
Model-Based Development of Embedded Systems with RT-CD++

Gabriel Wainer Ezequiel Glinsky

Dept. of Systems and Computer Engineering
Carleton University

4456 Mackenzie Building
1125 Colonel By Drive

Ottawa, ON. K1S 5B6. CANADA.
gwainer@sce.carleton.ca

Abstract
The Modeling and Simulation-Driven Engineering (MSDE)
approach relies on simulation-based modeling for
developing components of real-time embedded systems. We
propose the use of the DEVS formalism for MSDE
activities. We present the MSDE of an application using
incremental development, seamlessly integrating hardware
components with models simulated in CD++, a DEVS
modeling simulation tool. We show how to create different
experimental frameworks, allowing the analysis of model
execution in a risk-free environment. The approach allows
secure, reliable testing, analysis of different levels of
abstraction in the system, and model reuse.

INTRODUCTION
Embedded real-time software construction has usually
posed interesting challenges due to the complexity of the
tasks executed. Most methods are either hard to scale up for
large systems, or require a difficult testing effort with no
guarantee for bug free software products. Formal methods
have showed promising results, nevertheless, they are diffi-
cult to apply when the complexity of the system under
development scales up. Instead, systems engineers have of-
ten relied on the use of modeling and simulation (M&S)
techniques in order to make system development tasks man-
ageable. Construction of system models and their analysis
through simulation reduces both end costs and risks, while
enhancing system capabilities and improving the quality of
the final products. M&S let users experiment with “virtual”
systems, allowing them to explore changes, and test dy-
namic conditions in a risk-free environment. This is a useful
approach, moreover considering that testing under actual
operating conditions may be impractical and in some cases
impossible.

M&S methodologies and tools have provided means for
cost-effective validity analysis for real-time embedded
systems [SER00, DP02]. M&S is widely used for the early
development stages; however, when the development tasks
switch towards the target environment, the early models and
simulation artifacts are often abandoned [Pea03]. The
Modeling and Simulation-Driven Engineering (MSDE)
initiative aims to integrate the use of M&S as a fundamental

cornerstone in all aspects of real-time embedded system
engineering. MSDE proposes a discrete-event simulation
architecture to be used as the final target architecture for
products. The approach supports rapid prototyping,
encourages reuse, and lends itself to the development and
maintenance of multiple consistent artifacts [Pea03]. We
present a MSDE framework based on the DEVS (Discrete
EVents Systems specification) formalism [ZKP00]. DEVS
provides a formal foundation to M&S that proved to be
successful in different complex systems. This approach
combines the advantages of a simulation-based approach
with the rigor of a formal methodology.

CD++ [Wai02] is a software implementation of DEVS
with extensions to support real-time model execution
[GW02a]. We will explain how to use the MSDE frame to
seamlessly integrate simulation models with hardware
components. The method proposes to start by developing
models entirely built in CD++ and to replace them
incrementally with hardware surrogates at later stages of the
process. The transition can be done in incremental steps,
incorporating models in the target environment after
thorough testing in the simulated platform. The use of
DEVS improves reliability (in terms of logical correctness
and timing), enables model reuse, and permits reducing
development and testing times for the overall process.

DEVS AND CD++

DEVS [ZKP00] is a formal M&S framework based on
systems theory. DEVS has well-defined concepts for
coupling of components and hierarchical, modular model
composition. DEVS defines a complex model as a
composite of basic components (called atomic), which can
be hierarchically integrated into coupled models. A DEVS
atomic model is described as:

M = < X, S, Y, δint, δext, λ, ta >
Every state S is associated with a lifetime ta, which is de-
fined by the time advance function. When an event receives
an input event X, the external transition function δδδδext is trig-
gered. This function uses the input event, the current state
and the time elapsed since the last event in order to deter-
mine which is the next model’s state. If no events occur
before the time specified by the time advance function for

that state, the model activates the output function λλλλ (provid-
ing outputs Y), and changes to a new state determined by the
internal transition function δδδδint.

A DEVS coupled model is defined as:
CM = < X, Y, D, {Mi}, {Ii}, {Zij} >

Coupled models are defined as a set of basic components Mi
(i ∈ D) interconnected through their interfaces (X, Y). The
translation function Zij converts the outputs of a model into
inputs for others using I/O ports. To do so, an index of in-
fluencees is created for each model (Ii). This index is used
to connect outputs in model Mi are connected with inputs in
the model Mj (j ∈ Ii). The formalism is closed under cou-
pling, therefore, coupled and atomic models are se-
mantically equivalent, which enables model reuse.

The execution of a DEVS model is defined by an ab-
stract mechanism that is independent from the model itself.
DEVS also permits defining independent experimental
frames for the model, that is, a set of conditions under which
the system is observed or experimented with. The CD++
toolkit [Wai02] implements DEVS theory. Atomic models
can be defined using C++. Coupled models are defined us-
ing a built-in language that follows DEVS formal
specifications. Figure 1, shows parts of ButtonInputModule,
a button controller model that is one of the components of a
cruise control system (CCS) modeled with CD++ [TMG03].

ButtonInputModule::ButtonInputModule
 (const string &name) : Atomic(name),
in_BUTTON(addInputPort("in_BUTTON")),
out_ON(addOutputPort("out_ON")), (...),
out_RESUME(addOutputPort("out_RESUME"))
{ reactionTime = VTime(0, 0, 0, 15); }

Model &ButtonInputModule::externalFunction
 (const ExternalMessage &msg) {
 if(msg.port() == in_BUTTON) {
 inType=(int)msg.value();
 holdIn(active, reactionTime);
 } }

Model &ButtonInputModule::outputFunction
 (const InternalMessage &msg) {
 switch(inType) {
 case ON: //take action {
 sendOutput(msg.time(), out_ON, HIGH) ;
 break; }
 case OFF: //take action {
 sendOutput(msg.time(), out_OFF, HIGH) ;
 break; }
 ...} }

Model &ButtonInputModule::internalFunction
 (const InternalMessage &) {
 passivate();}
Figure 1. Specification of ButtonInputModule in CD++.
RT-CD++ [GW02a] uses the real-time clock to trigger the
processing of discrete events in the system. Figure 2
outlines the processor’s hierarchy generated by RT-CD++ in
order to execute the CCS model. The root coordinator
created at the top level manages the interaction with an
experimental frame in charge of testing the model, and
returns outputs. A coordinator is created to handle the
coupled model ProcModule, whereas simulators objects are
created to handle the atomic ButtonInputModule and

outputModule. Timing constraints (deadlines) can be
associated to each external event. When the processing of an
event is completed, the root coordinator checks the deadline.
In this way, we can obtain performance metrics (number of
missed deadlines, worst-case response time).

 Experimental Frame

(event/log files)

Root Coordinator
RT-CD++
Simulator

External events
(inButton, inBreak, etc.)

Outputs
(throttle)

Wall-
Clock

Event list
(deadline

information)

ProcModule:
coordinator

ButtonInputModule:
simulator

messages messages

...

...

messages

Figure 2. RT-CD++ simulation scheme

We thoroughly tested the execution performance of RT-
CD++, and obtained constrained overhead results (2% to 3%
for fairly large models). We then explored hardware-in-the-
loop simulations [LPW03]: we built a model of the CODEC
of Analog Devices 2189M EZ-KITLITE [AD00]. Different
tests showed the feasibility of the approach, as we were able
to reproduce simulated results in the HARDWARE
SURROGATE. Nevertheless, when building components on
the board, some of the existing models needed rework (due
to the use of an IDE in charge of the communications
between CD++ and the hardware). These problems were
solved by incorporating communication facilities into
CD++.

APPLYING CD++ FOR MSDE
The MSDE approach was used to build the software for an
elevator servicing a four-floor building. We started by
modeling the entire system in CD++, using the model
structure presented in Figure 3. The system is conformed by
an elevator control unit (ECU), one coupled component (an
elevator box), and three atomic components. The elevator
box is formed by two atomic models (the engine and a
sensor controller). The button and sensor controllers were
defined as atomic components (reusing parts of the atomic
model ButtonInputModule presented before).

These models, which are defined as previously showed
in Figure 1, receive events from the environment, and
forward them to the ECU, resembling the real components
of the system. The display controller activates LEDs
(indicating that a button has been pressed), and a digital
display (showing the direction of the elevator). The ECU

receives input signals from sensors and buttons, determining
the current location, the floor selected by the user, and
dispatching the elevator in the required direction. It also
sends outputs to the display controller informing the status
of the elevator.

Button Controller

Elevator

Controller
Unit

Display Controller

Elevator Box

Engine

Sensor
Controller

btn_1
btn_2
btn_3
btn_4

led1
led2
...
dir_display
flr_display

Figure 3. Scheme of the elevator system (entirely in CD++)

Most of the logic of the ECU is located in the external
transition function, which handles the incoming events (a
new floor is requested) and schedules the next internal
transition function to activate or deactivate the engine or to
display a new value (e.g., the elevator starts moving or a
new floor is reached). Users can define the activation time
for the engine, customizing its timing behavior.

Different experimental frames were applied to this
model, allowing the analysis of different scenarios. We
started by analyzing the behavior of each submodel
independently (using the specifications for their physical
counterparts) and then, we conducted integration tests.
Figure 4 shows a sample event file for one of such
experiments.

Time Deadline In-port Out-Port Value
00:11:500 00:11:700 btn_3 led3 1
00:14:600 00:14:800 sensor_2 flr_display 1
00:19:500 00:19:700 sensor_3 flr_display 1
00:25:100 00:25:300 btn_4 led4 1

Figure 4. Experimental frame for the elevator system

Initially, the elevator is on the first floor and there are

no pending events. The first event represents a user willing
to go to the third floor. The event occurs at time 00:11:500,
and the simulator receives it via input port btn_3. As a
result, we expect to turn on the button LED in less than 200
ms. The second event in the list represents the activation of
sensor_2 (i.e., the elevator has reached the second floor). In
this case, we expect an output via port flr_display before
00:14:800. The value of 1 represents the activation of
buttons and sensors. Figure 5 shows the outputs generated
by the real-time simulator for this experiment.

Time Deadline Out-port Value
00:11:510 00:11:700 led3 1
00:11:510 dir_display 1
00:14:610 00:14:800 flr_display 2
00:19:510 00:19:700 led3 0
00:19:510 flr_display 3
00:19:510 dir_display 0
...

Figure 5. Outputs generated by the elevator system

As we can see, the deadlines were met in every case.

We used different experimental frames to thoroughly test
this model, and once satisfied with its behavior, we
progressively started to replace simulated components with
their hardware counterparts. The first step was to replace the
button controller model. User requests are now received on
the button pad and sent to the simulated model. The rest of
the components remain unchanged from the architecture
described in Figure 3.

components: elevBox ec@ECU dis@Display
in : button_1 button_2 button_3 button_4
out : flr_display
link : button_1 button_1@ec
link : button_2 button_2@ec
...
link : sensor_1@elevBox sensor_1@ec
link : sensor_2@elevBox sensor_2@ec
...
link : floor_disp@ec flr_display@dis
link : floor_disp@ec floor_disp
...
[elevBox]
components: sb@SensorController eng@Engine
in : activate direction
out : sensor_1 sensor_2 sensor_3 sensor_4
link : activate activate@eng
link : direction direction@eng
link : sensor_1@sb sensor_1
...

Figure 6. Coupled model: button controller in hardware

Here, elevBox is a coupled component, whereas ec and

dis are atomic. The top model input ports are used to receive
events from the button controller now running in the
external board. Replacing a CD++ component with its
counterpart running in the external devices is
straightforward, since the modeler only has to remove the
original model from the coupled model definition. Likewise,
testing this model only requires reusing the previously
defined experimental frames. As the button controller model
was built using the hardware specifications for the actual
buttons, and the interfaces of the submodels do not change,
the transition is transparent. The results obtained are
equivalent to Figure 5, regardless the changes.

After conducting extensive tests, we also moved the
display controller to the microcontroller. By simply
removing the display controller from the coupled model
specification in Figure 6, we were able to execute the new
application without any modifications.

The final step was to implement the complete elevator
system on the microcontroller. Figure 7 shows the scheme
for this experimental frame, in which only the engine
component is still simulated in CD++.

Button Controller

 Elevator
 Controller
 Unit

Display Controller

- R T -C D + +

M icro contro ller

Engine

Sensor Controller

a ctivate
 direction

result

Figure 7. Elevator controller implemented in hardware

Figure 8 shows the events generated by the model

running in the microcontroller, which represents users
requesting service from. Figure 9 shows the activation and
deactivation of the engine when the requests are received,
which is the result of the activity in the microcontroller
(up=1, down=2, stop= 0).

Time Port Value
00:06:120 direction 1
00:06:130 activate 1
00:15:930 activate 0
00:56:800 direction 2
00:56:810 activate 1
...

Figure 8. Event log generated by the engine model
Time Out-port Value
00:06:130 result 1
00:15:930 result 0
00:56:810 result 2
01:01:130 result 0
01:22:720 result 2
...

Figure 9. Outputs for the model in Figure 7.

CONCLUSION
M&S techniques offer significant support for the design and
test of complex embedded real-time applications. We
showed the use of DEVS as the basis for MSDE, which
allowed us to develop incrementally a sample application
including hardware components and DEVS simulated
models. The use of different experimental frameworks
permitted us to analyze the model execution in a simulated
environment, checking the model’s behavior and timing
constraints within a risk-free environment. The simulation
results were then used in the development of the actual
application.

The integration of hardware components into the
system was straightforward. The transition from simulated
models to the actual hardware counterparts can be
incremental, incorporating deployed models into the
framework when they are ready. Testing and maintenance
phases are highly improved due to the use of a formal
approach like DEVS for modeling. DEVS can be applied to
improve the development of real-time embedded
applications.

The concept of experimental framework eases the
testing tasks, as one can build independent testing frames
for each submodel. Thanks to the closure under coupling
property, models can be decomposed in simpler versions,
always obtaining equivalent behavior. Likewise, model’s
functions can be reused by just associating them with new
models as needed. For instance, we are now building an
extension to the examples presented here that will handle
four different elevators in a 20-floor building. Extending the
model here presented requires modifying only the external
transition function in the ECU, and defining a new coupled
model including the four elevators, while keeping the
remaining methods unchanged.

Currently we are developing a new version of RT-
CD++ to run in an embedded platform (one running on the
bare hardware, and the second version on top of RT-Linux).
We are also developing a verification toolkit to use the
timing properties of the DEVS models under development.
In this way, we will have an environment for MSDE in
which the user creates models, test them in the simulated
environment, uses verification tools to analyze timing
properties, and downloads the resulting application to the
target platform, being able to provide rapid prototyping and
enhanced development capabilities.

REFERENCES
[AD00] Analog Devices. “ADSP-218x DSP Hardware
Reference”. 2000
[GW02a] Glinsky, E.; Wainer, G. “Definition of Real-Time
simulation in the CD++ toolkit”. Proc. of SCS Summer
Comp. Simulation Conference. San Diego, USA. 2002.
[LDNA03] Ledeczi, A.; Davis, J.; Neema, S.; Agrawal, A.
“Modeling methodology for integrated simulation of
embedded systems”. ACM TOMACS 13(1), 82-103. 2003.
[LPW03] Li, L.; Pearce, T.; Wainer, G. “Interfacing Real-
Time DEVS models with a DSP platform”. Proc. of
Industrial Simulation Symposium. Valencia, Spain. 2003.
[Mot02] Motorola Inc. MC68HC812A4 Data Sheet. 2002.
[Pea03] Pearce, T. “Simulation-Driven Architecture in the
Engineering of Real-Time Embedded Systems”. Proc. of
RTSS-WIP. Cancun, Mexico. 2003.
[SER00] Schulz, S.; Ewing, T.C.; Rozenblit, J.W. “Discrete
Event System Specification (DEVS) and StateMate
StateCharts Equivalence for Embedded Systems Modeling”.
Proc. of 7th IEEE Intl. Conf on Eng. of Comp. Based
Systems. 2000.
[TMG03] Thurairasa, S.; Mahendran, V.; Gnanapragasam,
C.; “Simulating a Control Cruise System with CD++”.
Technical report. SCE, Carleton University. 2003.
[Wai02] Wainer, G. “CD++: a toolkit to develop DEVS
models”. Software-Practice and Exp. 32, 1261-1306. 2002.
[ZKP00] Zeigler, B.; Kim, T.; Praehofer, H. Theory of
Modeling and Simulation: Integrating Discrete Event and
Continuous Complex Dynamic Systems. 2nd Edition.
Academic Press. 2000.

