
Performance Analysis of Continuous Cell-DEVS models

Gabriel Wainer
Dept. of Systems and Computer Engineering

Carleton University
1125 Colonel By Drive

Ottawa, ON. K1S 5B6. Canada.
gwainer@sce.carleton.ca

KEYWORDS
DEVS, Cell-DEVS, Quantized DEVS, CD++.

ABSTRACT
The Cell-DEVS formalism allows describing complex
cellular models. When using very large models with
continuous variables, the execution performance de-
grades. We experienced with different quantization
techniques to reduce the number of messages generated
by the simulator. We present two different strategies for
the automatic update of the quantum sizes in different
cells, and we discuss the use of quantized DEVS with
hysteresis applied to cellular models. We obtained im-
portant reductions in the error involved, while maintain-
ing the high performance of quantized DEVS models.

INTRODUCTION
In the last 20 years, cellular computing became popular
as a tool for complex systems analysis. Cellular Auto-
mata (CA) [1] are organized as n-dimensional infinite
lattices in which each element holds a state variable and
a very simple computing function. These functions are
local to each cell, and they execute synchronously using
the state values of the present cell and neighbors. The
Cell-DEVS formalism [2] permits describing cellular
models as discrete-event systems based on the DEVS
formalism [3]. A real system modeled with DEVS can
be described as a composite of behavioral (atomic) and
structural (coupled) submodels, which can be integrated
into a hierarchy. In Cell-DEVS, each cell is seen as a
DEVS atomic model, and a procedure for coupling cells
is defined based on the neighborhood relationship. Ex-
plicit timing delays permit expressing complex timing
conditions. The hierarchical nature of DEVS also per-
mits the integration of these cellular models with others
defined using different formalisms, resulting in en-
hanced facilities for modeling complex systems.

Figure 1. Description of a Cell-DEVS Model.

 The CD++ toolkit [4] allows simulating DEVS and
Cell-DEVS models, and it has been used to execute a

variety of models (traffic, forest fires, biological sys-
tems and experiments in physics). As the complexity of
the models grows, large data sets are generated, increas-
ing execution. The situation is worse for models with
continuous state variables.
 Different efforts that showed how to simulate con-
tinuous DEVS models efficiently include quantized
DEVS (Q-DEVS) [5], Q-DEVS with hysteresis [6], and
Cell-DEVS with Dynamic Quantization [7]. When us-
ing quantized DEVS, a state value will be only informed
to its neighbors if the cell's value crosses a threshold
(called the quantum). This operation reduces substan-
tially the frequency of message updates, while poten-
tially incurring into error. DEVS with Hysteresis has
strong stability, convergence and error bound properties.
Cell-DEVS with Dynamic Quantization reduces the er-
ror by improving the precision of the most active cells.
 We used different models as a workbench, including a
model of the electrical activity of the heart tissue [8], a
model of watershed formation [9], and a Flow Injection
Analysis (FIA) system [10], which studies the auto-
mated analysis of liquid samples. We analyzed different
metrics (error, execution time and number of messages),
and we could determine how the dynamic quantization
techniques improve the amount of error introduced by
the quantizers.

DEVS MODELING
A DEVS atomic model can be defined as: AM = < X, Y,
S, δext, δint, λ, ta>. A DEVS model in state s ∈ S will
remain in that state for a period as defined by ta(s).
When ta(s) expires, an internal transition runs: the
model outputs the value λ(s), and changes to the state
δint(s). A state transition can also happen upon reception
of an external event: δext is activated with the input
value, the current state and the elapsed time.
 Coupled models, are defined as: CM = < X, Y, D,
{Mi}, {Ii}, {Zij} >. They consist of a set of basic models
(Mi, atomic or coupled) connected through the models'
interfaces. Component identifications are stored into an
index (D). A translation function (Zij) is defined by us-
ing an index of influencees created for each model (Ii).
The function defines which outputs of model Mi are
connected to inputs in model Mj.
 Cell-DEVS allows the creation of cellular models, in
which each cell is defined as a DEVS atomic model. A
Cell-DEVS atomic model is defined as: TDC = < X, Y,
S, θ, N, d, δint, δext, τ, λ, D >. A cell uses a set of input
values N to compute its future state, which is obtained
by applying the local function τ. A delay function is as-

sociated with each cell, after which, the new state value
is transmitted to the neighbor cells. After the basic be-
havior for a cell is defined, a complete cell space can be
built as a coupled Cell-DEVS: GCC = < Xlist, Ylist, X,
Y, n, {t1,...,tn}, N, C, B, Z >. A coupled Cell-DEVS is
composed of an array of atomic cells (C), each of which
is connected to the cells in the neighborhood (N). The
border cells (B) can be programmed with a different be-
havior than the rest of the space. The Z function defines
the internal coupling of cells in the model. Xlist and
Ylist define the coupling with external models.

Figure 2. Quantized DEVS [5].

 Performance of models with continuous variables is
reduced due to the large number of messages inter-
changed by the simulation engines. The theory of quan-
tized DEVS [5] represents continuous signals by the
crossings of an equal spaced set of boundaries (defined
by a quantum size), as showed in Figure 2. This opera-
tion reduces substantially the frequency of message up-
dates, while potentially incurring into error. DEVS
Quantized systems with hysteresis [6] improved these
results (models showed to have strong stability, conver-
gence and error bound properties). Let D = {d0,.., dm} be
a set of real numbers where di-1<di, x∈Ω is a continuous
trajectory where: x:R�R and b:ΩxR�Ω is a mapping
where q=b(x,t0) that satisfies:

 dm if t = t0
q(t) di+1 if x(t) = di+1 ∧ q(t-) = di ∧i < r
 di-1 if x(t) = di-E ∧ q(t-) = di ∧ i > r
 q(t-) otherwise

 0 if x(t0)<d0
m r if x(t0)>dr
 j if dj<= x(t0)<dj+1

 Here, the hysteresis width is E and the parameters d0
and dr are the lower and upper saturation values. In [6],
the authors proved that when the hysteresis width is set
equal to the quantum size, we obtain the smallest possi-
ble error.
 Cell-DEVS with Dynamic Quantization [7] tries to re-
duce the error by improving the precision of the cells.
An active cell can appear as quiescent due to the selec-
tion of a quantum size covering the activity area, and if
the quantum size is reduced, a smaller error will be ob-
tained. Simultaneously, if we increase the quantum size
in the cells with steep update functions, the execution
time can be improved at a low cost in terms of the error
introduced. Two different strategies were proposed to
adjust the quantum size. Let q be the base quantum, r
the adjustment ratio for the dynamic quantum, and d(t)

the quantum value used in time t. If v=Last Threshold
Value, v’=new value, and q(0)=q, then:

Strategy 1 ¬ regionChange(v,v’,d)�d=q*(1- ratio);
 regionChange(v,v’,d)�d=q*(1+ratio);
Strategy 2 regionChange(v,v’,d)�d=q*(1-ratio);
 ¬regionChange(v,v’,d)�d=q*(1+ratio);

where regionChange(v,v',q) = (v=φ | q=0 | (q≠0 ∧ [v/q]
≠ [v'/q])). Strategy 1 tries to reduce the quantum size if
the result of updating the cell's value does not cross the
threshold (otherwise, the quantum increases). This tech-
nique reduces the quantum size for cells with high up-
date rates, and increases it for cells with low update
rates. Strategy 2 reduces the quantum size every time a
threshold is crossed (otherwise, it increases). This strat-
egy reduces the number of messages involved in the
simulation at a cost of a higher error.
 We tested these techniques on CD++, which was
originally built as an implementation of DEVS and Cell-
DEVS theories. Cell-DEVS models are defined using a
built-in language. The behavior of a cell is defined using
rules with the form: VALUE DELAY {CONDITION}.
If the CONDITION is satisfied, the state of the cell will
change to the VALUE, and this new state value will be
spread to the neighboring cells after the DELAY.
Common operators are included: boolean, comparison
and arithmetic; trigonometric, roots, power, rounding
and truncation, module, logarithm, absolute value, mini-
mum, maximum, etc. [4].

DEFINING COMPLEX CELL-DEVS MODELS
We used different complex models as a workbench, in-
cluding a heart tissue model [8], a watershed [9], and a
Flow Injection Analysis (FIA) system [10]. These ex-
amples, are the most complex cases of a larger pool of
models we executed, and they represent different cate-
gories of interest. The heart tissue model permits ana-
lyzing systems in which the behavior of all of the cells
is alike. The watershed model, instead, permits analyz-
ing systems that tend to a steady state after a transient
period. Finally, the FIA model shows a case of a model
in which the behavior of different cells does not follow
a predefined pattern.

A model of the heart tissue behavior
The heart muscle is excitable, and its cells respond to
external stimuli by contracting the muscular cells.
Hodgkin and Huxley [11] originally characterized the
behavior of this cell membrane. They showed that if a
stimulus is too weak, the muscle does not respond; in-
stead, if the voltage received is adequate, they contract
at maximum capacity. Whereas solving the equations
representing this behavior using numerical methods for
one cell is feasible, the use of this model in a realistic
reproduction of the heart tissue (probably consisting of
millions of cells) can be computationally expensive.
 Different authors tried to simplify the complexity of
the equations; for instance [12], presented the use of CA
(with simple rules for the model's behavior, but at a cost
in precision) and in [8] we presented the use of Cell-
DEVS to build a discrete variable model of heart tissue

conduction. Our Cell-DEVS model executes the Hodg-
kin-Huxley model in each of the cells, as follows.

[heart]
dim : (50,50) delay : transport
border : nowrapped
neighbors : (-1,-1) (0,-1) (-1,1) (0,-1) (0,0)
(0,1) (1,-1) (1,1) (0,1)
localtransition : heart-rule-AP

[heart-rule-AP]
rule : { AP(0,0) } 1 { ((-1,0) > 0 or
 (0,-1)>0 or (-1,-1)>0) and (0,0)=-83.0) }

Figure 3. Heart tissue model: Cell-DEVS definition.

 We first define the size of the cell space (50x50 cells),
the kind of delay, and the neighborhood shape (in this
case, all the adjacent cells). Then, we define the local
computing function, called heart-rule-AP. The rule will
be evaluated only if the cell is resting and a positive
voltage is detected in the cell's neighborhood. This rule
will trigger the update of the cell state using the Hodg-
kin-Huxley equations in [11].

Non-quantized

Quantum Standard 20

Quantum Standard 1

Dynamic Q. Strategy 1

Figure 4. Sample execution of the Heart tissue model.

A Watershed model
Watersheds are regions defined by the shape of the land
surface, which store up water because of rain, ice melt-
ing and rivers. In [13], the authors defined a hydrology
model in which they identified several verticals layers
composing a watershed: air, vegetation, water surface,
land surface and stones. The model was divided in equal
portions of land (cells), permitting analyzing the water
distribution and the influence of the topology.
 Figure 5 shows a description of this model. When the
rain is absorbed by the vegetation, the rest is received
by the surface. Depending on the topology, the cells can
also receive/send, water from/to the neighbors. Part of
the water received is lost due to the filtration over the
land and stones. The accumulated water on a period de-
pends on: the quantity of effective water (rain), the
quantity of water dumped from the neighbor cells (ef-
fective rain plus the water received from the neighbors
minus water sent to the neighbors) minus the water fil-
tered by stones and the soil.

Surface vegetation

Rain
Water

 l(t)

����������	
���
�

 le(t)

��
�
�
����	
���
�

�����
�

Excedent water
flowing

to neighbor
lands

lvs(t)

Land absortion
water

f(t)

Water received
by

from the
neighbors

lve(t)

Figure 5. Hydrology model [13].

 We can see the execution results of this model in
Figure 6. We first show the initial state, representing the
slope of the terrain before raining (each cell is 1x1m).
The remaining figures show the execution results after
intense rain (0.0022 mm/s) after 10 minutes of simulated
time.

Figure 6. Watershed simulation results.

 These results were obtaining by running the hydrology
equations in CD++, using a mechanism similar to the
one presented for the heart tissue model. These rules rep-
resent that the present water of the cell, and the rain are
added. Then, we consider how much water must be
passed to the neighbors, and how much water is received
from the inverse neighborhood. The different layers are
represented as planes in a three dimensional model.

Initial state
WSHED - Topology - Time 0 95-100

90-95

85-90

80-85

75-80

70-75

65-70

60-65

55-60

50-55

45-50

40-45

35-40

30-35

25-30
No Quantum

WSHED - No Quantum - After 10' 95-100

90-95

85-90

80-85

75-80

70-75

65-70

60-65

55-60

50-55

45-50

40-45

35-40

30-35

25-30

Quantum Hysteresis 1.0
WSHED - Quantum Hys 1.0 - After 10' 95-100

90-95

85-90

80-85

75-80

70-75

65-70

60-65

55-60

50-55

45-50

40-45

35-40

30-35

25-30

[Watershed]
dim: (30,30,2) border: nowrapped
delay: transport localtransition: Hydrology
neighbors : (-1,0,0)(0,-1,0)(0,0,0)(0,1,0)
(1,0,0)(-1,0,1)(0,-1,1)(0,0,1)(1,0,1)(0,1,1)

[Hydrology]
rule : {0.0022+(0,0,0) – if((-1,0,0)!=?)and
((0,0,1)+(0,0,0)>((-1,0,1)+(-1,0,0)),((0,0,0)+
(0,0,1)-(-1,0,0)-(-1,0,1))/1000)*(0,0,0))
/1000),0)-if((1,0,0)!=?) and((0,0,1)+(0,0,0))>
((1,0,1)+(1,0,0)),((0,0,0)+(0,0,1)-(1,0,0)-
(1,0,1))/1000)*(0,0,0))/1000),0)-if((((0,-1,0)
!= ?) and ((0,0,1)+(0,0,0))>((0,-1,1)+(0,-1,0)
),((0,0,0)+(0,0,1)-(0,-1,0)-(0,-1,1))/1000)*
(0,0,0))/1000),0)–if((0,1,0)!=?) and ((0,0,1)
+(0,0,0))>((0,1,1)+(0,1,0)),(((0,0,0)+(0,0,1)-
(0,1,0)-(0,1,1))/1000)*(0,0,0))/1000),0)+ if(
(-1,0,0)!=?) and ((-1,0,1)+(-1,0,0))>((0,0,1)+
(0,0,0)),((-1,0,0)+(-1,0,1)-(0,0,0)-(0,0,1))*
(-1,0,0))/1000),0) + if((1,0,0) != ?) and
((1,0,1) + (1,0,0))>((0,0,1)+(0,0,0)),((1,0,0)
+(1,0,1)-(0,0,0)-(0,0,1))* (1,0,0))/1000),0)+
if((0,-1,0)!= ?) and ((0,-1,1)+(0,-1,0)) >
((0,0,1)+(0,0,0)),((0,-1,0)+(0,-1,1)-(0,0,0)-
(0,0,1))*(0,-1,0))/1000),0)+if((0,1,0)!=?) and
(((0,1,1)+(0,1,0))>(0,0,1)+ (0,0,0)),((0,1,0)
+ (0,1,1)-(0,0,0)-(0,0,1))*(0,1,0))/1000),0) }
1000 { cellpos(2)=0 }

Figure 7. Hydrology model in CD++.

A Flow Injection Analysis Model
Flow-injection methods are used for automated analysis
of liquid samples. In a flow injection analyzer, a small
fixed volume of a liquid sample is injected as a discrete
zone using an injection device into a liquid carrier. Be-
cause of convection at the beginning, and axial and ra-
dial diffusion later, this sample is progressively dis-
persed into the carrier as it is transported along the tube,
which can be sensed by flow-through sensors.
 In [9] we built a Cell-DEVS model describing the in-
tegrated conductivity in detail. The model studied a
0.025 cm radius tube, a 10.75 cm loop and a 9,25 reac-
tor coil. We assumed the total tube length of the tube to
be of 20 cm and defined a cell space of 25 rows and 200
columns.

[fia]
width : 200 height : 25 delay : inertial
border : nowrapped
neighbors : (-1,-1) (-1,0) (-1,1) (0,-1) (0,0)
(0,1) (1,-1) (1,0) (1,1)
localtransition : transport

[transport]
rule : {(0,-1)} {0.1/(22.578*(1-
power(cellPos(0)*.001+.0005,2)/.000625))*1000}

{cellPos(1)!=0}
rule : { 0.8 } {.1/(22.578*(1-power(
cellPos(0)*.001+.0005,2)/.000625))*1000}

{cellPos(1)=0}

[diffusion]
rule: {((-1,0)+(0,0)+(1,0))/3} 1 {cellPos(0)!=
0 AND cellPos(0)!=24 }
rule: {((-1,0)+(0,0))/2 } 1 {cellPos(0)!=0 AND
 cellPos(0) = 24}
rule: {((0,0)+(1,0))/2} 1 {cellPos(0)=0 AND
 cellPos(0) != 24 }

Figure 8. A model of FIA in CD++.

 The value of each cell represents the concentration of
nitric acid in the carrier. To deal with convective trans-
port and radial diffusion at the same time, the model re-
acts in two phases: transport and diffusion.

No Quantum, 120ms

Q-DEVS 0.1, 120ms

Quantum Standard 0.7 Dynamic 1 - 0.05, 120ms

Figure 9. FIA Result Simulation Examples.

PERFORMANCE ANALYSIS
We executed simulations of the models presented in the
previous section, analyzing two main metrics: execution
time (number of messages involved in the simulation),
and error. We executed a large number of tests in differ-
ent categories, including:

• Non-quantized (noted as DEVS in the figures).
• Standard quantization (noted as Q-DEVS).
• Quantization with hysteresis (noted as H).
• Dynamic quantization, strategy 1.
• Dynamic quantization, strategy 2.

 Different combinations of the previous categories with
different quantum sizes and update ratios were used.
The error is obtained by comparing the values in quan-
tized versus non-quantized cases.
Figure 10 presents the cumulative error obtained with
different strategies for the heart tissue model. The figure
compares the different strategies (using different update
ratios for the Dynamic DEVS strategies 1 and 2). The
results obtained with standard and hysteresis quantum
overlap, because the results of Hysteresis quantum dif-
fer from the standard when direction changes are pre-
sent (and, as seen in Figure 4, there is only one).
 The lowest error was obtained with dynamic quantum
Str1 with ratio 0.9. Str1 results were better than the Str2
and standard Q-DEVS (the larger the ratio, the better the
result), as expected. The quantum size is adjusted very
quickly, which reduces the amount of error obtained.
Similarly, in the non-linear section of the function, the
quantum is quickly adjusted to a smaller size. Str2 error
is large because each update the quantum size increases.

Figure 10. Heart tissue model: cumulative Error.

 The number of messages is reduced up to a 99.95%.
These empirical results verify the theoretical conclu-
sions presented in [4], and reproduce the general shape
of the message reduction found in [7]. Nevertheless, the
amount of error involved was highly reduced.

Figure 11. Heart tissue model: No. of messages.

 Adaptive quantization improves the error when com-
pared with Q-DEVS. Str2 expands the quantum size
every time a threshold is not crossed, increasing the as-
sociated error. Str1 obtained the least improvement
when compared with the rest, nevertheless, its overall
execution time improves (6.57% vs. 1.58% for Q=1,
and 0.8% vs. 0.06% for Q=20).

Figure 12. Watershed model Cumulative Error.

 The Watershed model was tested using the land topol-
ogy presented in Figure 5. In Figure 12, we present the
cumulative error obtained when running this model.
 These results repeated the pattern obtained for the
heart tissue model: no difference between standard and
hysteresis quantization (the watershed function has an

increasing linear function for the topology and rain con-
ditions chosen), the lowest error was obtained with Str1
with ratio 0.9, and Str1 results were better than Str2 and
Q-DEVS. The order of the different strategies is main-
tained, while the total error is smaller.

Figure 13. Q-DEVS Watershed model Output Messages

 The best execution time was for Q-DEVS and Str1
with an update ratio of 0.05 (larger update ratios adjust
the values quicker, reducing the error while increasing
the number of messages). When using q=0.05, Q-DEVS
provides better results. As each cell increases approxi-
mately 0.07 units in each update, changing the quantum
size makes it oscillate around the function value, result-
ing in an increase in the total simulation messages. This
does not occur with fixed quantum size. Likewise, once
the quantum size varies, the dynamic quantum strategies
have lower message interchange. A low update ratio
improves the number of messages involved, while in-
creasing the error. Paying a small cost in the extra exe-
cution overhead, we were able to reduce the error in-
volved (up to 75%). Str2 reduces the number of mes-
sages using higher rates when compared to Str1, but in-
curring in a higher amount of error. If we consider, for
instance, q=1 with Str1 and ratio 0.9, the amount of er-
ror introduced is minimum and the number of messages
has been highly reduced. If we consider now q = 3.5, the
error obtained with Str1 is better, while the number of
messages involved is comparable.

Figure 14. FIA model Cumulative Error.

 In the FIA model, we observed a different error pat-
tern: hysteresis quantum provided a more stable behav-
ior. Str1 with a small update ratio improves the overall
error because of the model behavior, presented in Figure

15. The diffusion combined with transport affect the re-
sults in cells closer/farther from the sample.

FIA Cell Values

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

00:000 00:022 00:053 00:077 00:099 00:121 00:141 00:154

Time

(0,0)
(41,3)
(30,13)
(60,15)

(79,18)

Figure 15. Individual cell behavior on the FIA model.

 Here, Str2 with a larger update ratio always diverges.
With Str1, a small update ratio improves the results (be-
cause it adjusts better to the different values).

Figure 16. FIA model: number of messages.

 The simulations with the highest error rate have pro-
vided the best execution times, as expected. Neverthe-
less, the amount of error obtained has highly reduced at
the cost of little overhead.

CONCLUSION
We presented the analysis of quantization techniques for
the execution of continuous variable Cell-DEVS mod-
els. We presented two different strategies for automatic
updating of the quantum sizes in different cells. We ob-
tained important reductions in the error obtained, while
maintaining the high speed of quantized DEVS models.
We used different complex models as a workbench, rep-
resenting different categories of interest.
 In every case, the lowest error was obtained with the
dynamic quantum strategy 1. According to the model,
updating the dynamic quantum size with higher/lower
ratios improved the simulation results. In every case, the
number of messages was reduced with quantization (up
to 99.95% of reduction). Likewise, we could see that the
introduction of hysteresis quantum permits to obtain a
more controlled behavior, even for applications with
cells executing with a non-linear pattern.

REFERENCES
[1] WOLFRAM, S. "A new kind of science". Wolfram

Media, Inc. 2002.

[2] WAINER, G.; GIAMBIASI, N. "Timed Cell-
DEVS: modelling and simulation of cell spaces". In
"Discrete Event Modeling & Simulation: Enabling
Future Technologies", Springer-Verlag. 2001.

[3] ZEIGLER, B.; KIM, T.; PRAEHOFER, H. "Theory
of Modeling and Simulation". Academic Press.
2000.

[4] WAINER, G. "CD++: a toolkit to define discrete-
event models". In Software, Practice and Experi-
ence. Wiley. Vol. 32, No.3. November 2002.

[5] ZEIGLER, B.P. "DEVS Theory of Quantization".
DARPA Contract N6133997K-0007: ECE Dept.,
The University of Arizona, Tucson, AZ. 1998.

[6] KOFMAN, E.; JUNCO S. "Quantized State Sys-
tems. A DEVS Approach for Continuous Systems
Simulation". Transactions of the SCS. 18(3). 2001.

[7] WAINER, G.; ZEIGLER, B. "Experimental results
of Timed Cell-DEVS quantization". In Proceedings
of AIS'2000. Tucson, Arizona. U.S.A. 2000.

[8] N. GIAMBIASI, G. WAINER. "Using G-DEVS
and Cell-DEVS to model complex continuous sys-
tems". Accepted for publication in Simulation:
Transactions of the SCS. 2003.

[9] AMEGHINO, J.; WAINER, G. "Application of the
Cell-DEVS paradigm using CD++". In Proceedings
of the 32nd SCS Summer Computer Simulation
Conference. Vancouver, Canada. 2000.

[10] TROCCOLI, A.; AMEGHINO, J.; IÑON, F.;
WAINER, G. "A flow injection model using Cell-
DEVS". Proceedings of the 35th IEEE/SCS Annual
Simulation Symposium. San Diego, CA. 2002.

[11] HODGKIN, A.; HUXLEY, A. "A Quantitative De-
scription of Membrane Current and its Application
to Conduction and Excitation in Nerve" Journal of
Physiology 117: 500-544. 1952.

[12] SAXBERG, B.; COHEN, R. "Cellular Automata
Models of Cardiac Conduction". In Theory of
Heart. Springer-Verlag. 1991.

[13] MOON, Y.; ZEIGLER, B.; BALL, G.; GUERTIN,
D., "DEVS representation of spatially distributed
systems: validity, complexity reduction". IEEE
Transactions on Systems, Man and Cybernetics. pp.
288-296. 1996.

GABRIEL WAINER received the M.Sc. (1993) and
Ph.D. degrees (1998, with highest honors) of the Uni-
versidad de Buenos Aires, Argentina, and Université
d’Aix-Marseille III, France. He is Assistant Professor in
the Dept. of Systems and Computer Engineering, Carle-
ton University (Ottawa, ON, Canada). He was Assistant
Professor at the Computer Sciences Dept. of the Univer-
sidad de Buenos Aires, and a visiting research scholar at
the University of Arizona and LSIS, CNRS, France. He
is author of a book on real-time systems and another on
Discrete-Event simulation and more than 70 research
articles. He is Associate Editor of the Transactions of
the SCS. He is Associate Director of the Ottawa Center
of The McLeod Institute of Simulation Sciences and a
the chair of the SISO DEVS standardization Study
Group.

