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Abstract 
The Modeling and Simulation-Driven Engineering (MSDE) 
approach relies on simulation-based modeling for 
developing components of real-time embedded systems. We 
propose the use of the DEVS formalism for MSDE 
activities. We present the MSDE of an application using 
incremental development, seamlessly integrating hardware 
components with models simulated in CD++, a DEVS 
modeling simulation tool. We show how to create different 
experimental frameworks, allowing the analysis of model 
execution in a risk-free environment. The approach allows 
secure, reliable testing, analysis of different levels of 
abstraction in the system, and model reuse. 

INTRODUCTION 
Embedded real-time software construction has usually 
posed interesting challenges due to the complexity of the 
tasks executed. Most methods are either hard to scale up for 
large systems, or require a difficult testing effort with no 
guarantee for bug free software products. Formal methods 
have showed promising results, nevertheless, they are diffi-
cult to apply when the complexity of the system under 
development scales up. Instead, systems engineers have of-
ten relied on the use of modeling and simulation (M&S) 
techniques in order to make system development tasks man-
ageable. Construction of system models and their analysis 
through simulation reduces both end costs and risks, while 
enhancing system capabilities and improving the quality of 
the final products. M&S let users experiment with “virtual” 
systems, allowing them to explore changes, and test dy-
namic conditions in a risk-free environment. This is a useful 
approach, moreover considering that testing under actual 
operating conditions may be impractical and in some cases 
impossible. 

M&S methodologies and tools have provided means for 
cost-effective validity analysis for real-time embedded 
systems [SER00, DP02]. M&S is widely used for the early 
development stages; however, when the development tasks 
switch towards the target environment, the early models and 
simulation artifacts are often abandoned [Pea03]. The 
Modeling and Simulation-Driven Engineering (MSDE) 
initiative aims to integrate the use of M&S as a fundamental 

cornerstone in all aspects of real-time embedded system 
engineering. MSDE proposes a discrete-event simulation 
architecture to be used as the final target architecture for 
products. The approach supports rapid prototyping, 
encourages reuse, and lends itself to the development and 
maintenance of multiple consistent artifacts [Pea03]. We 
present a MSDE framework based on the DEVS (Discrete 
EVents Systems specification) formalism [ZKP00]. DEVS 
provides a formal foundation to M&S that proved to be 
successful in different complex systems. This approach 
combines the advantages of a simulation-based approach 
with the rigor of a formal methodology.  

CD++ [Wai02] is a software implementation of DEVS 
with extensions to support real-time model execution 
[GW02a]. We will explain how to use the MSDE frame to 
seamlessly integrate simulation models with hardware 
components. The method proposes to start by developing 
models entirely built in CD++ and to replace them 
incrementally with hardware surrogates at later stages of the 
process. The transition can be done in incremental steps, 
incorporating models in the target environment after 
thorough testing in the simulated platform. The use of 
DEVS improves reliability (in terms of logical correctness 
and timing), enables model reuse, and permits reducing 
development and testing times for the overall process. 
 
DEVS AND CD++ 
 
DEVS [ZKP00] is a formal M&S framework based on 
systems theory. DEVS has well-defined concepts for 
coupling of components and hierarchical, modular model 
composition. DEVS defines a complex model as a 
composite of basic components (called atomic), which can 
be hierarchically integrated into coupled models. A DEVS 
atomic model is described as: 

M = < X, S, Y, δint, δext, λ, ta > 
Every state S is associated with a lifetime ta, which is de-
fined by the time advance function. When an event receives 
an input event X, the external transition function δδδδext is trig-
gered. This function uses the input event, the current state 
and the time elapsed since the last event in order to deter-
mine which is the next model’s state. If no events occur 
before the time specified by the time advance function for 



that state, the model activates the output function λλλλ (provid-
ing outputs Y), and changes to a new state determined by the 
internal transition function δδδδint. 

A DEVS coupled model is defined as: 
CM = < X, Y, D, {Mi}, {Ii}, {Zij} > 

Coupled models are defined as a set of basic components Mi 
(i ∈ D) interconnected through their interfaces (X, Y). The 
translation function Zij converts the outputs of a model into 
inputs for others using I/O ports. To do so, an index of in-
fluencees is created for each model (Ii). This index is used 
to connect outputs in model Mi are connected with inputs in 
the model Mj (j ∈ Ii). The formalism is closed under cou-
pling, therefore, coupled and atomic models are se-
mantically equivalent, which enables model reuse. 

The execution of a DEVS model is defined by an ab-
stract mechanism that is independent from the model itself. 
DEVS also permits defining independent experimental 
frames for the model, that is, a set of conditions under which 
the system is observed or experimented with. The CD++ 
toolkit [Wai02] implements DEVS theory. Atomic models 
can be defined using C++. Coupled models are defined us-
ing a built-in language that follows DEVS formal 
specifications. Figure 1, shows parts of ButtonInputModule, 
a button controller model that is one of the components of a 
cruise control system (CCS) modeled with CD++ [TMG03]. 

 
ButtonInputModule::ButtonInputModule  
  ( const string &name ) : Atomic( name ), 
in_BUTTON( addInputPort( "in_BUTTON") ), 
out_ON( addOutputPort( "out_ON") ), (...), 
out_RESUME( addOutputPort( "out_RESUME") )  
{ reactionTime = VTime( 0, 0, 0, 15 );  } 
 
Model &ButtonInputModule::externalFunction  
  ( const ExternalMessage &msg ) { 
  if( msg.port() == in_BUTTON )   { 
 inType=(int)msg.value(); 
 holdIn( active, reactionTime ); 
  } } 
 
Model &ButtonInputModule::outputFunction 
  ( const InternalMessage &msg ) { 
  switch(inType) { 
 case ON: //take action { 
   sendOutput( msg.time(), out_ON, HIGH) ;    
   break; } 
 case OFF: //take action { 
   sendOutput( msg.time(), out_OFF, HIGH) ;  
   break; } 
  ...} } 
 
Model &ButtonInputModule::internalFunction 
  ( const InternalMessage & ) { 
  passivate();}  
Figure 1. Specification of ButtonInputModule in CD++. 
RT-CD++ [GW02a] uses the real-time clock to trigger the 
processing of discrete events in the system. Figure 2 
outlines the processor’s hierarchy generated by RT-CD++ in 
order to execute the CCS model. The root coordinator 
created at the top level manages the interaction with an 
experimental frame in charge of testing the model, and 
returns outputs. A coordinator is created to handle the 
coupled model ProcModule, whereas simulators objects are 
created to handle the atomic ButtonInputModule and 

outputModule. Timing constraints (deadlines) can be 
associated to each external event. When the processing of an 
event is completed, the root coordinator checks the deadline. 
In this way, we can obtain performance metrics (number of 
missed deadlines, worst-case response time). 
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Figure 2. RT-CD++ simulation scheme 

We thoroughly tested the execution performance of RT-
CD++, and obtained constrained overhead results (2% to 3% 
for fairly large models). We then explored hardware-in-the-
loop simulations [LPW03]: we built a model of the CODEC 
of Analog Devices 2189M EZ-KITLITE [AD00]. Different 
tests showed the feasibility of the approach, as we were able 
to reproduce simulated results in the HARDWARE 
SURROGATE. Nevertheless, when building components on 
the board, some of the existing models needed rework (due 
to the use of an IDE in charge of the communications 
between CD++ and the hardware). These problems were 
solved by incorporating communication facilities into 
CD++.  

APPLYING CD++ FOR MSDE 
The MSDE approach was used to build the software for an 
elevator servicing a four-floor building. We started by 
modeling the entire system in CD++, using the model 
structure presented in Figure 3. The system is conformed by 
an elevator control unit (ECU), one coupled component (an 
elevator box), and three atomic components. The elevator 
box is formed by two atomic models (the engine and a 
sensor controller). The button and sensor controllers were 
defined as atomic components (reusing parts of the atomic 
model ButtonInputModule presented before). 

These models, which are defined as previously showed 
in Figure 1, receive events from the environment, and 
forward them to the ECU, resembling the real components 
of the system. The display controller activates LEDs 
(indicating that a button has been pressed), and a digital 
display (showing the direction of the elevator). The ECU 



receives input signals from sensors and buttons, determining 
the current location, the floor selected by the user, and 
dispatching the elevator in the required direction. It also 
sends outputs to the display controller informing the status 
of the elevator. 
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Figure 3. Scheme of the elevator system (entirely in CD++) 

Most of the logic of the ECU is located in the external 
transition function, which handles the incoming events (a 
new floor is requested) and schedules the next internal 
transition function to activate or deactivate the engine or to 
display a new value (e.g., the elevator starts moving or a 
new floor is reached). Users can define the activation time 
for the engine, customizing its timing behavior.  

Different experimental frames were applied to this 
model, allowing the analysis of different scenarios. We 
started by analyzing the behavior of each submodel 
independently (using the specifications for their physical 
counterparts) and then, we conducted integration tests. 
Figure 4 shows a sample event file for one of such 
experiments. 

 
Time       Deadline   In-port  Out-Port     Value 
00:11:500  00:11:700  btn_3    led3          1 
00:14:600  00:14:800  sensor_2 flr_display   1 
00:19:500  00:19:700  sensor_3 flr_display   1 
00:25:100  00:25:300  btn_4    led4          1 

Figure 4. Experimental frame for the elevator system 
 
Initially, the elevator is on the first floor and there are 

no pending events. The first event represents a user willing 
to go to the third floor. The event occurs at time 00:11:500, 
and the simulator receives it via input port btn_3. As a 
result, we expect to turn on the button LED in less than 200 
ms. The second event in the list represents the activation of 
sensor_2 (i.e., the elevator has reached the second floor). In 
this case, we expect an output via port flr_display before 
00:14:800. The value of 1 represents the activation of 
buttons and sensors. Figure 5 shows the outputs generated 
by the real-time simulator for this experiment. 

Time        Deadline    Out-port       Value 
00:11:510   00:11:700   led3           1 
00:11:510               dir_display    1 
00:14:610   00:14:800   flr_display    2 
00:19:510   00:19:700   led3           0 
00:19:510               flr_display    3 
00:19:510               dir_display    0 
... 

Figure 5. Outputs generated by the elevator system 
 
As we can see, the deadlines were met in every case. 

We used different experimental frames to thoroughly test 
this model, and once satisfied with its behavior, we 
progressively started to replace simulated components with 
their hardware counterparts. The first step was to replace the 
button controller model. User requests are now received on 
the button pad and sent to the simulated model. The rest of 
the components remain unchanged from the architecture 
described in Figure 3.  

 
components:  elevBox   ec@ECU   dis@Display 
in   : button_1  button_2  button_3  button_4 
out  : flr_display 
link : button_1 button_1@ec 
link : button_2 button_2@ec 
... 
link : sensor_1@elevBox sensor_1@ec 
link : sensor_2@elevBox sensor_2@ec 
... 
link : floor_disp@ec  flr_display@dis 
link : floor_disp@ec  floor_disp 
... 
[elevBox] 
components:  sb@SensorController   eng@Engine 
in   : activate  direction 
out  : sensor_1 sensor_2 sensor_3 sensor_4 
link : activate    activate@eng 
link : direction   direction@eng 
link : sensor_1@sb sensor_1 
... 

Figure 6. Coupled model: button controller in hardware 
 
Here, elevBox is a coupled component, whereas ec and 

dis are atomic. The top model input ports are used to receive 
events from the button controller now running in the 
external board. Replacing a CD++ component with its 
counterpart running in the external devices is 
straightforward, since the modeler only has to remove the 
original model from the coupled model definition. Likewise, 
testing this model only requires reusing the previously 
defined experimental frames. As the button controller model 
was built using the hardware specifications for the actual 
buttons, and the interfaces of the submodels do not change, 
the transition is transparent. The results obtained are 
equivalent to Figure 5, regardless the changes. 

After conducting extensive tests, we also moved the 
display controller to the microcontroller. By simply 
removing the display controller from the coupled model 
specification in Figure 6, we were able to execute the new 
application without any modifications.  

The final step was to implement the complete elevator 
system on the microcontroller. Figure 7 shows the scheme 
for this experimental frame, in which only the engine 
component is still simulated in CD++. 
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Figure 7. Elevator controller implemented in hardware 
 
Figure 8 shows the events generated by the model 

running in the microcontroller, which represents users 
requesting service from. Figure 9 shows the activation and 
deactivation of the engine when the requests are received, 
which is the result of the activity in the microcontroller 
(up=1, down=2, stop= 0). 

 
Time           Port          Value 
00:06:120  direction    1 
00:06:130  activate    1 
00:15:930  activate    0 
00:56:800  direction    2 
00:56:810  activate    1 
... 

Figure 8. Event log generated by the engine model 
Time            Out-port        Value 
00:06:130    result          1 
00:15:930    result          0 
00:56:810    result          2 
01:01:130    result          0 
01:22:720    result          2 
... 

Figure 9. Outputs for the model in Figure 7. 
 
CONCLUSION 
M&S techniques offer significant support for the design and 
test of complex embedded real-time applications. We 
showed the use of DEVS as the basis for MSDE, which 
allowed us to develop incrementally a sample application 
including hardware components and DEVS simulated 
models. The use of different experimental frameworks 
permitted us to analyze the model execution in a simulated 
environment, checking the model’s behavior and timing 
constraints within a risk-free environment. The simulation 
results were then used in the development of the actual 
application. 

The integration of hardware components into the 
system was straightforward. The transition from simulated 
models to the actual hardware counterparts can be 
incremental, incorporating deployed models into the 
framework when they are ready. Testing and maintenance 
phases are highly improved due to the use of a formal 
approach like DEVS for modeling. DEVS can be applied to 
improve the development of real-time embedded 
applications.  

The concept of experimental framework eases the 
testing tasks, as one can build independent testing frames 
for each submodel. Thanks to the closure under coupling 
property, models can be decomposed in simpler versions, 
always obtaining equivalent behavior. Likewise, model’s 
functions can be reused by just associating them with new 
models as needed. For instance, we are now building an 
extension to the examples presented here that will handle 
four different elevators in a 20-floor building. Extending the 
model here presented requires modifying only the external 
transition function in the ECU, and defining a new coupled 
model including the four elevators, while keeping the 
remaining methods unchanged. 

Currently we are developing a new version of RT-
CD++ to run in an embedded platform (one running on the 
bare hardware, and the second version on top of RT-Linux). 
We are also developing a verification toolkit to use the 
timing properties of the DEVS models under development. 
In this way, we will have an environment for MSDE in 
which the user creates models, test them in the simulated 
environment, uses verification tools to analyze timing 
properties, and downloads the resulting application to the 
target platform, being able to provide rapid prototyping and 
enhanced development capabilities. 
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