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Abstract. Cell-DEVS is an extension to the DEVS 
formalism that allows the definition of cellular models. 
CD++ is a modeling and simulation tool that implements 
DEVS and Cell-DEVS. Here, we show the use of these 
techniques through different application examples. Complex 
applications can be implemented in a simple fashion, and 
they can be executed effectively. We introduce different 
models of physical systems for diffusion applications, 
including a model of Diffusion Limited Aggregation, 
Snowflake growth, 3D Reaction-Diffusion and Driven 
Diffusion. 
 
1. INTRODUCTION 
 
In recent years, many simulation models of real systems 
have been represented as cell spaces [1, 2]. Cellular 
Automata [3] is a well-known formalism to describe these 
systems, defined as infinite n-dimensional lattices of cells 
whose values are updated according to a local rule. Cell-
DEVS [4] was defined as a combination of cellular 
automata and DEVS (Discrete Event Systems 
specifications) [5], with the goal of improving execution 
speed building discrete-event cell spaces, and to improve 
their definition by making the timing specification more 
expressive.  
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Figure 1. Informal definition of an atomic model 

 
DEVS [5] provides an abstract approach of creating 
hierarchical and modular models, separating the modeling 
from the simulation. The basic building block of any DEVS 
model is the atomic model, which can be connected to 
others to form what is called a coupled model. A DEVS 
atomic model can be informally described as in Figure 1. 
 

Each atomic model can receive inputs (x) and generates 
outputs (y) from/to other models. The state (s) of the model 
is associated with a time advance (ta) function, which 
determines its duration. Once this time is consumed, an 
internal transition happens. At that moment, the model 
execution results are spread through the model’s output 
ports by activating an output function (λ). Then, an internal 
transition function (δint) is fired, producing a local state 
change. External input events (received from other models) 
trigger the external transition function (δext), which specifies 
how to react to them.  
 
A DEVS coupled model is composed of several atomic or 
coupled sub-models, as shown in Figure 2.  

 
Figure 2. Informal description of a coupled model 

 
Coupled models are defined as a set of basic components 
(atomic or coupled), which are interconnected through the 
model interfaces. The model’s coupling scheme defines the 
interconnectivity between models and the interface with the 
external world.  
 
Cell-DEVS 0 has extended DEVS, allowing the 
implementation of cellular models with timing delays. Each 
cell is defined as a DEVS atomic model, and it can be later 
integrated to a coupled model representing the cell space. 
Cell-DEVS atomic models can be described as in Figure 3. 

 
Figure 3. Cell-DEVS atomic model 



 

Each cell uses N inputs (from its neighborhood) to compute 
its next state. These inputs, which are received through the 
model's interface, activate a local computing function (τ). A 
delay (d) can be associated with each cell. The state (s) 
changes can be transmitted to other models, but only after 
the consumption of this delay. Two kinds of delays can be 
defined: transport delays model a variable commuting time, 
and inertial delays, which have preemptive semantics 
(scheduled events can be discarded if the computed value is 
different than the future state).  
 
Once the cell behavior is defined, a coupled Cell-DEVS can 
be created by putting together a number of cells 
interconnected with its neighbors. A sample Cell-DEVS 
coupled model is presented in Figure 4. A coupled Cell-
DEVS is composed of an array of atomic cells, with given 
size and dimensions. Each cell is connected to its 
neighborhood through standard DEVS input/output ports. 
Border cells have different behavior due to their particular 
locations, which may result in a non-uniform neighborhood.  
 

 
Figure 4. Cell-DEVS coupled model 

 
The CD++ tool 0 was developed following the definitions of 
the Cell-DEVS formalism. CD++ is a tool to simulate both 
DEVS and Cell-DEVS models. Cell-DEVS are described 
using a built-in specification language, which provides a set 
of primitives to define model’s behavior, following the 
descriptions presented in figures 1-4. A built-in language 
permits defining the τ function of the formal specification 
using a set of rules. The language has a large collection of 
functions and operators. The most common operators are 
included: Boolean, comparison, and arithmetic; 
trigonometric, roots, power, rounding and truncation, 
module, logarithm, absolute value, minimum, maximum, 
G.C.D., L.C.M., etc. 
 
We will show how to apply Cell-DEVS to simulate a variety 
of diffusion systems. Reaction-diffusion is a process in 
which two or more chemicals diffuse over a surface and 
react with one another to produce stable patterns. Reaction-
diffusion can produce a variety of spot and stripe patterns, 
and are some of the most popular cellular models available. 
We describe different models that are implemented and 

executed using the CD++ tool, focusing on particular 
characteristics of each system. We will show how complex 
applications can be implemented in a simple fashion using 
the advanced features provided by Cell-DEVS and the 
CD++ implementation 
 
2. DIFFUSION LIMITED AGGREGATION  
 
Diffusion Limited Aggregation (DLA) occurs when 
diffusing particles stick to and progressively enlarge an 
initial seed represented by a fixed object. The seed typically 
grows in an irregular shape resembling frost on a window 0. 
Diffusion is a random motion with respect to the direction. 
There are two kinds of particles in a grid: fixed (seeds) and 
mobile. A mobile particle has same probability of walking 
toward each direction. When a mobile particle finds a seed, 
it sticks to the fixed particle, and it becomes fixed. In other 
words, they form aggregates. A mobile particle disappears it 
strays too far from the center. The process continues until all 
mobile particles either have disappeared or they have 
become fixed. Some illustrations of DLA can be found in 0. 
 
We built a Cell-DEVS model of DLA, as follows. The DLA 
model was implemented as a 2D Cell-DEVS. We will 
briefly present some of the rules we used (details can be 
found in 0). Initially, a certain percentage of the cells are 
occupied by mobile particles, and there are at least one or 
more seeds. The system evolves with the following rules. 

- A particle can move in four directions (N/S/E/W) 
- A particle becomes fixed an adjacent cell contains 

fixed particles.  
- An empty cell will be occupied if there is at least 

one mobile particle trying to move in, and there is 
no seed adjacent to the mobile particle. 

- In the case that there are more than one particle that 
intend to move toward a same empty cell, the 
moving direction is used as priority.  

- A mobile particle that cannot move will select a 
new direction at random.  

- A mobile particle disappears if it strays too far 
from the center.  

 
A cell with a value of 0 indicates is empty; a value of 1 to 4 
denotes a mobile particle and its moving direction. A cell 
with a value of 5 indicates a seed. When a cell is empty, it 
checks to see if there are any mobile particles wanting to 
move to that cell. Such mobile particle can move only if it 
does not have any adjacent seed:  
 
rule : {round(uniform(1,4))} 100 { (0,0)=0 and (((0,-1)=2 
and (-1, -1) !=5 and (1,-1) !=5 and (0,-2) !=5 ) or 
((-1,0)=3 and (-1,-1)!=5 and (-2,0) !=5 and (-1,1) !=5)or 
((0,1)=4 and (1,1) !=5 and (0,2) !=5 and (1,1) !=5 ) or 
((1,0)=1 and (1,1) !=5 and (2,0) !=5 and (1,-1) !=5 ))  } 
 



 

The following rules illustrate the resolution of moving 
conflict for a particle that is attempting to move a cell up. A 
mobile particle with moving direction 1 (up) can move in an 
empty cell above if there is no other mobile particle that 
attempts to move in.  
 
% direction=1 (up): change direction when nowhere to move 
rule : {round(uniform(1,4))} 100 { (0,0)=1 and (-1,0)!=0}  
rule : {round(uniform(1,4))} 100 { (0,0)=1 and (-1,0)=0 
and  
(((-2,0)=3 and (-2,-1)!=5 and (-3,0)!=5 and(-2,1)!=5 ) or 
((-1,-1)=2 and (-1,-2)!=5 and(-2,-1)!=5 and (0,-1)!=5 )or 
((-1,1)=4 and (-2,1) !=5 and (-1,2) !=5 and (0,1) !=5 ))} 
 
Whenever a mobile particle is in a cell with any fixed 
particle adjacent to it, it becomes fixed.  
 
% particle becomes fixed if adjacent cell contains a seed 
rule : 5 100 { (0,0)> 0 and (0,0)<5 and  
((-1, 0) = 5 or (0, -1) = 5 or (0, 1) = 5 or (1, 0) = 5 ) 
}  
 
Several scenarios were executed with different number of 
seeds and percentages of concentration (details can be found 
in 0). The following figure presents a version with a 
concentration of 30% (grid size: 71x71) 
 

       
 

 
Figure 5: Initial/Final Execution Results (Two seeds and 

30% concentration) 
 

The following figure shows similar results for a model with 
two seeds and a concentration of 40% 

    
 

 
Figure 6: Initial /Final Execution Result: (One seed and 

40% concentration) 
 
3. SNOWFLAKE GROWTH SIMULATION 
 
We built a model of Snowflake Growth, based on the Local 
Cellular Model for Snow Crystal Growth described on  0. 
The dendrite growth of snowflake is very complex, and 
influenced by many factors in its natural environment. Here, 
we will show a simplified 2D Cell-DEVS model with some 
parameters to influence the desired diversity, and use this 
model to investigate the impact of varying conditions of 
growth. The form of snow crystals depends heavily upon the 
saturation and temperature during growth. The forms 
observed include dendrites, stellar forms, sectors, plates, 
needles, spatial, columns, scrolls, etc.  
 
Wolfram popularized a Boolean model for snowflake 
growth [12], in which, at each time step, each cell is either 
ice or not. On the subsequent step, cells that were ice, 
remain ice; instead, cells that were not, become ice if 
exactly one of the neighboring cells is ice. The model we 
built is more realistic, but the transition rules we used work 
mostly on a similar spirit than Wolfram’s model. 
 
Our model uses a arrangement of cells containing a real 
value. We assume the value of any cell as measuring the 
amount of water at that cellular location in air. Values of 
one or higher correspond to ice, while lower values are 
taken to represent water in a form that may possibly move to 
neighboring cells. Each cell is classified as either receptive 



 

or non-receptive. The first stage is to determine the 
receptive sites: those that are ice or have an immediate ice 
neighbor. At the next stage, the values of the cells are given 
by the values at the receptive sites plus a constant γ plus a 
diffusion term. The diffusion term is a local average of a 
modified cellular field obtained by setting the receptive sites 
to zero. The averaging algorithm as below:  
 

Vu =0.5*Vo+0.5*?Vn /8     (1) 
Vu: Update value of Cell 
Vo: Original value of cell 
Vn: Value of 8 immediate neighbors 
 
Therefore, the center cell has weight 1/2 while the 8 
neighboring cells each has a weight of 1/16. The motivation 
for the model is that receptive sites are viewed as 
permanently storing any mass that arrives at that point. The 
mass in the unreceptive sites is free to move, and hence 
moves toward an average value. Lastly, the constant γ added 
to receptive sites corresponds to the idea that not only is 
"add a constant" an especially simple generalization to the 
model. Informally, this captures the idea that some water 
may be available from outside the plane of growth. The 
constant to be added to the receptive sites is one of the 
parameters that we vary. The second parameter that we vary 
is the background level β. We begin with a single cell of 
value one (an ice seed) in a sea of a constant background. 
We denote the added constant by γ and the background level 
by β. The boundary conditions are fixed at the background 
level at a fixed (Euclidean) distance from the initial cell. 
These boundary conditions attempt to make the boundary 
conditions as isotropic as possible [3].  
 
All cells can be divided into three types, and we have three 
rules addressing independently to each cell group. 
 
a. Cells made of ice 
 
Rule : {(0,0)+ 0.001} 10 {(0,0)>= 1}  
 
Every ice cell will absorb more and more water in the air 
continuously. 
 
b. Cells that are not ice, and has no ice neighbors 
c. Cells that have no ice but have ice neighbors 
 
Following, we present the rules used for the cells that have 
no ice and no ice neighbors, which are computed based on 
Equation (1). The rules for Cells with no ice but ice 
neighbors are equivalent and they are not presented here. 
 
rule : {(0,0)*0.5 +(  
if((if((-2,2)>=1,1,0)+if((-1,2)>=1,1,0)+ 
   if((0,2)>=1,1,0)+if((-2,1)>=1,1,0)+if((0,1)>=1,1,0)+ 
   if((-2,0)>=1,1,0)+if((-1,0)>=1,1,0)) = 0,(-1,1),0)+ 
 if((if((-1,2)>=1,1,0)+if((0,2)>=1,1,0)+if((1,2)>=1,1,0)+  

if((-1,1)>=1,1,0)+if((1,1)>=1,1,0)+if((-1,0)>=1,1,0)+ 
if((1,0)>=1,1,0))=0,(0,1),0)+if((if((0,2)>=1,1,0)+ 
if((1,2)>=1,1,0)+if((2,2)>=1,1,0)+if((0,1)>=1,1,0)+ 
if((2,1)>=1,1,0)+if((1,0)>=1,1,0)+ 
if((2,0)>=1,1,0))=0,(1,1),0)+ 
if((if((-2,1)>=1,1,0)+if((-1,1)>=1,1,0)+if((0,1)>=1,1,0)+  
if((-2,0)>=1,1,0)+if((-2,-1)>=1,1,0)+if((-1,-1)>=1,1,0)+  
if((0,-1)>=1,1,0)) = 0,(-1,0),0)+ 
if((if((0,1)>=1,1,0)+if((1,1)>=1,1,0)+if((2,1)>=1,1,0)+if
((2,0)>=1,1,0)+if((0,-1)>=1,1,0)+ 
if((1,-1)>=1,1,0)+if((2,-1)>=1,1,0)) = 0,(1,0),0)+ 
if((if((-2,0)>=1,1,0)+ 
if((-1,0)>=1,1,0)+if((-2,-1)>=1,1,0)+ 
if((0,-1)>=1,1,0)+if((-2,-2)>=1,1,0)+ 
if((-1,-2)>=1,1,0)+ 
if((0,-2)>=1,1,0)) = 0,(-1,-1),0)+  
if((if((-1,0)>=1,1,0)+if((1,0)>=1,1,0)+ 
if((-1,-1)>=1,1,0)+if((1,-1)>=1,1,0)+ 
if((-1,-2)>=1,1,0)+if((0,-2)>=1,1,0)+ 
if((1,-2)>=1,1,0)) = 0,(0,-1),0)+if((if((1,0)>=1,1,0)+ 
if((2,0)>=1,1,0)+if((0,-1)>=1,1,0)+if((2,-1)>=1,1,0)+ 
if((0,-2)>=1,1,0)+if((1,-2)>=1,1,0)+if((2,-2)>=1,1,0))  

= 0,(1,-1),0)  )/16}  
 
10 
 
{(0,0) < 1 and (if((-1,1)>=1,1,0)+if((0,1)>=1,1,0) + 
if((1,1)>=1,1,0)+if((-1,0)>=1,1,0)+if((1 ,0)>=1,1,0) + 
if((-1,-1)>=1,1,0)+if((0,-1)>=1,1,0)+if((1,-1)>=1,1,0))=0   
} 
 
The rule computes equation (1) described before. In the rule, 
(0,0)*0.5  means the original value of center cell has weight 
1/2 of the final updated value of cell. The  the another 1/2 
weight be contributed by the 8 groups of "nested if" 
structures, each of them represents the value of one 
immediate neighbor[(-1,1),(0,1),(1,1),( -1,0),(1,0),(-1,-1),(0,-
1),(1,-1)] of the center cell. In each "nested if" structure, the 
rule will also estimate the values of "neighbor's neighbor" to 
determine the contribution value of this structure will be 
zero or unchanged. For instance, if the values of immediate 
neighbors of cell (-1,1) are all zero, which means they are 
all non-ice cells, we will let the contribution value of (-1,1) 
to center cell as unchanged, otherwise, this value will be 
zero. The rest may be deduced by analogy based on the 
same principle. After the predefined elapse time, the value 
of the center cell will be updated by the new value which we 
computed using this rule. 
 
Based on the detailed description of rules list above, we can 
find when we calculated the updated value of the particular 
non-ice cell whatever it has ice neighbor or not, we need to 
know the value of immediate neighbor’s neighbors. 
Therefore, we introduced the extra outer neighbor other than 
8 immediate neighbors for each cell. Furthermore, the one 
special rule defines the boundary conditions of the cell 
space will be executed at first. We assume the boundary 
conditions of cell space will be fixed at the whole process of 
simulation. 
 
In order to investigate different results from the model by 
using different variables, we set three different group 
variable vectors (γ ,β) and size of the cell space 30 x 30. 



 

This model was tested using different models for the three 
vectors, as shown in the following figure: 
 

        
 

 
 
Figure 7. Snowflake formation. 10000 iterations cell space 
= (30x30) (a) ß = 0.3, ? = 0.001, (b) ß = 0.4, ? = 0.01, (c) ß 

= 0.05, ? = 0.0035. 
 
 
4. A 3D MODEL OF REACTION-DIFFUSION 
 
We created a 3D reaction-diffusion model, based on the one 
presented in 0. Reaction diffusion systems can be described 
by a set of partial differential equations as follows: 
 

xi’ = Di ∇
2xi+ fi(x1,x2,…xn), i=1..n        (2) 

 
where the first term represents the diffusion equation and 
the second term is the reaction equation (fi are always non-
linear; xi’ = dxi/dt). To simulate reaction diffusion systems 
we apply diffusion first, and then we reaction. In this case, 
we implemented the models as a 4D diffusion Cell-DEVS. 
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Then, we apply reaction on this new value. Reaction 
differential equation is: 
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In this case, we need to know the previous state of the cell 
so we will use a second 3D hyperplane as memory of the 

previous state. According to 0 we will use the following 
structure for neighboring cells. 
 

 
Figure 8. Neighborhood shape 

 
To do so, we use 4 dimensions in our representation, as we 
need a 3D hyperplane to memorize the previous state of the 
system, and the neighborhood shape in figure 8. 
 
[rd] 
type : cell          dim : (5,5,5,2)  
delay : transport    border : nowrapped 
neighbors :  (0,0,-1,0) (-1,0,0,0)  (0,0,1,0)   
neighbors :  (0,-1,0,0) (0,0,0,0)  (0,1,0,0)    
neighbors : (1,0,0,0)  (0,0,0,-1) (0,0,-1,1)   
neighbors : (-1,0,0,1) (0,0,1,1)  (0,-1,0,1)   
neighbors : (0,0,0,1)  (0,1,0,1) (1,0,0,1)  
localtransition : rd-rule 
 
zone : rd-rule { (0,0,0,0)..(4,4,4,0) } 
zone : memory-rule { (0,0,0,1)..(4,4,4,1) } 
 
[memory-rule] 
rule : {(0,0,0,-1)} 70 { t } 
 
[rd-rule] 
rule : {(#macro(diffusion)-(0,0,0,1))/ 100 }  

100 { t } 
 
In the memory rule we save the value from the cell “below” 
and in the rd-rule, we calculate first the diffusion as follows, 
computed as (4’). 
 
#BeginMacro(diffusion) 
( ((0,0,0,0)+(-1,0,0,0)+(1,0,0,0)+(0,-1,0,0)   
   + (0,1,0,0)+ (0,0,1,0)+ (0,0,-1,0) ) / 7 ) 
#EndMacro 
 
Then we substract the previous value of the cell stored in the 
“above” cell. The rd-rule is applied on the reaction diffusion 
zone { (0,0,0,0)..(4,4,4,0) }, while the memory-rule, which 
saves the previous state of all cells from reaction diffusion 
zone, is saved in { (0,0,0,1)..(4,4,4,1) }. 
 
The following figures represent the different reaction of two 
substances. The first group of 5 squares (each square 
consisted of 5x5 cells) from the first row in Figure 8 
represents the first step of our simulation; the next group of 
5 squares (5x5 cells) from the same row represents the 
initial state. 
 



 

 

 

 

 

 
Figure 8. Execution results 

 
The second row in Figure 8 represents the second step in our 
simulation: first 5 squares are the actual state of the system 
and the next 5 squares are the previous step. The third row 
in Figure 8 is the state of the system in the 20th step of 
simulation.  The fourth row is the 34th step of simulation 
where the system reached the equilibrium, is stable. The 
fifth row in Figure 8 proves this fact: the current state is the 
same with the previous state (represented by the memory 
layer) after indefinite number of simulation steps following 
the 34th step. 
 
5. DRIVEN DIFFUSION 
 
Our last model describes the random motion of two types of 
particles in a system under the influence of an external field. 
The field may drive one species of particles move along the 
field direction while the other species move against that 
direction 0. This kind of model can simulate the behavior 
for certain kinds of materials such as superionic conductors, 
fast ion conductors, and solid electrolytes. These two 
species of particles are differentiated by their attribute of 
positive charge or negative charge. The particle space 
contains approximately the same amount of positive and 
negative particles so that the total charge of the system is 
zero. We created a Cell-DEVS model to simulate the system 
and to study how the density of the particle space affects the 
behavior of the system.  
 
Initially, the space is occupied by the two randomly 
distributed particles A and B and each particle has a 
randomly chosen direction to face (N/E/S/W). The density 
of the occupied space is denoted as P.  In the case of an 
external electrical field appearance (assuming the field 
points to the north-east), the preferable moving direction of 
particle A is North or East while the preferable moving 
direction of particle B is South or West. The probability of 

A and B hops along that preferable direction is a, and the 
probability of hopping against the direction is (1-a).  
 
The rules for a particle of either type to move are as follows: 

1) The cells only move towards the direction that they 
are facing now. The adjacent cell mentioned below 
refers to the neighboring cell that the particle is 
facing now. 

2) If the adjacent cell is occupied, then the particle 
remains in its current place and randomly chooses a 
direction to face. 

3) If the adjacent cell is empty but faced by one or 
more particles, then the particle remains in its 
current place and randomly chooses a direction to 
face. 

4) If the adjacent cell is empty and faced by no other 
particles, then the particle moves to the adjacent 
cell and chooses randomly a direction to face. 

 
Rules for a particle to randomly choose a direction to face 
are as follows: 

- For particle A, the probability of choosing north, 
east, south or west to face are (a/2), (a/2), (1-a)/2 
and (1-a)/2 respectively. 

- For particle B, the probability of choosing north, 
east, south or west to face are (1-a)/2, (1-a)/2, (a/2) 
and (a/2) respectively. 

 
The rules for updating cells are as follows: 

1) If the cell is empty and faced by no particles, then 
it remains empty. 

2) If the cell is empty and faced by exactly one 
particle, then the cell will be occupied.  

3) If the cell is empty and faced by two or more 
particles, then the cell remains empty. 

4) If the cell is occupied and the inside particle faces 
an empty cell that is not faced by other particles, 
then this cell will be vacated. 

 
Different tests were carried out, considering different 
density values, space size, and initial states. Particles are 
initially distributed at random in the space according to the 
given density value.  
 
Since the model is used to study how the system behavior 
are affected by the density of the particles distributed in the 
space, several test cases have been designed and the results 
along with their analysis are presented below. 
 
In our first case, about 10% of the cell space is occupied by 
the randomly distributed (as seen in Fig. 9 a). 
  



 

 

 

 

 
Figure 9. low density 10% Initial State (b) after 100 time 

steps 
 

After 100 time steps, the particles are still randomly 
distributed. The cell space remains disordered over the 
simulated time steps, while the distributions of particles A 
and B are homogeneous (high current in the system). 
Similar results were obtained with a density of 20%, as 
showed in Fig. 10. 
 

 

 

 

 
Figure 10. density of 20%. Initial cell space (b) after 100 

time steps 
 
Then, we tested a case in which density of the whole space 
is higher (40%). The initial cell space is illustrated in Figure 
11 below. 
 
 

 

 

 
Figure 11. density of 40% (a) Initial Cell Space (b) 100 

time steps 
 

From the results at time step 100 as shown in Figure 6, we 
can see that the distribution of the two particles is now 
pretty ordered. It exhibits striped, banded structure. Within 
each strip, there exist two sub-strips with each having 
approximately the same amount of particles. This indicates 

the non-homogeneities of the distribution of two particles 
and thus results in reduced current in the system.  
 

 

 

 

 
 

 

 

 

 
Figure 12. (a) Initial Cell Space at density of 50%; (b) Cell 

Space at density of 50% after 100 time steps; (c) Initial 
Cell Space with density of 70%; (d) Cell Space with density 

of 70% after 100 time steps 
 
6. CONCLUSIONS 
 
Cell–DEVS allows describing complex systems using an n-
dimensional cell-based formalism. Complex timing 
behavior for the cells in the space can be defined using very 
simple constructions. The CD++ tool, based on the 
formalism entitles the definition of complex cell-shaped 
models. We have used CD++ to build a Cell-DEVS to build 
different diffusion models. Diffusion-limited aggregation is 
an example of fractal growth model. A snowflake formation 
model showed how to define pattern formation models. Our 
Driven Difussion model showed how particles align in a 
system where external excitation occurs. Finally, our 3D 
reaction-difussion model showed how to create higher 
dimensional models in a simple fashion.  
 
The tool and the examples are the public domain and they 
can be obtained in:  
 
http://www.sce.carleton.ca/faculty/wainer/ 
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