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ABSTRACT 

The DEVS formalism is a modeling and simulation framework 
with well-defined concepts for coupling components and the 
construction of hierarchical modular models. Different 
formalisms, including Petri Nets, PDE, and state machines, 
have been mapped into DEVS. In this paper, a Layered 
Queuing Network (LQN) library is developed and mapped into 
DEVS using the CD++ toolkit. LQNs are used for performance 
analysis of software systems. LQNs can model multilayer 
client-server applications, and as such they can be used to 
detect performance bottlenecks and deadlocks in both software 
and hardware. This paper shows how to build LQNs as DEVS 
models, thus integrating between the two kinds of models, and 
providing a framework for defining complex models through 
the use of multiformalism modeling.  

Keywords:  DEVS, LQN, CD++, multiformalism model, 
performance analysis 

1. INTRODUCTION 

The DEVS formalism [1] is a discrete-event modeling 
specification mechanism based on systems theory, which 
supports the definition of hierarchical modular models that can 
be easily reused.  

 
DEVS hierarchical constructions enable multi-formalism 

modeling; that is, the coupling of and transformation between 
models described in different formalisms. Using different 
formalisms to represent systems enables a modeler to choose 
the best formalism for each sub-system. The CD++ [2] tool 
allows the user to implement DEVS models. CD++ is built as a 
hierarchy of models, each related to a simulation entity. Atomic 
models can be programmed in C++. A specification language 
exists for defining a model's interfaces to other models and for 
defining a model’s initial values and external events. The tool 
also enables a user to build models using graph-based 
notations, which allows for a more abstract visualization of the 
problem, as well as for the definition of cellular models. In the 
long term, the goal is to provide users with a set of libraries to 
develop complex models based on multiformalisms. There 
already are libraries for Finite State Automata, Petri Nets, 
DEVS graphs, and DEVS atomic models written in C++.   

In this work we show how to define Layered Queuing 
Networks (LQNs) [3, 4] in a DEVS environment. LQNs are 
built as client/server models that triggered by discrete events. 
They are provided with modular entry points and the layered 
definition permits hierarchical construction. This paper shows 
that the mapping of LQNs into DEVS models is 
straightforward. 

2. BACKGROUND 

A real system modeled with DEVS is described as a 
composite of submodels, each of them being behavioral 
(atomic) or structural (coupled).   

A DEVS atomic model is formally described by: 

M = < X, S, Y, δint, δext, λ, D > 
 

where X is the input events set; S is the state set; Y is the output 
events set; δint is the internal transition function; δext is the 
external transition function; λ is the output function; and D is 
the duration function. Each model is provided with an interface 
consisting of input and output ports to communicate with other 
models. Input external events (those events received from other 
models) are collected in input ports. The external transition 
function specifies how to react to those inputs. The internal 
transition function is activated after a period defined by the 
time advance function. The goal is to produce internal state 
changes. Model execution results are spread through output 
ports. This is done by the output function, which executes 
before any internal transition 

A DEVS coupled model is composed of several atomic or 
coupled submodels. They are formally defined as: 

CM = < X, Y, D, {Mi}, {Ii}, {Zij} > 
 

where X is the set of input events; Y is the set of output 
events; D is an index for the components of the coupled model, 
and ∀ i ∈ D, Mi is a basic DEVS (that is, an atomic or coupled 
model), Ii is the set of influencees of model i (that is, the 
models that can be influenced by outputs of model i), and ∀ j ∈ 
Ii, Zij is the i to j translation function. 

Queuing Networks are based on a customer-server 
paradigm: customers request service to servers, which queue 
the requests until they can be serviced. Traditional Queuing 
Networks model only a single layer of customer-server 
relationships. LQNs allow for an arbitrary number of client-
server levels. LQNs can model intermediate software servers, 
and be used to detect software deadlocks and software as well 
as hardware performance bottlenecks [5]. The layered aspect of 
LQNs makes them very suitable for evaluating the performance 
of distributed systems [6, 7].  

LQNs model both software and hardware resources. The 
basic software resource is a task, which represents any software 
object having its own thread of execution. Tasks have entries 
that act as service access points. The basic hardware resource is 
a device. Typical devices are CPUs and disks [8]. Figure 1 
shows the visual notation used for tasks, entries, and devices. 



 

Figure 1. LQN task, entry, CPU and disk devices. 

Tasks receive service requests at designated interface points 
called entries. Entries correspond to service access point for a 
task. There is a different entry for every kind of service that a 
task provides. An entry may be defined atomically, with its 
own hardware service demands and calls to other tasks. 
Alternately, an entry may be defined by blocks of smaller 
computational blocks called activities. An entry receiving a 
synchronous service call is responsible for sending a reply after 
the request has been completed. Replies are implicit at the end 
of the first phase for entries that are defined atomically, but 
must be explicitly specified for entries defined by activities. An 
entry receiving a synchronous service request may also forward 
it to entries in other tasks which then become responsible for 
sending the reply to the original caller. In the case of a 
forwarded call, the original calling task remains blocked until it 
finally receives the reply at the end of the forwarding chain. 
Service calls can be made from entries in one task to entries in 
other tasks. Entries can be atomic or subdivided into phases that 
divide the workload into a first phase that is executed prior to 
sending a reply and a second phase that is executed after 
sending a reply. Service calls are shown by messaging arrows. 
The LQN notation supports three types of calls: asynchronous, 
synchronous, and forwarded calls, as shown in Figure 2. 

 

Figure 2: LQN messaging. 

Asynchronous calls do not involve any blocking of the 
sending task whereas synchronous calls block the sending 
client task until it receives a reply. In a forwarding call, the 
sending client task makes a synchronous call and blocks 
waiting for a reply; the receiving intermediate server task then 
partially processes the call and forwards it to another server 
which becomes responsible for sending a reply to the blocked 
client. The intermediate server can continue operation after 
forwarding the call (there can be any number of forwarding 
levels). Calls are made from a task’s entries and they can be 

made in sequence. Figure 3 shows the time semantics of these 
different types of calls. 

     The LQSim simulator [9] was built to solve LQNs via 
means of simulation. LQSim was built using the ParaSol 
simulation environment, which can simulate multithreaded 
systems that support transactions and provides built-in statistics 
for monitoring simulation objects [10]. LQNs are simulated by 
creating tokens for each call and following those tokens 
through the system. The performance metrics are arrived at by 
recording the wait times and other statistics for each to-ken. 
The simulator generates results showing average entry service 
times, average waiting time, throughput, and utilization, as well 
as processor throughput and utilization. 

 

Figure 3. Time semantics of LQN calls 

The LQSim provides facilities to model LQNs, but we want 
to go a step further by providing means to make queuing 
networks to interact with models written in other formalisms. 
For instance, we could define a DEVS model describing 
dynamic behaviour based on the metrics obtained running an 
LQN describing the system. This model could be integrated 
with a Petri Net model, which could be used to control the 
concurrent triggering of a client/server model written using 
LQNs. We have CD++ to develop libraries for Petri Nets [11], 
Finite State Automata [12], DEVS Graphs [2] and cellular 
models [2]. Introducing an LQN library would permit us to 
integrate the behaviour described by this modeling technique 
with the one described with other modeling tools.  

3. LQN SIMULATION LIBRARY FOR DEVS 

An LQN library must represent processors, tasks, and entries 
with phases. Additionally, the library might also represent disks 
and activities. The library should provide results for: 

• average entry service time, throughput, and utilization 
• average phase service time 
• processor throughput and utilization 
• average queue waiting time, average queue length. 

The main design issue for the DEVS LQN simulation 
library was to decide which LQN elements or artifacts to model 
as DEVS atomic models and which ones to model as DEVS 
coupled models. Processors, tasks, and entries with phases 
definitely needed to be included in the library. Activities were 
initially left out since they are optional in the LQN notation.  

LQN elements have queues that are implicitly supported by 
LQNS and LQSim. FIFO queues were incorporated explicitly 

 

 



into the DEVS LQN library. Since queues behave the same way 
for software or hardware elements, a decision was made to 
implement a universal queue as a separate atomic model to be 
coupled with the processor or entry atomic models.LQN calls 
are made using entry names to identify the call target. 
Therefore, a mechanism was needed to deal with addressing the 
calls in DEVS. The solution was to implement a DEVS version 
of a multiplexer and demultiplexer to either gather calls into a 
given queue (either for an entry or a processor) or to distribute 
calls from an entry to other entries.  

A DEVS atomic model was built for each of these 
elements. The complete set of models can be found at 
http://www.sce.carleton.ca/faculty/wainer/, and here we will 
briefly introduce the behaviour of some of these models. Figure 
4 describes the behaviour of the queue atomic model. The 
initial state (wait for ready) represents a queue ready to receive 
request. When an external transition is executed and an external 
event arrives through the in port, the element is added to the 
end of the queue. When a ready event arrives, we check if the 
queue has elements. If not, we change state to ready to process, 
waiting for a new element arriving through the in port. When 
this event occurs, or if the queue has elements, we immediately 
send the first element through the out port, computing also the 
average size and wait times. Then we go to the state wait for 
response, in which we wait for a response event (which 
generates a response in the reply output port), or a new element, 
which is added at the end of the queue. 

 
Figure 4. DEVS queue atomic model. 

 
Table 1 (in the Appendix) lists the different DEVS models 

for LQN elements. The Gather and Distribute models have non-
blocking, single-state FSMs that instantly pass messages 
through and route them to the correct ports. 

Figure 5 shows the FSM one of the more complex atomic 
models implemented (the entry atomic model). Figure 6 shows 
the structure of the DEVS coupled models for LQN Entries and 
Figure 7 shows structure of the DEVS coupled model for LQN 
Processors. Both of these coupled models incorporate queues 
and message routing multiplexers/demultiplexers. The in ports 
of the Processor and Entry atomic models are connected to the 
out ports of their dedicated Queue atomic models. The in port 

of the Queue is connected to the output port of the Gather 
multiplexer model. 

 
Figure 5. FSM for the DEVS entry atomic model. 

 
     For entries, the servcall output port is connected to the in 
port of the Distribute demultiplexer, which sends it on the 
appropriate out port for the intended call target. The same sort 
of connections is repeated for the reply ports but with the reply 
messages going in the opposite direction. These coupled 
models fully represent the LQN processors and entries. 
 

 
Figure 6. DEVS Entry coupled mode structure. 

     LQN messages can be thought of as having a source field 
denoting the entity making the call, a destination or target field 
denoting the entry for which the call is destined, and a demand 
field denoting the workload associated with the call. Simple 
DEVS messages have only a single variable field per message, 



therefore making it necessary to send and receive sets of two or 
three messages in order to transmit all of the required fields. 
Table 2 (in the Appendix) lists the messages sent between 
atomic models in the DEVS LQN simulation library, how they 
are ordered, and how they should be interpreted. 

 
Figure 7. DEVS Processor coupled model structure. 

4. ASSEMBLING DEVS LQN MODELS 

This section describes the CD++ definition of a model in which 
each component is defined as an LQN element.  

[top] 
components : ref e1 e2 p1 
in : refinitp refinits refin e1initp e1inits 
in : e2initp e2inits 
link : refinitp initp@ref 
link : refinits inits@ref 
link : refin in0@ref 
link : pcall@ref in0@p1 
link : rpl0@p1 prtn@ref 
link : e1initp initp@e1 
link : e1inits inits@e1 
link : out0@ref in0@e1 
link : rpl0@e1 rsp0@ref 
link : pcall@e1 in1@p1 
link : rpl1@p1 prtn@e1 
link : e2initp initp@e2 
link : e2inits inits@e2 
link : out1@ref in0@e2 
link : rpl0@e2 rsp1@ref 
link : pcall@e2 in2@p1 
link : rpl2@p1 prtn@e2 

The model defined above shows a test client-server system 
where the client “ref” calls entry1 in server “e1” and entry2 in 

server “e2”. Entry1 has a mean processor demand of 1100 ms 
and entry2 has a mean processor demand of 2100 ms. All three 
tasks run on the same processor P1. The equivalent LQN is 
shown in Figure 8 below. 

 

Figure 8. LQN model as defined in CD++. 

This model was executed using the input events presented 
in Table 3. As we can see, we start by making phase 1 of entry 
ent in task “ref” to be initialized to make one call to entry 
entry1 in task “e1”, and one call to entry entry2 in task “e2” (a 
call initialization is assembled from three messages; one for the 
phase making the call, one for the number of calls, and one for 
the call target). Then, we see that phase 1 of entry entry1 in task 
“e1” is initialized with a mean workload of 1100 ms, and phase 
1 of entry entry2 in task “e2” is initialized with a mean 
workload of 2200 ms (a processor demand initialization is 
assembled from two messages; one for the phase, and one for 
processing workload). Finally, 10 calls are made to entry ent in 
task “ref” at 1 sec intervals.  

Input Events 
00:00:00:000 refinits 1 
00:00:00:001 refinits 1 
00:00:00:002 refinits 0 
00:00:00:003 refinits 1 
00:00:00:004 refinits 1 
00:00:00:005 refinits 1 
00:00:00:006 e1initp 1 
00:00:00:007 e1initp 1100 
00:00:00:010 e2initp 1 
00:00:00:011 e2initp 2100 
00:00:01:000 refin 1 
00:00:02:000 refin 1 
00:00:03:000 refin 1 
00:00:04:000 refin 1 
00:00:05:000 refin 1 
00:00:06:000 refin 1 
00:00:07:000 refin 1 
00:00:08:000 refin 1 
00:00:09:000 refin 1 
00:00:10:000 refin 1 

Table 3: Input events for the model defined in Figure 5. 

Table 4 below shows the execution results of this model. 

 

Model execution Interpretation 
[00:00:00:002] entry: init phase1 call stmt 1 = 1 calls to server 0 
[00:00:00:005] entry: init phase1 call stmt 2 = 1 calls to server 1 
[00:00:00:007] entry: init phase1 proc demand mean = 1100 ms 
[00:00:00:011] entry: init phase1 proc demand mean = 2100 ms 

entries being initialized with their call and 
workload paramers 

[00:00:01:000] entry: start; entry: phase1 server call <server 0> 
[00:00:01:000] entry: start; entry: phase1 proc call <mean 1100 ms, 
actual 1086.79 ms>; processor: <demand 1086.79 ms, rounded to 1087 ms> 
[00:00:02:087] entry: reply; entry: done <phase1 1087 ms, phase2 0 ms>; 
entry: phase1 server call <server 1>; entry: start 
[00:00:02:087] entry: phase1 proc call <mean 2100 ms, actual 2080.5 ms> 
[00:00:02:087] processor: <demand 2080.5 ms, rounded to 2081 ms> 
[00:00:04:168] entry: reply; entry: done <phase1 2081 ms, phase2 0 ms> 
[00:00:04:168] entry: reply; entry: done <phase1 3168 ms, phase2 0 ms> 

execution of the first call made to entry ent
in task “ref” and subsequent calls to entries 
entry1 in task “e1” which generates an actual 
processor workload of 1087 ms and to entry2 in 
task “e2” which generates an actual processor 
workload of 2081 ms 



[00:00:04:168] entry: start; entry: phase1 server call <server 0> 
[00:00:04:168] entry: start; entry: phase1 proc call <mean 1100 ms, 
actual 879.851 ms>; processor: <demand 879.851 ms, rounded to 880 ms> 
[00:00:05:048] entry: reply; entry: done <phase1 880 ms, phase2 0 ms> 
[00:00:05:048] entry: phase1 server call <server 1>; entry: start 
[00:00:05:048] entry: phase1 proc call <mean 2100 ms, actual 278.087 ms> 
[00:00:05:048] processor: <demand 278.087 ms, rounded to 278 ms> 
[00:00:05:326] entry: reply; entry: done <phase1 278 ms, phase2 0 ms> 
[00:00:05:326] entry: reply; entry: done <phase1 1158 ms, phase2 0 ms> 

execution of the second call made to entry 
ent in task “ref” and subsequent calls to entries 
entry1 in task “e1” which generates and actual 
processor workload of 880 ms and to entry2 in 
task “e2” which generates and actual processor 
workload of 278 ms 

[00:00:05:326] entry: start; entry: phase1 server call <server 0> 
[00:00:05:326] entry: start; entry: phase1 proc call <mean 1100 ms, 
actual 705.584 ms>; processor: <demand 705.584 ms, rounded to 706 ms> 
[00:00:06:032] entry: reply; entry: done <phase1 706 ms, phase2 0 ms> 
[00:00:06:032] entry: phase1 server call <server 1>; entry: start 
[00:00:06:032] entry: phase1 proc call <mean 2100 ms, actual 2089.76 ms> 
[00:00:06:032] processor: <demand 2089.76 ms, rounded to 2090 ms> 
[00:00:08:122] entry: reply; entry: done <phase1 2090 ms, phase2 0 ms> 
[00:00:08:122] entry: reply; entry: done <phase1 2796 ms, phase2 0 ms> 

Execution of the third call made to entry ent
in task “ref” and subsequent calls to entries 
entry1 in task “e1” which generates an actual 
processor workload of 706 ms and to entry2 in 
task “e2” which generates an actual processor 
workload of 2090 ms 

[00:00:08:122] entry: start; entry: phase1 server call <server 0> 
[00:00:08:122] entry: start; entry: phase1 proc call <mean 1100 ms, 
actual 1158.81 ms>; processor: <demand 1158.81 ms, rounded to 1159 ms> 
[00:00:09:281] entry: reply; entry: done <phase1 1159 ms, phase2 0 ms> 
[00:00:09:281] entry: phase1 server call <server 1> 
[00:00:09:281] entry: start; entry: phase1 proc call <mean 2100 ms, 
actual 414.882 ms>; processor: <demand 414.882 ms, rounded to 415 ms> 
[00:00:09:696] entry: reply; entry: done <phase1 415 ms, phase2 0 ms> 
[00:00:09:696] entry: reply; entry: done <phase1 1574 ms, phase2 0 ms> 

execution of the fourth call made to entry 
ent in task “ref” and subsequent calls to entries 
entry1 in task “e1” which generates an actual 
processor workload of 1159 ms and to entry2 in 
task “e2” which generates an actual processor 
workload of 415 ms 

[00:00:09:696] entry: start; entry: phase1 server call <server 0> 
[00:00:09:696] entry: start; entry: phase1 proc call <mean 1100 ms, 
actual 7.4381 ms>; processor: <demand 7.4381 ms, rounded to 7 ms> 
[00:00:09:703] entry: reply; entry: done <phase1 7 ms, phase2 0 ms> 
[00:00:09:703] entry: phase1 server call <server 1>; entry: start 
[00:00:09:703] entry: phase1 proc call <mean 2100 ms, actual 1148.83 ms> 
[00:00:09:703] processor: <demand 1148.83 ms, rounded to 1149 ms> 
[00:00:10:852] entry: reply; entry: done <phase1 1149 ms, phase2 0 ms> 
[00:00:10:852] entry: reply; entry: done <phase1 1156 ms, phase2 0 ms> 

execution of the fifth call made to entry ent
in task “ref” and subsequent calls to entries 
entry1 in task “e1” which generates an actual 
processor workload of 7 ms and to entry2 in task 
“e2” which generates an actual processor 
workload of 1149 ms 

[00:00:10:852] entry: start; entry: phase1 server call <server 0> 
[00:00:10:852] entry: start; entry: phase1 proc call <mean 1100 ms, 
actual 4201.75 ms>; processor: <demand 4201.75 ms, rounded to 4202 ms> 
[00:00:15:054] entry: reply; entry: done <phase1 4202 ms, phase2 0 ms> 
[00:00:15:054] entry: phase1 server call <server 1>; entry: start 
[00:00:15:054] entry: phase1 proc call <mean 2100 ms, actual 6209.72 ms> 
[00:00:15:054] processor: <demand 6209.72 ms, rounded to 6210 ms> 
[00:00:21:264] entry: reply; entry: done <phase1 6210 ms, phase2 0 ms> 
[00:00:21:264] entry: reply; entry: done <phase1 10412 ms, phase2 0 ms> 

execution of the sixth call made to entry ent
in task “ref” and subsequent calls to entries 
entry1 in task “e1” which generates an actual 
processor workload of 4202 ms and to entry2 in 
task “e2” which generates an actual processor 
workload of 6210 ms 

[00:00:21:264] entry: start; entry: phase1 server call <server 0> 
[00:00:21:264] entry: start; entry: phase1 proc call <mean 1100 ms, 
actual 941.089 ms>; processor: <demand 941.089 ms, rounded to 941 ms> 
[00:00:22:205] entry: reply; entry: done <phase1 941 ms, phase2 0 ms> 
[00:00:22:205] entry: phase1 server call <server 1>; entry: start 
[00:00:22:205] entry: phase1 proc call <mean 2100 ms, actual 5159.03 ms> 
[00:00:22:205] processor: <demand 5159.03 ms, rounded to 5159 ms> 
[00:00:27:364] entry: reply; entry: done <phase1 5159 ms, phase2 0 ms> 
[00:00:27:364] entry: reply; entry: done <phase1 6100 ms, phase2 0 ms> 

execution of the seventh call made to entry 
ent in task “ref” and subsequent calls to entries 
entry1 in task “e1” which generates an actual 
processor workload of 941 ms and to entry2 in 
task “e2” which generates an actual processor 
workload of 5159 ms 

[00:00:27:364] entry: start; entry: phase1 server call <server 0> 
[00:00:27:364] entry: start; entry: phase1 proc call <mean 1100 ms, 
actual 544.691 ms>; processor: <demand 544.691 ms, rounded to 545 ms> 
[00:00:27:909] entry: reply; entry: done <phase1 545 ms, phase2 0 ms>; 
entry: phase1 server call <server 1>; entry: start; entry: phase1 proc 
call <mean 2100 ms, actual 2374.95 ms>; processor: <demand 2374.95 ms, 
rounded to 2375 ms> 
[00:00:30:284] entry: reply; entry: done <phase1 2375 ms, phase2 0 ms> 
[00:00:30:284] entry: reply; entry: done <phase1 2920 ms, phase2 0 ms> 

execution of the eighth call made to entry 
ent in task “ref” and subsequent calls to entries 
entry1 in task “e1” which generates an actual 
processor workload of 545 ms and to entry2 in 
task “e2” which generates an actual processor 
workload of 2375 ms 

[00:00:30:284] entry: start; entry: phase1 server call <server 0>; 
entry: start; entry: phase1 proc call <mean 1100 ms, actual 2256.45 ms>; 
processor: <demand 2256.45 ms, rounded to 2256 ms> 
[00:00:32:540] entry: reply; entry: done <phase1 2256 ms, phase2 0 ms>; 
entry: phase1 server call <server 1>; entry: start 
[00:00:32:540] entry: phase1 proc call <mean 2100 ms, actual 4946.97 ms> 
[00:00:32:540] processor: <demand 4946.97 ms, rounded to 4947 ms> 
[00:00:37:487] entry: reply; entry: done <phase1 4947 ms, phase2 0 ms> 
[00:00:37:487] entry: reply; entry: done <phase1 7203 ms, phase2 0 ms> 

execution of the ninth call made to entry ent
in task “ref” and subsequent calls to entries 
entry1 in task “e1” which generates an actual 
processor workload of 2256 ms and to entry2 in 
task “e2” which generates an actual processor 
workload of 4947 ms 

[00:00:37:487] entry: start; entry: phase1 server call <server 0> 
[00:00:37:487] entry: start; entry: phase1 proc call <mean 1100 ms, 
actual 1726.73 ms>; processor: <demand 1726.73 ms, rounded to 1727 ms> 
[00:00:39:214] entry: reply; entry: done <phase1 1727 ms, phase2 0 ms> 
[00:00:39:214] entry: phase1 server call <server 1>; entry: start 
[00:00:39:214] entry: phase1 proc call <mean 2100 ms, actual 874.252 ms> 
[00:00:39:214] processor: <demand 874.252 ms, rounded to 874 ms> 
[00:00:40:088] entry: reply; entry: done <phase1 874 ms, phase2 0 ms> 
[00:00:40:088] entry: reply; entry: done <phase1 2601 ms, phase2 0 ms> 

execution of the tenth call made to entry ent
in task “ref” and subsequent calls to entries 
entry1 in task “e1” which generates an actual 
processor workload of 1727 ms and to entry2 in 
task “e2” which generates an actual processor 
workload of 874 ms 

Table 4: Output events generated during model execution and their interpretation. 



4. CONCLUSIONS 

The DEVS LQN simulation library provides a means creating 
LQN performance models in a DEVS environment. It makes a 
contribution to the LQN modeling paradigm by extending it to 
a simulation platform that supports interactions between 
different models and different simulation platforms, something 
that the existing LQNS and LQSim solvers cannot do. These 
models can be integrated with existing Petri Nets, traditional 
DEVS models, cellular models, finite state automata and other 
existing formalisms built on top of the DEVS models. This 
permits us to build applications in which different modeling 
techniques can be applied to solve particular problems using the 
most adequate method in each case. 

The implementation of the atomic models, the CD++ tool, 
and a more extensive report are public domain and can be 
obtained in: 

http://www.sce.carleton.ca/faculty/wainer/wbgraf 
Additional work should be undertaken to add support for 

asynchronous and forwarding calls to the library - the current 
version only uses synchronous calls. Eventually the library 
should also include support for LQN activities. 
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APPENDIX 

LQN aspect/ 
element 

DEVS atomic 
model 

DEVS coupled 
model 

Functionality 

Processor Processor  - receives call, executes it for the specified time 
- replies when done 
- calculates utilization and throughput 

  Processor - combines gather, queue, and atomic processor for full LQN processor functionality 
Entry with 
phases 

Entry  - receives call, executes associated workloads (phase 1 and phase 2 processing, makes 
calls), and replies when done 
- processor demands for phase 1 and 2 must first be initialized through initproc port 
- server calls for phase 1 and phase 2 must first be initialized through the initserv port 

  Entry - combines gather, queue, atomic entry, and distribute for full LQN entry functionality 
implied queue Queue  - adds call to queue 

- sends first element in queue to attached idle Processor or Entry 
- passes reply back up to the call source 

aggregating 
calls (multiple 
sources) 

Gather  - aggregates calls from multiple input ports and sends them out the single output port 
- adds a message with the input port index 
- passes reply from port “output end” through to appropriate response port “input end” 

distributing 
calls (different 
entries) 

Distribute  - receives calls on single input port and distributes them to the appropriate output port 
- sends reply from the reply port at the “output end” to the single response port at the 
“input end” 

Task  Task - coupled model composed of multiple entries 
Disk  Processor - reuses the functionality of a processor 
Activity N/A N/A - further subdivides the workload of an Entry, currently not implemented in DEVS  

Table 1: DEVS models for the LQN simulation library. 

Sender (port) Receiver (port) LQN Equiv. Msg. DEVS Messages Interpretation 
Processor (reply) Queue (response) done reply notify source entry that processing is done; message 

value represents actual processing time (ms) 
Processor (ready) Queue (ready) done ready ready for another job, the message value is irrelevant 
Processor 
(throughput) 

 throughput throughput message value represents the processor throughput in 
number of jobs per ms 

Processor 
(utilization) 

 utilization utilization message value represents the fraction/ percentage of 
time that the processor has been busy 

Entry (proccall) Distribute (in[0..9]) processor call processor svc demand message value represents processor demand in ms 
Entry (servcall) Gather (in) service call service call message value represents index of the target server 
Entry(avservtime)  avg entry svc time avg entry svc time message value represents avg entry svc time in ms 
Entry (avph1time)  avg phase1 time avg phase 1 svc time message value represents avg phase1 svc time in ms 
Entry (avph2time)  avg phase2 time avg phase 2 svc time message value represents avg phase2 svc time in ms 
Entry (throughput)  throughput throughput message value represents entry throughput in jobs/ms 
Entry (utilization)  utilization utilization message value: percentage of busy time for entry  
Queue (out) Processor (in) processor call Proc. service demand message value represents the service demand in ms 
Queue (out) Entry (in) service call service call service call, the message value is irrelevant 
Queue (reply) Gather (resp.) reply reply message value: index of source to be replied to 
Queue (avgsize)   avg queue size message value: avg number of elements in the queue 

at the time the message was sent 
Queue (avgwait)   avg queuing wait message value: avg number of ms. a message spent in 

the queue at the time the message was sent 
Gather (out) Queue (in) service call source of service call 

service call demand 
message value: index of the call source. If attached to 
a processor: represents processor svc demand in ms 

Gather (reply[ ]) Distrib.(resp[ ]) reply reply reply, the message value is irrelevant 
Distribute 
(out[0..9]) 

Gather (in[0...9]) service call service call if attached to a processor, message value represents 
processor service demand in ms 

Distribute (reply) Entry (response) reply Reply message value: index of call target returning the reply 
 Entry (initproc)  phase number 

processor demand 
message value: phase number to initialize 
message value: processor demand in ms 

 Entry (initserv)  phase number 
calls 
call target 

message value: phase number to initialize 
number of calls to make to target server 
index of the target server 

Table 2: DEVS LQN simulation library messages. 


