
A DEVS LIBRARY FOR LAYERED QUEUING NETWORKS
Dorin B. Petriu and Gabriel Wainer

Department of Systems and Computer Engineering
Carleton University, 1125 Colonel By Drive

Ottawa, Ontario K1S 5B6, Canada.
{dorin | gwainer}@sce.carleton.ca

ABSTRACT

The DEVS formalism is a modeling and simulation framework
with well-defined concepts for coupling components and the
construction of hierarchical modular models. Different
formalisms, including Petri Nets, PDE, and state machines,
have been mapped into DEVS. In this paper, a Layered
Queuing Network (LQN) library is developed and mapped into
DEVS using the CD++ toolkit. LQNs are used for performance
analysis of software systems. LQNs can model multilayer
client-server applications, and as such they can be used to
detect performance bottlenecks and deadlocks in both software
and hardware. This paper shows how to build LQNs as DEVS
models, thus integrating between the two kinds of models, and
providing a framework for defining complex models through
the use of multiformalism modeling.

Keywords: DEVS, LQN, CD++, multiformalism model,
performance analysis

1. INTRODUCTION

The DEVS formalism [1] is a discrete-event modeling
specification mechanism based on systems theory, which
supports the definition of hierarchical modular models that can
be easily reused.

DEVS hierarchical constructions enable multi-formalism

modeling; that is, the coupling of and transformation between
models described in different formalisms. Using different
formalisms to represent systems enables a modeler to choose
the best formalism for each sub-system. The CD++ [2] tool
allows the user to implement DEVS models. CD++ is built as a
hierarchy of models, each related to a simulation entity. Atomic
models can be programmed in C++. A specification language
exists for defining a model's interfaces to other models and for
defining a model’s initial values and external events. The tool
also enables a user to build models using graph-based
notations, which allows for a more abstract visualization of the
problem, as well as for the definition of cellular models. In the
long term, the goal is to provide users with a set of libraries to
develop complex models based on multiformalisms. There
already are libraries for Finite State Automata, Petri Nets,
DEVS graphs, and DEVS atomic models written in C++.

In this work we show how to define Layered Queuing
Networks (LQNs) [3, 4] in a DEVS environment. LQNs are
built as client/server models that triggered by discrete events.
They are provided with modular entry points and the layered
definition permits hierarchical construction. This paper shows
that the mapping of LQNs into DEVS models is
straightforward.

2. BACKGROUND

A real system modeled with DEVS is described as a
composite of submodels, each of them being behavioral
(atomic) or structural (coupled).

A DEVS atomic model is formally described by:

M = < X, S, Y, δint, δext, λ, D >

where X is the input events set; S is the state set; Y is the output
events set; δint is the internal transition function; δext is the
external transition function; λ is the output function; and D is
the duration function. Each model is provided with an interface
consisting of input and output ports to communicate with other
models. Input external events (those events received from other
models) are collected in input ports. The external transition
function specifies how to react to those inputs. The internal
transition function is activated after a period defined by the
time advance function. The goal is to produce internal state
changes. Model execution results are spread through output
ports. This is done by the output function, which executes
before any internal transition

A DEVS coupled model is composed of several atomic or
coupled submodels. They are formally defined as:

CM = < X, Y, D, {Mi}, {Ii}, {Zij} >

where X is the set of input events; Y is the set of output
events; D is an index for the components of the coupled model,
and ∀ i ∈ D, Mi is a basic DEVS (that is, an atomic or coupled
model), Ii is the set of influencees of model i (that is, the
models that can be influenced by outputs of model i), and ∀ j ∈
Ii, Zij is the i to j translation function.

Queuing Networks are based on a customer-server
paradigm: customers request service to servers, which queue
the requests until they can be serviced. Traditional Queuing
Networks model only a single layer of customer-server
relationships. LQNs allow for an arbitrary number of client-
server levels. LQNs can model intermediate software servers,
and be used to detect software deadlocks and software as well
as hardware performance bottlenecks [5]. The layered aspect of
LQNs makes them very suitable for evaluating the performance
of distributed systems [6, 7].

LQNs model both software and hardware resources. The
basic software resource is a task, which represents any software
object having its own thread of execution. Tasks have entries
that act as service access points. The basic hardware resource is
a device. Typical devices are CPUs and disks [8]. Figure 1
shows the visual notation used for tasks, entries, and devices.

Figure 1. LQN task, entry, CPU and disk devices.

Tasks receive service requests at designated interface points
called entries. Entries correspond to service access point for a
task. There is a different entry for every kind of service that a
task provides. An entry may be defined atomically, with its
own hardware service demands and calls to other tasks.
Alternately, an entry may be defined by blocks of smaller
computational blocks called activities. An entry receiving a
synchronous service call is responsible for sending a reply after
the request has been completed. Replies are implicit at the end
of the first phase for entries that are defined atomically, but
must be explicitly specified for entries defined by activities. An
entry receiving a synchronous service request may also forward
it to entries in other tasks which then become responsible for
sending the reply to the original caller. In the case of a
forwarded call, the original calling task remains blocked until it
finally receives the reply at the end of the forwarding chain.
Service calls can be made from entries in one task to entries in
other tasks. Entries can be atomic or subdivided into phases that
divide the workload into a first phase that is executed prior to
sending a reply and a second phase that is executed after
sending a reply. Service calls are shown by messaging arrows.
The LQN notation supports three types of calls: asynchronous,
synchronous, and forwarded calls, as shown in Figure 2.

Figure 2: LQN messaging.

Asynchronous calls do not involve any blocking of the
sending task whereas synchronous calls block the sending
client task until it receives a reply. In a forwarding call, the
sending client task makes a synchronous call and blocks
waiting for a reply; the receiving intermediate server task then
partially processes the call and forwards it to another server
which becomes responsible for sending a reply to the blocked
client. The intermediate server can continue operation after
forwarding the call (there can be any number of forwarding
levels). Calls are made from a task’s entries and they can be

made in sequence. Figure 3 shows the time semantics of these
different types of calls.

 The LQSim simulator [9] was built to solve LQNs via
means of simulation. LQSim was built using the ParaSol
simulation environment, which can simulate multithreaded
systems that support transactions and provides built-in statistics
for monitoring simulation objects [10]. LQNs are simulated by
creating tokens for each call and following those tokens
through the system. The performance metrics are arrived at by
recording the wait times and other statistics for each to-ken.
The simulator generates results showing average entry service
times, average waiting time, throughput, and utilization, as well
as processor throughput and utilization.

Figure 3. Time semantics of LQN calls

The LQSim provides facilities to model LQNs, but we want
to go a step further by providing means to make queuing
networks to interact with models written in other formalisms.
For instance, we could define a DEVS model describing
dynamic behaviour based on the metrics obtained running an
LQN describing the system. This model could be integrated
with a Petri Net model, which could be used to control the
concurrent triggering of a client/server model written using
LQNs. We have CD++ to develop libraries for Petri Nets [11],
Finite State Automata [12], DEVS Graphs [2] and cellular
models [2]. Introducing an LQN library would permit us to
integrate the behaviour described by this modeling technique
with the one described with other modeling tools.

3. LQN SIMULATION LIBRARY FOR DEVS

An LQN library must represent processors, tasks, and entries
with phases. Additionally, the library might also represent disks
and activities. The library should provide results for:

• average entry service time, throughput, and utilization
• average phase service time
• processor throughput and utilization
• average queue waiting time, average queue length.

The main design issue for the DEVS LQN simulation
library was to decide which LQN elements or artifacts to model
as DEVS atomic models and which ones to model as DEVS
coupled models. Processors, tasks, and entries with phases
definitely needed to be included in the library. Activities were
initially left out since they are optional in the LQN notation.

LQN elements have queues that are implicitly supported by
LQNS and LQSim. FIFO queues were incorporated explicitly

into the DEVS LQN library. Since queues behave the same way
for software or hardware elements, a decision was made to
implement a universal queue as a separate atomic model to be
coupled with the processor or entry atomic models.LQN calls
are made using entry names to identify the call target.
Therefore, a mechanism was needed to deal with addressing the
calls in DEVS. The solution was to implement a DEVS version
of a multiplexer and demultiplexer to either gather calls into a
given queue (either for an entry or a processor) or to distribute
calls from an entry to other entries.

A DEVS atomic model was built for each of these
elements. The complete set of models can be found at
http://www.sce.carleton.ca/faculty/wainer/, and here we will
briefly introduce the behaviour of some of these models. Figure
4 describes the behaviour of the queue atomic model. The
initial state (wait for ready) represents a queue ready to receive
request. When an external transition is executed and an external
event arrives through the in port, the element is added to the
end of the queue. When a ready event arrives, we check if the
queue has elements. If not, we change state to ready to process,
waiting for a new element arriving through the in port. When
this event occurs, or if the queue has elements, we immediately
send the first element through the out port, computing also the
average size and wait times. Then we go to the state wait for
response, in which we wait for a response event (which
generates a response in the reply output port), or a new element,
which is added at the end of the queue.

Figure 4. DEVS queue atomic model.

Table 1 (in the Appendix) lists the different DEVS models

for LQN elements. The Gather and Distribute models have non-
blocking, single-state FSMs that instantly pass messages
through and route them to the correct ports.

Figure 5 shows the FSM one of the more complex atomic
models implemented (the entry atomic model). Figure 6 shows
the structure of the DEVS coupled models for LQN Entries and
Figure 7 shows structure of the DEVS coupled model for LQN
Processors. Both of these coupled models incorporate queues
and message routing multiplexers/demultiplexers. The in ports
of the Processor and Entry atomic models are connected to the
out ports of their dedicated Queue atomic models. The in port

of the Queue is connected to the output port of the Gather
multiplexer model.

Figure 5. FSM for the DEVS entry atomic model.

 For entries, the servcall output port is connected to the in
port of the Distribute demultiplexer, which sends it on the
appropriate out port for the intended call target. The same sort
of connections is repeated for the reply ports but with the reply
messages going in the opposite direction. These coupled
models fully represent the LQN processors and entries.

Figure 6. DEVS Entry coupled mode structure.

 LQN messages can be thought of as having a source field
denoting the entity making the call, a destination or target field
denoting the entry for which the call is destined, and a demand
field denoting the workload associated with the call. Simple
DEVS messages have only a single variable field per message,

therefore making it necessary to send and receive sets of two or
three messages in order to transmit all of the required fields.
Table 2 (in the Appendix) lists the messages sent between
atomic models in the DEVS LQN simulation library, how they
are ordered, and how they should be interpreted.

Figure 7. DEVS Processor coupled model structure.

4. ASSEMBLING DEVS LQN MODELS

This section describes the CD++ definition of a model in which
each component is defined as an LQN element.

[top]
components : ref e1 e2 p1
in : refinitp refinits refin e1initp e1inits
in : e2initp e2inits
link : refinitp initp@ref
link : refinits inits@ref
link : refin in0@ref
link : pcall@ref in0@p1
link : rpl0@p1 prtn@ref
link : e1initp initp@e1
link : e1inits inits@e1
link : out0@ref in0@e1
link : rpl0@e1 rsp0@ref
link : pcall@e1 in1@p1
link : rpl1@p1 prtn@e1
link : e2initp initp@e2
link : e2inits inits@e2
link : out1@ref in0@e2
link : rpl0@e2 rsp1@ref
link : pcall@e2 in2@p1
link : rpl2@p1 prtn@e2

The model defined above shows a test client-server system
where the client “ref” calls entry1 in server “e1” and entry2 in

server “e2”. Entry1 has a mean processor demand of 1100 ms
and entry2 has a mean processor demand of 2100 ms. All three
tasks run on the same processor P1. The equivalent LQN is
shown in Figure 8 below.

Figure 8. LQN model as defined in CD++.

This model was executed using the input events presented
in Table 3. As we can see, we start by making phase 1 of entry
ent in task “ref” to be initialized to make one call to entry
entry1 in task “e1”, and one call to entry entry2 in task “e2” (a
call initialization is assembled from three messages; one for the
phase making the call, one for the number of calls, and one for
the call target). Then, we see that phase 1 of entry entry1 in task
“e1” is initialized with a mean workload of 1100 ms, and phase
1 of entry entry2 in task “e2” is initialized with a mean
workload of 2200 ms (a processor demand initialization is
assembled from two messages; one for the phase, and one for
processing workload). Finally, 10 calls are made to entry ent in
task “ref” at 1 sec intervals.

Input Events
00:00:00:000 refinits 1
00:00:00:001 refinits 1
00:00:00:002 refinits 0
00:00:00:003 refinits 1
00:00:00:004 refinits 1
00:00:00:005 refinits 1
00:00:00:006 e1initp 1
00:00:00:007 e1initp 1100
00:00:00:010 e2initp 1
00:00:00:011 e2initp 2100
00:00:01:000 refin 1
00:00:02:000 refin 1
00:00:03:000 refin 1
00:00:04:000 refin 1
00:00:05:000 refin 1
00:00:06:000 refin 1
00:00:07:000 refin 1
00:00:08:000 refin 1
00:00:09:000 refin 1
00:00:10:000 refin 1

Table 3: Input events for the model defined in Figure 5.

Table 4 below shows the execution results of this model.

Model execution Interpretation
[00:00:00:002] entry: init phase1 call stmt 1 = 1 calls to server 0
[00:00:00:005] entry: init phase1 call stmt 2 = 1 calls to server 1
[00:00:00:007] entry: init phase1 proc demand mean = 1100 ms
[00:00:00:011] entry: init phase1 proc demand mean = 2100 ms

entries being initialized with their call and
workload paramers

[00:00:01:000] entry: start; entry: phase1 server call <server 0>
[00:00:01:000] entry: start; entry: phase1 proc call <mean 1100 ms,
actual 1086.79 ms>; processor: <demand 1086.79 ms, rounded to 1087 ms>
[00:00:02:087] entry: reply; entry: done <phase1 1087 ms, phase2 0 ms>;
entry: phase1 server call <server 1>; entry: start
[00:00:02:087] entry: phase1 proc call <mean 2100 ms, actual 2080.5 ms>
[00:00:02:087] processor: <demand 2080.5 ms, rounded to 2081 ms>
[00:00:04:168] entry: reply; entry: done <phase1 2081 ms, phase2 0 ms>
[00:00:04:168] entry: reply; entry: done <phase1 3168 ms, phase2 0 ms>

execution of the first call made to entry ent
in task “ref” and subsequent calls to entries
entry1 in task “e1” which generates an actual
processor workload of 1087 ms and to entry2 in
task “e2” which generates an actual processor
workload of 2081 ms

[00:00:04:168] entry: start; entry: phase1 server call <server 0>
[00:00:04:168] entry: start; entry: phase1 proc call <mean 1100 ms,
actual 879.851 ms>; processor: <demand 879.851 ms, rounded to 880 ms>
[00:00:05:048] entry: reply; entry: done <phase1 880 ms, phase2 0 ms>
[00:00:05:048] entry: phase1 server call <server 1>; entry: start
[00:00:05:048] entry: phase1 proc call <mean 2100 ms, actual 278.087 ms>
[00:00:05:048] processor: <demand 278.087 ms, rounded to 278 ms>
[00:00:05:326] entry: reply; entry: done <phase1 278 ms, phase2 0 ms>
[00:00:05:326] entry: reply; entry: done <phase1 1158 ms, phase2 0 ms>

execution of the second call made to entry
ent in task “ref” and subsequent calls to entries
entry1 in task “e1” which generates and actual
processor workload of 880 ms and to entry2 in
task “e2” which generates and actual processor
workload of 278 ms

[00:00:05:326] entry: start; entry: phase1 server call <server 0>
[00:00:05:326] entry: start; entry: phase1 proc call <mean 1100 ms,
actual 705.584 ms>; processor: <demand 705.584 ms, rounded to 706 ms>
[00:00:06:032] entry: reply; entry: done <phase1 706 ms, phase2 0 ms>
[00:00:06:032] entry: phase1 server call <server 1>; entry: start
[00:00:06:032] entry: phase1 proc call <mean 2100 ms, actual 2089.76 ms>
[00:00:06:032] processor: <demand 2089.76 ms, rounded to 2090 ms>
[00:00:08:122] entry: reply; entry: done <phase1 2090 ms, phase2 0 ms>
[00:00:08:122] entry: reply; entry: done <phase1 2796 ms, phase2 0 ms>

Execution of the third call made to entry ent
in task “ref” and subsequent calls to entries
entry1 in task “e1” which generates an actual
processor workload of 706 ms and to entry2 in
task “e2” which generates an actual processor
workload of 2090 ms

[00:00:08:122] entry: start; entry: phase1 server call <server 0>
[00:00:08:122] entry: start; entry: phase1 proc call <mean 1100 ms,
actual 1158.81 ms>; processor: <demand 1158.81 ms, rounded to 1159 ms>
[00:00:09:281] entry: reply; entry: done <phase1 1159 ms, phase2 0 ms>
[00:00:09:281] entry: phase1 server call <server 1>
[00:00:09:281] entry: start; entry: phase1 proc call <mean 2100 ms,
actual 414.882 ms>; processor: <demand 414.882 ms, rounded to 415 ms>
[00:00:09:696] entry: reply; entry: done <phase1 415 ms, phase2 0 ms>
[00:00:09:696] entry: reply; entry: done <phase1 1574 ms, phase2 0 ms>

execution of the fourth call made to entry
ent in task “ref” and subsequent calls to entries
entry1 in task “e1” which generates an actual
processor workload of 1159 ms and to entry2 in
task “e2” which generates an actual processor
workload of 415 ms

[00:00:09:696] entry: start; entry: phase1 server call <server 0>
[00:00:09:696] entry: start; entry: phase1 proc call <mean 1100 ms,
actual 7.4381 ms>; processor: <demand 7.4381 ms, rounded to 7 ms>
[00:00:09:703] entry: reply; entry: done <phase1 7 ms, phase2 0 ms>
[00:00:09:703] entry: phase1 server call <server 1>; entry: start
[00:00:09:703] entry: phase1 proc call <mean 2100 ms, actual 1148.83 ms>
[00:00:09:703] processor: <demand 1148.83 ms, rounded to 1149 ms>
[00:00:10:852] entry: reply; entry: done <phase1 1149 ms, phase2 0 ms>
[00:00:10:852] entry: reply; entry: done <phase1 1156 ms, phase2 0 ms>

execution of the fifth call made to entry ent
in task “ref” and subsequent calls to entries
entry1 in task “e1” which generates an actual
processor workload of 7 ms and to entry2 in task
“e2” which generates an actual processor
workload of 1149 ms

[00:00:10:852] entry: start; entry: phase1 server call <server 0>
[00:00:10:852] entry: start; entry: phase1 proc call <mean 1100 ms,
actual 4201.75 ms>; processor: <demand 4201.75 ms, rounded to 4202 ms>
[00:00:15:054] entry: reply; entry: done <phase1 4202 ms, phase2 0 ms>
[00:00:15:054] entry: phase1 server call <server 1>; entry: start
[00:00:15:054] entry: phase1 proc call <mean 2100 ms, actual 6209.72 ms>
[00:00:15:054] processor: <demand 6209.72 ms, rounded to 6210 ms>
[00:00:21:264] entry: reply; entry: done <phase1 6210 ms, phase2 0 ms>
[00:00:21:264] entry: reply; entry: done <phase1 10412 ms, phase2 0 ms>

execution of the sixth call made to entry ent
in task “ref” and subsequent calls to entries
entry1 in task “e1” which generates an actual
processor workload of 4202 ms and to entry2 in
task “e2” which generates an actual processor
workload of 6210 ms

[00:00:21:264] entry: start; entry: phase1 server call <server 0>
[00:00:21:264] entry: start; entry: phase1 proc call <mean 1100 ms,
actual 941.089 ms>; processor: <demand 941.089 ms, rounded to 941 ms>
[00:00:22:205] entry: reply; entry: done <phase1 941 ms, phase2 0 ms>
[00:00:22:205] entry: phase1 server call <server 1>; entry: start
[00:00:22:205] entry: phase1 proc call <mean 2100 ms, actual 5159.03 ms>
[00:00:22:205] processor: <demand 5159.03 ms, rounded to 5159 ms>
[00:00:27:364] entry: reply; entry: done <phase1 5159 ms, phase2 0 ms>
[00:00:27:364] entry: reply; entry: done <phase1 6100 ms, phase2 0 ms>

execution of the seventh call made to entry
ent in task “ref” and subsequent calls to entries
entry1 in task “e1” which generates an actual
processor workload of 941 ms and to entry2 in
task “e2” which generates an actual processor
workload of 5159 ms

[00:00:27:364] entry: start; entry: phase1 server call <server 0>
[00:00:27:364] entry: start; entry: phase1 proc call <mean 1100 ms,
actual 544.691 ms>; processor: <demand 544.691 ms, rounded to 545 ms>
[00:00:27:909] entry: reply; entry: done <phase1 545 ms, phase2 0 ms>;
entry: phase1 server call <server 1>; entry: start; entry: phase1 proc
call <mean 2100 ms, actual 2374.95 ms>; processor: <demand 2374.95 ms,
rounded to 2375 ms>
[00:00:30:284] entry: reply; entry: done <phase1 2375 ms, phase2 0 ms>
[00:00:30:284] entry: reply; entry: done <phase1 2920 ms, phase2 0 ms>

execution of the eighth call made to entry
ent in task “ref” and subsequent calls to entries
entry1 in task “e1” which generates an actual
processor workload of 545 ms and to entry2 in
task “e2” which generates an actual processor
workload of 2375 ms

[00:00:30:284] entry: start; entry: phase1 server call <server 0>;
entry: start; entry: phase1 proc call <mean 1100 ms, actual 2256.45 ms>;
processor: <demand 2256.45 ms, rounded to 2256 ms>
[00:00:32:540] entry: reply; entry: done <phase1 2256 ms, phase2 0 ms>;
entry: phase1 server call <server 1>; entry: start
[00:00:32:540] entry: phase1 proc call <mean 2100 ms, actual 4946.97 ms>
[00:00:32:540] processor: <demand 4946.97 ms, rounded to 4947 ms>
[00:00:37:487] entry: reply; entry: done <phase1 4947 ms, phase2 0 ms>
[00:00:37:487] entry: reply; entry: done <phase1 7203 ms, phase2 0 ms>

execution of the ninth call made to entry ent
in task “ref” and subsequent calls to entries
entry1 in task “e1” which generates an actual
processor workload of 2256 ms and to entry2 in
task “e2” which generates an actual processor
workload of 4947 ms

[00:00:37:487] entry: start; entry: phase1 server call <server 0>
[00:00:37:487] entry: start; entry: phase1 proc call <mean 1100 ms,
actual 1726.73 ms>; processor: <demand 1726.73 ms, rounded to 1727 ms>
[00:00:39:214] entry: reply; entry: done <phase1 1727 ms, phase2 0 ms>
[00:00:39:214] entry: phase1 server call <server 1>; entry: start
[00:00:39:214] entry: phase1 proc call <mean 2100 ms, actual 874.252 ms>
[00:00:39:214] processor: <demand 874.252 ms, rounded to 874 ms>
[00:00:40:088] entry: reply; entry: done <phase1 874 ms, phase2 0 ms>
[00:00:40:088] entry: reply; entry: done <phase1 2601 ms, phase2 0 ms>

execution of the tenth call made to entry ent
in task “ref” and subsequent calls to entries
entry1 in task “e1” which generates an actual
processor workload of 1727 ms and to entry2 in
task “e2” which generates an actual processor
workload of 874 ms

Table 4: Output events generated during model execution and their interpretation.

4. CONCLUSIONS

The DEVS LQN simulation library provides a means creating
LQN performance models in a DEVS environment. It makes a
contribution to the LQN modeling paradigm by extending it to
a simulation platform that supports interactions between
different models and different simulation platforms, something
that the existing LQNS and LQSim solvers cannot do. These
models can be integrated with existing Petri Nets, traditional
DEVS models, cellular models, finite state automata and other
existing formalisms built on top of the DEVS models. This
permits us to build applications in which different modeling
techniques can be applied to solve particular problems using the
most adequate method in each case.

The implementation of the atomic models, the CD++ tool,
and a more extensive report are public domain and can be
obtained in:

http://www.sce.carleton.ca/faculty/wainer/wbgraf
Additional work should be undertaken to add support for

asynchronous and forwarding calls to the library - the current
version only uses synchronous calls. Eventually the library
should also include support for LQN activities.

REFERENCES

[1] ZEIGLER, B.; KIM, T.; PRAEHOFER, H. "Theory of
Modeling and Simulation: Integrating Discrete Event and
Continuous Complex Dynamic Systems". Academic Press.
2000.
[2] WAINER, G. "CD++: a toolkit to define discrete-event
models". 2002. In Software, Practice and Experience. Wiley.
Vol. 32, No.3. pp. 1261-1306.

[3] ROLIA, J.; SEVKIK, K. C “The Method of Layers”, IEEE
Transactions on Software Engineering, Vol. 21, No. 8, 1995,
pp. 682-688.

[4] WOODSIDE, C. M. “Throughput Calculation for Basic
Stochastic Rendezvous Networks”, Performance Evaluation,
Vol. 9, No. 2, Apr 1988, pp. 143-160

[5] NEILSON, J.E.; WOODSIDE, C.M; PETRIU, D.C. and
MAJUMDAR, S., “Software Bottlenecking in Client-Server
Systems and Rendez-vous Networks”, IEEE Trans. On
Software Engineering, Vol. 21, No. 9, pp. 776-782, September
1995

[6] WOODSIDE, C. M.; NEILSON, J. E.; PETRIU, D. C.;
MAJUMDAR, S. “The Stochastic Rendezvous Network Model
for Performance of Synchronous Client-Server-Like Distributed
Software”, IEEE Transactions on Computers, Vol. 44, No. 1,
Jan 1995, pp. 20-34

[7] WOODSIDE, C. M.; MAJUMDAR, S.; NEILSON, J. E.;
PETRIU, D. C.; ROLIA, J.; HUBBARD, A.; FRANKS, B. “A
Guide to Performance Modeling of Distributed Client-Server
Software Systems with Layered Queueing Networks”,
Department of Systems and Computer Engineering, Carleton
University, Ottawa, Canada, Nov 1995

[8] WOODSIDE, C. M.; (2002) Tutorial Introduction to
Layered Performance Modeling of Software Performance.
http://www.sce.carleton.ca/rads/lqn/lqn-
documentation/tutorialf.pdf, May 2002.

[9] FRANKS, G. “Performance Analysis of Distributed Server
Systems”, Report OCIEE-00-01, Ph.D. thesis, Carleton
University, Ottawa, Jan. 2000

[10] MASCARENHAS, E.; KNOP, F.; REGO, V. “ParaSol: A
Multithreaded System for Parallel Simulation Based on Mobile
Threads”, Winter Simulation Conference, 1995.

APPENDIX

LQN aspect/
element

DEVS atomic
model

DEVS coupled
model

Functionality

Processor Processor - receives call, executes it for the specified time
- replies when done
- calculates utilization and throughput

 Processor - combines gather, queue, and atomic processor for full LQN processor functionality
Entry with
phases

Entry - receives call, executes associated workloads (phase 1 and phase 2 processing, makes
calls), and replies when done
- processor demands for phase 1 and 2 must first be initialized through initproc port
- server calls for phase 1 and phase 2 must first be initialized through the initserv port

 Entry - combines gather, queue, atomic entry, and distribute for full LQN entry functionality
implied queue Queue - adds call to queue

- sends first element in queue to attached idle Processor or Entry
- passes reply back up to the call source

aggregating
calls (multiple
sources)

Gather - aggregates calls from multiple input ports and sends them out the single output port
- adds a message with the input port index
- passes reply from port “output end” through to appropriate response port “input end”

distributing
calls (different
entries)

Distribute - receives calls on single input port and distributes them to the appropriate output port
- sends reply from the reply port at the “output end” to the single response port at the
“input end”

Task Task - coupled model composed of multiple entries
Disk Processor - reuses the functionality of a processor
Activity N/A N/A - further subdivides the workload of an Entry, currently not implemented in DEVS

Table 1: DEVS models for the LQN simulation library.

Sender (port) Receiver (port) LQN Equiv. Msg. DEVS Messages Interpretation
Processor (reply) Queue (response) done reply notify source entry that processing is done; message

value represents actual processing time (ms)
Processor (ready) Queue (ready) done ready ready for another job, the message value is irrelevant
Processor
(throughput)

 throughput throughput message value represents the processor throughput in
number of jobs per ms

Processor
(utilization)

 utilization utilization message value represents the fraction/ percentage of
time that the processor has been busy

Entry (proccall) Distribute (in[0..9]) processor call processor svc demand message value represents processor demand in ms
Entry (servcall) Gather (in) service call service call message value represents index of the target server
Entry(avservtime) avg entry svc time avg entry svc time message value represents avg entry svc time in ms
Entry (avph1time) avg phase1 time avg phase 1 svc time message value represents avg phase1 svc time in ms
Entry (avph2time) avg phase2 time avg phase 2 svc time message value represents avg phase2 svc time in ms
Entry (throughput) throughput throughput message value represents entry throughput in jobs/ms
Entry (utilization) utilization utilization message value: percentage of busy time for entry
Queue (out) Processor (in) processor call Proc. service demand message value represents the service demand in ms
Queue (out) Entry (in) service call service call service call, the message value is irrelevant
Queue (reply) Gather (resp.) reply reply message value: index of source to be replied to
Queue (avgsize) avg queue size message value: avg number of elements in the queue

at the time the message was sent
Queue (avgwait) avg queuing wait message value: avg number of ms. a message spent in

the queue at the time the message was sent
Gather (out) Queue (in) service call source of service call

service call demand
message value: index of the call source. If attached to
a processor: represents processor svc demand in ms

Gather (reply[]) Distrib.(resp[]) reply reply reply, the message value is irrelevant
Distribute
(out[0..9])

Gather (in[0...9]) service call service call if attached to a processor, message value represents
processor service demand in ms

Distribute (reply) Entry (response) reply Reply message value: index of call target returning the reply
 Entry (initproc) phase number

processor demand
message value: phase number to initialize
message value: processor demand in ms

 Entry (initserv) phase number
calls
call target

message value: phase number to initialize
number of calls to make to target server
index of the target server

Table 2: DEVS LQN simulation library messages.

