moreover, distributed environments allow the

execution of larger, more complex simulations whose memory requirements

exceed the resources available in a single computer.

 7

2. Geographical distribution. It is possible to distribute the execution at different

physical locations, which is particularly interesting for some applications where

data or users are not located in a central location.

3. Integrating simulators based on different platforms. Simulations can be carried

out using different computers, operating systems, and simulators.

4. Fault tolerance. When using multiple processors, it becomes possible to increase

the tolerance to failures in a simulation; if a node fails, a surviving node may take

over and continue the execution.

Synchronization is key when executing applications in parallel and distributed

environments. A logical process (LP) is a basic entity in a simulation. An LP receives

and generates timestamped events or messages to communicate with other LPs, which

might execute in a different processor or machine. The synchronization mechanism

ensures that each LP complies the local causality constraint, which requires that events

should be processed in their timestamp order.

There are two main classes of algorithms for synchronization. Conservative

algorithms offer a pessimistic approach. They avoid violating causality constraints at all

times during the execution of a simulation. Optimistic algorithms allow some violations

to happen, but provide a mechanism to detect and recover from these situations.

Optimistic algorithms have two main advantages over conservative approaches: (i) they

enable greater degrees of parallelism, and (ii) they do not rely on application-specific data

to determine events that are safe to process, which is usually the case in conservative

approaches.

 8

A different way for improving simulation performance and reducing execution

times deals with the structure of the simulator. Hierarchical simulation mechanisms

incur in greater overheads due to an increased number of exchanged messages that travel

up and down the entire structure. Flat simulation approaches have been implemented in

distributed [Kim00a] and stand-alone [Gli02a, Gli02d] environments, aiming to reduce

the overhead by simplifying the structure. It has been shown that flat simulation

approaches outperform the hierarchical mechanisms in virtual-time and real-time

simulators [Gli02b, Gli02c].

A hierarchical, conservative parallel simulation mechanism has been implemented

in CD++ [Tro01a]. Results have shown that parallel simulations outperformed single-

processor simulations for both DEVS and Cell-DEVS models in CD++ [Tro01b].

However, since it implements a pessimistic synchronization mechanism, the degree of

parallelism and the corresponding speedups are bounded. Moreover, studies showing that

hierarchical approaches worsen execution performance encourage the implementation of

a flat distributed simulator.

1.1 CONTRIBUTION

This dissertation presents the design and implementation of a new technique for

optimistic simulation of Parallel DEVS and Cell-DEVS models in distributed

environments. Our simulation methodology is based on the Parallel DEVS abstract

simulator [Cho94b] and the Time Warp synchronization mechanism [Jef85]. The Time

Warp algorithm allows simulation objects to process events optimistically, assuming

 9

events sent from remote LPs will not cause rollbacks in the future. If a remote LP sends

such a message, simulation objects have to rollback optimistically processed events and

continue the normal execution of the model from that point.

We introduce two new classes of DEVS processors that carry out the simulation

efficiently across multiple machines. The proposed simulation algorithms use a flat

simulation approach that eliminates the need for intermediate coordinators.

Consequently, it reduces the overhead of message passing, improving the overall

performance of the simulation.

The new simulation technique is implemented in the CD++ toolkit, and its

efficiency is measured using DEVS and Cell-DEVS models. Moreover, instead of

restricting our efforts on testing individual models, we developed DEVStone, a synthetic

benchmark to study the performance of DEVS-based simulators. Different factors were

considered in order to create such synthetic models, which resemble real world

applications. We focused on the main factors that have a significant impact on

performance. Our benchmark supports generating models that have different structure,

size and behavior. Two parameters define the general structure and size of a DEVStone

model, namely depth and width. The depth of the model describes the number of levels in

the overall structure. The width of the model specifies the number of components in each

intermediate level. DEVStone supports three different types of models. Each model type

is characterized by the number and complexity of interconnections between inner

components. Finally, models execute different workloads that represent the real world

processes to be performed by components of the application.

 10

Using DEVStone, it is possible to assess the performance of a simulator using a

large set of models with diverse characteristics. Since the structure and behavior of the

models are known, it is also possible to compare the performance of different simulators.

In order to obtain meaningful results, we use different types of models focusing on issues

that can impact the execution performance. For example, we study the effect of executing

models that are predominantly wide (i.e., a large number of models per level) or deep

(i.e., a large number of levels in the modeling hierarchy). Using a heterogeneous test set,

it is possible to analyze the performance of the simulators under different scenarios.

The accuracy and reliability of DEVStone relies on the automatic generation and

execution of a large pool of diverse models, which provides a robust test set. This enables

an analysis of performance with relation to the characteristics of a category of models of

interest. The scope of this work is the execution of medium to large size models, defined

as models composed of a minimum of 30 components. DEVStone can be used to assess

the efficiency of DEVS simulation engines for these types of models, and it provides a

common metric to compare the results using different tools.

We conduct a performance analysis using DEVStone to study the overhead of the

new mechanism. A comparison between its perfo rmance and other engines provided by

CD++ is provided. Although the overhead associated with synchronization tasks

implemented by our simulator can be considerable, it presents good performance results

when compared with more simple techniques. Based on these tests, we observed

overheads for DEVS models is in the range of 2.5% to 5%. For Cell-DEVS models, we

 11

present a performance analysis on distributed environments using models with different

size and partition strategies showing significant execution speedups.

1.2 THESIS ORGANIZATION

This work is organized as follows. Chapter 2 introduces the DEVS and Cell-

DEVS formalisms, as well as some general concepts on parallel and distributed

simulation with special focus on Time Warp synchronization. A survey on existing

DEVS-based tools is presented. We also review the design of the CD++ simulator and

provide some examples of DEVS and Cell-DEVS models. Chapter 3 discusses the

simulation mechanisms provided by CD++ and other tools. Then, we introduce basic

ideas about our new simulation technique. In Chapter 4, we present the design of our flat,

optimistic simulator for DEVS and Cell-DEVS. We introduce the new algorithms that

carry out distributed simulation, providing sample scenarios to better understand how

they work. Chapter 5 discusses the implementation issues related to the distributed CD++

simulator. Chapter 6 introduces a synthetic benchmark for DEVS-based tools. A

performance analysis of the new simulator that uses DEVStone and other models is

presented. Finally, Chapter 7 provides our conclusions and future work.

 12

Chapter 2: DISCRETE EVENT MODELING AND SIMULATION

TECHNIQUES

This chapter provides background information about the DEVS and Cell-DEVS

formalisms and their extensions. The two main synchronization approaches for

distributed simulation are also discussed, focusing on the optimistic alternative chosen for

this work. We survey several M&S tools based on DEVS. Then we review the design of

the CD++ simulator and some examples of models are given. Finally, this chapter

presents Warped and MPI, which are used to implement the optimistic CD++ simulator.

2.1 DEVS AND PARALLEL DEVS FORMALISMS

Systems whose variables are discrete and where time advance is continuous are

known as DEDS (Discrete Event Dynamic Systems), as opposed to CVDS (Continuous

Variable Dynamic Systems) which, in general, can be described by differential equations.

Simulation mechanisms for DEDS systems assume that changes of state will take place

upon the occurrence of an event. Formally, an event is defined as a change of state that

occurs at a specific point of time ti ∈ R.

DEVS (Discrete Events systems Specification) [Zei76, Zei00], a formalism for

modeling and simulating DEDS systems, defines a way to specify systems whose states

change either upon the reception of an input event or due to the expiration of a time

delay. It allows hierarchical decomposition of the model by defining a way to couple

existing DEVS models.

 13

A real system modeled using DEVS can be described as a composition of atomic

and coupled components. An atomic model is defined by:

M = <X, Y, S, δ int, δext, λ, ta>

where

X = {(p,v)| p ∈ IPorts, v ∈ Xp} is the set of input ports and values;

Y = {(p,v)| p ∈ OPorts, v ∈ Yp} is the set of output ports and values;

S is the set of sequential states;

δext: Q x X → S is the external state transition function;

where Q = { (s,e) / s ∈ S, e ∈ [0, ta(s)] } and e is the elapsed time since the last state

transition.

δ int: S → S is the internal state transition function;

λ: S → Y is the output function;

ta: S → R0
+ U ∞ is the time advance function;

A DEVS model is in a state s ∈ S at any given time. In the absence of external

events, it remains in that state for a lifetime defined by ta(s). A transition that occurs due

to the consumption of time indicated by ta(s) is called an internal transition. When ta(s)

time expires, the system outputs the value λ(s) and then changes to a new state given by

δ int(s). On the other hand, an external transition occurs due to the reception of an external

event. In this case, the external transition function determines the new state, given by

δext(s, e, x) where s is the current state, e is the time elapsed since the last transition and x

∈ X is the external event that has been received.

 14

The time advance function can take any real value between 0 and ∞. A state for

which ta(s) = 0 is called a transient state. In contrast, if the ta(s) = ∞ then s is said to be a

passive state, in which the system will remain perpetually unless an external event is

received.

The following figure shows the description of states and variables in DEVS

models:

Figure 2: DEVS semantics

A DEVS coupled model is composed of several atomic or coupled submodels. It

is formally defined by:

CM = <X, Y, D, {M d | d ∈ D}, EIC, EOC, IC, select>

where

X = {(p,v)| p ∈ IPorts, v ∈ Xp} is the set of input ports and values;

Y = {(p,v)| p ∈ OPorts, v ∈ Yp} is the set of output ports and values;

 15

D is the set of the component names, and the following constraints apply to the

components, which are also DEVS models:

for each d ∈ D

Md = (Xd, Yd, S, δext , δ int, δcon, λ, ta) is a DEVS basic structure,

where

Xd = {(p,v)| p ∈ IPorts, v ∈ Xp},

Yd = {(p,v)| p ∈ OPorts, v ∈ Yp}, and the couplings are subject to the following

conditions:

external input couplings (EIC) connect external inputs to component inputs, EIC ⊆ {((N,

ipN), (d, ipd)) | ip N ∈ IPorts, d ∈ D, ipd ∈ IPortsd}

external output couplings (EOC) connect component outputs to external outputs, EOC ⊆

{((d, opd), (N, opN)) | op N ∈ OPorts, d ∈ D, opd ∈ OPortsd}

internal couplings (IC) connect component outputs to component inputs, IC ⊆ {((a, op a),

(b, ipb)) | a, b ∈ D, opa ∈ OPortsa , ipb ∈ IPortsb }

Direct feedback loops are not allowed, i.e., no output port of a component may be

connected to an input port of the same component. Formally,

((d, opd), (e, ipd)) ∈ IC implies d ≠ e.

The values sent from a source port must be within the range of accepted values of

a destination port (range inclusion constraint). Formally,

∀((N, ipN), (d, ipd)) ∈ EIC : XipN ⊆ Xipd

∀ ((a, opa), (N, opN)) ∈ EOC : Yopa ⊆ YopN

 16

∀ ((a, opa), (b, ipb)) ∈ IC : Yopa ⊆ Xipb.

select is the tie-breaker function, where select : subset of D → D, such that for any

non-empty subset E, select (E) ∈ E.

A coupled model groups several DEVS into a compound model that can be

regarded, due to the closure property, as a new DEVS model. The closure property

guarantees that the coupling of several class instances results in a system of the same

class [Zei00]. This property allows hierarchical model construction.

In addition, each coupled model has its own input and output events, as defined

by the X and Y sets. When external events are received, the coupled model has to redirect

the inputs to one or more components. Similarly, when a component produces an output,

it may have to map it as an input to another component, or as an output of the coupled

model itself. Mapping between ports is defined by the Z function.

Multiple components can be scheduled for an internal transition at the same time

in a coupled component, and ambiguity may arise. If the first component to execute its

internal transition produces an output that maps to an external event for another

component that is already scheduled for an internal transition, then it is not clear which

transition this second component should execute first. Two alternatives exist: to execute

the external transition first with e = ta(s) and then the internal transition, or else to

execute the internal transition first followed by the external transition with e = 0. By the

select function, the DEVS formalism enables a simple way to solve this ambiguity. The

function defines an order over the components so that only one component of the group

 17

of imminent models is allowed to have e = 0. The other imminent models are divided in

two groups: those that receive an external output from this model, and the rest. The

former will execute their external transition functions with e = ta(s), the latter will be

imminent during the next simulation cycle which may require aga in the use of the select

function to decide which model will execute first. This strategy for tiebreaking is rigid

and, in addition, it introduces serialization in the execution of components. The

serialization introduced by this approach becomes visible when the select function has to

be used to determine the priority in which the components have to be executed. For

example, the select function is used to determine which atomic component has priority

over the rest to execute its internal transition function when many interconnected atomic

models are imminent.

Parallel DEVS or P-DEVS [Cho94a] is an extension to DEVS that provides a

more flexible way of dealing with these ambiguities. Atomic models provide an

additional confluent function to specify collision behavior for events that might be

scheduled simultaneously. Since serialization constraints existing in the original DEVS

formalism are now eliminated, P-DEVS permits increased degrees of parallelism that can

be exploited in parallel and distributed environments. Consequently, Parallel DEVS was

the formalism chosen as the foundation for this work.

P-DEVS models are described very much like DEVS models. An atomic Parallel

DEVS model is defined as:

M = <XM , YM , S, δext , δ int, δcon, λ, ta>

where

 18

XM = {(p,v)| p ∈ IPorts, v ∈ Xp} is the set of input ports and values;

YM = {(p,v)| p ∈ OPorts, v ∈ Yp} is the set of output ports and values;

S is the set of sequential states;

δext: Q x XM
b

 → S is the external state transition function;

δ int: S → S is the internal state transition function;

δcon: Q x XM
b

 → S is the confluent transition function;

λ : S → YM
b is the output function;

ta : S → R0
+ ∪ ∞ is the time advance function;

with Q = {(s, e) | s ∈ S , 0 ≤ e ≤ ta(s)} the set of total states.

There are two main differences between a basic DEVS and a basic Parallel DEVS

model. First, the external transition function uses a bag of events instead of a single

event. This allows multiple events to be processed simultaneously. Since external events

received by the component are added to a bag, XM
b, external transition functions can

combine the functionality of a number of external transitions into a single one. Second,

the model specification includes a confluent transition function (δcon). When a collision

between the internal and external functions occurs, the confluent function determines the

new state of the model.

The semantics of P-DEVS are similar to those of DEVS. A basic model is in a

state s at any given time. In the absence of external events, the model remains in that state

for a lifetime period defined by ta(s). When that time expires, an internal transition takes

place; the system outputs the value λ(s) and then it changes to the state specified by

 19

δ int(s). If one or more external events E = {x1 .. xn / x ∈ XM} occurs before ta(s) expires,

i.e., while the system is in total state (s, e) with e < ta(s), the new state will be given by

the model’s external transition function, δext(s,e,E). P-DEVS allows a better way to deal

with collisions. External and internal transitions are in conflict when external events E are

received when e = ta(s). In such cases, the new state of the model can be given by

δext(δ int(s),e,E) or δ int(δext(s,e,E)). Hence, modelers have a flexible way of indicating the

appropriate behavior for each model in the confluent function (δcon), which is triggered in

case of collisions.

In P-DEVS, coupled models are defined as in DEVS without the need for a select

function. Formally, a coupled model is defined as:

CM = <X, Y, D, {M d | d ∈ D}, EIC, EOC, IC>

The definitions for the set of input and output events (X and Y), components (D

and Md), and couplings (EIC, EOC, and IC) follow the specifications of DEVS coupled

models presented earlier in this chapter.

If multiple components in a coup led model are imminent, all their outputs are first

collected and mapped to their influencees. Then, the corresponding transition function is

executed for every model.

2.2 MODELING CELL SPACES

Different formalisms have been used to capture the behavior of systems that can

be represented as cell spaces. Examples of such systems can be found in many fields,

from chemistry to engineering, from physics to social sciences. Cellular Automata

 20

[Wol86] is a well-known formalism that describes this type of systems. A cellular

automaton is an infinite regular n-dimensional lattice whose cells can take one finite

value. States in the lattice are updated according to a local rule in a simultaneous,

synchronous way. The cell states change in discrete time steps using a local transition

function that considers the current state of the cell and a finite set of nearby cells (called

the neighborhood of the cell).

Cell neighborhood

Figure 3: Sketch of a cellular automaton [Wai00]

2.2.1 The Timed Cell-DEVS formalism

The Timed Cell-DEVS formalism [Wai98] uses the DEVS paradigm to define a

cell space where each cell is defined as a DEVS atomic model. As a result, it is possible

to build discrete event cell spaces improving their definition by making the timing

specification more expressive. A Cell-DEVS atomic model is defined in [Wai98] as:

TDC = < X, Y, I, S, ? , N, d, δ int, δext, t , ? , D >

where

X is a set of external input events;

 21

Y is a set of external output events;

I represents the model's modular interface;

S is the set of sequential states for the cell;

T is the cell state definition;

N is the set of states for the input events;

d is the delay for the cell;

δ int is the internal transition function;

δext is the external transition function;

t is the local computation function;

? is the output function; and

D is the state duration function.

A cell uses a set of input values N to compute its future state, which is obtained

by applying the local computation function t . A delay function is associated with each

cell, deferring the output of the new state to the neighbor cells. This activation of the

local computation is carried by the δext function.

After the basic behavior for a cell is defined, a complete cell space can be

constructed by building a coupled Cell-DEVS model:

GCC = < Xlist, Ylist, I, X, Y, n, {t1,...,tn}, N, C, B, Z, select >

where

Xlist is the input coupling list;

Ylist is the output coupling list;

 22

I represents the definition of the interface for the modular model;

X is the set of external input events;

Y is the set of external output events;

n is the dimension of the cell space;

{t1,...,tn} is the number of cells in each of the dimensions;

N is the neighborhood set;

C is the cell space;

B is the set of border cells;

Z is the translation function; and

select is the tie-breaking function for simultaneous events.

This specification defines a coupled model composed of an array of atomic cells.

Each cell is connected to the cells defined in its neighborhood. Nevertheless, as the cell

space is finite, either the borders are provided with a different neighborhood than the rest

of the space, or they are wrapped (cells in one border are connected with those in the

opposite one). Finally, the Z function defines the internal and external coupling of cells in

the model. This function translates the outputs of m-th output port in cell Cij into values

for the m-th input port of cell Ckl . Each output port will correspond to one neighbor and

each input port will be associated with one cell in the inverse neighborhood. The select

function serves the same purpose as in the original DEVS models: to tiebreak among

imminent components.

The use of the select function in Cell-DEVS introduces similar problems to those

introduced by DEVS, namely lack of parallelism exploitation and possible inconsistency

 23

with the real system. In addition, the timed Cell-DEVS has another restriction: only one

input can arrive from each input port. Such restriction disallows zero-delay transitions

and external DEVS models sending two simultaneous events to the same cell [Wai00].

Forbidding zero-delay transitions and the limitation of only one event per external model

is very restrictive, and led to an extension of the formalism.

Parallel Cell-DEVS is a revision of the Cell-DEVS formalism that eliminates

such restrictions [Wai00]. The author shows two important properties: i) Parallel Cell-

DEVS models are equivalent to parallel DEVS models, and ii) closure under coupling for

parallel Cell-DEVS models also holds, i.e., a coupled parallel Cell-DEVS model is

equivalent to a basic parallel Cell-DEVS model. An implementation of Parallel Cell-

DEVS was presented in [Tro03].

2.3 DEVS-BASED TOOLKITS FOR M&S

Several tools have been implemented based on DEVS theory and its extensions,

reflecting the level of interest from the community. Some of the existing DEVS M&S

toolkits are listed next.

o ADEVS [Nut04] provides a C++ library based on DEVS, which developers can use

to build their own models, and supports integration with other simulation

environments.

o DEVS-C++ [Zei96] is a DEVS-based modeling and simulation environment written

in C++, which implements parallel execution and supports large-scale systems.

 24

o DEVS-Scheme [Zei93] is a knowledge-based environment for modeling and

simulation based on the DEVS formalism, supporting real-time simulation.

o DEVS/Grid [Seo04], a JAVA-based simulator for Grid computing infrastructures,

was developed focusing on performance and scalability. It supports cost-based model

partitioning, remote simulator activation, and dynamic coupling restructuring.

o DEVS/HLA [Zei99a] is based on the High Level Architecture (HLA) [HLA00]. It

was used to demonstrate how an HLA-compliant DEVS environment could improve

the performance of large-scale distributed modeling and simulation.

o DEVSCluster [Kim00b, Kim04] is a multi-threaded, CORBA-based simulator for

DEVS models that supports simulation in heterogeneous network environments.

o DEVSJAVA [Sar98] is a DEVS-based modeling and simulation environment written

in Java. It provides classes for the users to implement their own DEVS models.

o DEVSim++ [Kim94] is an object-oriented software to simulate DEVS models, which

was implemented in C++. The tool defines basic classes that can be extended by users

to define their own atomic and coupled DEVS components.

o GALATEA [Dav00b] is a simulation platform that offers a language to model multi-

agent systems using an object-oriented architecture. The tool describes a real system

as a set ofinteracting agents.

o JAMES [Him04] implements DEVS theory to model and simulate agent systems. The

toolkit supports software- in-the- loop simulation to test agents in virtual environments.

 25

o JDEVS [Fil02a] is a DEVS modeling and simulation environment written in Java. It

allows general purpose, component-based, object-oriented, visual simulation of

models.

o PyDEVS uses the ATOM3 tool [Del02] to construct DEVS models and to create the

code to be executed. Models are represented as a state graph used to generate Python

code and then interpreted by PyDEVS.

o SimBeams [Pra99] is a component-based software architecture based on Java and

JavaBeans. The idea is to provide a set of layered components that can be used in

model creation, result output analysis and visualization using DEVS.

The majority of the existing toolkits support stand-alone simulation. Some of

them, such as DEVS-C++, DEVS/HLA, DEVSCluster, D-DEVSim++ [Kim96] (an

extension to DEVSim++), and DEVSJAVA allow distributed execution of DEVS

models. The middleware technology that enables parallel and distributed simulation

varies from tool to tool. Some of these technologies are:

o CORBA (Common Object Request Broker Architecture) [OMG02], an open standard

promulgated by the Object Management Group (OMG),

o HLA (High Level Architecture) [HLA00], a standard specifically designed for

distributed simulations, and

o MPI [Don96], a message passing interface standard designed for high performance

communication on parallel and distributed environments.

Some of the approaches exploit the specific parallelism existing in DEVS by

implementing a pessimistic approach. In such cases, a unique global scheduler is in

 26

charge of synchronizing all nodes; only events with identical timestamp can be

processed. As a result, the global scheduler often becomes a bottleneck that prevents

achieving higher degrees of parallelism and speedups in a simulation [Kim96]. On the

other hand, optimistic approaches give nodes more freedom to process events. In such

cases, causality errors can occur but a mechanism to detect and recover from them has to

be incorporated. Some efforts in optimistic simulation of DEVS models are summarized

next.

DEVS-Ada/Tw [Chr90] was the first attempt to combine DEVS and Time Warp

over a multiprocessor environment. However, the implementation imposes two important

constraints. First, all models mapped in the same processor are treated as an indivisible

logical process. In case of a rollback, the associated cost can be considerable because all

the information of the LP has to be restored. Second, models can be divided only at the

top level of the hierarchy, imposing a major restriction on users when determining

partition boundaries. The second constraint makes the approach inflexible in terms of

partition strategies, as it is not possible to divide a model at lower levels of its hierarchy.

For example, a system composed by two coupled models can only be partitioned in two

processors (one machine running each coupled model), regardless of the internal structure

of its coupled models.

The Distributed Optimistic Hierarchical Simulation (DOHS) scheme combines

DEVS and Time Warp, implemented in D-DEVSim++ [Kim96]. This alternative presents

a more general approach for distributed optimistic execution of DEVS models, while

addressing the two major restrictions introduced by DEVS-Ada/TW: DOHS rollback

 27

mechanism allows simulation objects to be rolled back individually, and it supports

model partition at any level of the hierarchy.

DEVSCluster [Kim00b, Kim04] is an object-oriented, multi-threaded, distributed

simulator that implements a combination of Time Warp and DEVS simulation based on

the ideas presented in [Kim96]. However, instead of using the classic message passing

approach, DEVSCluster uses CORBA-based method invocation for advancing the

simulation. In [Kim04], the authors present a non-hierarchical approach for more

efficient distributed simulation.

A risk-free optimistic synchronization mechanism is proposed in [Zei97b],

focused on applications that interact with geographically distributed real-world

components. In this approach, only safe outputs are sent (avo iding propagation of

rollbacks to remote processors so that rollbacks can always be kept local). This

mechanism is well suited for shared memory multiprocessor platforms, but has

limitations in distributed heterogeneous architectures.

DEVS/P2P [Che04] is an implementation of a distributed DEVS simulator over a

layered peer-to-peer network system. The proposed algorithm does not require a

coordinator for scheduling purposes; simulators solve synchronization issues by

themselves following a decentralized mechanism. Nodes use peer discovery functions to

find the location of remote resources.

 28

2.4 THE CD++ TOOLKIT

CD++ [Rod99, Wai02, Tro03] is a M&S toolkit that implements the original and

Parallel DEVS and Cell-DEVS formalisms. The tool was built as a hierarchy of classes in

C++, where each class corresponds to a simulation entity using the basic concepts

defined in [Zei76, Zei00].

There are two basic abstract classes: Model and Processor. The former is used to

represent the behavior of the atomic and coupled models, while the latter implements the

simulation mechanisms. Figure 4 shows the CD++ class hierarchy.

Processor

Simulator Coordinator Root
Coordinator

CellCoordinator

Model

Atomic Coupled

AtomicCell CoupledCell

(a) (b)

Figure 4: CD++ (a) Model hierarchy, (b) Processor hierarchy

The Atomic class implements the behavior of an atomic component. The Coupled

class implements the mechanisms of a coupled model. For cellular models, special atomic

models are used to represent the cells. To do so, AtomicCell and CoupledCell are defined

as subclasses of Atomic and Coupled respectively. AtomicCell class extends the behavior

of the atomic models, to define the functionality of the cell space. In contrast,

CoupledCell handles a group of atomic cells.

 29

A simulator object manages an associated atomic object, handling the execution

of its δ int, δext, δcon and λ(s) functions. A coordinator object manages an associated

coupled object. Only one root coordinator exists in a simulation. It manages global

aspects of the simulation. It is involved with the topmost-coupled component, which has

the highest level in the model hierarchy. Moreover, the root coordinator maintains the

global time, and it starts and stops the simulation process. Lastly, it receives the output

results that must be sent to the environment.

The simulation process is message driven; processors exchange messages to

advance the execution of the model. Each message contains information to identify the

sender and the receiver. A time-stamp for the message and an associated value are also

included in the packet. Two main categories of messages exist: synchronization and

content messages. These categories consist of several types of messages.

Synchronization messages:

@ Collect message

* Internal message

done Done message

Content messages:

q External message

y Output message

Processors have internal variables to keep the time of the simulation:

tL Time of last transition

 30

tN Time of next transition

and a bag to store external messages.

The tool provides a specification language that allows describing coupling of

models, initial values and external input events. Atomic models are developed under

C++, which provides a great flexibility and computing power to the modeler. Each new

atomic model must inherit from the Atomic class in order to extend their basic behavior.

New atomic models are written in C++ and have to be derived from the class

Atomic. The methods that determine the behavior of an atomic model are:

o initFunction, which is executed when the simulation starts, and usually

initializes the model variables,

o externalFunction, which is executed when an external event is received,

o internalFunction, which is executed when an internal transition is

scheduled, and

o outputFunction, which generates the output of the model and is executed

before the internal transition function.

CD++ provides functions that can be used from the atomic models, including:

o holdIn(state, time). It is used to specify that the model must remain in a

state for the specified time.

o passivate(). When this function is called, the model enters in passive mode

(i.e., ta = ∞), and only external events can change its state.

o sendOutput(p, v). This function sends an output message with a value of v

through the output port p.

 31

o state(). It returns the current state of the model.

Controller
Unit

station_1A

sensor_1A

sensor_2A

sensor_3A

sensor_4A

station_display_A

direction_A

activate_A

station_2A

station_3A

station_4A

station_1B

station_2B

station_3B

station_4B

sensor_1B

sensor_2B

sensor_3B

sensor_4B

direction_display_A

station_display_B

direction_B

activate_B

direction_display_B

Figure 5: Diagram of atomic model Controller Unit

Figure 5 shows the scheme of an atomic model. This is a controller unit used in an

automated manufacturing system (AMS) built with CD++ [Gli04]. An AMS is formed by

dedicated stations that perform tasks on products being assembled, and conveyors that

 32

transport the products to/from those workstations. The controller is connected to other

components: sensors, a scheduler, conveyor belts, and a digital display. Input ports (e.g.,

station_1A and sensor_2A, which are connected with the scheduler) and output ports

(e.g., station_display_A, which is connected to the digital display, and direction_A,

which is connected with the engine of the conveyor belt) allow the controller unit to

communicate with those components.

Figure 6 and Figure 7 show the specification of the controller unit in CD++. The

constructor of the class, ControllerUnit::ControllerUnit, creates the input and output

ports of the model. The initialization function, initFunction, initializes some of the

controller’s variables (e.g., current station, next required station, activation of sensors,

direction of the conveyor belt) for both production lines (A and B). The external

transition function specifies the behavior of the controller unit upon the reception of

events from the sensors and the scheduler. For example, upon the activation of a sensor,

the conveyor belt A has to be stopped when the requested station is reached. The method

holdIn() is called to trigger an internal transition function after the time indicated as a

parameter (in this case, since the specified time is zero, then the internal function is

executed immediately).

 33

ControllerUnit::ControllerUnit
(const string &name) : Atomic(name),
station_1A(addInputPort("station_1A")),
station_2A(addInputPort("station_2A")),
station_3A(addInputPort("station_3A")),
...
sensor_3B(addInputPort("sensor_3B")),
sensor_4B(addInputPort("sensor_4B")),

station_display_A(addOutputPort("station_display_A")),
...
direction_display_B(addOutputPort("direction_display_B")),
{ }

Model &ControllerUnit::initFunction()
{
 req_station_A = 1;
 curr_station_A = 1;
 sensors_enabled_A = 1;
 direction_A = 0;
 ...
 req_station_B = 1;
 curr_station_B = 1;
 sensors_enabled_B = 1;
 ...
}

Model &ControllerUnit::externalFunction
(const ExternalMessage &msg)
{
 if (sensors_enabled_A)
 {
 if(msg.port() == sensor_1A)
 {
 if (req_station_A == 1)
 {
 stop_engine_A = 1;
 ...
 holdIn(active, VTime::Zero);
 }
 if(msg.port() == sensor_2A)
 ...
 if(msg.port() == sensor_3A)
 ...
 ...
 }
}

Figure 6: Specification of atomic model Controller Unit in CD++ (part 1)

 34

Figure 7 contains the internal and output functions for the controller unit. The

output function is executed before the internal transition function. Following the same

example, when the engine of the conveyor belt A has to be stopped, a value of 0 is sent

via the port activate_A using the method sendOutput. The internal transition function

enables and disables the sensors depending on the va lues of the current and requested

stations for each production line and it passivates the model (i.e., sets the next internal

transition time to infinity).

Model &ControllerUnit::internalFunction
(const InternalMessage &msg)
{
 if (!sensors_enabled_A && (req_station_A==cur_station_A))
 {
 sensors_enabled_A = 1;
 }
 ...
 passivate();
 return *this ;
}

Model &ControllerUnit::outputFunction
(const InternalMessage &msg)
{
...
 if (stop_engine_A == 1)
 sendOutput(msg.time(), activate_A, 0) ;
 if (stop_engine_B == 1)
 sendOutput(msg.time(), activate_B, 0) ;
...
}

Figure 7: Specification of atomic model Controller Unit in CD++ (part 2)

CD++ allows users to combine multiple basic models (i.e., atomic or coupled)

into a coupled model using a specification language that follows DEVS definitions.

Using this specification language, it is possible to define external input couplings,

external output couplings and internal couplings, and components that form the model.

 35

Let us continue with the previous example of the automated factory. The entire

AMS, formed by a scheduler, a controller unit, a display controller, and two conveyor

belts, can be seen as a new coupled model. This coupled model is composed of atomic

(e.g., controller unit) and coupled components (e.g., conveyor belt), as outlined in Figure

8.

Scheduler

Controller
Unit

Display Controller

Conveyor_A

Engine

Sensor
Controller

status_conveyor_A
status_conveyor_B

Conveyor_B

Engine

Sensor
Controller

start_A
start_B

Figure 8: Diagram of the coupled model AMS

Figure 9 shows the specification of the AMS coupled model in CD++.

 36

components: conveyor_A conveyor_B scheduler@Scheduler
components cu@CU dis@Display
in : start_A start_B
out : status_conveyor_A
out : status_conveyor_B
link : start_A start_A@scheduler
link : start_B start_B@scheduler
...
link : sensor_1@conveyor_A sensor_1@cu
link : sensor_2@conveyor_A sensor_2@cu
...
link : dir_display_A@cu dir_display_A@dis
link : status_conv_A@cu status_conv_A@dis
link : dir_display_B@cu dir_display_B@dis
link : status_conv_B@cu status_conv_B@dis
...
[conveyor_A]
components: sb@SensorController eng@Engine
in : activate direction
out : sensor_1 sensor_2 sensor_3 sensor_4
link : activate activate@eng
link : direction direction@eng
link : sensor_1@sb sensor_1
...
link : current_pos@eng sensor_triggered@sb
...
[conveyor_B]
components: sb@SensorController eng@Engine
...

Figure 9: Specification of coupled model AMS in CD++

The components for the top model follow the architecture shown in Figure 8.

Here, conveyor_A and conveyor_B are coupled components, whereas cu, scheduler, and

dis are atomic. The top model input ports, start_A and start_B, are used to trigger the

production cycle for lines A and B. The output ports, status_conveyor_A and

status_conveyor_B, provide information about the state of products in each line. The

keyword link defines connections between components. For example, the start_A in the

top model port is connected to the start_A port in the scheduler, and the sensor_1 port of

conveyor_belt_A is connected to the port sensor_1 of the controller unit (cu).

 37

Cell-DEVS models are also defined using a built- in specification language. Users

specify different parameters of the system such as size of the model, cell neighborhood,

type of borders (wrapped or non-wrapped), type of delay (transport or inertial), and the

rules that determine the behavior of each cell. Figure 10 shows the specification for the

popular “life” game [Gar70] as a Cell-DEVS model in CD++ [Wai02].

[top]
components : life

[life]
type : cell
width : 20
height : 20
delay : transport
defaultDelayTime : 100
border : wrapped
neighbors : life(-1,-1) life(-1,0) life(-1,1)
neighbors : life(0,-1) life(0,0) life(0,1)
neighbors : life(1,-1) life(1,0) life(1,1)
localtransition : conrad-rule
neighborports : value

[conrad-rule]
rule : { ~value := 1; } 100 { (0,0)~value = 1
 and (statecount(1, ~value) = 3
 or statecount(1, ~value) = 4) }
rule : { ~value := 0; } 100 { (0,0)~value = 1
 and (statecount(1, ~value) < 3
 or statecount(1, ~value) > 4) }
rule : { ~value := 1; } 100 { (0,0)~value = 0 and statecount(1, ~value) = 3 }
rule : { ~value := 0; } 100 { (0,0)~value = 0 and statecount(1, ~value) != 3 }

Figure 10: Specification of Cell-DEVS model life in CD++

This life model is defined as a 20x20 wrapped Cell-DEVS model with transport

delays and 3x3 neighborhood. The behavior of each cell is defined by the rules of the

model. Rules have the form of VALUE DELAY {CONDITION}; when the CONDITION is

satisfied, the cell state becomes VALUE and then it is DELAYed for the specified time. In

this case, the survival of a cell that is active (or alive) depends on the number of active

cells within its neighborhood. If the number of active cells, determined by

 38

statecount(1,~value), is three or four the cell remains alive (specified by the first rule),

otherwise it dies (specified by the second rule). The third rule specifies that an inactive

cell becomes active if the number of active cells in its neighborhood is three. In this

model, the delay is 100 milliseconds for every rule.

CD++ provides several operations, such as Boolean (AND, OR, NOT, IMP, and

EQV), comparison (=, !=, <, >, <=, and >=), and arithmetic, as well as numerous

functions, such as trigonometric, rounding, truncation, logarithmic, minimum, and

maximum.

Nowadays, CD++ is the only simulation tool that implements Parallel Cell-

DEVS, although there are numerous tools that support the execution of cellular automata,

for example MJCell [Woj04], Cellsprings [Ell04], Trend [Cho02], SpaSim [Mor02], and

JCASim [Fre01]. Some of these tools support parallel execution to reduce simulation

time. CD++ enables visualization of Cell-DEVS in 2D and 3D using different shapes and

colors to better understand the results of a simulation [Wai03].

The algorithms for simulator, coordinator, and root coordinator implemented in

CD++ can be found in [Tro03], and are based on those presented in [Cho94b].

2.5 PARALLEL AND DISTRIBUTED SIMULATION

Parallel discrete event simulation (PDES) is focused on the execution of

discrete event simulations in distributed environments. In parallel and distributed

simulations, the execution of a system is subdivided in smaller, simpler parts that run on

different processors or nodes. Each of these subparts is a sequential simulation, which is

 39

usually referred to as a logical process (LP). A logical process groups one or more

simulation objects running in a node.

Simulator objects communicate with each other exchanging timestamped

messages or events to advance the simulation. Objects located on different LPs have to

traverse the boundaries of the LPs to interact with each other in an activity known as

inter-LP communication. Those running on the same LP can also interact with each other,

in this case without crossing the boundaries of any LP, by means of intra-LP

communication.

For example, let us consider the distributed simulation of a system described

earlier: an automated manufacturing system formed by workstations, conveyor belts, and

loading and storing subsystems. Products move through the factory using the conveyor

belts. Items have to be loaded, workstations must perform actions (e.g., polishing,

varnishing, cutting, painting) on them and, lastly, completed items are stored. The

simulation of such a system is distributed across two logical processes, as outlined in

Figure 11: one to control the workstations and conveyor belts (LP1) and the other for the

loading and storing subsystems (LP2).

When an item is loaded and ready to be processed, the loading system (running on

LP2) places it on the corresponding conveyor belt (running on LP1). This event requires

inter-LP communication (shown in Figure 11 with a dashed line from Conveyor Belt to

Workstation B); a message has to be sent from LP2 to LP1. In contrast, interactions among

workstations and conveyor belts require only intra-LP communication (shown in Figure

11 with a solid line). Simulation objects that interact frequently should be placed in the

 40

same LP, since intra-LP communication usually requires less time than inter-LP

communication. In contrast, simulation objects that seldom interact should be placed in

different machines to take advantage of parallelism [Rao98].

Workstation A

Workstation B

Workstation C

Intra-LP communication

Inter-LP communication

LP1

Loading System

Conveyor Belt

Storing System

LP2

Figure 11: Automated Manufacturing System partitioned in two LPs

Let us extend our example. If one wants to reduce the execution times, it may

seem reasonable to concurrently execute events received on different LPs in order to

exploit parallelism. A possible scenario of two LPs processing events is shown in Figure

12. Consider two events: E200 with timestamp 200 received in LP2 node and E300 with

timestamp 300 received in LP1. Suppose that there are no unprocessed events before 200

(in LP2) and before 300 (in LP1). In this situation, it might seem reasonable to process

E200 and E300. Now, suppose that the execution of E200 in LP2 generates a new event E250

 41

with timestamp 250, which is sent to LP1 (shown in Figure 12 with a dashed line from

LP2 to LP1). When LP1 receives the event E250, it was already processing the event E300

with timestamp 300. Although it was received later, the event E250 happens before E300

and therefore should have been processed first. For example, E250 may represent a signal

that requires immediate attention and affects the results of processing E300.

Simulation time

LP2

LP1

100 200 300

Processed event

Unprocessed event

E
200

E
250

 E
300

Figure 12: Violation of local causality constraint in a distributed simulation

The local causality constraint [Fuj99] addresses this type of situations:

Local causality constraint. A discrete-event simulation formed by logical

processes that interact by exchanging timestamped messages obeys the local causality

constraint if and only if each LP processes events and messages in nondecreasing

timestamp order.

This brings us to a fundamental issue in parallel and distributed simulations

known as synchronization. Simulations in distributed environments rely on

 42

synchronization algorithms that either avoid or deal with local causality constraints. The

goal of a synchronization algorithm is to ensure that the distributed simulation of the

system yields the same results as the sequential case.

Notice that the synchronization mechanism does not need to guarantee that all

events are always processed in their timestamp order, but the final results must coincide

with the results obtained by sequential simulation [Fuj99].

There are two major classes of synchronization strategies: conservative and

optimistic. Next, we briefly describe each of them with more focus on the latter, which is

used in this work.

2.5.1 CONSERVATIVE SIMULATION

Conservative approaches, also known as pessimistic approaches, were the first

synchronization algorithms proposed for distributed simulations. The general idea behind

them is that no local causality errors shall ever happen upon processing an event. In other

words, an event is processed in a node if it can be guaranteed that no other event with

smaller timestamp will be received in the future. Therefore, a situation like the one

illustrated in Figure 12 can never happen.

The Chandy-Misra-Bryant (CMB) algorithm [Bry77, Cha79, Mis86] is a well-

known conservative algorithm developed in the late 1970s. Since the requirement

introduced by conservative algorithms introduces deadlocks, the original CMB algorithm

was extended with null messages (which are exchanged among LPs) to deal with this

situation. Null messages indicate a lower bound of the subsequent messages that will be

 43

sent by an LP, and allow advancing the simulation, while breaking the deadlock. A well-

known problem of the CMB algorithm is that larger numbers of null messages may lead

to poor simulation performance: the communication overheads can become considerable

high.

Other conservative algorithms based on CMB detect and recover from deadlocks

[Cha81] instead of avoiding them. A different algorithm, proposed by Chandy and

Sherman, relies on more detailed event-related information and can achieve better

performance in many cases [Cha89]. Unfortunately, newer algorithms require more

application specific data to exploit greater degrees of parallelism.

Although many conservative algorithms are currently found in real-world

applications, they have two main disadvantages [Fuj90]:

i) It is not possible to take advantage of the concurrency available in the

application, since they have to adhere to the local causality constraint at all

times.

ii) The simulation program has to be specifically designed to exploit

concurrency, leading to a complex, tedious design process. In relation to this,

small changes in the application may worsen the performance of the

simulation in a great way, since changes may affect data used for efficient

conservative simulation.

 44

2.5.2 OPTIMISTIC SIMULATION

Instead of avoiding violations to the local causality constraint, like conservative

algorithms do, optimistic algorithms allow some causality errors to occur but provide

means to recover from them, which in the end leads to correct results.

Optimistic approaches address the two fundamental disadvantages of conservative

algorithms:

i) They can exploit higher degrees of concurrency by advancing the simulation

optimistically. These approaches assume that causality errors will not arise. If

a causality error occurs, the optimistic algorithm has to detect and recover

from that situation.

ii) Optimistic algorithms are less dependent on application specific data than

conservative approaches, leading to more flexible, transparent applications.

Time Warp [Jef85] is the most popular optimistic synchronization algorithm.

Time Warp provides a mechanism that allows LPs to recover from causality errors. An

event that is received with a timestamp smaller than one or more of the events that have

been already processed in a logical process is known as a straggler event, and represents

a violation to the local causality constraint. Upon the reception of a straggler event, the

LP recovers from the causality error by undoing the effects of the events already

processed, in an activity known as rollback.

It might be necessary to perform two actions in case of a rollback. First, the state

of the object has to be restored to a time smaller or equal to the straggler’s timestamp.

Second, the process may have sent messages to other LPs in states that are now being

 45

undone. Therefore, it is necessary to inform objects that those events should not be

processed (leading to potential rollbacks in those nodes if the events were already

processed).

In relation to the first point (the restoration of previous states) Time Warp has a

mechanism that periodically stores states of the objects. There are two main techniques in

Time Warp that deal with how to rollback state variables:

i) Copy state saving is a strategy that generates a copy of all the state variables

within the LP. In case of rollback, it is necessary to retrieve all the variables

for the required time, which can be easily accessed. In general, copy state

saving is useful for applications that often modify most of the variables.

ii) Incremental state saving, in contrast, saves a copy of individual variables that

changed as a result of processing the event. This requires less memory and,

potentially, less overhead for storing state variables at each step. However, a

rollback requires going back through all the intermediate steps to retrieve all

the changes made to state variables. This strategy can be more efficient in

scenarios where variables are rarely modified.

In order to deal with messages that should not have been sent, Time Warp uses a

mechanism of negative messages or anti-messages. Jefferson borrowed the terminology

from physics, where matter and anti-matter particles annihilate each other and disappear.

When an object sends a message, a negative message is created and kept. A

negative message is a duplicate of the positive (original) message with a flag indicating it

is actually an anti-message. In case of a rollback, the LP sends anti-messages to the

 46

corresponding LPs as a means of “unsending” the original one. If the original message

has not been processed yet in the receiving node, the anti-message simply annihilates it

and both messages are removed from the pending queue. If the original message has

already been processed in the receiving LP, the anti-message produces a rollback, which

may also generate anti-messages to be sent to other LPs.

Nevertheless, most applications often perform input/output operations that cannot

be “undone” or rolled back. Moreover, the Time Warp mechanism as described before

has vast requirements of memory for state saving purposes. Both problems are addressed

by the concept of Global Virtual Time (GVT), a fundamental concept in Time Warp.

The GVT is a lower bound on the time of any future rollback that might occur.

Thus, the application has a guarantee that events occurred prior to the GVT will never be

rolled back. The consequences of having a GVT are twofold. First, input/output

operations with timestamps lower than the GVT can be committed, as it is possible to

know that they will never be rolled back. Second, the state information prior to the GVT

is no longer needed, since those states will not be restored, and thus memory can be

released. The computation of the GVT is fundamental for efficient execution of Time

Warp simulations.

Let us focus on one LP to understand how GVT can be computed. The only

activity that can trigger a rollback is the reception of a (positive or negative) message in

the past of a logical process. Events can be generated only by unprocessed or partially

processed events. Consequently, one can compute the GVT as the minimum timestamp

among all messages (positive and negative) that are unprocessed or partially processed in

 47

all LPs. A more formal definition of global virtual time is provided by Fujimoto in

[Fuj99]:

The Global Virtual Time at wallclock time T (GVTT) is defined as the minimum

time stamp among all unprocessed and partially processed messages and anti-messages in

the system at wallclock time T.

There have been modifications to the Time Warp algorithm that try to provide

better performance. For example, different mechanisms for state saving were presented in

[Ron96, Wes96], and different error-handling mechanisms are discussed in [Nic97].

2.6 THE WARPED TOOL

Warped [Mar97] is a public domain simulation kernel developed at the University

of Cincinnati, which provides an implementation of the Time Warp algorithm [Jef85].

We use the services provided by the Warped middleware to implement the optimistic

distributed simulator presented in this work. Different Time Warp optimizations are

supported in the middleware [Mar96], and the interface for the application developer

hides most of the implementation issues. Warped also provides a sequential kernel.

Warped is written in C++ and uses the MPI message passing standard for

communication. MPI [MPI95, Don96] is a message passing interface standard designed

for high performance communication on parallel and distributed environments. MPI was

designed with three main goals: portability, efficiency and functionality.

There are commercial and public domain implementations of MPI. In this work,

we use MPICH [Gro96], a freely available implementation that has been ported to

 48

different platforms, including Linux, Unix and Microsoft Windows. Figure 13 shows the

layout of how simulation objects and logical processes communicate in Warped [Mar96].

Simulation objects within the same LP exchange messages using direct communication,

whereas those running in different LPs use MPI communication services.

Simulation
Object

Simulation
Object

Simulation
Object

Simulation
Object

Logical
Process

Simulation
Object

Simulation
Object

Simulation
Object

Logical
Process

Simulation
Object

MPI communication

Direct communication

Figure 13: Structure of LPs and simulation objects in Warped [Mar96]

Warped presents an application program interface (API) that allows the definition

of simulation objects, their states, and the messages that can be exchanged by those

objects. Warped also provides a simple definition of time (which can be redefined by the

user) and functions to perform consistent I/O operations.

Figure 14 shows a summary of some classes that form Warped’s API.

 49

class TimeWarp {
 TimeWarp();
 virtual ~TimeWarp();
 virtual void initialize();
 virtual void finalize();
 virtual void executeProcess() = 0;
 BasicEvent* getEvent();
 ...
}

class BasicState {
 BasicState* copyState(BasicState*);
}

class BasicEvent {
 int size;
 Vtime sendTime;
 Vtime recvTime;
 int sender;
 int dest;
}

class LogicalProcess {
 int getNumObjects();
 LogicalProcess(int, int, int);
 int getTotalNumberOfObjects() const;
 int getLPid();
 void simulate(VTime);
 void calculateGVT();
 ...
}

Figure 14: Summary of Warped API [Mar97]

The user can define one or more types of simulation objects, which have to be

derived from a basic TimeWarp class. The TimeWarp class has three main three methods

that specify how to initialize the object (initialize), what to execute during a simulation

cycle (executeProcess), and how to finalize its execution (finalize). These objects have

states (which are also defined by the user and derived from a BasicState class) associated

with them. The kernel provides two main methods to the user: one to receive events

(getEvent), and one to send events (sendEvent). Different events can be defined by the

user deriving them from a basic class, BasicEvent. An event always contains information

 50

about its size, the time at which it was sent and received, and the address of the sender

and receiver.

The LogicalProcess class groups one or more simulation objects sharing a

GVTManager (in charge of calculating the global virtual time), a CommManager (dealing

with inter-LP communication), and a Scheduler (in charge of scheduling the events

received in the queue).

A performance analysis considering different Time Warp optimizations (such as

Lower Time Stamp First scheduling, periodic/dynamic checkpointing, and lazy

cancellation) implemented in Warped is discussed in [Rad96]. Communication overhead

affects the performance of Time Warp simulations; see [Raj98] for a discussion on

different alternatives of middleware for Warped communication and an implementation

of a new technique.

 51

Chapter 3: ENABLING NEW TECHNIQUES FOR PARALLEL

SIMULATION OF DEVS AND CELL-DEVS MODELS

The widespread use of M&S in different application domains is leading to execution of

larger and more complex systems, which often translates into more memory and

processor requirements. Higher level of detail required by some applications also impacts

on the memory and processor requirements. Furthermore, simulation results are

frequently expected in short periods of time. For example, consider the creation of virtual

worlds with human interaction, where the scenario has to evolve as fast as in real life, or

critical on- line decision-making processes where results are needed in real-time [Fuj99].

Nowadays, several M&S tools coexist and try to respond to these needs by providing

more efficient simulation mechanisms.

Our work is focused on the design and implementation of a new simulation

technique for CD++, a M&S tool for DEVS and Cell-DEVS models. CD++ was

originally developed as a stand-alone simulator, and later revisions provided real-time

capabilities [Gli02a, Gli02d] and allowed distributed execution of Parallel DEVS and

Parallel Cell-DEVS models [Tro01a, Tro03]. Parallel CD++ was the first attempt to

reduce simulation time in CD++ by means of distributed execution of models. Distributed

simulation with Parallel CD++ has shown speedups in the execution of both DEVS and

Cell-DEVS models in comparison to the stand-alone simulator [Tro01b]. Its parallel

approach is based on a pessimistic algorithm that exploits the parallelism inherent to the

 52

DEVS formalism. Under that scheme, a single root coordinator acts as a global scheduler

for every node participating in the simulation. Thus, events with the same timestamp can

be processed simultaneously by those nodes.

As explained in Chapter 2, a simulation advances by the exchange of messages

between simulators (in charge of atomic models) and coordinators (in charge of coupled

models). Parallel CD++ introduced two different types of coordinators (master and slave)

to reduce inter-process communication and, therefore, to alleviate overall communication

overheads [Tro01a].

Most existing DEVS tools use a hierarchical simulator creating a one-to-one

correspondence between model components and simulation objects. As a result, the

simulator structure resembles the structure of the model. Since the simulation advances

by exchanging messages between simulation objects, the communication costs associated

with this structure can be considerable. Flat simulation mechanisms try to reduce the

overhead in communication costs (i.e., try to reduce the number of exchanged messages)

by simplifying the underlying simulator structure, while keeping the same model

definition and preserving the separation between model and simulator. Studies have

shown that flat simulators can outperform hierarchical mechanisms [Kim00a, Gli02a,

Gli02d, Kim04]. In some cases, reductions of up to 40% of execution time have been

reported [Gli02a, Gli02d]. Although the stand-alone and real-time versions of CD++

support both alternatives, the previous version of parallel CD++ [Tro01a] only supported

the hierarchical mechanism.

 53

This work addresses the need for efficient, fast execution of large, complex

Parallel DEVS and Cell-DEVS models. We introduce a new technique for optimistic

distributed simulation of such models in CD++. The technique combines the Time Warp

synchronization mechanism and the Parallel DEVS and Cell-DEVS abstract simulators.

In our approach, the hierarchy of the simulation objects is flattened to reduce the

communication overheads.

There are two main differences when comparing our new approach with the

previous parallel simulation technique available in CD++, namely the use of a non-

hierarchical mechanism, and the optimistic protocol for distributed synchronization.

The use of a non-hierarchical mechanism in our work addresses some of the

performance issues discussed in [Gli02b, Gli02c] when analyzing different simulation

techniques. Those studies have shown that the hierarchical nature of the previous Parallel

CD++ technique results in a significant number of messages exchanged in each

simulation cycle, which ultimately worsens the performance of the simulator. The work

presented in [Tro01a] presents a way to reduce the communication overheads by

introducing two specialized DEVS coordinators. However, it has been shown that the

communication overhead of the CD++ hierarchical mechanism is, in some cases, still

significantly high [Gli02b, Gli02c]. A flat simulation technique, which was implemented

in the stand-alone and real-time versions of CD++ [Gli02d], outperformed the

hierarchical one for both DEVS and Cell-DEVS models [Gli02b]. Other studies also

suggest the use of a flat simulator to reduce communication overheads and to improve

performance of DEVS simulation. The original idea of a non-hierarchical DEVS

 54

simulator was presented in [Kim00a], along with results showing its efficiency over

hierarchical approaches. Another tool that implemented flat simulation is DEVSCluster

[Kim04]. Benchmarking experiments showed that the non-hierarchical structure used by

DEVSCluster outperformed the hierarchical mechanism implemented in D-DEVSim++

[Kim04]. When designing DEVS/Grid [Seo04], the authors acknowledged that

coordinators become a bottleneck in hierarchical simulation approaches. Considering all

these previous results, our work proposes a non-hierarchical simulator for Parallel DEVS

and Cell-DEVS models.

Our new simulation technique uses an optimistic synchronization protocol, as

opposed to the conservative approach implemented in Parallel CD++ [Tro01a]. The

pessimistic approach exploited the specific parallelism existing in Parallel DEVS, but

prevents from achieving higher degrees of parallelism because of its conservative nature.

Only events that have identical timestamps can be executed simultaneously in the

participating nodes. We also introduce the first implementation of an optimistic simulator

for Cell-DEVS models and the first that supports flat distributed simulation of such

models.

The Cell-DEVS formalism allows higher precision and speedups than traditional

cellular automata [Wai00], but previous work has shown that the execution of Cell-

DEVS models can be very demanding in terms of memory and computation time [Tro03,

Gli02b]. Executing Cell-DEVS models with our simulator aims at reducing execution

time and allowing access to more memory space.

 55

The implementation of our optimistic distributed simulator is also important when

considering other DEVS tools. In the previous chapter we surveyed many simulators

based on the DEVS formalism. A few of them have capabilities for optimistic distributed

simulation, and we pointed out limitations imposed by some of them, which we

circumvent in this work. DEVS-ADA/Tw [Chr90] introduced the first technique that

combined DEVS and Time Warp for distributed optimistic simulation. As we discussed

earlier, DEVS-ADA/Tw is not flexible in the way that users can partition models. It is

only allowed to partition models at the topmost level of the hierarchy. Additionally, since

DEVS-ADA/Tw treats logical processes as indivisible objects, the cost of a rollback can

be significantly large. We take a different approach from simulators that implement risk-

free synchronization, such as [Zei97b], which have the additional limitation of

inapplicability in heterogeneous platforms.

 56

Chapter 4: OPTIMISTIC PDES OF DEVS MODELS

The optimistic distributed simulator for Parallel DEVS and Cell-DEVS introduced in this

work is developed as an extension to the original CD++ tool [Rod99, Wai00, Wai02],

which supported stand-alone simulation. We follow a layered-architecture design of a

previous implementation of a conservative parallel simulator developed in CD++

[Tro01a].

Figure 15 outlines the architecture of our simulator. The topmost layer represents

the model, which is executed by simulation algorithms implemented in CD++. The tool is

built on top of Warped [Mar97], an object-oriented middleware written in C++ that

implements Jefferson’s Time Warp synchronization algorithm [Jef85]. Warped, in turn,

uses MPICH [Gro96], a freely available implementation of MPI [MPI95, Don96], a

message passing standard for high-performance communication on parallel and

distributed environments.

 Model

CD++

Time Warp - WARPED

MPI

Figure 15: Layered architecture of the CD++ optimistic simulator

In Chapter 2, we have shown the fundamental classes implemented in the CD++

toolkit, which can be divided in two major groups: classes that inherit from the basic

 57

model class, and those that inherit from the basic processor class. This reflects the clear

distinction between the model and its simulator, a fundamental advantage of the DEVS

formalism which allows users to build their models independently from the

implementation of the underlying simulator. Since we are interested in the simulation

mechanism implemented in CD++, our work takes advantage of this separation of

concerns by focusing on the processors’ class hierarchy. In contrast, all classes inheriting

from model remain unchanged from those described in Chapter 2.

Two new classes are introduced, both inheriting from the processor class: flat

coordinator and node coordinator. Additionally, we modify two existing classes,

simulator and root coordinator, which also inherit from processor. Figure 16 shows the

resulting UML class diagram for the processors.

 Processor

Simulator RootCoordinator NodeCoordinator FlatCoordinator

Figure 16: New processors’ class hierarchy in CD++

Another important difference between the class diagram shown in Figure 16 and

the one presented in Chapter 2 is the absence of two processors (coordinator and its

descendant cell coordinator) in the new hierarchy. This is a result of the new approach

implemented for flat simulation that eliminates the need for coordinators, which were

present in the hierarchical case. Before describing with more detail the design of our

 58

simulator and the tasks carried out by each DEVS processor, we analyze some factors of

the hierarchical CD++ simulator (implemented in the previous version of CD++) and the

basic ideas behind the new flat simulation mechanism presented in this work.

4.1 HIERARCHICAL AND FLAT SIMULATION IN CD++

The hierarchical approach implemented in CD++ was introduced in [Rod99,

Wai00]. It creates a one-to-one correspondence between the model components and

DEVS processors. CD++ produces a processor structure that resembles the structure of

the model: a simulator object is created for every atomic component, and a coordinator

object is created for every coupled component. Analogously, when executing Cell-DEVS

models, a simulator is created for every cell, and a cell coordinator is created for every

Cell-DEVS model.

Figure 17 shows a sample DEVS model. Top is composed by two coupled models

(Coupled #1 and #2) and two atomic models (Atomic #4 and #5). Coupled #1 and

Coupled #2 have three and two atomic models respectively. The arrows represent

interconnections between components (e.g., between Atomic #4 and #5), input ports (in_1

and in_2) and output ports (out).

 59

 Top

Coupled #2

Atomic #1

Atomic #2

Atomic #3

Atomic #4

Atomic #5

Coupled #1

Atomic #6

Atomic #7

in_1

in_2

out

Figure 17: Layout of a sample DEVS model

Figure 18 illustrates the one-to-one correspondence between the model and

simulator components created by CD++ when the hierarchical approach is used.

 Top

Coupled #1 Atomic #4 Coupled #2 Atomic #5

Atomic #1 Atomic #2 Atomic #3 Atomic #6 Atomic #7

Coordinator

Coordinator Simulator Coordinator Simulator

Simulator Simulator Simulator Simulator Simulator

Root Coordinator

(a) (b)

Figure 18: Sample DEVS model in hierarchical CD++
(a) models, and (b) processors

In Figure 18, we see that the processor hierarchy is replicated based on the model

hierarchy, using coordinators instead of coupled components, and simulators instead of

atomic components. A root coordinator, in charge of synchronization, time management

and I/O operations, is added on top of the processor hierarchy.

 60

The communication costs associated with the hierarchical simulator become

visible when analyzing message passing among components. For example, let us examine

what happens when an external event is received through port in_1. Firstly, the root

coordinator has to send a message to the coordinator in charge of the Top model.

Secondly, that coordinator forwards this message to the coordinator in charge of

Coupled #1, in the lower level of the hierarchy. Thirdly, that message is forwarded again

to the actual simulator in charge of Atomic #1. Then, the simulator executes the model’s

external transition function, δext. A similar phenomenon is observed if Atomic #3 sends an

output through its port connected to Atomic #7. In this case, the message has to travel

through three intermediate coordinators before reaching the final destination. The number

of intermediate coordinators can be arbitrarily high depending on the studied model, and

the corresponding overhead can be significantly large.

Based on different studies that show how flat simulation approaches can be more

efficient for DEVS and Cell-DEVS simulation [Kim00a, Gli02a, Gli02d, Kim04], we

eliminate the need for coordinators using the new set of processors shown in Figure 16.

Our flat simulation strategy is based on ideas presented in [Gli02a, Gli02d] for stand-

alone simulation, which showed good results in terms of performance [Gli02b, Gli02c].

However, a more sophisticated technique is presented, since it is necessary to deal with

distributed execution of models. Figure 19 presents the processor hierarchy for this

sample model when the flat simulation is used. At this point, we suppose that only one

machine is used for its execution. The more general case with two or more processors

will be shown later.

 61

Flat Coordinator

Simulator Simulator Simulator ... Simulator

Node Coordinator

Root Coordinator

Figure 19: Processor hierarchy using a flat approach

Figure 19 shows that a root coordinator is maintained at the top of the hierarchy,

handling I/O operations between model and environment, and starting the simulation.

However, root coordinator is no longer responsible of synchronization and time

management tasks. Two new processors, node coordinator and flat coordinator, are

introduced in the hierarchy. Node coordinator is now in charge of synchronization and

time management for this model, and its tasks will be described with more detail when

discussing how parallel and distributed execution is implemented. The addition of a flat

coordinator is key for allowing the execution of the model without intermediate

coordinators, which was identified as a major source of overhead. The flat coordinator is

responsible of receiving, translating, and sending messages between its children. In this

case, for example, the flat coordinator needs the information about external input

coupling, external output coupling, and internal coupling for Top, Coupled #1, and

Coupled #2. Thus, the flat coordinator builds a flat structure of simulators, and handles

all the information about the port mappings for every component in the model.

 62

We can observe the difference between the communication cost of the new flat

structure and the hierarchical case. For example, when Atomic #3 sends an output through

the port connected to Atomic #7, only two messages are required with the flat approach

(instead of the four messages required for the hierarchical approach). Notice that since

the flat coordinator has all the information about ports and ports mappings, it is not

necessary to use any intermediate coordinator. This reduction in the number of

exchanged messages improves simulation performance.

So far, we have discussed the basic idea of flat simulation in a single node. We

will now study the case of flat distributed simulation using multiple processors.

First, in order to run the model over distributed processors, it is necessary to

indicate the nodes that can participate in the simulation. Second, one has to indicate

which components will be executed on each processor. Figure 20 shows the layout of our

sample model partitioned into three blocks (0, 1, and 2), and Figure 21 shows how to

specify this partition with CD++.

Top

Coupled #1 Atomic #4 Coupled #2 Atomic #5

Atomic #1 Atomic #2 Atomic #3 Atomic #6 Atomic #7

0 1 2

Figure 20: Model partitioned in three blocks

 63

0 : atomic_4 atomic_5
1 : atomic_1 atomic_2 atomic_3
2 : atomic_6 atomic_7

Figure 21: Model partition file for CD++

As shown in Figure 21, users only have to specify the location for atomic

components. Similarly, in Cell-DEVS models it is required to indicate the location of

every cell. This can be done by specifying the individual location for every cell or by

using ranges, following the notation used in [Tro01a].

During the instantiation and registration of each simulator object, simulators are

associated to the corresponding logical process. The partition, once specified at the

beginning of the simulation, is static; it is not possible to migrate simulators from one LP

to a different one at runtime.

Flat Coordinator #0

Simulator #4

Node Coordinator #0

Root Coordinator

Simulator #5

Flat Coordinator #1

Simulator #1

Node Coordinator #1

Simulator #3Simulator #2

Flat Coordinator #2

Simulator #6

Node Coordinator #2

Simulator #7

Processor 0 Processor 1 Processor 2

Figure 22: Distributed processor structure for partitioned model

Figure 22 shows the processor structure of our flat distributed simulator using the

partitioning specified in Figure 21. The main node, processor 0, executes a logical

process composed by root coordinator, node coordinator #0, flat coordinator #0, and

 64

simulators #4 and #5 (in charge of Atomic #4 and #5). The processor 1 is in charge of

node coordinator #1, flat coordinator #1, and simulators #1, #2 and #3. Finally,

processor 2 executes a LP with node coordinator #2, flat coordinator #2, and simulators

#6 and #7. Node coordinators can communicate with each other using inter-LP

messaging (shown with arrows in Figure 22).

Notice that the general structure of processors running on each LP is almost

identical. An important difference, however, between the main node (processor 0) and the

other nodes is that the execution of the root coordinator always takes place in the first

one. The root coordinator is in charge of starting the simulation and interacting with the

environment. Messages received from the environment are handled by the root

coordinator and then sent to the corresponding node coordinator. On the other hand,

when a node coordinator processes an output that must be sent back to the environment,

the output is sent to the root coordinator. Then, the root coordinator sends the output to

the environment.

We can analyze some aspects of the new message passing mechanism between

processors that results from an output sent from an atomic component, a1, to another

atomic component, a2. Basically, two different cases can be observed: both simulators for

a1 and a2 execute on the same logical process, or simulators for a1 and a2 execute on two

different logical processes.

We start by analyzing the first case, which is more simple. When source and

destination simulators are running on the same logical process, the flat coordinator

running in that LP takes care of the entire situation. Firstly, the source simulator sends

 65

the message to its parent, a flat coordinator. Secondly, since the flat coordinator has all

the necessary information for the port mappings between those components, the flat

coordinator sends that output to the corresponding simulator.

The second case requires involvement of more processors: if a simulator running

on LPi has to send an output to a simulator running on LP j, it is necessary to forward this

message to the corresponding node. In such a case, the simulator begins by sending its

output to the flat coordinator. Since the flat coordinator identifies that the destination

simulator is not one of its children, it forwards the message to its parent node

coordinator. Then, the node coordinator running on LPi forwards the message to the

node coordinator running on LPj. This is possible because node coordinators know where

each simulator is running. Finally, the node coordinator running on LPj forwards the

message to its child, flat coordinator, which in turn sends it to the destination simulator.

This situation is shown in Figure 23. The figure shows that node coordinators perform

inter-LP communication. Notice that inter-LP communication can lead to violations to

the local causality constraint, depending on the time at local and destination LPs. More

specifically, if the timestamp of the message is smaller than the local time at the

destination LP, a rollback is triggered. A more detailed description of this situation and a

sample scenario are given in the next subsections.

 66

Flat Coordinator

Simulator #1

Node Coordinator

Root Coordinator

Simulator #2

Processor i

Simulator #3

1. simulator sends output

2. flat coordinator translates
output and forwards external
message

3. node coordinator sends external message to
appropriate remote node coordinator

Flat Coordinator

Simulator #4

Node Coordinator

Simulator #5

Processor j

Simulator #6

4. external message is forwarded to flat coordinator

5. external event is sent to destination simulator

Figure 23: Sending an output to a remote simulator

4.2 ALGORITHMS FOR PARALLEL AND DISTRIBUTED SIMULATION USING A

FLAT APPROACH

We describe the simulation mechanism more rigorously by presenting the

behavior of each DEVS processor, namely simulator, flat coordinator, node coordinator,

and root coordinator. These are the processors that carry out parallel and distributed

simulation using a flat mechanism for DEVS and Cell-DEVS models. After presenting

the algorithms for each processor, we discuss different scenarios showing the flow of

messages.

Messages that can be exchanged among processors are: init (initialization

message), q (external message), y (output message), @ (collect message), * (internal

message), and done.

 67

4.2.1 SIMULATOR

A simulator is created for each atomic component or cell in the system. It is

responsible of generating the outputs and executing the transition functions of the

associated model. The algorithms for the simulator are based on those presented by

[Cho94b] with minor changes:

1 when a (init, 0) message is received

2 initialize model’s variables

3 tL = 0

4 t = ta (s)

5 send (done, t) to the parent flat coordinator

6 end when

When the initialization message is received, variables are initialized (lines 2 and

3) and the simulator informs its parent the time of the next scheduled internal transition

(line 5).

 1 when a (@, t) message is received

 2 if t = tN then

 3 y = λ(s)

 4 send (y, t) to the parent flat coordinator

 5 send (done, t) to the parent flat coordinator

 6 else

 7 raise error

 8 end if

 9 end when

10

11 when a (q, t) message is received

12 add event q to the bag

13 end when

 68

When a simulator receives a (@, t), it generates an output (executing the atomic’s

output function, λ) which is sent to the parent flat coordinator (lines 3 to 5). When an

external message (q, t) is received, it is simply stored in the bag of external events (line

12). These messages will be used later, when the external transition function is triggered.

 1 when a (*, t) message is received

 2 case tL ≤ t < tN

 3 e = t - tL

 4 s = δext (s, e, bag)

 5 empty bag

 6 end case

 7 case t = tN and bag is empty

 8 s = δint (s)

 9 end case

10 case t = tN and bag is not empty

11 s = δcon (s, bag)

12 empty bag

13 end case

14 case t > tN or t < tL
15 raise error

16 end case

17 tL = t

18 tN = tL + ta (s)

19 send (done, tN) to parent flat coordinator

20 end when

An internal message (*, t) triggers the execution of a transition function. The

simulator executes one of the three transition functions based on t (the elapsed time since

the last scheduled transition), tN (the time of the next scheduled transition), and the bag of

external events.

 69

If t < tN (lines 2 to 6), the internal transition function shall not be executed yet,

and the bag of external events must have at least one element: the external transition

function, δext, is executed in this case. If t = tN (lines 7 to 9), it is time to execute the

internal transition, δ int. However, a conflict arises if the bag is not empty and t = tN (lines

10 to 13), the confluent transition δcon has to be executed.

In every case, after executing the corresponding transition, a done message is sent

to the parent flat coordinator indicating the next scheduled transition time (lines 17 to

19).

4.2.2 FLAT COORDINATOR

A flat coordinator has one or more children, which are the simulators running the

atomic components, and one parent, the node coordinator. The flat coordinator relies on

coupling information for the components running on this LP; it has to translate output

events into input events. Additionally, it synchronizes models that are imminent in this

logical process using a structure called synchronize set.

1 when a (init, 0) message is received from parent node coordinator

2 tL = 0

3 for each child simulator si

4 send (init, 0) to child si

5 end for each

6 wait until all done messages have been received

7 tN = minimum tN of all components

8 send (done, tN) to parent node coordinator

9 end when

 70

When the initialization message is received, the flat coordinator forwards a (init,

t) to all its children to complete the initialization phase (lines 3 to 5). Using the done

messages received from them, the minimum time of next change is computed and

communicated to the parent node coordinator via a done message (lines 6 to 8).

 1 when a (@, t) message is received from parent node coordinator

 2 if t = tN then

 3 tL = t

 4 for each imminent child si with minimum tN

 5 send (@, t) to child si

 6 cache i in the synchronize set

 7 end for each

 8 wait until all done messages have been received

 9 send (done, t) to parent node coordinator

10 else

11 raise error

12 end if

13 end when

When a collect message (@, t) is received, the flat coordinator forwards this

message to all its dependant simulators with minimum t (lines 3 to 7). Once all the

responses (i.e., done messages from simulators which received a collect message in this

simulation cycle) have been received (line 8), a done message is sent to the parent node

coordinator. Simulators that have been scheduled for a transition are cached in the

synchronize set.

 1 when a (y, t) message is received from child i

 2 if destination of y is the environment

 3 send (y, t) to parent node coordinator

 4 else

 5 for each influencee j of child i

 71

 6 q = zi,j (y)

 7 if (j is a local processor) then

 8 send (q, t) to child j

 9 cache j in the synchronize set

10 else

11 send (q, t) to parent node coordinator

12 end if

13 end for each

14 end if

15 end when

If the destination of the output (y, t) message received in the flat coordinator is

the environment, the message has to be sent to the parent node coordinator, which will

deal with this situation (lines 2 and 3). If not, all the influencees of the message are

computed using the function Zij, and one or more (q, t) messages are sent accordingly

(lines 5 to 13). For destination processors located on the same LP, messages are sent

directly to the simulator (lines 8 and 9). Messages whose destinations are remote

simulators are sent to the parent node coordinator (line 11), which will forward them to

the corresponding LPs. Again, local components with scheduled transitions are cached in

the synchronize set. We discuss a sample scenario that describes this situation after

presenting the algorithms.

1 when a (q, t) message is received from parent node coordinator

2 if destination of q message is local then

3 add event q to the bag

4 else

5 raise error

6 end if

7 end when

 72

When an external message (q, t) is received in a flat coordinator, it is stored in a

bag of events.

 1 when a (*, t) message is received from parent node coordinator

 2 if tL ≤ t ≤ tN then

 3 for each q ∈ bag

 4 for each local receiver sj of q

 5 send (q, t) to sj

 6 cache j in the synchronize set

 7 end for each

 8 end for each

 9 empty bag

10 for each i ∈ synchronize set

11 send (*, t) to i

12 end for each

13 wait until all done messages are received

14 tL = t

15 tN = minimum tN of all components

16 clear the synchronize set

17 send (done, tN) to parent node coordinator

18 else

19 raise an error

20 end if

21 end when

Upon receiving an internal message (*, t), the flat coordinator sends the external

messages that are stored in the bag to the corresponding components (lines 3 to 8). All

the receivers of these external messages are added to the synchronize set. Then, an

internal message is sent to all components in the synchronize set. After all done messages

are received back from these components, the time of the next event is calculated and a

done message is sent to the node coordinator (lines 13 to 17).

 73

4.2.3 NODE COORDINATOR

One node coordinator is located on each logical process and it has one child, a

flat coordinator. Node coordinators have important tasks associated to inter-LP

communication, which happens when an atomic model running in the local LP has to

send an output to another atomic model running in a remote LP. Additionally, a node

coordinator is in charge of advancing the simulation time in the local LP based on the

information received from the root coordinator and from its dependant flat coordinator.

The algorithms describing its behavior are described next.

 1 when a (init, 0) message is received from root coordinator

 2 send (init, 0) to child flat coordinator

 3 wait for done message to be received from flat coordinator

 4 sort queue of events by arrival time

 5 t = min (tN of flat coordinator, time of first event in queue)

 6 if t = tN of queue then

 7 for each q in queue with time t

 8 send (q, t) to flat coordinator

 9 end for each

10 end if

11 send (@, t) to child flat coordinator

12 next-message-type = *

13 end when

The initialization message, sent by the root coordinator, triggers the simulation in

each logical process. An initialization message (init, 0) is sent to the flat coordinator (line

2), which in turn will forward that message to every simulator. The first simulation cycle

starts immediately after a (done, t) message is received. The time for the first collect

message is determined by the minimum between the first element in queue of external

 74

events and the time of next change reported by the flat coordinator, which represents the

minimum time of next change reported by simulators (lines 3 to 5). The variable next-

message-type is used on each simulation cycle (after the reception of done messages) to

determine which type of message has to be sent (i.e., collect or internal).

 1 when a (done, t) message is received from child flat coordinator

 2 if next-message-type = * then

 3 send (*, t) to child flat coordinator

 4 next-message-type = @

 5 else

 6 t = min (tN of flat coordinator, time of first event in queue)

 7 if t > stop simulation time then

 8 stop simulation in this LP

 9 else

10 if t = tN of first event in queue then

11 for each q in queue with time t

12 send (q, t) to flat coordinator

13 end for each

14 end if

15 end if

16 send (@, t) to child flat coordinator

17 next-message-type = *

18 end if

19 end when

If the message to be sent is a collect (lines 6 to 17), the process is analogous to the

initialization phase. The minimum time t is computed, events with time t are sent (if there

are any), the collect message is sent (line 16) and the next message type is set to internal

(line 17). When an internal (*, t) message has to be sent to finish the current simulation

cycle, the type of the next message to be sent is set to collect (line 4).

 75

 1 when a (q, t) message is received

 2 if destination q is local

 3 send (q, t) to child flat coordinator

 4 else

 5 dest_nc = node coordinator running atomic model that must receive q

 6 send (q, t) to node coordinator dest_nc

 7 end if

 8 end when

 9

10 when a (y, t) message is received from child flat coordinator

11 if send-outputs-from-NC

12 send output (y, t) to environment

13 else

14 send output (y, t) to parent root coordinator

15 end if

16 end when

An external message (q, t) can be received in a node coordinator either from

another (remote) node coordinator or from its dependant flat coordinator.

In the first case, this event must be sent to the dependant flat coordinator (line 3).

This happens when a remote atomic component sends an output through a port connected

to an atomic component executing in the local LP. As we have shown earlier, this

message is forwarded by the flat coordinator’s algorithm to the corresponding simulator.

Notice that the timestamp t of a message received from a remote node coordinator might

be lower than the current time in this LP, which would violate the local causality

constraint. In such a case, the LP has received an event in the past (a straggler message)

and therefore it has to recover from this incorrect state by performing a rollback. The

rollback has to bring that object back to a correct state: a state whose time is equal or

 76

smaller than the time of the straggler message. In addition, the messages that were

(incorrectly) transmitted from this node coordinator have to be canceled, which means

that anti-messages have to be sent to the destination objects. We will address this

situation later with further details giving a sample scenario.

In the second case, the message must be sent to the remote LP where the

destination atomic component is running. Thus, it is necessary to determine which node

coordinator is in charge of that LP, and then the message can be sent using inter-process

communication (lines 5 and 6). Notice that this operation can cause a rollback in the

destination LP, if the time at that remote LP is greater than the local time.

When a node coordinator receives an output message from its child (lines 10 to

16), a message has to be sent to the environment. There are two ways of dealing with

outputs that have to be sent back to the environment. Our simulator uses the parameter

send-outputs-from-NC to determine whether outputs must be processed directly by the

node coordinator (line 12), or via the root coordinator (line 14). The first alternative

reduces the number of messages required to process an output (messages do not have to

travel through the root coordinator) but requires some post-processing if the outputs of

multiple node coordinators have to be merged together. The second alternative

centralizes the actual processing of outputs in the root coordinator; it does not require

any post-processing but the overhead is larger. Notice that the number of inter-LP

messages sent from node coordinators (running on machines 1 to n) to root coordinator

can be large depending on the model’s output behavior.

 77

1 when a (q, t) message is received from parent root coordinator

2 add q to the sorted queue of events

3 end when

When an external event is received from the root coordinator, the event is stored

in timestamp order in the queue of events. The destination simulator for that event will

eventually receive it when that time is reached by this LP. We have shown earlier that the

time is advanced in the node coordinator upon the reception of a (done, t) message.

4.2.4 ROOT COORDINATOR

The root coordinator is a special processor located in only one LP. It is

responsible for starting the simulation, dealing with external events, and sending outputs

back to the environment.

1 for each child node coordinator nci

2 send (init, 0) to nci

3 end for each

The root coordinator starts the simulation by sending initialization messages to

every node coordinator. These coordinators are located on the different logical processes

that form the simulation.

1 when a (q, t) is received from environment

2 tL = t

3 for each child node coordinator nci which shares LP with

4 a destination atomic model of q message

5 send (q, t) to nci

6 end for each

7 end when

 78

External events are received from the environment in the root coordinator. The

root coordinator sends an external event to node coordinators that have one or more

atomic model that should receive that message (lines 3 to 6).

1 when a (y, t) is received from child node coordinator

2 tL = t

3 send (y, t) to environment

4 end when

Output messages received by the root coordinator are sent back to the

environment. This code is never executed if the parameter send-outputs-from-NC is set,

as shown in node coordinator’s algorithm for processing output messages. If send-

outputs-from-NC is not set, the root coordinator consolidates the processing of output

messages.

Figure 24 summarizes the flow of messages in distributed simulation of Parallel

DEVS and Cell-DEVS models using the previous algorithms. Arrows indicate the

direction of the message. The interaction between the environment and the root

coordinator, shown in Figure 24 with a dashed line, is performed in CD++ by using an

input file (for external events) and an output file (for outputs generated by the model). As

we mentioned earlier, the root coordinator is also in charge of starting the simulation

process by sending initialization messages. Although it is not shown in the diagram, the

parameter send-outputs-from-NC allows sending outputs from the node coordinator to

the environment without relying on the root coordinator as an intermediary. Some

implementation issues associated with this are discussed later.

 79

Flat Coordinator

Simulator

Node Coordinator

Root Coordinator

Simulator

Processor i

init, q y

init, *, @, q q, y, done

init, *, @, q y, done

Node Coordinator

Processor j

q

...

Environment

Figure 24: Message flow in a distributed simulation of DEVS and Cell-DEVS

Instead of using files to interact with the real world, a different approach is to use

communication ports (e.g., the serial communication interface) to receive events from

and send outputs to the environment. This approach is particularly interesting when

developing models that interact with hardware components. A detailed description of this

 80

alternative and some examples are given in [Gli04, Wai04] using a real-time CD++

simulator [Gli02a].

4.3 SAMPLE SCENARIOS

To better describe the behavior of the flat distributed simulation, we introduce

different scenarios for the simulation of a sample bidimensional Cell-DEVS model. The

execution of this 10x10 model is divided in two processors, each of which executes a

rectangular area of 10x5 (i.e., 50 cells per machine).

Figure 25 shows the initialization phase for this sample model. The first

simulation cycle is started by the root coordinator, which sends an initialization message

to the node coordinators in LP 0 and 1 (messages 1 and 2). When the (init,0) message is

received in a node coordinator, it is forwarded to the flat coordinator (messages 1.1 and

2.1). Then, flat coordinators forward these messages to their simulators (messages 1.2 to

1.51 for processor 0 and 2.2 to 2.51 for processor 1), and simulators execute the

initialization function for each cell. After computing the time for the next change for that

cell (using its time advance function), every simulator sends a done message to its parent

flat coordinator reporting its time of next change. For example, S1 indicates that there is

an internal transition function to be executed at time 100 (message 1.52), whereas S2

reports that there is no scheduled internal transition (message 1.53, which contains inf or

infinity, and represents that the model is in a passive state). After receiving all done

messages, the flat coordinator sends a done message to its parent node coordinator

(messages 1.103 and 2.103) with the minimum time of its components, which in this case

 81

is 100 for both LPs. Having received this information, the node coordinator checks for

external messages to be sent at this point, and then it is ready to send the first collect

message.

Flat Coordinator

S1

Node Coordinator

Root Coordinator

Processor 0

1: (init,0)

1.103: (done, 100)

1.52: (done,100)

2: (init,0)

1.1: (init,0)

S2 S3 ... S50

1.2: (init,0) 1.3: (init,0) 1.4: (init,0)

1.53: (done,inf) 1.102: (done,100) ...

Flat Coordinator

S51

Node Coordinator

Processor 1

2.103: (done, 100)

2.52: (done,inf)

2.1: (init,0)

S52 S53 ... S100

2.2: (init,0) 2.3: (init,0) 2.4: (init,0)

2.53: (done,100) 2.102 (done,100) ...

... ...

Figure 25: Initialization phase in sample Cell-DEVS model

The goal of the next phase is to collect the outputs of the imminent components.

Figure 26 shows how node coordinators start the collect phase by sending the first

message to their flat coordinators (messages 1 and 2). The flat coordinators forward a

collect message only to imminent children, i.e., to simulators whose time of next change

is the minimum (100). For example, in LP 0 it is sent to S1 (message 1.2) but not to S2,

since the latter has reported a time of next change of inf with its last done message (see

message 1.53 in Figure 25). When receiving a collect message, simulators execute their

output functions and send the result to its parent (e.g., messages 1.20 and 2.18). Although

it is not shown in the figure, the flat coordinator translates the received output messages

and sends the external messages to the corresponding local influencees of that

 82

component. In case of a remote destination and as discussed earlier, the message is sent

to the local node coordinator, which will then forward it to the corresponding remote

node coordinator. Additionally, simulators send done messages to the flat coordinator

after sending the outputs. Then, the flat coordinator sends a done message to the node

coordinator completing the collect phase.

1.20: (y,100)

Flat Coordinator

S1

Node Coordinator

Root Coordinator

Processor 0

1.1: (@,100)

S2 S34 ... S50

1.2: (@,100) 1.19: (@,100)

1.37: (y,100)

...

Flat Coordinator

S51

Node Coordinator

Processor 1

2.18: (y,100)

2.1: (@,100)

S52 S76 ... S100

2.2: (@,100) 2.17(@,100)

2.33: (y,100) ...

... ...

...

Figure 26: Collect phase in sample Cell-DEVS model

At this point, the node coordinator is ready to send an internal message (*) to start

the next phase. This new cycle is similar to the collect phase in terms of message

exchange: the flat coordinator forwards the internal message only to simulators that have

a scheduled transition for the current simulation time (100). Simulators execute the

internal, external, or confluent transition function according to the current time, the time

of next change and the state of the bag of events (empty or not empty), as specified in the

 83

algorithms shown earlier. Done messages are sent to inform the time for the next

transition, and the node coordinator is ready to start a collect cycle again.

For the sake of simplicity, we assumed that node coordinators’ external event

queues are empty or have events whose timestamps are greater than the local time. The

node coordinator’s algorithm, presented earlier, describes how to deal with external

messages that are pending to be sent.

So far, we have only considered cases where communication is performed within

the same logical process. Therefore, these scenarios adhere to the local causality

constraint at all times, since events and messages are processed in nondecreasing

timestamp order as scheduled by node coordinators. Nevertheless, as we mentioned

earlier in this chapter, node coordinators can communicate with each other. When a

component running in LPi has to send an output to a component running on LPj, a node

coordinator is in charge of sending this message using inter-LP communication. In this

case, it is possible to receive a straggler message. If the message has a timestamp greater

than the local time in the destination LP, the simulation can continue normally, which is

the more simple case. However, if the message has a timestamp earlier than the local

time, this is a straggler message: a violation to the local causality constraint has occurred,

and a rollback has to be performed. This scenario is illustrated in Figure 27.

 84

Flat Coordinator

S1

Node Coordinator

Root Coordinator

Processor 0

1: (*,280)

S2 S34 ... S50

1.1: (*,280)

t0 = 280

...

Flat Coordinator

S51

Node Coordinator

Processor 1

2.1: (@,210)

2: (@,210)

S52 S76 ... S100

2.2: (@,210) 2.14(@,210)

2.15: (y,210) ...

... ...

...

t1 = 210

2.16: (q,210)

2.17: (q,210)

Figure 27: Straggler message received during the simulation of a Cell-DEVS model

Figure 27 shows the events that lead to the reception of a straggler message in

processor 0. The local time at processor 0, t0, is 280 and t1 is 210. In processor 0, the node

coordinator has sent an internal message, which is being forwarded by the flat

coordinator to S1 (messages 1 and 1.1). At the same time, in LP 1 the node coordinator

has sent a collect message (message 2), which after being forwarded (message 2.1 to

2.14) results in an output from a S52 (message 2.15) that has to be sent to S1. This

message is forwarded as an external message, q, from the flat coordinator (2.16) to the

node coordinator. Then, the node coordinator in processor 1 forwards it to the node

coordinator in processor 0 (message 2.17) because that is where S1 is being executed. At

the moment of receiving the external message in the destination node coordinator, one

can see that the timestamp of the message, 210, is smaller than the time at the local

processor, t0 = 280. This straggler message (2.17) triggers a rollback in processor 0.

 85

In case of a rollback, different tasks have to be performed. These tasks are mainly

carried out by the Time Warp algorithm implemented by Warped (as discussed in

Chapter 2), and allow the simulation to recover from a local causality violation. Figure 28

shows the state of the node coordinator’s input, state, and output queues at the moment

of receiving a straggler message with timestamp 210.

190
Input queue

tN = 240
tL = 170
...

State queue

(@,190)
Output queue

processed event

unprocessed event

240

tN = 280
tL = 190
...

(@,240)

280

tN = ?
tL = 240
...

(*,280)

330

210

Figure 28: Reception of a straggler message in a node coordinator

Firstly, the state of the node coordinator has to be restored to a previous state

where the time is equal to or smaller than 210, which is the straggler’s timestamp. This is

possible because Time Warp stores the previous states of simulation objects. Figure 28

shows that, in this case, the object has to restore its state back to time 190. Secondly, the

node coordinator has to send anti-messages to other objects that had received messages

from it in states that are now being rolled back (i.e., messages sent a times 240 and 280).

A negative message is a duplicate of the original one with a flag indicating it is actually

an anti-message. This mechanism propagates the rollback to the corresponding

 86

simulation objects. Figure 29 depicts the node coordinator’s queues after the rollback

was completed.

190

Input queue

tN = 240
tL = 170
...

State queue

(@,190)
Output queue

processed event

unprocessed event

240

tN = 240
tL = 190
...

280 330 210

Figure 29: State of the node coordinator after the rollback

After all the states were rolled back and the negative messages were sent, the

node coordinator can return to process the events, starting by the one that caused the

rollback.

 87

Chapter 5: IMPLEMENTING THE ABSTRACT SIMULATORS

This chapter presents some implementation issues of the new distributed CD++

simulator, which is built on top of the Warped middleware (version 1.02) [Mar97].

Warped and MPICH [Gro96], its underlying communication layer implementing the MPI

protocol [MPI95, Don96], are written in C++ and were compiled with open source GNU

C++ compiler, g++, version 2.9x.

To understand the implementation of our simulator over Warped, it is necessary

to examine Warped’s application program interface with more detail, as we extended

many of these classes. The interface is based on Jefferson’s work on Time Warp [Jef85]

and provides several basic definitions of classes that deal with simulation objects, states,

events, and logical processes.

Four of the fundamental classes that form Warped’s API are shown in Figure 30

along with some of their methods and variables. The figure shows the basic class

definitions for simulation objects, states for simulation objects, and events that can be

exchanged by simulation objects. It also shows part of the LogicalProcess class.

 88

class TimeWarp {
 TimeWarp();
 virtual ~TimeWarp();
 virtual void initialize();
 virtual void finalize();
 virtual void executeProcess() = 0;
 void saveState();
 virtual void rollback(VTime);
 void rollbackFileQueues(VTime);
 VTime calculateMin();
 void inputGcollect(VTime);
 void stateGcollect(VTime);
 void outputGcollect(VTime);
 void sendEvent (BasicEvent *);
 BasicEvent* getEvent();
}

class BasicState {
 BasicState();
 virtual ~BasicState();
 BasicEvent* inputPos;
 Container<BasicEvent>* outputPos;
 virtual BasicState& operator=(BasicState&);
 BasicState* copyState(BasicState*);
}

class BasicEvent {
 int size;
 int sender;
 int dest;
 Vtime sendTime;
 Vtime recvTime;
}

class LogicalProcess {
 LogicalProcess(int, int, int);
 registerObject(TimeWarp);
 int getNumObjects();
 int getTotalNumberOfObjects();
 int getLPid();
 void allRegistered();
 void simulate(VTime);
 void calculateLGVT();
 void calculateGVT();
}

Figure 30: Some classes of the Warped API [Mar97]

TimeWarp is the basic class provided by Warped that defines data and methods

needed for every simulation object to participate in a simulation. The three main methods

that determine the behavior of simulation objects are initialize, finalize and

executeProcess. The method initialize is called once at the beginning of the simulation

 89

for every object. The method executeProcess contains code to be performed every time a

simulation object is scheduled for execution, i.e., when it has an event ready to be

processed. From the moment when executeProcess is called until its execution is

completed, no other object can be under execution on the same logical process. The

method finalize is executed for each simulation object at the end of the simulation, and it

is usually used to release allocated memory, collect statistics, etc. The method saveState

is called automatically by the Warped kernel to save the current state of an object. This

method is triggered by the logical process at the end of each simulation cycle to store

information that might be needed later in case of rollbacks. In case of receiving a

straggler message with a timestamp t, rollback(t) is called to rollback this object to a

previous time (which is equal or prior to the specified time t). This method restores the

state of the object and sends the necessary anti-messages. rollbackFileQueues performs a

rollback on the files associated with this simulation object. The method calculateMin

reports the minimum time of the unprocessed events, and is used to compute the global

virtual time. Garbage collection in the input, queue, and output queues is performed by

the methods inputGcollect, stateGcollect, and outputGcollect, respectively. Using the

time specified as a parameter, these methods invalidate the states and events and release

the memory associated with them. getEvent and sendEvent are used for receiving and

sending messages and will be discussed with more detail later.

The state of a simulation object is defined by an instance of the basic Warped

class BasicState (or by a user-defined class that inherits from it). The state of an object

contains the information that can change in each simulation cycle, including pointers to

 90

input and output queues (inputPos and outputPos). Methods to determine whether two

events are equivalent (using operator =) and a to create a copy of this state (copyState)

are also provided.

Simulator objects communicate by exchanging messages, which belong to the

class BasicEvent or to one of its subclasses. A valid message must contain, at least,

information about its size, source, destination, local time at source, and timestamp (i.e.,

the time at which it should be processed). The timestamp of the message must be greater

or equal to the local time.

LogicalProcess is the class that groups the simulation objects that execute in the

same machine. To create a new logical process, it is necessary to specify the total number

of objects in the simulation, the number of simulation objects to be handled on this LP,

and the number of LPs participating in the simulation. The method

registerObject(TimeWarp) is used to define which objects are running on this LP, and the

method allRegistered indicates that every component has been registered. allRegistered is

used to determine if every simulation object has an associated LP. The method

simulate(VTime) starts the execution of this logical process. If a parameter is specified,

the simulation stops when the GVT is greater than the specified time; otherwise, the

simulation runs until completion. getNumObjects, getTotalNumberOfObjects and getLPid

are methods that report basic information about the LP, namely number of local

simulation objects, total number of simulation objects, and id associated with this LP.

calculateLGVT is used to compute the local global virtual time at the end of each

simulation cycle. It is calculated by a GVTManager as the minimum time reported by

 91

simulation objects. calculateGVT is used to compute the global virtual time, and is also

handled by the class GVTManager.

Figure 31 shows the new class diagram of the DEVS processors along with some

of their main methods that implement the algorithms described in Chapter 4.

 Processor

Simulator RootCoordinator NodeCoordinator FlatCoordinator

TimeWarp

TimeWarp()
~TimeWarp()
initialize()
finalize()
executeProcess()
saveState()
rollback(VTime)
rollbackFileQueues()
calculateMin()
inputGcollect(VTime)
stateGcollect(VTime)
outputGcollect(VTime)
sendEvent()
getEvent()
...

Processor()
~Processor()
executeProcess()
nextChange()
nextChange(VTime)
lastChange()
lastChange(VTime)
model()
receive(initMsg)
receive(doneMsg)
receive(collectMsg)
receive(externalMsg)
receive(internalMsg)
...
send(initMsg, dest)
send(doneMsg, dest)
send(internalMsg, dest)
...
writelog()
rollbackCheck()

initialize()
receive(initMsg)
receive(internalMsg)
receive(externalMsg)
receive(collectMsg)

initialize()
rootInitialize()
receive(outputMessage)
events()
addExternalEvent(Vtime
,port,value)
...

initialize()
addLocalDependants()
receive(initMsg)
receive(doneMsg)
receive(internalMsg)
receive(collectMsg)
receive(externalMsg)
receive(outputMsg)
calculateNextChange()
synchronizeList()
events()
...

initialize()
stopTime(VTime)
events()
getParentNC()
receive(initMsg)
receive(doneMsg)
receive(externalMsg)
receive(outputMsg)
sendOutsFromNC()
...

Figure 31: UML class diagram for the new DEVS processors

We defined processor as an abstract class that inherits from Warped TimeWarp

class. processor provides basic functionality and data that are common to all DEVS

processors in the application. It defines the methods initialize, executeProcess and

 92

finalize as well as other methods and variables. It also defines some methods (e.g.,

receive(initMsg), receive(doneMsg)) that have to be redefined by its subclasses, as we

will show next. In general, processor includes the definition of:

a) send methods (e.g., send(initMsg,dest), send(doneMsg,dest)), for sending each

type of message. Send methods defined by CD++ use, in turn, the method

sendEvent defined by Warped in the TimeWarp class.

b) time management methods (e.g., timeNext(), timeLast(), timeNext(VTime),

timeLast(VTime)), which are used to report and update the time of next scheduled

change, time of last change, etc., associated with this processor.

c) initialize, finalize, and some debugging methods (e.g., writeLog()), which perform

tasks that are common to all processors. Some of these tasks include opening and

closing log files for the associated simulation object, writing in those log files,

and printing the processor’s name and identification.

d) executeProcess(), which is the method that defines the behavior of any DEVS

processor, as explained later.

e) rollbackCheck(), which is called in the receive method, and checks for straggler

messages (i.e., whether the timestamp of the received message is smaller than the

time at this processor), and

f) some basic variables, such as model associated to this processor, processor’s

parent, id and descriptors.

The method executeProcess of the processor class is common to every DEVS

processor, and therefore it is not redefined by any of its subclasses.

 93

processor.executeProcess() is in charge of getting the first event in the queue of events

(using the method getEvent, which is defined by the Warped kernel), logging the

necessary information, and calling the corresponding receive method based on the

message type. The receive method casts the event to its correct type using an enumerated

field, messageType, which will be described later when we discuss the definition of

messages.

The receive methods for each DEVS processor are the actual implementation of

the algorithms presented in Chapter 4. These methods describe what to do in case of the

reception of a message. For example, the receive (initMessage) method of a flat

coordinator follows the algorithm presented earlier. First, it sends initialization messages

to all of its children (using the method send(initMessage,dest)). Second, it has to wait

until all done messages are received from its dependant simulators. nodeCoordinator

keeps track of the number of done messages it has received using the method

doneCount(). Finally, it determines and updates the time of next change (using

nextChange(VTime), implemented in processor) and sends this value to its parent node

coordinator (using send(doneMsg,dest), also implemented in processor). The receive

(initMessage) method defined for simulator, in contrast, initializes the model variables,

computes the next time for the next transition (using the time advance function, ta) and

sends a done message to its parent, which is a flat coordinator. Since a simulator has

access to the definition of its associated atomic model, it is possible for it to execute its

functions (e.g., internal transition function, time advance function).

 94

In addition to the different DEVS processors that we discussed, we defined states

and events associated with those processors, which extend Warped basic classes.

We defined a class for the basic state of a DEVS processor, ProcessorState,

which inherits from the Warped class BasicSate shown in Figure 30. ProcessorState

defines basic time-related data, such as the time of last change and time of next change. It

stores data that represents the object’s state and can change at each simulation cycle. The

simulator also associates to its own state the value of associated atomic component,

defined as AtomicState.

TWMessage

initMessage

BasicEvent

BasicEvent()
~BasicEvent()
size()

TWMessage()
~TWMessage()
size()
getMsgType()

sign
alreadyProcessed
sendTime |recvTime
eventide |...

msgType

getMessage()

outputMessage

port
value

getMessage()

externalMessage

port
value

getMessage()

...
doneMessage

nextChange

getMessage()

Figure 32: Class diagram for messages in CD++

 95

Figure 32 shows the corresponding class diagram for message-related classes. We

defined classes for messages that are exchanged by the processors: initMessage,

internalMessage, externalMessage, outputMessage, collectMessage, and doneMessage.

All of them inherit from our class TWMessage, which in turn inherits from Warped class

BasicEvent.

Warped guarantees that every TimeWarp simulation object (which in our

application means every instantiation of any DEVS processor) includes an input queue,

an output queue, and a state queue. The input queue holds the events that the object has to

process (possibly, some that have already been processed are also kept). The output

queue holds events generated and sent by this simulation object. In case of a rollback, the

object’s output queue is used to issue negative messages as specified by Jefferson’s Time

Warp algorithm, as described in Chapter 2. As demonstrated in [Jef85], anti-messages

can only be sent for messages whose timestamps are later than the global virtual time.

Therefore, messages with timestamps that are earlier than or equal to GVT can be

deleted. The state queue holds previous states for this TimeWarp object. Similarly, the

state queue only has to keep states whose timestamps are later than the GVT, so that in

case of a rollback that state can be recovered.

We mentioned that LogicalProcess is one of the fundamental classes defined by

Warped. Figure 33 shows a class diagram for ParallelMainSimulator, which extends the

basic LogicalProcess outlined in Figure 30. ParallelMainSimulator is the class that

implements logical processes in our application.

 96

 LogicalProcess

LogicalProcess()
~LogicalProcess()
getNumObjects()
getTotalNumOfObj()
printConfigInfo()
printStats()
registerObject()
simulate()
calculateLGVT()
calculateGVT()
allRegistered()
...

scheduler
communicationManager
GVTManager
simArray

ParalleMainSimulator

ParallelMainSimulator ()
~ParallelMainSimulator()
run()
loadModels()
setupLP()
loadPorts()
loadComponents()
loadModel()
loadLinks()
...
loadMachines()
modelPartition()
getMachineID()
loadExternalEvents()
showEvents()
showModelPartition()
...

loader
rootCoordinator
nodeCoordinator
flatCoordinator
nodeCoordinatorList

Figure 33: Classes LogicalProcess and ParallelMainSimulator

At the beginning of a distributed CD++ simulation, one instance of

ParallelMainSimulator is set up on each machine. Each ParallelMainSimulator groups

the simulation objects running on this logical process: a node coordinator, a flat

coordinator, one or more simulators and, in the case of the main machine (i.e., processor

0), a root coordinator. The ParallelMainSimulator is in charge of creating the structure

of DEVS processors as shown in the previous chapter. To do so, ParallelMainSimulator

calls the method LogicalProcess.registerObject(p) for each DEVS processor p that runs

on this node. After every object is registered, LogicalProcess.allRegistered() is executed.

 97

Simulation objects sharing a ParallelMainSimulator also share its GVTManager

(in charge of calculating the global virtual time), CommManager (dealing with inter-LP

communication), and Scheduler (in charge of scheduling the events received in the

queue). More information on these classes can be found in [War04].

Each ParallelMainSimulator can access information about the root coordinator

(which may be running locally –if this is the main machine- or remotely), the node

coordinator and the flat coordinator running on this processor. In addition, information

about all node coordinators can be accessed through a nodeCoordinatorList. Local

simulation objects can be accessed directly via LogicalProcess.simArray.

ParallelMainSimulator has several methods to load all the information about the

models (e.g., loadPorts(), loadComponents(), loadModel(), loadLinks()) and about the

machines and model partition (loadMachines(), modelPartition()).

Warped provides different functions for manipulating elements in their queues

(e.g., garbage collection, finding and inserting an element). A garbage collection

mechanism is triggered by the kernel to release memory allocated by states and events

that are no longer valid. For more information on these Warped features, see [War04].

Output files generated by an application based on Warped need to use a special

Warped class, FileQueue, to perform output operations. At the beginning of the

execution, the application has to inform the number of files that will be created. When

using FileQueue, information is physically written to the file only when it is safe to do so

(i.e., when it is impossible to have a rollback for that data). Uncommited data can be

 98

rolled back by Warped if necessary. Warped kernel is in charge of flushing and closing

physical files and deallocating memory.

There are two types of files written by CD++ as the simulation advances, which

use the FileQueue mechanism provided by Warped: output files and log files.

Outputs generated by the model are written by CD++ in the output file. When we

described the algorithms of root coordinator and node coordinator in the previous

chapter, we discussed two different alternatives for generating models’ outputs (see

parameter send-outputs-from-NC in the node coordinator’s algorithms and

sendOutsFromNC() in Figure 31)

One approach is to make root coordinator handle all outputs to be sent to the

environment. Thus, node coordinators forward their outputs to root coordinator, which

acts as an intermediator. A different possibility is to have node coordinators sending

outputs directly to the environment. These two alternatives are implemented in CD++

with a FileQueue object in the root coordinator or with a FileQueue object for each node

coordinator to handle outputs.

5.1 EXECUTION OF DEVS AND CELL-DEVS MODELS

Users must define different files to run DEVS and Cell-DEVS models in CD++.

The minimum information that has to be specified is the model and its partition. For

DEVS models, atomic and coupled models have to be defined. Atomic models are

written in C++, whereas coupled models are specified using a built- in language. Cell-

DEVS models are written using a built- in language, which allows specifying the size and

 99

structure of the cell space, connection with other existing DEVS models, type of delay,

neighborhood, border and rules for each cell (or region of cells). A partition file is used to

specify how models will be distributed across the machines that participate in the

simulation.

As we discussed earlier, our new simulator does not modify any class of the

CD++ model hierarchy from the one that was introduced by [Tro01a]. Therefore, DEVS

and Cell-DEVS models written for the previous version of parallel CD++ can be

executed with our simulator without modifications. DEVS models written for other

versions of the tool require minimum modifications in order to be executed by the new

simulator.

Users can specify other optional information. When running a Cell-DEVS model,

users can indicate the initial values for the cells, and log files to store the debugging of

the model’s rules. For DEVS and Cell-DEVS models, it is possible to specify external

events that will be received by the model in an event file. External events are received via

the model’s input ports and times are written in the hours:minutes:seconds:milliseconds

format. A sample event file is shown in Figure 34. For example, the first line shows an

external event arriving at 00:00:04:000 via port in_1 with a value of 1.

 00:00:04:000 in_1 1
 00:00:12:000 in_2 1
 00:00:27:000 in_1 21
 00:00:53:000 in_2 10
 ...

Figure 34: Sample CD++ event file

CD++ simulation messages can be logged either for debugging purposes or for

 100

studying the internal behavior of the simulator. Users can specify only a subset of

messages to be logged (e.g., it is possible to record only output, external, and done

messages, while omitting initialization, internal, and collect messages).

3 / L / I / 00:00:00:000 / NodeCoordinator(450) / FlatCoordinator(454)
3 / L / D / 00:00:00:000 / life(0,0)(26) / 00:00:00:000 / FlatCoordinator(454)
3 / L / D / 00:00:00:000 / life(0,1)(27) / 00:00:00:000 / FlatCoordinator(454)
3 / L / D / 00:00:00:000 / life(0,2)(28) / 00:00:00:000 / FlatCoordinator(454)
3 / L / D / 00:00:00:000 / life(0,3)(29) / 00:00:00:000 / FlatCoordinator(454)
3 / L / D / 00:00:00:000 / life(0,4)(30) / 00:00:00:000 / FlatCoordinator(454)
...
3 / L / D / 00:00:00:000 / life(4,4)(45) /00:00:00:000/ FlatCoordinator(454)
3 / L / @ / 00:00:00:000 / ParallelNodeCoordinator(450) / FlatCoordinator(454)
3 / L / Y / 00:00:00:000 / life(0,0)(26) / out / 0.000 / FlatCoordinator(454)
3 / L / D / 00:00:00:000 / life(0,0)(26) / 00:00:00:000 / FlatCoordinator(454)
3 / L / Y / 00:00:00:000 / life(0,1)(27) / out / 0.000 / FlatCoordinator(454)
3 / L / D / 00:00:00:000 / life(0,1)(27) / 00:00:00:000 / FlatCoordinator(454)
3 / L / Y / 00:00:00:000 / life(0,2)(28) / out / 0.000 / FlatCoordinator(454)
3 / L / D / 00:00:00:000 / life(0,2)(28) / 00:00:00:000 / FlatCoordinator(454)
3 / L / Y / 00:00:00:000 / life(0,3)(29) / out / 0.000 / FlatCoordinator(454)
3 / L / D / 00:00:00:000 / life(0,3)(29) / 00:00:00:000 / FlatCoordinator(454)
3 / L / Y / 00:00:00:000 / life(0,4)(30) / out / 0.000 / FlatCoordinator(454)
3 / L / D / 00:00:00:000 / life(0,4)(30) / 00:00:00:000 / FlatCoordinator(454)
3 / L / Y / 00:00:00:000 / life(1,0)(31) / out / 0.000 / FlatCoordinator(454)
3 / L / D / 00:00:00:000 / life(1,0)(31) / 00:00:00:000 / FlatCoordinator(454)
...
3 / L / * / 00:00:00:000 / ParallelNodeCoordinator(450) / FlatCoordinator(454)
3 / L / D / 00:00:00:000 / life(0,0)(26) / ... / FlatCoordinator(454)
3 / L / D / 00:00:00:000 / life(0,1)(27) / ... / FlatCoordinator(454)
3 / L / D / 00:00:00:000 / life(0,2)(28) / 00:00:00:100 / FlatCoordinator(454)
3 / L / D / 00:00:00:000 / life(0,3)(29) / ... / FlatCoordinator(454)
3 / L / D / 00:00:00:000 / life(0,4)(30) / ... / FlatCoordinator(454)
3 / L / D / 00:00:00:000 / life(1,0)(31) / 00:00:00:100 / FlatCoordinator(454)
3 / L / D / 00:00:00:000 / life(1,1)(32) / ... / FlatCoordinator(454)
3 / L / D / 00:00:00:000 / life(1,2)(33) / ... / FlatCoordinator(454)
3 / L / D / 00:00:00:000 / life(1,3)(34) / 00:00:00:100 / FlatCoordinator(454)
3 / L / D / 00:00:00:000 / life(1,4)(35) / 00:00:00:100 / FlatCoordinator(454)
...
3 / L / D / 00:00:00:000 / life(4,4)(45) / 00:00:00:100 / FlatCoordinator(454)
3 / L / @ / 00:00:00:100 / NodeCoordinator(450) / FlatCoordinator(454)
3 / L / Y / 00:00:00:100 / life(0,2)(28) / out / 1.000 / FlatCoordinator(454)
3 / L / D / 00:00:00:100 / life(0,2)(28) / 00:00:00:000 / FlatCoordinator(454)
3 / L / Y / 00:00:00:100 / life(1,0)(31) / out / 1.000 / FlatCoordinator(454)
3 / L / D / 00:00:00:100 / life(1,0)(31) / 00:00:00:000 / FlatCoordinator(454)
...
3 / L / * / 00:00:00:100 / NodeCoordinator(450) / FlatCoordinator(454)
3 / L / D / 00:00:00:100 / life(0,2)(28) / ... / FlatCoordinator(454)
...

Figure 35: flat coordinator log file for a sample Cell-DEVS model (partial)

 101

Figure 35 shows an example of a log file generated by a flat coordinator during

the execution of a bidimensional Cell-DEVS model called “life”. The execution of this

model is distributed across 4 machines, each of which runs a 5x5 area of the model. Log

files keep track of the messages received by each processor participating in the

simulation. In Figure 35, we see some of the messages received by a flat coordinator.

Every entry in the log file includes: the machine in which the DEVS processor is running

(in this case, 3), the type of message (L for local, which indicates that the source is

running in the same LP, or R for remote, which indicates an inter-LP message),

timestamp, and some information about the message (e.g., time of next transition for a

done message, or port and value for an output message). The file also gives information

about the processor ids of source and destination of the message.

The first line in Figure 35 shows a (local) initialization message received by flat

coordinator (with id 454) at time 00:00:00:000 from its parent node coordinator (with id

450). As we described in the previous chapter, a flat coordinator responds to an

initialization message by forwarding it to all its children (this is not shown in Figure 35

but in each simulator’s log file, where the messages are received). Once the initialization

function is executed for every cell, these simulators send done (D) messages informing

the time of next change, as shown in the following lines (done messages at time

00:00:00:000 received from life(0,0)(26) to life(4,4)(45)).

After all done messages are received, the flat coordinator reports its time of next

change (00:00:00:000) to its parent (which is not shown in Figure 35 but in node

coordinator’s log file), completing the initialization phase for the flat coordinator.

 102

After the initialization phase is completed, Figure 35 shows the beginning of a

collect (@) phase by a message received at time 00:00:00:000 from node coordinator.

This message is forwarded to simulators. Then, simulators respond with output (Y)

messages (which contain a port, out, and a value associated to that port, in this case 1.000

or 0.000) and done messages.

Following the collect phase, an internal (*) message at time 00:00:00:000 is

received at flat coordinator from node coordinator. As described by flat coordinator’s

algorithm, this message is forwarded to the corresponding simulators. Their responses

report the time for their next internal transition. For example, life(0,0) and life(0,1)

inform that they do not have a scheduled internal transition (this is informed in the log

file by a “...” in the field for time of next transition, which represents inf or infinity as

discussed in Chapter 4). On the other hand, life(0,2) reports that it has a internal transition

scheduled in 100 ms. These messages complete the simulation cycle for time

00:00:00:000. Subsequently, a new collect message is received at time 00:00:00:100 and

the process described earlier is repeated.

The log file for the simulator running life(0,2) is shown in Figure 36. It shows the

messages for one of the simulators that interact with the flat coordinator shown in Figure

35.

 103

3 / L / I / 00:00:00:000 / FlatCoordinator(454) / life(0,2)(28)
3 / L / @ / 00:00:00:000 / FlatCoordinator(454) / life(0,2)(28)
3 / L / X / 00:00:00:000 / FlatCoordinator(454) / in_value / 0.000
...
3 / L / * / 00:00:00:000 / FlatCoordinator(454) / life(0,2)(28)
3 / L / @ / 00:00:00:100 / FlatCoordinator(454) / life(0,2)(28)
3 / L / X / 00:00:00:100 / FlatCoordinator(454) / in_value / 0.000
...
3 / L / * / 00:00:00:100 / FlatCoordinator(454) / life(0,2)(28)
...
3 / L / @ / 00:00:00:200 / FlatCoordinator(454) / life(0,2)(28)
3 / R / X / 00:00:00:200 / FlatCoordinator(454) / in_value / 0.000
...
3 / L / * / 00:00:00:200 / FlatCoordinator(454) / life(0,2)(28)
...

Figure 36: simulator log file for cell model life(0,2) (partial)

The first line in Figure 36 shows the initialization message received at time

00:00:00:000 from flat coordinator, which triggers the initialization function for this cell.

The simulator responds by sending a done message with the time of next change, which

can be seen in the fourth line in Figure 35. The second line in Figure 36 shows the

reception of a collect message at time 00:00:00:000, which triggers the execution of the

output function for this cell. The output and done messages sent by life(0,2) are received

by the flat coordinator, and can be seen in Figure 35. Then, an internal message is

received by the simulator, which triggers the internal transition function for this model.

Then, a new simulation cycle starts with the reception of a collect message at time

00:00:00:100, repeating the previous process.

We have discussed the log files generated by Cell-DEVS models. Log files

generated by DEVS model are very similar. For example, Figure 37 shows a log file

generated by a simulator in charge of an atomic model called rtc4.

 104

2 / L / I / 00:00:00:000 / FlatCoordinator(22) / rtc4(01)
2 / L / @ / 00:00:00:000 / FlatCoordinator(22) / rtc4(01)
2 / L / * / 00:00:00:000 / FlatCoordinator(22) / rtc4(01)
2 / L / @ / 00:00:08:000 / FlatCoordinator(22) / rtc4(01)
2 / L / * / 00:00:08:000 / FlatCoordinator(22) / rtc4(01)
2 / L / @ / 00:00:15:000 / FlatCoordinator(22) / rtc4(01)
2 / L / * / 00:00:15:000 / FlatCoordinator(22) / rtc4(01)
...

Figure 37: simulator log file for a sample atomic model (partial)

Messages received by this simulator (whose id is 01) are shown in Figure 37,

starting with a initialization message from flat coordinator. This message triggers the

initialization function for the associated atomic model, rtc4, and a done message is sent to

its parent, FlatCoordinator(22), informing the time of next change. This done message,

which is registered in the flat coordinator’s log file, indicates that the model has an

internal transition function scheduled for time 00:00:00:000. Then, collect and internal

messages are received, completing the simulation cycle for this time. The next simulation

cycle starts again with a collect message at 00:00:08:000, followed by an internal

message.

Figure 38 shows a log file for a node coordinator in charge of LP 0 during a

simulation distributed in 3 processors.

0 / L / I / 00:00:00:000 /RootCoordinator(00)/NodeCoordinator(21)
0 / L / D / 00:00:00:000 /FlatCoordinator(24)/00:00:00:000/NodeCoordinator(21)
0 / L / D / 00:00:00:000 /FlatCoordinator(24)/00:00:00:000/NodeCoordinator(21)
0 / L / D / 00:00:00:000 /FlatCoordinator(24)/00:00:00:100/NodeCoordinator(21)
0 / L / D / 00:00:00:100 /FlatCoordinator(24)/00:00:00:000/NodeCoordinator(21)
0 / L / D / 00:00:00:100 /FlatCoordinator(24)/00:00:00:400/NodeCoordinator(21)
1 / R / X / 00:00:00:150 /NodeCoordinator(22)/in_port_1/0.000
...

Figure 38: node coordinator log file (partial)

 105

Figure 38 shows the messages received in a node coordinator (whose id is 21)

from other DEVS processors. An initialization message from the root coordinator is

received at time 00:00:00:000. After forwarding this message, the corresponding done

message from flat coordinator (line 2). Then, the node coordinator receives done

messages in relation to the collect and internal messages sent at time 00:00:00:000 and

equivalent messages for time 00:00:00:100. At time 00:00:00:150, an external message is

received from a sibling node coordinator (its id is 22) from machine 1. The second field

of the message indicates that it is a remote message, and its port (in_port_1) and value

(0.000) are included in the log.

Log files generated by Cell-DEVS models can be used to visualize the results of

the simulation. CD++ supports 2D and 3D visualization using different shapes and colors

to represent each cell. For more information on how to visualize Cell-DEVS models in

CD++, see [Wai03].

We described the log files generated by Cell-DEVS and DEVS models, which

show the messages exchanged by DEVS processors. In addition to log files, as we

discussed earlier, CD++ models can generate a file that registers all the outputs sent to

the environment, as shown next.

 00:00:08:000 out 1
 00:00:15:000 out 2
 00:00:48:000 out 3
 00:01:03:000 out 4
 00:01:17:000 out 5
 ...

Figure 39: Sample output file for a DEVS model

 106

Figure 39 shows an output file generated by a sample DEVS model. The output

file indicates the time, port, and value of each output. For example, the first line

represents an output generated at time 00:00:08:000 through the output port out with a

value of 1.

 107

Chapter 6: PERFORMANCE ANALYSIS

In this chapter, we introduce a new synthetic benchmark devoted to automate the

evaluation of DEVS-based simulation approaches called DEVStone. DEVStone assists

the task of analyzing the performance of a simulator by generating models with different

size, complexity and behavior, resembling different kinds of real world applications. We

use DEVStone to analyze the overhead of our new simulator, comparing it with other

engines supported by CD++. Then, we analyze the performance of our simulator for Cell-

DEVS models.

6.1 DEVSTONE

Analyzing the performance of a simulation engine can be a very complex task.

Users can create a wide variety of models with different structures, levels of complexity

and degrees of interaction. Most studies of simulation techniques are focused on specific

tools. For instance in [Tro01b], the authors presented performance studies of Cell-DEVS

models in a parallel simulation environment. In [Zei96], the authors focused on a

watershed model to show performance improvements in parallel and distributed

architectures. A comparison of performance issues for two particular simulators

(DEVSCluster and D-DEVSim++) is given in [Kim04]. DEVS was shown to be more

efficient than the continuous counterparts when simulating natural [Zei97a], and artificial

systems, such as a photovoltaic system [Fil02b]. However, those studies do not provide a

 108

thorough analysis for the execution of models with different characteristics, neither do

they give a common metric to compare results among different DEVS simulators.

Instead of limiting our effort solely to testing individual models, we developed a

synthetic benchmark to aid not only this but also future initiatives in the area, as ongoing

developments intended to improve DEVS simulators also require a way to assess

performance. We introduce the DEVStone benchmark, a synthetic model generator that

automatically creates models according to our goals. Its accuracy relies on the execution

of a large pool of models to provide a robust test set. DEVStone generates models with

different size, complexity and behavior, resembling different kinds of real world

applications. Hence, it is possible to analyze the efficiency of a simulation engine with

relation to the characteristics of a category of models of interest. The tool can be used to

assess the efficiency of DEVS simulation engines, and it provides a common metric to

compare the results using different tools.

We focus in the aspects of the models that have impact on performance, namely

size of the model and the workload carried out in the transition functions. A DEVStone

generator produces models using the following parameters:

o type: different structure and interconnection schemes between the components.

o depth: the number of levels in the modeling hierarchy.

o width: the number of components in each intermediate coupled model.

o internal transition time: the execution time spent by internal transition functions.

o external transition time: the execution time spent by external transition functions.

 109

In general, being d the depth and w the width, we build a coupled model with d

levels in the hierarchy, all of which consist of w-1 atomic models, with the exception of

the lowest level of the hierarchy, in which a coupled component is composed of a single

atomic model. In addition, internal and external transition functions are programmed to

execute a fixed amount of time specified by the user. In both transition functions we

consume CPU clocks by running Dhrystones [Wei84]. The Dhrystone synthetic

benchmark uses published statistics on the use of programming language features, and it

is available for different programming languages (Ada, C++, Java, Pascal, etc.).

Dhrystone code consists of a mix of instructions using integer arithmetic; therefore, it is a

good choice for analyzing models like DEVS in which state variables have discrete

values.

DEVStone uses three different types of models with variations in their internal

and external structure:

o LI models, with a low level of interconnections for each coupled model

o HI models with a high level of input couplings, and

o HO models with high level of coupling and numerous outputs.

In LI models, every coupled component includes only one input and one output

port. Figure 40 shows a sample LI model, in which we have four layers of coupled

components, each containing three submodels. The arrows represent input and output

ports, solid-white boxes represent coupled components and shaded-gray boxes represent

atomic components. The Coupled Component #0 in Figure 2 (a) consists of one coupled

and two atomic components. The lower levels in the hierarchy (Coupled Component #1,

 110

Coupled Component #2) use the same internal structure. Coupled Component #3 is a

“leaf” model, which contains one atomic child (#7).

in

 Coupled Component #0

in

 in
 Coupled Component #1

Atomic Component #1
 (at level 1)

Atomic Component #2

 (at level 1)

out
 out

in

in

 Coupled Component #3

in
 in

 Atomic Component #7
 (at the last level – level 4)

out
 out

(a) (b)

Figure 40: Example of a LI model: (a) top level; (b) level 4

[top]
components: comp0 comp01@Atom comp02@Atom
out : out
in : in
link : in in@comp0
link : in in@comp01
link : in in@comp02
link : out@comp0 out

[comp0]
components : comp1 comp11@Atom comp12@Atom
out : out
in : in
link : in in@comp1
link : in in@comp11
link : in in@comp12
link : out@comp1 out

...

[comp01]
preparation : 00:00:00:000
intDelay : 0
extDelay : 0

[comp02]
preparation : 00:00:00:000
intDelay : 0
extDelay : 0

...

Figure 41: Model file generated by DEVStone for a LI model

 111

Figure 41 shows the model file associated with such model, which is generated by

DEVStone. As we discussed earlier, coupled models are entirely defined in this file (their

components, internal coupling, etc.). Although atomic components require a separate

C++ file, a section of the model file is used to define their preparation time, and two

parameters (intDelay and extDelay) that determine the internal and external transition

time.

As we know the model structure and the time spent by each component in

executing transition functions, we can compute the execution time for the model

analytically. First, we devise the number of atomic and coupled models in the structure,

which can be derived from the composition of the model type. In LI models of depth d

and width w, we have d coupled models with w-1 atomic components each (except for the

leaf, with only one atomic component). Consequently, the total number of atomic

components is:

Atomic Models = (width – 1) * (depth – 1) + 1

Since we have a predefined interconnection pattern, we can anticipate the

message routes triggered by an external event and the time spent in transition functions.

LI models forward external events to each atomic component and to lower levels in the

model hierarchy. Each external event triggers the atomic’s external transition function

and, subsequently, an internal transition is scheduled. Thus, the number of internal and

external transition functions to be triggered is:

Internal Transitions = # Atomic Models

External Transitions = # Atomic Models

(1)

 112

HI models have the same number of atomic components, but more

interconnections. Each atomic component k connects its output to the input port of

component k+1 (with the exception of one last atomic component on each level, which

does not have any output port). Therefore, there are more messages exchanged upon the

reception of an external event, and the associated overhead grows accordingly. In a

model with depth d, and width w, we have,

Atomic Models = (w – 1) * (d – 1) + 1

Internal Transitions = Σ (i=1 .. w-1) i * (d – 1) + 1

External Transitions = Σ (i=1 .. w-1) i * (d – 1) + 1

(2)

Each coupled model forwards the external events to its w-1 atomic children and

also to its coupled child. This process of forwarding messages is repeated in each coupled

component except for the leaf component, which forwards the messages to its single

atomic child.

HO models have the same number of atomic and coup led components, but

coupled models have two input and two output ports in each level. The second input port

in the coupled component is connected to its first atomic component. That atomic model

connects its output to the second output of its parent. The increased number of

interconnections results in the execution of more transition functions after the model

issues its output, and consequently generates more overhead. For this model type we

have,

 113

Atomic Models = (w – 1) * (d – 1) + 1

Internal Transitions = Σ (i=1 .. w-1) i * (d – 1) + 1

External Transitions = Σ (i=1 .. w-1) i * (d – 1) + 1

(3)

Coupled components forward each external event to their w-1 atomic children and

also to their coupled child. This process is repeated for each coupled model until the leaf

component receives the event, which is forwarded to its single atomic component.

DEVStone can be used in any simulator with capabilities for defining and

executing Dhrystone code. We can use single-layered models for comparison with tools

with non-hierarchical structure. Likewise, if the chosen modeling technique does not

support the execution of internal transitions, we can compare the simulators by building a

DEVStone in which the execution time for internal transitions is zero.

6.2 PERFORMANCE ANALYSIS FOR DEVS MODELS

CD++ supports different simulation techniques, some of which were discussed

earlier in this work. The original version of CD++ provides a stand-alone engine for

execution on a single processor [Rod99, Wai02]. In [Tro01a, Tro03], a parallel version of

the toolkit was presented. It uses a conservative synchronization protocol, as opposed to

the simulation technique based on an optimistic synchronization protocol introduced in

this work.

 114

Our first goal is to determine the overhead of the new simulation engine. To

analyze its overhead, we use our DEVStone synthetic benchmark. Moreover, we compare

the overhead of the new engine with the overhead of the previous implementations.

The advantages of taking this approach are twofold. First, the execution of these

experiments allows us to test the usefulness of the DEVStone benchmark. Second, we

can test our new simulator thoroughly, and compare the results with engines that have

shown good performance results for DEVS and Cell-DEVS execution [Gli02b, Tro01b].

The following tests compare the overhead of three simulators: (i) original, (ii)

parallel simulator with conservative protocol, and (iii) our new simulator, which

implements parallel simulation using an optimistic protocol. In addition, we compare the

execution results with the theoretical execution time for each type of model, computed as

in equation (4).

Total theoretical time =

[(# External Transitions * TimeInExternalTransition) +

(# Internal Transitions * TimeInInternalTransition)] *

NumberOfExtEvents

(4)

In this set of experiments, we are focused on measuring the overhead of the new

simulator and comparing the results with other (stand-alone and parallel) engines. Thus,

these simulations are executed on a dedicated single-processor machine. All models were

executed using 10 external events, each of them triggering a known number of external

and internal transition functions defined by equations (1), (2), and (3). Table 1 shows the

parameters we used for different tests, including model type, structure and time spent on

 115

transition functions (e.g., model E is of HI type, it is composed of 3 levels, and has 6

components per level).

Table 1: Simulation parameters

Simulation Model
Type

Depth Width δ int δext

A LI 3 10 50 ms 50 ms

B LI 10 3 50 ms 50 ms

C LI 5 5 50 ms 50 ms

D LI 10 10 50 ms 50 ms

E HI 3 6 50 ms 50 ms

F HI 6 3 50 ms 50 ms

G HI 5 5 50 ms 50 ms

H HI 6 6 50 ms 50 ms

I HO 3 6 100 ms 0 ms

J HO 6 3 0 ms 100 ms

K HO 5 5 50 ms 50 ms

L HO 6 6 50 ms 50 ms

The experiments were executed in a single processor, allowing us to measure the

pure overhead incurred by our simulator, and enabling comparisons not only with the

other parallel (conservative) simulator but also with the original (stand-alone) simulation

engine.

In order to better understand the influence of the tools in the total execution time,

we also measured the percentage of overhead. The overhead is computed as the ratio

between theoretical and actual execution time.

 116

The following figures show the execution times and the associated overheads

grouped by model type: Figure 42 and Figure 43 (LI models), Figure 44 and Figure 45

(HI models) and Figure 46 and Figure 47 (HO models).

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

A B C D

T
im

e
(m

s)

Stand-alone CD++

Conservative mechanism

Optimistic mechanism

Theoretical

Figure 42: Execution times for LI models in a single CPU
using the optimistic parallel simulator and other simulation engines

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

4.50%

A B C D

O
ve

rh
ea

d Stand-alone CD++

Conservative mechanism

Optimistic mechanism

Figure 43: Overhead incurred by the optimistic parallel simulator
and other simulation engines for LI models

 117

Figure 42 shows the execution times for LI models, which belong to the most

simple type of models generated by DEVStone. We can measure the difference between

the theoretical execution time (which only comprises time required to execute the

Dhrystone code in the internal and external transitions) and the execution time for each

engine. As a result of the relatively simple structure of models A, B, C, and D, the

differences are small; in all cases, the differences fall in the range of 270 to 2110 ms. As

expected, the smallest difference between theoretical and execution time is observed

when executing model A (with a structure of 3x10), which is the smallest and most

simple model in the test set. The overhead for executing such a model is 1.40% (for the

stand-alone version), 2.61% (for the conservative parallel version) and 3.06% (for the

optimistic parallel version). On the other hand, the largest overheads are observed for

model D (10x10), which contains more than 80 models in its structure. For model D, the

overhead for each simulator is 1.10%, 2.95%, and 2.51%, respectively. In all cases the

overhead is kept below 5%.

For all LI models, the stand-alone outperforms both parallel alternatives. For

models B, C, and D, the optimistic engine outperforms the conservative one, whereas for

model A the conservative engine outperforms the optimistic one. However, we believe

that the results obtained for the optimistic simulator are very promising in terms of

performance. As we mentioned earlier, these simulations are executed in a single

processor, and therefore it was expected that the stand-alone engine would outperform

the optimistic approach. Moreover, we discussed that the implementation of the

optimistic simulator is more complex and has more tasks that take place at each

 118

simulation cycle (e.g., associated with the synchronization mechanism and the

mechanism for saving states, input, and output queues). Although the overhead associated

with those tasks can be considerable, the optimistic simulator still outperformed the

conservative simulator for models B, C, and D. This is a consequence of the reduction in

communication overhead incurred by the flat approach (implemented in the optimistic

simulator) over the hierarchical case (implemented in the conservative simulator). As we

discussed in Chapter 4, the flat simulator transforms the hierarchical structure of a DEVS

model into a more simple, flat structure of DEVS processors. We discussed the potential

for reducing the number of messages exchanged in the flat mechanism by comparing

both approaches. The execution of models B, C, and D show that the performance gains

of using a flat simulator outweigh the increased overhead associated with the optimistic

simulator. This is not the case for model A, where the hierarchical, conservative engine

still performs better than the flat, optimistic engine. We believe this is a consequence of

the structure (3x10) of model A. Its structure is wide (10) but not very deep (3 levels),

and therefore the reduction in messages exchanged when using a flat approach is not that

important. A more detailed discussion on these topics is given later.

 119

0

20000

40000

60000

80000

100000

120000

E F G H

T
im

e
(m

s)

Stand-alone CD++

Conservative mechanism

Optimistic mechanism

Theoretical

Figure 44: Execution times for HI models in a single CPU
using the optimistic parallel simulator and other simulation engines

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

4.50%

5.00%

E F G H

O
ve

rh
ea

d Stand-alone CD++

Conservative mechanism

Optimistic mechanism

Figure 45: Overhead incurred by the optimistic parallel simulator
and other simulation engines for HI models

Figure 44 and Figure 45 illustrate the results for executing HI models, which are

more complex than LI models. As we mentioned before, HI models have more

interconnections between inner components, which results in more transitions functions

 120

to be executed. In these cases, we observe results that are similar to those obtained for LI

models. Differences between theoretical and actual execution times fall in the range of

500 to 5130 ms, and overheads are in the range of 1.59% to 4.62%. In general we see that

the stand-alone simulator, whose overhead is 2.65% in the worst case (model H, 6x6),

outperforms both parallel alternatives for all HI models. The optimistic engine

outperforms the conservative simulator for models F, G, and H, whereas the opposite is

observed for model E. As we discussed for LI models, the flat simulator implemented in

the optimistic engine outweighs, in some cases, the increased overhead associated with its

more complex implementation. However, this is not the case for model E, whose

structure is wide, but not very deep.

0

20000

40000

60000

80000

100000

120000

I J K L

T
im

e
(m

s)

Stand-alone CD++

Conservative mechanism

Optimistic mechanism

Theoretical

Figure 46: Execution times for HO models in a single CPU
using the optimistic parallel simulator and other simulation engines

 121

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

I J K L

O
ve

rh
ea

d
Stand-alone CD++

Conservative
mechanism

Optimistic mechanism

Figure 47: Overhead incurred by the optimistic parallel simulator
and other simulation engines for HO models

Finally, Figure 46 and Figure 47 show the execution times and associated

overhead of HO models, which have the most complex structure generated by DEVStone.

The results illustrate the same trend shown earlier for LI and HI models. In this case, the

models are more complex, execute more transition functions and generate more outputs.

Consequently, the simulators have to perform more tasks and more messages are

exchanged, which leads to larger differences. The differences between theoretical and

actual execution times are in the range of 670 ms for the smallest model (I) and 5490 ms

for the largest one (L). The stand-alone simulator also provides the best performance in

all cases. The conservative simulator outperforms the optimistic one for models I, K, and

L, whereas the reverse holds for model J. The structure for model J is fairly deep (6

levels) and not very wide (3 models per level). As we discussed for previous cases (e.g.,

models A and E), as a result of the more simple structure used by the flat mechanism to

 122

simulate this model, the optimistic simulator outperforms the hierarchical, conserva tive

one for executing model J.

The execution of LI, HI, and HO models gives us information about the execution

performance for our new simulator, and a comparison with the previous alternatives

available in CD++. In general, we see that the stand-alone simulator outperforms both

parallel alternatives. This is a consequence of the more simple architecture and

implementation of the stand-alone engine. As we have discussed earlier in this work, the

parallel simulators are built on top of two layers of middleware (Warped and MPI). The

use of these middleware associates more overhead at execution time, in particular for

message passing. In addition, there is an overhead associated with the optimistic

simulator. When the optimistic simulator is used, as we discussed in Chapter 4 and 5, the

simulation objects save states, and input and output events to allow recovering from

potential rollbacks in the future. The time spent on these tasks has an impact on the

overall performance of the optimistic simulator.

We tried to reduce the communication overhead of the new simulator by

implementing a flat approach. Our flat approach uses a flattened structure of DEVS

processors to simulate the model, instead of a hierarchical structure which is usually more

complex. In Chapter 4, we discussed the reduction in communication costs by comparing

the number of exchanged messages incurred by our flat simulator with the number of

messages exchanged by a hierarchical mechanism. Some of the results presented in this

section substantiate our previous analysis. Although the optimistic simulator incurs in

more overhead (associated with its more complex synchronization mechanism), in some

 123

cases it still outperforms the conservative approach. More specifically, the new flat,

optimistic simulator outperforms the conservative simulator for models B, C, D, F, G, H

and J. On the other hand, for models A, E, I, K and L, the conservative engine

outperforms the optimistic one despite the hierarchical approach, although the differences

are relatively small. These experiments show that the gains obtained by using a flat

approach compensate, and in some cases outweigh, the increased the overhead associated

with the implementation of the optimistic simulator.

So far, we have studied the overhead incurred by the new flat, optimistic

simulator using different DEVS models. Using DEVStone, we have compared its

performance with other simulators whose performance has been analyzed and deemed

appropriate [Gli02b, Tro01b]. Although in some cases it presented more overhead than

other tools, the optimistic synchronization mechanism has the potential for enabling

speedups in distributed environments.

6.3 PERFORMANCE ANALYSIS FOR CELL-DEVS MODELS

We studied the performance of our new simulator using a Cell-DEVS model

based on the life game [Gar70]. This popular game consists of a bidimensional lattice of

cells. Based on a simple set of rules, cells can live, die, or multiply. Figure 48 shows the

definition of the model in CD++.

 124

[top]
components : life

[life]
type : cell
width : 20
height : 20
delay : transport
defaultDelayTime : 100
border : wrapped
neighbors : life(-1,-1) life(-1,0) life(-1,1)
neighbors : life(0,-1) life(0,0) life(0,1)
neighbors : life(1,-1) life(1,0) life(1,1)
localtransition : conrad-rule
neighborports : value

[conrad-rule]
rule : { ~value := 1; } 100 { (0,0)~value = 1
 and (statecount(1, ~value) = 3
 or statecount(1, ~value) = 4) }
rule : { ~value := 0; } 100 { (0,0)~value = 1
 and (statecount(1, ~value) < 3
 or statecount(1, ~value) > 4) }
rule : { ~value := 1; } 100 { (0,0)~value = 0 and statecount(1, ~value) = 3 }
rule : { ~value := 0; } 100 { (0,0)~value = 0 and statecount(1, ~value) != 3 }

Figure 48: Specification of Cell-DEVS model life in CD++

Figure 48 shows the definition of the model as a 20x20 wrapped Cell-DEVS

model with transport delays and 3x3 neighborhood. As described in Chapter 2, the

behavior of each cell is defined by the rules of the model (see the section conrad-rule),

which have a fixed form of VALUE DELAY {CONDITION}. If the CONDITION is

satisfied, the cell state becomes VALUE and then it is DELAYed for the specified time.

The survival of a cell depends on the number of active cells within its neighborhood. If

the number of active cells, determined by statecount(1,~value), is three or four, then the

cell remains alive (specified by the first rule), otherwise it dies (specified by the second

rule). The third rule specifies that an inactive cell becomes active if the number of active

 125

cells in its neighborhood is three. In this model, the delay is 100 milliseconds for every

rule.

We executed the life game using different cell spaces: 16x16 (256 cells), 20x20

(400 cells), 25x25 (625 cells) and 30x30 (900 cells). The initial configuration of cells for

each model was randomly generated.

We have experienced some problems when straggler messages are received by a

simulation object during the execution of DEVS and Cell-DEVS models. More

specifically, the simulation aborts during the rollback mechanism triggered after a

straggler message is detected in the destination. We have identified the code of the

Warped middleware that triggers this incorrect finalization of the simulation. Although

this is out of the scope of this work, we are working to find a solution to fix this problem

in the middleware. In order to carry out the experiments that allow distributing the

simulation in more than one processor, and to enable a performance analysis of our new

simulator, the following models are designed avoiding inter-LP communication. Since

message exchange between LPs does not happen, it is not possible to receive straggler

messages. Consequently, rollbacks are not possible and the simulation can finish without

errors.

First, the models were executed on one and four machines. We used simple

rectangular partitions for the distributed case. Figure 49 depicts the partition used for the

20x20 life model, where each machine executes a region of 10x10 (100 cells). Analogous

partitions were used for the other cell spaces.

 126

Machine 0

Machine 2

Machine 3

(0,0)

(19,19)

… …

… …

(19,0)

(10,10)

(0,19)

Machine 1

Figure 49: Partition of 20x20 life model in 4 machines

Figure 50 illustrates the execution times for the different configurations used for

the life model.

0

20

40

60

80

100

256 400 625 900

Number of cells

T
im

e
(s

ec
)

1 processor 4 processors

Figure 50: Execution times for life model (1 vs. 4 processors)

 127

Figure 50 shows that, in all cases, the distributed execution of the model

outperformed the execution in a single processor. The execution time for the model

running on one processor varies from 30.7 to 90.8 seconds depending on the size of the

model. On the other hand, when running the model in parallel on 4 machines, the

execution time is smaller (between 18.1 and 47.5 seconds); in some cases, the optimistic

simulator allows to reduce the execution time in ~50%. Moreover, Figure 50 shows that,

as the size of the model increases, the slope for of the 4-processor simulations is less

steep than the one for 1-processor simulations.

Recall from Chapter 4 and 5 that when using the distributed simulator presented

in this work, scheduling of events and synchronization tasks are distributed among the

node coordinators that participate in the simulation. When the simulation is executed on

a single processor, one node coordinator and one flat coordinator handle the execution of

all the cells in the model. Then it is that single node coordinator which centralizes all

synchronization tasks and event scheduling for the entire model. Moreover, for the

smallest model executed in this test, the flat coordinator may have to schedule messages

(e.g., internal, collect) for up to 256 cells at every simulation cycle. Notice that the exact

number of messages to be transmitted at each simulation cycle depends on the number of

active cells in the model.

In contrast, when executing the model in n machines, a node coordinator and a

flat coordinator are created on each logical process. Thus, each node coordinator handles

synchronization tasks and scheduling of events for its own LP, and each flat coordinator

 128

is in charge of the group of cells running locally. For the largest model shown in Figure

50, its node coordinator and flat coordinator handles 225 cells.

Figure 51 shows the execution speedup obtained by running the model in 4

processors. The execution speedup for n processors is measured as follows.

Speedup =
execution time in 1 processor

execution time in n processors
(5)

0

0.5

1

1.5

2

2.5

256 400 625 900

Number of cells

S
p

ee
d

u
p

Figure 51: Execution speedups for life model running in 4 processors

Figure 51 shows that the factor of speedup falls between 1.55 and 1.95 when

distributing the execution of the life model among 4 processors using this partitioning

approach. In these cases, we observe that the increase in computing power obtained by

using multiple machines is affected by the communication costs of synchronizing the

 129

simulation. Moreover, the communication costs are more noticeable because the

simulations are executed over a relatively slow network. The processors are connected

via a 10 Mbit hub, which limits the simultaneous transfers rate to 10 Mbits per second. In

addition, since these models are relatively small and do not have numerous active cells,

the performance gains obtained by distributing these simulations are limited.

Figure 52 shows a comparison between our parallel simulator and the previous

conservative simulator [Tro01a, Tro03] for different configurations of 30x30 (life 1-4)

and 40x40 (life 5-8) models using 4 machines.

0

20

40

60

80

100

120

Life 1 Life 2 Life 3 Life 4 Life 5 Life 6 Life 7 Life 8

Ti
m

e
(s

ec
)

Conservative mechanism Optimistic mechanism

Figure 52: Execution times for life model
using optimistic and conservative simulators in 4 processors

Figure 52 shows that the optimistic simulator outperforms the conservative

simulator for all configurations of 30x30 and 40x40 life models. In the configuration

 130

labeled as life 5 (a 30x30 model), most of the 900 cells are active in the first cycles of the

simulation. In cases like this, we observe the the largest difference in execution times:

108 seconds for the conservative mechanism, 44 seconds for the optimistic one. In

general, the difference is a result of the performance gains obtained not only by

distributing the simulation in multiple processors but also by distributing the scheduling

tasks in multiple node coordinators.

We are interested in analyzing the performance of our simulator for larger Cell-

DEVS. The following figures show the execution times and speedups for different

configurations of the life model with a cell space of 50x50 (i.e., 2500 cells). The

differences among these configurations (labeled as life A, B, C, and D in Figure 53 and

Figure 54) are the initial values used for the cells.

0

50

100

150

200

250

300

350

Life A Life B Life C Life D

T
im

e
(s

ec
)

1 processor 8 processors

Figure 53: Execution times for 50x50 life model in 1 and 8 processors

 131

0

1

2

3

4

5

6

Life A Life B Life C Life D

S
p

ee
d

u
p

Figure 54: Execution speedups for 50x50 life model running in 8 processors

The execution times for these cases are significantly reduced when we distributed

the simulation in 8 processors instead of using a single processor. In general, the

distributed alternative achieves speedup factors in the range of 3.62 to 5.31, depending on

the initial configuration.

When a 50x50 model is executed on a single processor, only one logical process

is created. Hence, a single instance of a flat coordinator is in charge of the 2500

simulators participating in the simulation, and a single node coordinator is in charge of

scheduling tasks for the entire model. Using a single machine for executing a Cell-DEVS

model with this size results in a significant amount of memory needed to store data

associated with the simulation (e.g., list of imminent components, port mapping for each

model, pointers to each simulation object). But, more importantly, the execution of a

 132

model with 2500 cells in a single processor has an impact on the time consumed for

accessing this information. For example, consider the time required to update the list

imminent components (i.e., models that are scheduled for a transition), which is

maintained by a single flat coordinator. Similarly, consider the time consumed when

retrieving the information associated with a simulator object (e.g., when a flat simulator

has to find the destination of an output). In contrast, the distribution of this model in 8

machines allows a smaller structure associated with each logical process participating in

the simulation. Each logical process has an associated flat coordinator and node

coordinator that are in charge of 312 simulators. Figure 53 and Figure 54 show that

distributing the simulation of a large model in 8 machines allows significant execution

speedups.

A different partitioning approach is used for the following tests. The life model is

executed in 1, 3, 4 and 5 processors using the same cell spaces (16x16, 20x20, 25x25,

and 30x30). The idea of this partition approach is to divide the model in horizontal

rectangles, as shown in Figure 55 for a 30x30 model partitioned among 3 machines.

 133

Machine 0

(0,0)

…

(0,29)

Machine 1

(10,0)

…

(10,29)

Machine 2

(20,0)

…

(20,29)

(29,29) (29,0)

Figure 55: A different partition strategy for the life model

Figure 56 illustrates the execution times for the different configurations of the life

model using 1, 3, 4, and 5 processors. Figure 57 illustrates the execution speedups.

0

20

40

60

80

100

256 400 625 900

Number of cells

T
im

e
(s

ec
)

1 processor 3 processors 4 processors 5 processors

Figure 56: Execution times for life model using 1, 3, 4 and 5 processors

 134

0

0,5

1

1,5

2

2,5

256 400 625 900

Number of cells

S
p

ee
d

u
p

3 processors 4 processors 5 processors

Figure 57: Speedups for life model distributed in 3, 4 and 5 processors

Figure 56 shows that the steepest slope is associated with one-processor

executions. Distributing the simulation in 3, 4, or 5 processors reduces the execution time

regardless of the size of the model. Figure 57 shows that the execution speedups for 3, 4

and 5 processors is approximately 1.4-2.1. As we discussed earlier, this speedup factor is

a result of distributing a Cell-DEVS model that does not have numerous active cells.

Therefore, the increase in computing power obtained by using more machines is, in some

cases, outweighed by the communication costs of having to synchronize many logical

processes. This factor becomes more noticeable when the simulations are executed in a

relatively slow network like the one we used for these experiments. As we discussed

before, the computers are connected using a 10Mbit hub which limits the simultaneous

data transfer to 10 Mbits per second. For example, using 3 or 4 machines provides better

performance than using 5 machines for the model with 625 cells. The best configuration

 135

is hard to determine based on these runs. In some cases the minimum execution time was

achieved by using 5 processors (256 and 400 cells), while in other cases it was achieved

by 3 processors (900 cells) or 4 processors (625 cells).

The following set of tests uses a sample Cell-DEVS model to study the

performance of models whose cells change frequently. The rules defining the behavior

are simple: the current value of a cell cha nges from 0 to 1, and from 1 to 0, alternating at

each simulation cycle. These rules produce changes for every cell at every simulation

cycle. We execute models with 400 and 900 cells, using two different initial

configurations for each case, labeled in Figure 58 as models 1 to 4.

0

20

40

60

80

100

120

140

160

180

200

Model 1
(20x20)

Model 2
(20x20)

Model 3
(30x30)

Model 4
(30x30)

Ti
m

e
(s

ec
) cons. 1 processor

optim. 1 processor

cons. 4 processors

optim. 4 processors

Figure 58: Execution times for Cell-DEVS model using conservative and optimistic
simulators in 1 and 4 processors

Figure 58 shows that the simulation in 4 processors using the optimistic simulator

achieves the best performance for all these cases. The conservative simulator distributed

 136

in 4 machines outperforms its single-processor counterpart. The optimistic simulator

running on a single machine achieves almost the same performance as the conservative

simulator running on 4 processors, which shows the increased communication costs of

the latter alternative and the good performance achieved by our simulator. Figure 59

shows the speedup of the optimistic simulator distributed in 1 and 4 processors in relation

to the conservative simulator for the 20x20 and 30x30 models.

0

1

2

3

4

5

6

7

8

9

10

1 4

of processors

S
p

ee
d

u
p

20x20 model, cons.
1 processor
30x30 model, cons.
1 processor
20x20 model, cons.
4 processors
30x30 model, cons.
4 processors

Figure 59: Speedup obtained by the optimistic simulator in 1 and 4 processors

 137

Figure 59 illustrates the speedups obtained by our simulator using 1 and 4

processors in relation with the conservative simulator. The figure shows that the

execution of the optimistic simulator in 1 processor allows significant speedups (2.91 for

20x20 models, 3.17 for 30x30 models) in comparison to the conservative simulator

running on a single processor. The speedup factor obtained by executing the simulation in

4 machines using the optimistic approach instead of the equivalent partitioning for the

conservative approach is approximately 2.45 for 20x20 and 30x30 models. The execution

of the model using our approach in 4 processors enables speedup factors of up to 9.15 in

comparison to the execution in a single-processor using the pessimistic technique.

Although the execution of both 20x20 and 30x30 models using the pessimistic approach

in 4 processors outperforms our simulator executing in 1 processor, it is only by a

relatively small fraction (the speedup factor is .82-.86), showing the good performance of

our simulator.

Other tests could be executed to better analyze the performance of the new

simulator once some of the issues with Warped are solved. Some of these experiments

include:

o Execution of life model using configurations that are more (or less) prone to

having rollbacks in the participating nodes. This would allow determining the

impact on performance of executing models where rollbacks are more (or

less) frequent.

o Execution of Cell-DEVS models where the interaction between neighboring

cells is frequent. For example, a model of bacteria reproduction (discussed in

 138

[Ame03]) allows studying the propagation of a marine germ over a surface.

The rules that describe the concentration of bacteria require frequent

interaction with the neighborhood and would enable a characterization of

performance for similar models.

o Execution of Cell-DEVS models where there is seldom interaction between

neighboring cells. The behavior of people in a metro station, described in

[Ame03], has these characteristics. As it was suggested earlier, this would

allow a characterization of performance for similar models.

o Execution of a complex DEVS model, for example the automated

manufacturing system (AMS) described in [Gli04], using a distributed

environment. We could define different partitions and determine their impact

on the performance of the simulations.

 139

Chapter 7: CONCLUSIONS

This dissertation introduces a new flat simulation technique for Parallel DEVS and Cell-

DEVS based on Time Warp, a well-known optimistic synchronization protocol. Our

efforts address the need for efficient, fast execution of models using parallel and

distributed simulation.

We propose an optimistic distributed mechanism that enables achieving higher

degrees of parallelism than previous efforts, which only allowed exploiting parallelism

that was inherent to the DEVS formalism. In the previous parallel version of the CD++

tool, synchronization tasks were in charge of a unique DEVS processor, root coordinator.

Analogous approaches are implemented by other conservative simulators. In general, the

centralization of all scheduling tasks creates a bottleneck in root coordinator and limits

the degree of parallelism. Under our proposed approach, scheduling tasks are distributed

on the logical processes; each node coordinator is in charge of the scheduling tasks for

the local simulation objects. Node coordinators advance the simulation optimistically,

assuming that there will be no straggler events. In case of detecting a violation to the

local causality constraint, a rollback mechanism allows recovering from it.

The simulation approach we propose is carried out by four DEVS processors,

namely simulator, flat coordinator, node coordinator, and root coordinator. Our design

takes into consideration previous studies showing the impact of communication among

processors on the overall performance of the simulator. We propose a flat simulation

 140

mechanism, as opposed to the hierarchical mechanism implemented by other versions of

CD++ and other tools. Our design eliminates the need for intermediate coordinators by

transforming the hierarchical structure of the model into a more simple, non-hierarchical

one. As a result, fewer messages have to be exchanged and, therefore, the communication

overheads are reduced.

Evaluating the performance of simulation engines can be a very complex task.

Instead of limiting our effort solely to testing individual models, we developed

DEVStone, a synthetic benchmark to aid not only this but also future initiatives in the

area, as ongoing developments intended to improve DEVS simulators also require a way

to assess their performance. DEVStone is a synthetic model generator that automatically

creates models which resemble real-world applications.

We used DEVStone to study the performance of our new CD++ simulator, and to

compare its overhead with other engines supported by the tool. The use of DEVStone

provided a common metric that made the comparisons straightforward. Moreover, less

time had to be spent in developing models, and a larger batch of such models could be

executed with less effort. Thus, it is easier to study the performance of the tool for many

models with different characteristics.

DEVStone can be used in any simulator with capabilities for defining and

executing Dhrystone code. We can use single-layered models for comparison with tools

with non-hierarchical structures. Likewise, if the chosen modeling technique does not

support the execution of internal transitions, we can compare the simulators by building a

DEVStone in which the execution time for internal transitions is zero.

 141

Using DEVStone, we compared the overhead of our new technique with the

overhead of previous implementations. Although the overhead associated with

synchronization tasks implemented by our simulator can be considerable, it still

outperformed previous alternatives for some models in single-processor executions. This

is a consequence of the flat mechanism implemented in our engine that outweighs, in

some cases, the increased overhead associated with its more complex implementation.

More importantly, we showed that when executing different types of DEVS models, the

overhead is reasonable small (2.5%-5%).

We showed that the execution times for a particular Cell-DEVS model can be

reduced using distributed simulation. Different model sizes where considered, ranging

from 256 to 2500 cells. The execution of the model in a distributed environment allowed

achieving better performance than stand-alone execution. Using distributed

environments, our simulator outperforms other alternatives and achieves considerable

speedups.

7.1 FUTURE WORK

There are several topics of interest for future research, which include:

o Working to solve the problems associated with the rollback mechanism

associated with the Warped middleware. As we discussed in Chapter 6, we

have experienced problems when receiving straggler messages in a simulator

object during the execution of DEVS and Cell-DEVS models. We have

 142

identified the code that forces the simulation to stop and, although this is out

of the scope of our work, we are working to solve this problem.

o In terms of performance, the impact of using different parameters for the Time

Warp protocol has yet to be determined. For example, the use of a dynamic

cancellation strategy could lead to better performance, as suggested in

[Rad96]. Dynamic cancellation techniques allow LPs to decide at runtime

which cancellation strategy (i.e., lazy cancellation or aggressive cancellation)

should be used, based on execution statistics.

o Extensions to the types of models created by DEVStone. Our first goal with

DEVStone was to analyze and compare the performance of simulators running

on a single processor. Our synthetic benchmark can be extended to generate

models that could be easily partitioned across multiple processors. A simple

approach is to generate a model with n coupled models in its top level. This

would allow a straightforward partition into n machines. The internal structure

of the coupled components could be based on the types of models already

developed in this work.

o Analysis of different partition strategies. The choice of how to partition a

model has an effect on its performance in parallel environments, as suggested

in [Tro01b]. In many cases, determining the best partition for DEVS and

Cell-DEVS models is not obvious. Having a characterization of several

models and the best alternatives to partition each of them can help users

decide how to distribute the execution of new models.

 143

o Support for a dynamic partitioning mechanism. In relation to the previous

point, dynamic partitioning mechanisms could be implemented in CD++.

Dynamic partitioning allows modifying at runtime the partition used for the

model. More specifically, this strategy could allow migrating a simulator

running on a logical process where the load is heavy, to a different logical

process where the load is lighter.

o Further analysis of simulator performance using a faster computer network.

The performance analysis presented in this work was carried out on a

relatively slow network, where the communication between machines is

limited to a total of 10 Mbits per second. It would be interesting to execute the

experiments in a faster network (e.g., using a 100-Mbit switch) for further

analysis of the communication overheads, and comparison with current

results.

 144

REFERENCES

[Ame01] Ameghino, J.; Troccoli, A.; Wainer, G. “Models of complex physical systems
using Cell-DEVS.” Proceedings of the 34th Annual Simulation Symposium. Seattle, WA.
USA. 2001.

[Ame03] Ameghino, J.; Wainer, G.; Glinsky, E. “Applying Cell-DEVS in Models of
Complex Systems.” Proceedings of the Summer Computer Simulation Conference.
Montreal, QC. Canada. 2003.

[Bry77] Bryant, R.E. Simulation of Packet Communication Architecture Computer
Systems. Massachusetts Institute of Technology, Cambridge, MA. USA. 1977.

[Cha79] Chandy, K.; Misra, J. “Distributed Simulation: A Case Study in Design and
Verification of Distributed- Programs.” IEEE Transactions on Software Engineering, pp.
440-452. 1979.

[Cha81] Chandy, K.; Misra, J. Asynchronous distributed simulation via a sequence of
distributed systems. ACM Transactions on Computer Systems. 3(1), pp. 63-75. 1981.

[Cha89] Chandy, K.; Sherman, R. “The Conditional Event Approach to Distributed
Simulation” Proceedings of the Distributed Simulation Conference. Miami, FL. USA.
1989.

[Che04] Saehoon Cheon, Chungman Seo, Sunwoo Park, Bernard P. Zeigler, “Design and
Implementation of Distributed DEVS Simulation in a Peer to Peer Network System.”
Advanced Simulation Technologies Conference – Design, Analysis, and Simulation of
Distributed Systems Symposium. Arlington, USA. 2004.

[Cho94a] Chow, A.C.; Zeigler, B.P. “Parallel DEVS: A parallel, hierarchical, modular
modeling formalism.” Proceedings of the Winter Computer Simulation Conference.
Orlando, FL. USA. 1994.

[Cho94b] Chow, A.C.; Kim, D.C.; Zeigler, B.P. “Abstract Simulator for the parallel
DEVS formalism.” AI, Simulation, and Planning in High Autonomy Systems.
Gainesville, FL. USA. 1994.

[Cho02] Chou, H-H.; Huang, W.; Reggia, J. “The Trend cellular automata programming
environment for artificial life, parallel computing, and simulation research” Transactions
of the Society for Modeling and Simulation International. vol. 78(2), pp. 59-75. 2002.

[Chr90] Christensen, E.R. Hierarchical optimistic distributed simulation: combining
DEVS and Time Warp. PhD Thesis, University of Arizona. 1990.

 145

[Dav00a] Davidson, A.; Wainer, G. “Specifying truck movement in traffic models using
Cell-DEVS.” Proceedings of the 33rd IEEE/SCS Annual Simulation Symposium.
Washington DC, USA. 2000.

[Dav00b] Dávila, J.; Uzcágegui, M. “GALATEA: A multi-agent, simulation platform.”
Proceedings of the International Conference on Modeling, Simulation and Neural
Networks. Mérida, Venezuela. 2000.

[Del02] de Lara, J.; Vangheluwe, H. “ATOM3: A Tool for Multi-Formalism Modeling
and Meta-Modeling.” European Joint Conferences on Theory And Practice of Software.
Grenoble, France 2002.

[Dia01] Díaz, A.; Vázquez, V.; Wainer, G. “Application of the ATLAS language in
models of urban traffic.” Proceedings of the Annual Simulation Symposium. Seattle,
WA. USA. 2001.

[Don96] Dongarra, J. et al. MPI: The Complete Reference. The MIT Press. 1996.

[Ell04] Elliott, J. M. G. “Cellsprings.” Available via: <http://jmge.net/java/csprings/>.
[Accessed August, 2004.]

[Fil02a] Filippi, J-B.; Bernardi, F.; Delhom, M. “The JDEVS environmental modeling
and simulation environment” Proceedings of the the IEMSS’02 Conference on Integrated
Assessment and Decision Support. Lugano, Switzerland. 2002.

[Fil02b] Filippi, J-B.; Chiari, F.; Bisgambiglia, P. “Using JDEVS for the modeling and
simulation of natural complex systems.” Proceedings of the AI, Simulation and Planning
Conference. Lisbon, Portugal. 2002.

[Fre01] Freiwald, U.; Weimar, J.R. “JCASim - a Java system for simulating cellular
automata” Theoretical and Practical Issues on Cellular Automata (ACRI 2000), S.
Bandini and T.Worsch (eds), Springer Verlag, London. 2001.

[Fuj90] Fujimoto, R. M. 1990. Parallel Discrete Event Simulation. Communications of
the ACM, 33(10):31-53.

[Fuj99] Fujimoto, R.M. Parallel and Distribution Simulation Systems. Wiley. 1999.

[Fuj01] Fujimoto, R.M. “Parallel and Distributed Simulation Systems.” Proceedings of
the Winter Computer Simulation Conference. Phoenix, AZ. USA. 2001.

[Gar70] Gardner M. The fantastic combinations of John Conway’s new solitaire game
“Life.” Scientific American. vol. 23(4). pp. 120–123. 1970.

[Gli02a] Glinsky, E.; Wainer, G. “Definition of Real-Time simulation in the CD++
toolkit.” Proceedings of the Summer Computer Simulation Conference. San Diego, CA.
USA. 2002.

[Gli02b] Glinsky, E.; Wainer, G. “Performance analysis of DEVS environments.”
Proceedings of AI Simulation and Planning. Lisbon, Portugal. 2002.

 146

[Gli02c] Glinsky, E.; Wainer, G. “Performance Analysis of Real-Time DEVS Models.”
Proceedings of the Winter Computer Simulation Conference. San Diego, CA. USA.
2002.

[Gli02d] Glinsky, E.; Wainer, G. “Definition of Real Time Simulation in the CD++
toolkit.” Master’s thesis. Departamento de Computación. Facultad de Ciencias Exactas y
Naturales. Universidad de Buenos Aires. Argentina. 2002.

[Gli04] Glinsky, E.; Wainer, G. “Real-Time CD++: an Environment for Modeling and
Simulation of Hybrid Hardware/Software Systems.” Accepted for publication in
Proceedings of the Winter Computer Simulation Conference. Washington DC, USA.
December, 2004.

[Gro96] Gropp, W.; Lusk, E.; Doss, N.; Skjellum, A. “A high-performance, portable
implementation of the MPI message-passing interface standard.” Parallel Computing.
vol. 22, pp. 789-828. 1996.

[Him04] Himmelspach, J.; Uhrmacher, A.M “A Component-Based Simulation Layer for
JAMES.” Proceedings of the 18th Workshop on Parallel and Distributed Simulation
(PADS). Kufstein, Austria. 2004.

[HLA00] IEEE Standard for Modeling and Simulation (M&S) High Level Architecture
(HLA) — Framework and Rules. IEEE Std. 1516-2000. September, 2000.

[Jef85] Jefferson, D.R. “Virtual time.” ACM Transactions on Programming Languages
and Systems. vol. 7(3), pp. 404-425. July, 1985.

[Kim94] Kim, T.G. “DEVSim++: C++ based Simulation with Hierarchical Modular
DEVS Models.” User’s Manual CORE Lab, EE Dept, KAIST, Taejon, Korea. 1994.

[Kim96] Kim, K.H.; Seong, Y.R.; Kim, T.G.; Park, K.H. “Distributed Simulation of
Hierarchical DEVS Models: Hierarchical Scheduling Locally and Time Warp Globally”
Transactions of the Society for Modeling and Simulation International. vol. 13(3), pp.
135-154. 1996.

[Kim00a] Kim, K.; Kang W.; Sagong, B.; Seo, H. “Efficient Distributed Simulation of
Hierarchical DEVS Models: Transforming Model Structure into a Non-Hierarchical
One.” Proceedings of the 33rd Annual Simulation Symposium. Washington DC, USA.
2000.

[Kim00b] Kim, K.; Kang, W. “A CORBA-Based Distributed Simulation Methodology
for Hierarchical DEVS.” IASTED International Conference on Applied Informatics.
Innsbruck, Austria. 2000.

[Kim04] Kim, K.; Kang, W. “CORBA-Based, Multi-threaded Distributed Simulation of
Hierarchical DEVS Models: Transforming Model Structure into a Non-hierarchical One.”
International Conference on Computational Science and Its Applications (ICCSA).
Assisi, Italy. 2004.

 147

[Mar96] Martin, D.; McBrayer, T.; Wilsey, P. “WARPED: Time Warp Simulation
Kernel for Analysis and Application Development.” Proceedings of the 29th Hawaii
International Conference on System Sciences. 1996.

[Mar97] Martin, D.; McBrayer, T.; Radhakrishan, R.; Wilsey, P. “Time Warp Parallel
Discrete Event Simulator.” Technical report. Computer Architecture Design Laboratory.
University of Cincinnati. USA. 1997.

[Mor02] Moreno, N.; Ablan, M.; Tonella, G. “SPASIM: A Software to Simulate Cellular
Automata.” Procedings of the Conference on Integrated Assessment and Decision
Support (IEMSS). Lugano, Switzerland. 2002.

[MPI95] Message Passing Interface Forum. MPI: A Message-Passing Interface standard
(version 1.1). Technical report. Available via: <http://www.mpi-forum.org>. [Accessed
August, 2004].

[Nic97] David M. Nicol and Jason Liu “The dark side of risk.” Proceedings of the
Workshop on Parallel and Distributed Simulation (PADS). Lockenhaus, Austria. 1997.

[Nut04] Nutaro, J. ADEVS website. Available via
<http://www.ece.arizona.edu/~nutaro/>. [Accessed May, 2004]

[OMG02] Object Management Group. The common object request broker: architecture
and specification. Revision 3.0. OMG Technical report 2002-06-01, 492 Old Connecticut
Path, Framingham, MA. USA.

[Pra99] Praehofer, H.; Sametinger, J.; Stritzinger, A. “Discrete Event Simulation using
the JavaBeans Component Model.” Proceedings of International Conference On Web-
Based Modeling & Simulation. San Francisco, CA. USA. 1999.

[Rad96] Radhakrishnan, R.; McBrayer, T.J.; Subramani, K.; Chetlur, M.; Balakrishnan,
V.; Wilsey, P.A. “A Comparative Analysis of Various Time Warp Algorithms
Implemented in the WARPED Simulation Kernel.” Proceedings of the Annual
Simulation Symposium, pp. 107-116. New Orleans, LA. USA. 1996.

[Raj98] Rajasekaran, U. K. V. Improving the communication subsystem performance of
warped. Master's thesis, University of Cincinnati, November 1998.

[Rao98] Rao, D.M.; Thondugulam, N.V.; Radhakrishnan, R.; Wilsey, P.
“Unsynchronized parallel discrete event simulation.” Proceedings of the Winter
Computer Simulation Conference. Washington DC, USA. 1998.

[Ron96] Rönngren, R.; Liljenstam, M.; Montagnat, J.; Ayani, R. “Transparent
Incremental State Saving in Time Warp Parallel Discrete Event Simulation.” Proceedings
of the 10th ACM/IEEE/SCS Workshop on Parallel and Distributed Simulation.
Philadelphia, PA. USA. May, 1996.

[Rod99] Rodriguez, D.; Wainer, G. “New extensions to the CD++ tool.” Proceedings of
the Summer Computer Simulation Conference. Chicago, IL. USA. 1999.

 148

[Sar98] Sarjoughian, H.S.; Zeigler, B.P. “DEVSJAVA: Basis for a DEVS-based
collaborative M&S environment.” Proceedings of the International Conference on Web-
Based Modeling and Simulation. vol. 5, pp. 2936. San Diego, CA. USA. 1998.

[Seo04] Seo, C.; Park, S.; Kim, B.; Cheon, S.; Zeigler, B. “Implementation of Distributed
high-performance DEVS Simulation Framework in the Grid Computing Environment.”
Advanced Simulation Technologies conference (ASTC). Arlington, VA. USA. 2004.

[Tro01a] Troccoli, A.; Wainer, G. “CD++, a tool for simulating Parallel DEVS and
Parallel Cell DEVS models.” Technical report. Departamento de Computación, Facultad
de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Argentina. 2001.

[Tro01b] Troccoli, A.; Wainer, G. “Performance results of parallel Cell-DEVS
execution.” Proceedings of the Summer Computer Simulation Conference. Orlando, FL.
USA. 2001.

[Tro03] Troccoli, A.; Wainer, G. “Implementing Parallel Cell-DEVS.” Proceedings of
the Annual Simulation Symposium. Washington DC, USA. 2003.

[Wai98] Wainer, G.; Giambiasi, N. “Specification, modeling and simulation of timed
Cell-DEVS spaces.” Technical Report n.: 98-007. Departamento de Computación.
Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Argentina.
1998.

[Wai00] Wainer, G.; “Improved cellular models with parallel Cell-DEVS.” Transactions
of the SCS. vol 17 (2). June 2000.

[Wai01] Wainer, G.; S. Daicz, S.; De Simoni, L.; Wasserman, D. “Using the ALFA-1
simulated processor for educational purposes.” ACM Journal on Educational Resources
in Computing. vol. 1(4), pp. 111-151. December 2001.

[Wai02] Wainer, G. “CD++: a toolkit to develop DEVS models.” Software - Practice and
Experience. vol. 32, pp. 1261-1306. 2002.

[Wai03] Wainer, G., Chen, W. “A Framework for Remote Execution and Visualization
of Cell-DEVS Models.” Transactions of the Society for Modeling and Simulation
International. vol. 79 (11), pp. 626-647. November, 2003.

[Wai04] Wainer, G., Glinsky, E. “Model-Based Development of Embedded Systems with
RT-CD++.” IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS), Work- in-Progress session. Toronto, ON. Canada. 2004.

[War04] Warped: A Time Warp Simulation Kernel. Warped Documentation for version
1.0. Available via <www.ececs.uc.edu/~paw/warped/>. [Accessed September, 2004.]

[Wei84] Weicker, R. P. “Dhrystone: A synthetic systems programming benchmark.”
Communications of the ACM, volume 27, pp. 1013-1030, 1984.

 149

[Wes96] Darrin West, Kiran Panesar, Kiran Panesar. “Automatic Incremental State
Saving.” Proceedings of the 10th ACM/IEEE/SCS Workshop on Parallel and Distributed
Simulation. Philadelphia, PA. USA. May, 1996.

[Wol86] Wolfram, S. Theory and applications of cellular automata. Advances Series on
Complex Systems. World Scientific. Singapore. 1986.

[Woj04] Wojtowicz, J. “1D and 2D Cellular Automata explorer.” Available via:
<http://psoup.math.wisc.edu/mcell/>. [Accessed September, 2004.]

[Zei76] Zeigler, B. Theory of Modeling and Simulation. Wiley. 1976.

[Zei93] Zeigler, B.P.; Kim, J. “Extending the DEVS-scheme knowledge-based simulation
environment for real-time event-based control.” IEEE Transactions on Robotics and
Automation. vol. 9 (3), pp. 351-356. 1993.

[Zei96] Zeigler, B.; Moon, Y.; Kim, D. “DEVS-C++: A High Performance Modeling and
Simulation Environment.” 29th Hawaii International Conference on System Sciences
(HICSS'96) Volume 1: Software Technology and Architecture. Hawaii, USA. 1996.

[Zei97a] Zeigler, B.; Moon, Y.; Kim, D.; Ball, G. “The DEVS Environment for High-
Performance Modeling and Simulation” IEEE Computational Science and Engineering.
vol. 4 (3), pp. 61 -71. 1997.

[Zei97b] Zeigler, B.P.; Kim, D.; Praehofer, H. “DEVS Formalism as a Framework for
Advanced Distributed Simulation.” Proceedings of the International Workshop on
Distributed Interactive Simulation and Real-Time Applications. Eilat, Israel. 1997.

[Zei99a] Zeigler, B.P.; H.S. Sarjoughian, “Support for Hierarchical Modular Component-
based Model Construction in DEVS/HLA.” Simulator Interoperability Workshop. 1999.

[Zei99b] Zeigler, B.P. “A Theory-based Conceptual Terminology for M&S VV&A.”
Proceedings of the Simulation Interoperability Workshop. Orlando, FL. USA. 1999.

[Zei00] Zeigler, B.; Kim, T.; Praehofer, H. Theory of Modeling and Simulation:
Integrating Discrete Event and Continuous Complex Dynamic Systems. Academic Press.
2000.

