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ABSTRACT: The use of embedded computer systems to solve application problems requires an understanding of 
both the hardware platform involved and the software that customizes the hardware for the particular application. 
Modeling and simulation is used increasingly in developing the hardware and software of such systems. We have 
developed a generic framework to simulate the computer systems at the hardware platform level that can be used by 
the designers at different stages of the system development. For modeling platform components, the DEVS (Discrete 
event system specification) formalism is used. The simulation framework for these models is defined, following the 
specifications of the HLA (High level architecture) standard. We then describe the proposed framework of the 
simulator and how it interacts with general models of basic hardware platform components. We finally discuss a case 
study where this proposed simulation methodology is implemented on a specific hardware platform along with the 
results of the case study. 
 
1. Introduction 
 
The use of embedded computer systems to solve 
application problems requires an understanding of both 
the hardware platform involved, and the software that 
customizes the hardware for the particular application. 
Modeling and simulation is used increasingly in 
developing the hardware and software of such systems. 
The models created by hardware engineers while 
developing hardware components often contain details 
that are irrelevant to software developers. Software 
developers would prefer a programmer’s model of the 
hardware platform, which would abstract away 
irrelevant hardware details and focus only on the 
information relevant to software development. Ideally, 
the more abstract programmer’s models would have 
larger grained simulations that are less computationally 
expensive than the hardware models.  
 
This paper develops a framework to simulate computer 
systems at the hardware platform level, with the goal of 
supporting designers at different stages of system 
development. Within the framework, platform 
components are modeled using the Discrete EVent 
System specification (DEVS) formalism. The 
simulation framework for these models is defined, 
based on the specifications of the High Level 
Architecture (HLA) standard. Section 2 provides 
background information about the HLA and DEVS, 
including a layered approach to using DEVS and the 

HLA for a simulator. Section 3 describes the proposed 
simulation framework and how interacts with the 
general models of basic hardware platform components. 
Section 4 presents a case study where the proposed 
simulation methodology was applied to a specific 
hardware platform. Section 5 presents conclusions. 
 
2. Background 
 
This section introduces the HLA, DEVS, and some 
related work. A detailed discussion of DEVS is outside 
of the scope of this paper and can be found elsewhere 
[1]. This section briefly introduces those aspects of 
DEVS that are relevant to the component interactions, 
and describes other research that has mapped DEVS 
onto the HLA. 
 
The HLA was originally developed by the US 
Department of Defense, and has evolved into IEEE 
standard 1516-2000. The architecture provides a 
component-oriented framework within which 
simulation developers can structure and describe their 
simulation application. In particular, the HLA addresses 
two key issues: promoting interoperability among 
simulations, and aiding the reuse of models. In the 
terminology of the HLA [2], the simulation system 
created by combining constituent simulations is a 
federation, and each constituent simulation is a 
federate. 
 



  

The baseline of the HLA includes three specifications. 
The HLA Rules [3] define the responsibilities and 
relationships among the components of an HLA 
federation. The HLA Interface Specification [4] 
provides a specification of the functional interface 
between the HLA federates and the HLA RunTime 
Infrastructure (RTI). The RTI is a middleware that 
provides common services to federates, and enables a 
collection of federates to interact dynamically as a 
federation. This specification defines the RTI services 
API and identifies “callback” functions that must be 
provided by each federate. The HLA Object Model 
Template (OMT) [5] provides a common 
documentation standard for Simulation and Federation 
Object Models (SOM/FOM). A SOM defines the 
objects and interactions relevant to a single federate, 
while a FOM defines object models, communication 
between federates, and other information relevant to the 
interoperation of all federates in a federation. 
 
The HLA Interface Specification divides the services 
provided by the RTI into six management areas, as 
summarized in table 1. 
 
Figure 1 shows the major components of the RTI used 
in this research. The RTI library (libRTI) provides the 
RTI services specified in the HLA Interface 
Specification. The federation executive (FedExec) 
manages the federates within a single federation. It 
allows federates to join and to resign, and each federate 
joining the federation is assigned a federation wide 
unique handle. The handle facilitates data exchange 
between participating federates.  
The RTI Executive (RtiExec) manages multiple 
federation executions in a network. It helps in 
initializing RTI components for each federation 
executive (FedExec), and also ensures that each 
FedExec has a unique name. 
 

DEVS is a system’s formalism for describing 
hierarchical, modular models in a discrete event 
simulation. The DEVS formalism focuses on the 
changes of state variable values and generates time 
segments that are piecewise constant and continuous. 
All user-defined models are developed as either atomic 
or coupled models. An atomic model is a state machine, 
and the state of the model is changed by external and 
internal events that occur as time elapses. Input and 
output ports allow models to be interconnected to create 
new coupled models. When an output port on one 
model, say model A, is connected to the input port on 
another, say model B, then output events generated 
through the output port by model are communicated as 
external events to model B. Coupling creates a 
hierarchical tree, with atomic models at the leaves. 
 
Various software tools have been developed to 
implement the DEVS formalism, such as DEVS-C++ 
[6], CD++ [7] and DEVSim++ [8].  These tools map 
DEVS model descriptions to a simulation engine, and 
provide libraries and methods that enable the DEVS 
models to interact as a hierarchical simulation based on 
the coupling hierarchy. 
 
Zeigler et al [9] designed and developed an HLA 
compliant simulation environment called DEVS/HLA. 
In their approach, DEVS models are mapped onto the 
RTI using the layered approach shown in figure 2. The 
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Figure 1: RTI Major Components [13]. 

 

 
Management Area Activities Supported 
Federation Management Manages federation execution. Initializes name space, transportation, 

routing spaces etc. 
Declaration Management Specifies the data a federate sends and/or receives. 
Object Management Creates, modifies and deletes objects and interactions. Facilitates object 

registration and distribution. Coordinates attribute updates among 
federates. Accommodates various transportation and time management 
schemes. 

Ownership Management Supports transfer of ownership for individual object attributes. Offers 
both “push” and “pull” based transactions. 

Time Management Establishes or associates events with federate time. Regulates 
interactions, attribute updates, object reflection or object deletion by 
federate time scheme. Supports interaction between federates having 
different time schemes. 

Data Distribution Management Supports efficient routing of data. 
 

Table 1: RTI Management Areas partitioned in FedExec life cycle [13]. 



  

mapping exploits the information contained within the 
DEVS models to automate as much as possible of the 
programming work required in constructing the HLA 
compliant simulations. The goal is to facilitate a bi-
directional transfer of information between the OMT 
Development Tool (OMDT) that captures OMT 
information and the DEVS model description. 
 
The DEVS formalism layer of figure 2 is used for 
defining the models. The DEVS-C++ tool includes a 
library to interface DEVS and the RTI in a C++ 
environment. This library contains methods for attribute 
updates, attribute reflections, interaction updates, 
interaction receive, object discovery and quantizers. A 
quantizer object is associated with each attribute that 
the modeler would like to publish, and the quantizer 
checks for the attribute value crossing programmed 
thresholds. Update messages are only sent when a value 
crosses a threshold. Quantizers reduce message update 
traffic, and the size of the quantizers is directly related 
to the accuracy and the speed of the computation 
required. 
 
The simulator/implementation layer of figure 2 is a 
simulation engine, which takes care of all time and data 
interactions among the DEVS models. It also acts as a 
message translator between the DEVS models and the 
RTI. 
 
The research reported below shares some similarities 
with previous work by Fay and Holoway [10]. They 
model a hardware platform, and simulate the execution 
of programs using the self-contained federation 
paradigm. In this paradigm, the federation executes as a 
single process on a single machine. They obtain 
significant performance gains using the alternate 
paradigm, since they eliminate the need for 
communication overhead and simplify the runtime 
coupling of models. Significant differences in the 
research reported here include the use of DEVS to 
model components, and the use of a standard HLA 
federation model. 
 

3. Simulation Framework 
 
This section presents a simplified system level 
framework for the hardware platform simulator using 
DEVS and HLA/RTI. The discussion starts with a 
system level block diagram, and includes a generic 
simulation flow for a federate. The description of the 
DEVS atomic models used for each hardware 
component is outside of the scope of this paper and can 
be found elsewhere [11]. 
 
A key simplification that simplifies the proposed 
framework is that only DEVS atomic models are used. 
The rationale for this simplification include controlling 
atomic models directly from the RTI, therefore an extra 
layer of DEVS middleware to support coupled models 
is not required. This approach effectively removes 
model coupling and flattens the DEVS modeling 
hierarchy. The resulting simplified structure is shown in 
figure 3, where the DEVS simulator/tool present in 
figure 2 is no longer required. 
 
Figure 4 shows a system level block diagram for a 
simple hardware platform simulator. It contains the 
following basic hardware components: Processor 
module, Bus controller module, Memory module, 
Interrupt controller module and Timer module. The 
Processor module is further divided into three units: 
Execution Unit (EU) that is responsible for decoding 
and executing all instructions, Bus Interface Unit (BIU) 
that is responsible for performing all external bus 
operations and Control Unit (CU) that is responsible for 
minimum/maximum mode and interrupt signals from 
other devices. This version of the framework has a 
single bus master (the processor); and therefore a bus 
arbiter module is not included. Each of these 
components is modeled as a DEVS atomic model, and 
is realized as a unique federate. The Runtime 
Infrastructure (RTI) provides the simulation platform 
for this federation. 
 
To create a specific hardware platform model, the 
DEVS atomic models of each component must be 
constructed. The atomic models must include input and 
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Figure 2: Layered approach to implement 
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Figure 3: A model of the proposed solution. 
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Figure 4: System-level block diagram for Hardware platform simulator. 
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Figure 5: Simulation flow chart of a federate. 



  

output ports to accommodate interactions among the 
components. Ideally, the component models would 
accumulate in a repository for reuse in different 
platform models. Once the component models are 
constructed, they must be coupled (logically) to indicate 
the information paths in the system and the types of 
information flowing on the paths. The coupling is 
logical (as opposed to creating a coupled model in the 
DEVS sense) in that the coupling information is used to 
identify data attributes that will be shared via the RTI, 
and also to specify the federates that will publish and 
subscribe to the attributes. A simple mapping from 
DEVS external events to RTI update calls is used to 
realize communication between components. 
The time advance requests issued in a platform 
simulation depend on the level of abstraction of the 
component models. If the models are accurate to bus 
cycles, the input/output ports would correspond to bus-
level interconnections, and information exchanges 
would follow the bus protocols for the components. At 
this level, time advances would typically be the same 
magnitude as the bus clock cycle. If more abstract 
models are implemented, then the inputs/outputs and 
interaction protocols can also be more abstract. For 
example, information transfers involving multiple bus 
lines might be modeled using a single port, information 
paths that might be multiplexed across the real bus 
might me modeled as separate paths, bus signals that 
are not relevant at the level of abstraction could be 
ignored, and the number of steps in bus protocols could 
be reduced. By reducing the number of steps in abstract 
interaction protocols, the resulting simulation will not 
experience as many time advance requests, and the 
magnitudes of requested time advances are likely to be 
integer multiples of the bus clock cycle. These more 
abstract models would not have bus cycle accuracy; 
however, they would result in simulations with faster 
real-time performance. 
 
Figure 5 shows the generic simulation flow of a 
federate. The left side of the figure is labeled with 
reference numbers corresponding to steps in the flow 
chart. The reference numbers simplify the following 
discussion of the flow. 
 
Step 1 is the initial step of the simulation in which a 
federate creates or joins a federation. If the federation 
does not exist, a new one is first created and then the 
federate is added to it. If a federation already exists, 
then the federate joins that federation. 
 
At step 2, the federate is initialized. Initialization 
consists of the Object/Model construction, defining the 
information to be published or/and subscribed (can be 
re-defined during simulation), defining the federate as 
time regulating and/or time constrained (can be re-
defined during simulation) and the registration of the 
federate with the federation executive. The FOM must 
also contain these published and subscribed attributes 

and parameters. The registration process registers the 
federate with the federation execution and returns an 
HLA object handle. The handle identifies the federate 
during subsequent interactions within the federation. 
 
Step 3 allows a user to input parameters for a federate 
before starting the simulation loop. This step is 
optional, as some federates do not need any user input. 
 
Step 4 is the first step in the simulation loop. In this 
step, a federate executes state transition functions 
according to its DEVS atomic model. 
 
Following step 4, a federate will perform either step 5 
or 6, depending upon its time management scheme. 
Step 5 is performed if a federate is time regulating only 
(i.e. only capable of sending Time Stamped Order 
(TSO) messages). The RTI grants a time advance 
according to the TSO message time. On the other hand 
if there is some incoming Receive Order (RO) message 
(i.e. a message with no time stamps) from another 
federate, then the RTI delivers this message to the 
federate without granting a time advance. Whether a 
time advance is granted or not, the simulation proceeds 
and the DEVS model transitions from one state to 
another. Step 6 is performed if a federate is time 
constrained (i.e. capable of receiving TSO messages). 
The RTI grants a time advance according to the Lower 
Bound Time Stamp (LBTS). The LBTS is the 
maximum time to which a time constrained federate 
may advance. The LBTS is determined by the RTI 
based on the lookahead values (a time period during 
which a federate does not send out any message) for 
each federate and TSO messages from all the time 
regulating federates. On the other hand if there is some 
incoming message (either TSO or RO) from another 
federate then the RTI delivers this message to the 
federate without granting a time advance. If a time 
advance is granted, the federate proceeds to step 7. If a 
time advance is not granted, the federate returns to the 
top of the simulation loop for another DEVS model 
state transition. 
 
At step 7, the federate checks whether the simulation 
loop will continue or stop. At step 8, a federate removes 
itself from the federation by disabling time 
management, resigning from the federation, deleting 
object instances, and, in the case where it is the last 
federate, destroys the federation. 
 
4. Case Study 
 
The proposed simulation framework, as discussed in 
section 4, for hardware platform modeling using the 
DEVS/HLA approach is verified by the case study. A 
hardware platform containing a processor (a simplified 
version of Intel 8088), a basic memory unit, a bus 
controller (a simplified version of Intel 8288), a basic 
interrupt controller and a basic timer unit is modeled 



  

using DEVS. This case study is for a synchronous 
platform, but no clock module is modeled. Each module 
assumes synchronous interactions and requests to 
schedule the future bus events as an integral number of 
clock ticks in the future. 
 
For this case study, a simple simulator is developed to 
run the instruction codes shown in tables 2 and 3. The 
simulator generates 10 even numbers, from 0 to 18, and 
stores them in the memory module. The instructions, 
their encoding, and clock timing information [12] are 
shown in table 2. Instruction execution times are 
determined by taking the number of clocks cycles 
required per instruction plus any effective address (EA) 
time required for the operand. The EA for the indexed 
operand in the MOV [BX],CH instruction is 5 clocks. 

During the execution of the main program, the interrupt 
controller module sends interrupt signals to the 
processor, resulting in the execution of the interrupt  
routine (shown in table 3). The processor’s interrupt 
behavior includes checking the interrupt flag; pushing 
the IP, CS and IF; sending the interrupt acknowledge to 
the interrupt controller; reading the vector type from the 
interrupt controller; calculating the starting address for 
the interrupt routine residing in the memory and 
clearing the instruction queue. The interrupt routine 
used in the case study increments a variable stored in 
the memory. The instruction details for the interrupt 
routine are shown in table 3 [12]. 
 
For this case study one simulation time unit represents 
one bus clock cycle, and one bus cycle is assumed to 

Opcode (Hex) Program Instructions Clock Cycle 
B500 MOV CH , 0 4 
BF0000 MOV DI , 0 4 
B102 MOV CL , 2  4 
BB0000 xyz : MOV BX , 00 4 
03DF ADD BX , DI 3 
882F MOV [BX] , CH  9+EA = 9+5 = 14 
47 INC DI 2 
02E9 ADD CH , CL 3 
83C70A CMP 10 , DI 4 
750D JNE xyz 4 (when not executed) 

16 (when jump executed) 
F4 HLT 2 

Table 2: Main program for the case study 
 

Op-code (Hex) Program Instructions Clocks 
53 PUSH BX 15 

BB0020 MOV BX , 32 4 
8A07 MOV AL , [BX] 8+EA = 8+5 = 13 
FEC0 INC AL 3 
8807 MOV [BX] , AL 9+EA = 9+5 = 14 
5B POP BX 12 
CF IRET 32 

Table 3: Interrupt routine’s opcodes for the case study 

____________________________________________________________________ 
// Setting up the data structure required to send this object's state to the RTI. 
RTI::AttributeHandleValuePairSet* Memory::CreateNVPSet() 
{ 
   RTI::AttributeHandleValuePairSet* pMemoryAttributes = NULL; 
    
   //------------------------------------------------------ 
   // Set up the data structure required to send this object's state to the RTI. 
   //------------------------------------------------------ 
   pMemoryAttributes = RTI::AttributeSetFactory::create( 1 ); 
    
   pMemoryAttributes -> add( this -> GetDataFromMemRtiId(), 

      (char*) &this -> GetDataFromMem(), (sizeof(int)) ); 
   return pMemoryAttributes; 
} 
______________________________________________________________________ 

 
Figure 6: Creating an AHVPS for communication among Module/Federates. 



  

consist of four bus clock cycles. The models are 
abstract, and within a bus cycle the timing details are 
not implemented accurately. For the execution unit of 
the processor the timing details are implemented with 
one clock cycle accuracy. 
 
The FOM for the case study identifies the time 
management parameters and the attributes used by each 
federate. The attributes correspond to information 
exchanged through the input/output ports of the DEVS 
models of the components. For example all the 
attributes which the processor component sends to the 
memory component should be defined as ‘published’ 
by the processor federate and ‘subscribed’ by the 
memory federate. 
 
Attributes are sent from one federate to the other in the 
form of AttributeHandleValuePairSet (AHVPS). 
AHVPS is a set comprised of attribute handles, values 
and the size of the values. To create the AHVPS, a 
method CreateNVPSet(), extracted from the memory 
module’s software code, is shown in figure 6. The RTI 
method “AttributeSetFactory::create(1)” is used to 
create the AHVPS for only one AHVP, as there is only 
one attribute to send out i.e., “DataFromMem”. 
 
Figure 7 shows a time elapse request being sent to the 
to the RTI according to the time calculated (represented 
by the “requestTime”) for the next event. The 
lookahead value (see step 6 figure 5) is set to 0.5, 
meaning that the federate will not send any output until 
this period is elapsed. The time step value is set to 1.0, 
indicating that this is the maximum limit for the time 
elapse requested to the RTI. The final “requestTime” is 
calculated by adding the time step value of 1.0 and the 
“grantTime”, which is the time granted in the previous 
time elapse request. In other words the “grantTime” is 
the current simulation time. The RTI method 
“nextEventRequest(requestTime)” requests for the time 

elapse until the “requestTime”. In return, the RTI grants 
the time advance until the next event. The tick( ) 
function gives control to the RTI for processing the 
ongoing events/tasks. 
 
A logging capability (out2file in figure 7) is developed 
for all component models, and each federate has its own 
log file. Whenever a federate receives or updates an 
attribute it sends this information to its log file along 
with the with the simulator’s time stamp. The status of 
the internal registers for the processor federate and 
memory contents for the memory federate are also 
logged. 
 
The case study simulator was verified by analyzing the 
logs generated by the components during a simulation 
run and comparing these results with the theoretical 
values provided by tables 2 and 3. The processor is 
accurate to one clock cycle, and hence the simulation 
results for the execution timing for each program 
instruction should match the theoretical timing values. 
 
The following example analyzes the logs to verify the 
execution of MOV [BX], CH. Decimal values are used 
throughout the analysis. Table 2 shows that the 
instruction requires 14 clock cycles for the EU and the 
BIU to execute this instruction. Figure 8 shows a snap 
shot of the processor module’s log, when MOV 
[BX],CH is at the top of the Instruction queue (line 4). 
Executing the instruction should move the value in the 
CH register to the memory location at the address 
calculated by ((DS×16)+BX). Lines 2 and 3 show the 
values of the BX, CH and DS registers. Hence the 
execution should result in the value 2 being moved to 
the memory location at address 4×16+1 = 65. Line 1 
shows that the execution start time is 138.0. 
 
Figure 9 shows a snap shot of the memory module’s log 
corresponding to the completion of the instruction. 

_____________________________________________________________________ 
//-------------------Setting the lookahead time 
  lookahead = RTIfedTime(0.5); 
//------------------- 
  RTIfedTime requestTime(1.0); // requestTime = timeStep = 1.0 
  requestTime += grantTime; // grantTime is the time granted by the RTI during the last 
time elapse 
  // log the request 
  out2file << "\n\nRequest time = " << requestTime << endl; 
  timeAdvGrant = RTI::RTI_FALSE; 
  rtiAmb.nextEventRequest( requestTime ); 
  while( timeAdvGrant != RTI::RTI_TRUE ) 
    { //------------------------------------------------------ 
 // Tick will turn control over to the RTI so that it can process an event.  
 //------------------------------------------------------ 
    rtiAmb.tick(); 
    } 
______________________________________________________________________ 

 
Figure 7: Time elapse requested by a Federate using the RTI service methods. 



  

Lines 1 to 3 indicate that the Memory is commanded to 
write (control signal = 2) the value 2 at address 65. Line 
4 shows that the command was processed at time 152.0, 
which represents the end of the execution of the MOV 
[BX],CH instruction. Lines 5 through 9 show a memory 
dump after performing the command. Each line shows 
the values of 16 bytes of memory, starting sequentially 
at address 0 in line 5. The content of memory at address 
65 (represented by the second byte of line 9) is shown 
to be 2, indicating that the write was performed. A more 
complete analysis would also compare a complete 
memory dump before the operation to a complete 
memory dump after the operation to ensure that no 
other memory contents had changed. 
 
The difference between the execution start time (138.0 
from line 1 in figure 8) and end time (152.0 from line 4 
of figure 9) is 14 clock cycles. This result matches the 
theoretical clock cycle value (line 6 of table 2) required 
for the execution of the MOV [BX],CH instruction. 
 
5. Conclusions 
 
The HLA has been used to simulate a computer system 
at the hardware platform level. Hardware components 
are modeled as DEVS atomic models, and the 
HLA/RTI is used as a simulation platform in place of 
the simulation engines inherent to traditional DEVS 
tools. The approach has been verified in a case study to 
show that results can be accurate to within a clock 
cycle. The HLA-specific details that should be visible 
in component models include the attributes for DEVS 
input and output ports that should be 
published/subscribed to the RTI and defined in the 
HLA compliant FOM. 
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