

HLA to Simulate Computer Systems at the Hardware Platform Level

Dr. Trevor Pearce
Amir Saghir

Dr. Gabriel Wainer

Department of Systems and Computer Engineering
Carleton University
Ottawa, ON. Canada

{pearce, saghir, gwainer}@sce.carleton.ca

Keywords: hardware simulation, DEVS, HLA

ABSTRACT: The use of embedded computer systems to solve application problems requires an understanding of
both the hardware platform involved and the software that customizes the hardware for the particular application.
Modeling and simulation is used increasingly in developing the hardware and software of such systems. We have
developed a generic framework to simulate the computer systems at the hardware platform level that can be used by
the designers at different stages of the system development. For modeling platform components, the DEVS (Discrete
event system specification) formalism is used. The simulation framework for these models is defined, following the
specifications of the HLA (High level architecture) standard. We then describe the proposed framework of the
simulator and how it interacts with general models of basic hardware platform components. We finally discuss a case
study where this proposed simulation methodology is implemented on a specific hardware platform along with the
results of the case study.

1. Introduction

The use of embedded computer systems to solve
application problems requires an understanding of both
the hardware platform involved, and the software that
customizes the hardware for the particular application.
Modeling and simulation is used increasingly in
developing the hardware and software of such systems.
The models created by hardware engineers while
developing hardware components often contain details
that are irrelevant to software developers. Software
developers would prefer a programmer’s model of the
hardware platform, which would abstract away
irrelevant hardware details and focus only on the
information relevant to software development. Ideally,
the more abstract programmer’s models would have
larger grained simulations that are less computationally
expensive than the hardware models.

This paper develops a framework to simulate computer
systems at the hardware platform level, with the goal of
supporting designers at different stages of system
development. Within the framework, platform
components are modeled using the Discrete EVent
System specification (DEVS) formalism. The
simulation framework for these models is defined,
based on the specifications of the High Level
Architecture (HLA) standard. Section 2 provides
background information about the HLA and DEVS,
including a layered approach to using DEVS and the

HLA for a simulator. Section 3 describes the proposed
simulation framework and how interacts with the
general models of basic hardware platform components.
Section 4 presents a case study where the proposed
simulation methodology was applied to a specific
hardware platform. Section 5 presents conclusions.

2. Background

This section introduces the HLA, DEVS, and some
related work. A detailed discussion of DEVS is outside
of the scope of this paper and can be found elsewhere
[1]. This section briefly introduces those aspects of
DEVS that are relevant to the component interactions,
and describes other research that has mapped DEVS
onto the HLA.

The HLA was originally developed by the US
Department of Defense, and has evolved into IEEE
standard 1516-2000. The architecture provides a
component-oriented framework within which
simulation developers can structure and describe their
simulation application. In particular, the HLA addresses
two key issues: promoting interoperability among
simulations, and aiding the reuse of models. In the
terminology of the HLA [2], the simulation system
created by combining constituent simulations is a
federation, and each constituent simulation is a
federate.

The baseline of the HLA includes three specifications.
The HLA Rules [3] define the responsibilities and
relationships among the components of an HLA
federation. The HLA Interface Specification [4]
provides a specification of the functional interface
between the HLA federates and the HLA RunTime
Infrastructure (RTI). The RTI is a middleware that
provides common services to federates, and enables a
collection of federates to interact dynamically as a
federation. This specification defines the RTI services
API and identifies “callback” functions that must be
provided by each federate. The HLA Object Model
Template (OMT) [5] provides a common
documentation standard for Simulation and Federation
Object Models (SOM/FOM). A SOM defines the
objects and interactions relevant to a single federate,
while a FOM defines object models, communication
between federates, and other information relevant to the
interoperation of all federates in a federation.

The HLA Interface Specification divides the services
provided by the RTI into six management areas, as
summarized in table 1.

Figure 1 shows the major components of the RTI used
in this research. The RTI library (libRTI) provides the
RTI services specified in the HLA Interface
Specification. The federation executive (FedExec)
manages the federates within a single federation. It
allows federates to join and to resign, and each federate
joining the federation is assigned a federation wide
unique handle. The handle facilitates data exchange
between participating federates.
The RTI Executive (RtiExec) manages multiple
federation executions in a network. It helps in
initializing RTI components for each federation
executive (FedExec), and also ensures that each
FedExec has a unique name.

DEVS is a system’s formalism for describing
hierarchical, modular models in a discrete event
simulation. The DEVS formalism focuses on the
changes of state variable values and generates time
segments that are piecewise constant and continuous.
All user-defined models are developed as either atomic
or coupled models. An atomic model is a state machine,
and the state of the model is changed by external and
internal events that occur as time elapses. Input and
output ports allow models to be interconnected to create
new coupled models. When an output port on one
model, say model A, is connected to the input port on
another, say model B, then output events generated
through the output port by model are communicated as
external events to model B. Coupling creates a
hierarchical tree, with atomic models at the leaves.

Various software tools have been developed to
implement the DEVS formalism, such as DEVS-C++
[6], CD++ [7] and DEVSim++ [8]. These tools map
DEVS model descriptions to a simulation engine, and
provide libraries and methods that enable the DEVS
models to interact as a hierarchical simulation based on
the coupling hierarchy.

Zeigler et al [9] designed and developed an HLA
compliant simulation environment called DEVS/HLA.
In their approach, DEVS models are mapped onto the
RTI using the layered approach shown in figure 2. The

Inter Process Communication

RtiExec FedExec
libRTI

Federate

libRTI

Federate

Figure 1: RTI Major Components [13].

Management Area Activities Supported
Federation Management Manages federation execution. Initializes name space, transportation,

routing spaces etc.
Declaration Management Specifies the data a federate sends and/or receives.
Object Management Creates, modifies and deletes objects and interactions. Facilitates object

registration and distribution. Coordinates attribute updates among
federates. Accommodates various transportation and time management
schemes.

Ownership Management Supports transfer of ownership for individual object attributes. Offers
both “push” and “pull” based transactions.

Time Management Establishes or associates events with federate time. Regulates
interactions, attribute updates, object reflection or object deletion by
federate time scheme. Supports interaction between federates having
different time schemes.

Data Distribution Management Supports efficient routing of data.

Table 1: RTI Management Areas partitioned in FedExec life cycle [13].

mapping exploits the information contained within the
DEVS models to automate as much as possible of the
programming work required in constructing the HLA
compliant simulations. The goal is to facilitate a bi-
directional transfer of information between the OMT
Development Tool (OMDT) that captures OMT
information and the DEVS model description.

The DEVS formalism layer of figure 2 is used for
defining the models. The DEVS-C++ tool includes a
library to interface DEVS and the RTI in a C++
environment. This library contains methods for attribute
updates, attribute reflections, interaction updates,
interaction receive, object discovery and quantizers. A
quantizer object is associated with each attribute that
the modeler would like to publish, and the quantizer
checks for the attribute value crossing programmed
thresholds. Update messages are only sent when a value
crosses a threshold. Quantizers reduce message update
traffic, and the size of the quantizers is directly related
to the accuracy and the speed of the computation
required.

The simulator/implementation layer of figure 2 is a
simulation engine, which takes care of all time and data
interactions among the DEVS models. It also acts as a
message translator between the DEVS models and the
RTI.

The research reported below shares some similarities
with previous work by Fay and Holoway [10]. They
model a hardware platform, and simulate the execution
of programs using the self-contained federation
paradigm. In this paradigm, the federation executes as a
single process on a single machine. They obtain
significant performance gains using the alternate
paradigm, since they eliminate the need for
communication overhead and simplify the runtime
coupling of models. Significant differences in the
research reported here include the use of DEVS to
model components, and the use of a standard HLA
federation model.

3. Simulation Framework

This section presents a simplified system level
framework for the hardware platform simulator using
DEVS and HLA/RTI. The discussion starts with a
system level block diagram, and includes a generic
simulation flow for a federate. The description of the
DEVS atomic models used for each hardware
component is outside of the scope of this paper and can
be found elsewhere [11].

A key simplification that simplifies the proposed
framework is that only DEVS atomic models are used.
The rationale for this simplification include controlling
atomic models directly from the RTI, therefore an extra
layer of DEVS middleware to support coupled models
is not required. This approach effectively removes
model coupling and flattens the DEVS modeling
hierarchy. The resulting simplified structure is shown in
figure 3, where the DEVS simulator/tool present in
figure 2 is no longer required.

Figure 4 shows a system level block diagram for a
simple hardware platform simulator. It contains the
following basic hardware components: Processor
module, Bus controller module, Memory module,
Interrupt controller module and Timer module. The
Processor module is further divided into three units:
Execution Unit (EU) that is responsible for decoding
and executing all instructions, Bus Interface Unit (BIU)
that is responsible for performing all external bus
operations and Control Unit (CU) that is responsible for
minimum/maximum mode and interrupt signals from
other devices. This version of the framework has a
single bus master (the processor); and therefore a bus
arbiter module is not included. Each of these
components is modeled as a DEVS atomic model, and
is realized as a unique federate. The Runtime
Infrastructure (RTI) provides the simulation platform
for this federation.

To create a specific hardware platform model, the
DEVS atomic models of each component must be
constructed. The atomic models must include input and

Runtime Infrastructure (RTI)

DEVS formalism
(coupled or atomic)

Implementation using
DEVS tool

DEVS Simulator

DEVS formalism
(coupled or atomic)

Implementation using
DEVS tool

DEVS Simulator

Figure 2: Layered approach to implement

DEVS/HLA. [9]

Runtime Infrastructure (RTI)

DEVS formalism
(atomic class)

Implementation in
C++

DEVS formalism
(atomic class)

Implementation in
C++

Figure 3: A model of the proposed solution.

Runtime Infrastructure (RTI)

Bus Controller
Module

(DEVS-Atomic)

Memory Module
(DEVS-Atomic)

Interrupt Module
 (DEVS-Atomic)

Timer Module
(DEVS-Atomic)

Bus Interface Unit
(BIU)

(DEVS-Atomic)
Part of Processor

Module

Control Unit (CU)
(DEVS-Atomic)

Part of Processor
Module

Execution Unit (EU)
(DEVS-Atomic)

Part of Processor
Module

Figure 4: System-level block diagram for Hardware platform simulator.

Create/Join
Federation

Initialization
Object/Model construction

Setup object/interaction communication (Publish & Subscribe)
Initialize/enable time management

Registration with Federation

DEVS Model
state execution

A

Parameters Input (CLI or GUI)

B

1

2

3

4

5

6

7

8

Is a Federate Time
Regulating only?

Is a Time
advance granted

by the RTI?

Incoming Events
(only RO) from
other federates

A

No

Yes

Yes

No

Comment
Wait till time advance
is granted by RTI
according to TSO

Is a Time
advance granted

by the RTI?

Incoming Events
(TSO and/or RO)

from other
federates

A

No

Yes
B

Comment
Wait till time advance
is granted by RTI
according to LBTS

Disable Time Management; Resign
from Federation; Delete Object

Instances; In case of last federate
destroy the Federation.

Is simulation
time finished?

A
No

End Simulation

Yes

Comment
For any other Time Mangement
scheme (i.e., Time regulating &
constrained or Time constrained
only), a Federate follows this path.

Figure 5: Simulation flow chart of a federate.

output ports to accommodate interactions among the
components. Ideally, the component models would
accumulate in a repository for reuse in different
platform models. Once the component models are
constructed, they must be coupled (logically) to indicate
the information paths in the system and the types of
information flowing on the paths. The coupling is
logical (as opposed to creating a coupled model in the
DEVS sense) in that the coupling information is used to
identify data attributes that will be shared via the RTI,
and also to specify the federates that will publish and
subscribe to the attributes. A simple mapping from
DEVS external events to RTI update calls is used to
realize communication between components.
The time advance requests issued in a platform
simulation depend on the level of abstraction of the
component models. If the models are accurate to bus
cycles, the input/output ports would correspond to bus-
level interconnections, and information exchanges
would follow the bus protocols for the components. At
this level, time advances would typically be the same
magnitude as the bus clock cycle. If more abstract
models are implemented, then the inputs/outputs and
interaction protocols can also be more abstract. For
example, information transfers involving multiple bus
lines might be modeled using a single port, information
paths that might be multiplexed across the real bus
might me modeled as separate paths, bus signals that
are not relevant at the level of abstraction could be
ignored, and the number of steps in bus protocols could
be reduced. By reducing the number of steps in abstract
interaction protocols, the resulting simulation will not
experience as many time advance requests, and the
magnitudes of requested time advances are likely to be
integer multiples of the bus clock cycle. These more
abstract models would not have bus cycle accuracy;
however, they would result in simulations with faster
real-time performance.

Figure 5 shows the generic simulation flow of a
federate. The left side of the figure is labeled with
reference numbers corresponding to steps in the flow
chart. The reference numbers simplify the following
discussion of the flow.

Step 1 is the initial step of the simulation in which a
federate creates or joins a federation. If the federation
does not exist, a new one is first created and then the
federate is added to it. If a federation already exists,
then the federate joins that federation.

At step 2, the federate is initialized. Initialization
consists of the Object/Model construction, defining the
information to be published or/and subscribed (can be
re-defined during simulation), defining the federate as
time regulating and/or time constrained (can be re-
defined during simulation) and the registration of the
federate with the federation executive. The FOM must
also contain these published and subscribed attributes

and parameters. The registration process registers the
federate with the federation execution and returns an
HLA object handle. The handle identifies the federate
during subsequent interactions within the federation.

Step 3 allows a user to input parameters for a federate
before starting the simulation loop. This step is
optional, as some federates do not need any user input.

Step 4 is the first step in the simulation loop. In this
step, a federate executes state transition functions
according to its DEVS atomic model.

Following step 4, a federate will perform either step 5
or 6, depending upon its time management scheme.
Step 5 is performed if a federate is time regulating only
(i.e. only capable of sending Time Stamped Order
(TSO) messages). The RTI grants a time advance
according to the TSO message time. On the other hand
if there is some incoming Receive Order (RO) message
(i.e. a message with no time stamps) from another
federate, then the RTI delivers this message to the
federate without granting a time advance. Whether a
time advance is granted or not, the simulation proceeds
and the DEVS model transitions from one state to
another. Step 6 is performed if a federate is time
constrained (i.e. capable of receiving TSO messages).
The RTI grants a time advance according to the Lower
Bound Time Stamp (LBTS). The LBTS is the
maximum time to which a time constrained federate
may advance. The LBTS is determined by the RTI
based on the lookahead values (a time period during
which a federate does not send out any message) for
each federate and TSO messages from all the time
regulating federates. On the other hand if there is some
incoming message (either TSO or RO) from another
federate then the RTI delivers this message to the
federate without granting a time advance. If a time
advance is granted, the federate proceeds to step 7. If a
time advance is not granted, the federate returns to the
top of the simulation loop for another DEVS model
state transition.

At step 7, the federate checks whether the simulation
loop will continue or stop. At step 8, a federate removes
itself from the federation by disabling time
management, resigning from the federation, deleting
object instances, and, in the case where it is the last
federate, destroys the federation.

4. Case Study

The proposed simulation framework, as discussed in
section 4, for hardware platform modeling using the
DEVS/HLA approach is verified by the case study. A
hardware platform containing a processor (a simplified
version of Intel 8088), a basic memory unit, a bus
controller (a simplified version of Intel 8288), a basic
interrupt controller and a basic timer unit is modeled

using DEVS. This case study is for a synchronous
platform, but no clock module is modeled. Each module
assumes synchronous interactions and requests to
schedule the future bus events as an integral number of
clock ticks in the future.

For this case study, a simple simulator is developed to
run the instruction codes shown in tables 2 and 3. The
simulator generates 10 even numbers, from 0 to 18, and
stores them in the memory module. The instructions,
their encoding, and clock timing information [12] are
shown in table 2. Instruction execution times are
determined by taking the number of clocks cycles
required per instruction plus any effective address (EA)
time required for the operand. The EA for the indexed
operand in the MOV [BX],CH instruction is 5 clocks.

During the execution of the main program, the interrupt
controller module sends interrupt signals to the
processor, resulting in the execution of the interrupt
routine (shown in table 3). The processor’s interrupt
behavior includes checking the interrupt flag; pushing
the IP, CS and IF; sending the interrupt acknowledge to
the interrupt controller; reading the vector type from the
interrupt controller; calculating the starting address for
the interrupt routine residing in the memory and
clearing the instruction queue. The interrupt routine
used in the case study increments a variable stored in
the memory. The instruction details for the interrupt
routine are shown in table 3 [12].

For this case study one simulation time unit represents
one bus clock cycle, and one bus cycle is assumed to

Opcode (Hex) Program Instructions Clock Cycle
B500 MOV CH , 0 4
BF0000 MOV DI , 0 4
B102 MOV CL , 2 4
BB0000 xyz : MOV BX , 00 4
03DF ADD BX , DI 3
882F MOV [BX] , CH 9+EA = 9+5 = 14
47 INC DI 2
02E9 ADD CH , CL 3
83C70A CMP 10 , DI 4
750D JNE xyz 4 (when not executed)

16 (when jump executed)
F4 HLT 2

Table 2: Main program for the case study

Op-code (Hex) Program Instructions Clocks
53 PUSH BX 15

BB0020 MOV BX , 32 4
8A07 MOV AL , [BX] 8+EA = 8+5 = 13
FEC0 INC AL 3
8807 MOV [BX] , AL 9+EA = 9+5 = 14
5B POP BX 12
CF IRET 32

Table 3: Interrupt routine’s opcodes for the case study

__
// Setting up the data structure required to send this object's state to the RTI.
RTI::AttributeHandleValuePairSet* Memory::CreateNVPSet()
{
 RTI::AttributeHandleValuePairSet* pMemoryAttributes = NULL;

 //--
 // Set up the data structure required to send this object's state to the RTI.
 //--
 pMemoryAttributes = RTI::AttributeSetFactory::create(1);

 pMemoryAttributes -> add(this -> GetDataFromMemRtiId(),

 (char*) &this -> GetDataFromMem(), (sizeof(int)));
 return pMemoryAttributes;
}
__

Figure 6: Creating an AHVPS for communication among Module/Federates.

consist of four bus clock cycles. The models are
abstract, and within a bus cycle the timing details are
not implemented accurately. For the execution unit of
the processor the timing details are implemented with
one clock cycle accuracy.

The FOM for the case study identifies the time
management parameters and the attributes used by each
federate. The attributes correspond to information
exchanged through the input/output ports of the DEVS
models of the components. For example all the
attributes which the processor component sends to the
memory component should be defined as ‘published’
by the processor federate and ‘subscribed’ by the
memory federate.

Attributes are sent from one federate to the other in the
form of AttributeHandleValuePairSet (AHVPS).
AHVPS is a set comprised of attribute handles, values
and the size of the values. To create the AHVPS, a
method CreateNVPSet(), extracted from the memory
module’s software code, is shown in figure 6. The RTI
method “AttributeSetFactory::create(1)” is used to
create the AHVPS for only one AHVP, as there is only
one attribute to send out i.e., “DataFromMem”.

Figure 7 shows a time elapse request being sent to the
to the RTI according to the time calculated (represented
by the “requestTime”) for the next event. The
lookahead value (see step 6 figure 5) is set to 0.5,
meaning that the federate will not send any output until
this period is elapsed. The time step value is set to 1.0,
indicating that this is the maximum limit for the time
elapse requested to the RTI. The final “requestTime” is
calculated by adding the time step value of 1.0 and the
“grantTime”, which is the time granted in the previous
time elapse request. In other words the “grantTime” is
the current simulation time. The RTI method
“nextEventRequest(requestTime)” requests for the time

elapse until the “requestTime”. In return, the RTI grants
the time advance until the next event. The tick()
function gives control to the RTI for processing the
ongoing events/tasks.

A logging capability (out2file in figure 7) is developed
for all component models, and each federate has its own
log file. Whenever a federate receives or updates an
attribute it sends this information to its log file along
with the with the simulator’s time stamp. The status of
the internal registers for the processor federate and
memory contents for the memory federate are also
logged.

The case study simulator was verified by analyzing the
logs generated by the components during a simulation
run and comparing these results with the theoretical
values provided by tables 2 and 3. The processor is
accurate to one clock cycle, and hence the simulation
results for the execution timing for each program
instruction should match the theoretical timing values.

The following example analyzes the logs to verify the
execution of MOV [BX], CH. Decimal values are used
throughout the analysis. Table 2 shows that the
instruction requires 14 clock cycles for the EU and the
BIU to execute this instruction. Figure 8 shows a snap
shot of the processor module’s log, when MOV
[BX],CH is at the top of the Instruction queue (line 4).
Executing the instruction should move the value in the
CH register to the memory location at the address
calculated by ((DS×16)+BX). Lines 2 and 3 show the
values of the BX, CH and DS registers. Hence the
execution should result in the value 2 being moved to
the memory location at address 4×16+1 = 65. Line 1
shows that the execution start time is 138.0.

Figure 9 shows a snap shot of the memory module’s log
corresponding to the completion of the instruction.

//-------------------Setting the lookahead time
 lookahead = RTIfedTime(0.5);
//-------------------
 RTIfedTime requestTime(1.0); // requestTime = timeStep = 1.0
 requestTime += grantTime; // grantTime is the time granted by the RTI during the last
time elapse
 // log the request
 out2file << "\n\nRequest time = " << requestTime << endl;
 timeAdvGrant = RTI::RTI_FALSE;
 rtiAmb.nextEventRequest(requestTime);
 while(timeAdvGrant != RTI::RTI_TRUE)
 { //--
 // Tick will turn control over to the RTI so that it can process an event.
 //--
 rtiAmb.tick();
 }
__

Figure 7: Time elapse requested by a Federate using the RTI service methods.

Lines 1 to 3 indicate that the Memory is commanded to
write (control signal = 2) the value 2 at address 65. Line
4 shows that the command was processed at time 152.0,
which represents the end of the execution of the MOV
[BX],CH instruction. Lines 5 through 9 show a memory
dump after performing the command. Each line shows
the values of 16 bytes of memory, starting sequentially
at address 0 in line 5. The content of memory at address
65 (represented by the second byte of line 9) is shown
to be 2, indicating that the write was performed. A more
complete analysis would also compare a complete
memory dump before the operation to a complete
memory dump after the operation to ensure that no
other memory contents had changed.

The difference between the execution start time (138.0
from line 1 in figure 8) and end time (152.0 from line 4
of figure 9) is 14 clock cycles. This result matches the
theoretical clock cycle value (line 6 of table 2) required
for the execution of the MOV [BX],CH instruction.

5. Conclusions

The HLA has been used to simulate a computer system
at the hardware platform level. Hardware components
are modeled as DEVS atomic models, and the
HLA/RTI is used as a simulation platform in place of
the simulation engines inherent to traditional DEVS
tools. The approach has been verified in a case study to
show that results can be accurate to within a clock
cycle. The HLA-specific details that should be visible
in component models include the attributes for DEVS
input and output ports that should be
published/subscribed to the RTI and defined in the
HLA compliant FOM.

6. References

[1] Zeigler, B. P., Praehofer, H., Kim, T. G.: Theory of
Modeling and Simulation, Academic Press, 2000

[2] Dahmann, J.S.: “High Level Architecture for
Simulation” First International Workshop on
Distributed Interactive Simulation and Real Time
Applications, 1997. Page(s): 9 –14

[3] IEEE standard for Modeling and Simulation

(M&S) High Level Architecture (HLA)
Framework and Rules. IEEE Std. 1516-2000, 2000

[4] IEEE standard for Modeling and Simulation

(M&S) High Level Architecture (HLA) Federate
Interface Specification IEEE Std 1516.1-2000,
2001

[5] IEEE standard for Modeling and Simulation

(M&S) High Level Architecture (HLA) Object
Model Template (OMT) Specification IEEE Std
1516.2-2000 , 2001

[6] Zeigler, B., Cho, H.; Lee, J.; Sarjoughian, H.: “The

DEVS/HLA Distributed Simulation Environment
And Its Support for Predictive Filtering”, DARPA
Contract N6133997K-0007: ECE Dept., UA,
Tucson, AZ. 1998.

[7] Rodriguez, D., Wainer, G.: "New Extensions to the

CD++ tool". Proceedings of SCS Summer
Multiconference on Computer Simulation, 1999.

[8] Kim, T. G.: “DEVS Research at KAIST CORE

LAB: From Theory to Practice”. Computer
Engineering (CORE) Lab. Department of Electrical
Engineering, KAIST, Korea. July 3, 1995. Online
report URL:
http://sim.kaist.ac.kr/~tkim/devsim.html

---------------------------Processor log------------------------------
Line 1: FED_HP: Time granted (timeAdvanceGrant) to: 138.0000000000
Line 2: Zero Flag=0 INT Flag=1 AL=0 DI=1 BX=1 CL=2 CH=2
Line 3: IP=14 CS=1 SS=7 SP=31 DS=4
Line 4: Contents of the queue: 136 47
--

Figure 8: Snap shot of the Processor’s log for the analysis of the MOV [BX],CH instruction.

-------------------------------Memory log------------------------------
Line 1: Control Signal From Pro To Mem = 2
Line 2: Address from Processor = 65
Line 3: Data from Processor = 2
Line 4: FED_HP: Time granted (timeAdvanceGrant) to: 152.0000000000
Line 5: 30 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Line 6: 181 0 191 0 0 177 2 187 0 0 3 223 136 47 71 2
Line 7: 233 131 199 10 117 13 244 0 0 0 0 0 0 0 83 187
Line 8: 0 32 138 7 254 192 136 7 91 207 0 0 0 0 0 0
Line 9: 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 9: Snap shot of the Memory’s log for the analysis of the MOV [BX],CH instruction.

[9] Zeigler, B.P., et al. “Implementation of the DEVS
Formalism over the HLA/RTI: Problems and
Solutions”, Proceeding of the 1999 Spring
Simulation Interoperability Workshop, March
1999. Orlando,FL

[10] Fay, J.F, Holoway, T.R.: “Electronic Circuit

Simulation Using The High-Level Architecture”,
Proceedings of the 2002 Fall Simulation
Interoperability Workshop, September, 2002,
Orlando, FL

[11] Saghir, A., Pearce, T.W., Wainer, G., “Modelling
Computer Hardware Platforms using DEVS and
HLA Simulations”, 2004 Summer Simulation
Conference, July 25 – 29, 2004, San Jose,
California

[12] The Intel iAPX 88 Book. Intel Corporation, July

1981.

[13] High-Level Architecture / Runtime Infrastructure.

RTI 1.3-Next Generation, Programmer’s Guide
Version 3.2; 7 September 2000. www.dmso.mil

