

Definition of Cell-DEVS Models for Complex Diffusion Systems

Wei Ding, Xiuping Wu, Laurentiu Checiu, Changshuang Lin, Gabriel Wainer

Department of Systems and Computer Engineering. Carleton University
1125 Colonel By Dr. Ottawa, ON. K1S 5B6. Canada.

gwainer@sce.carleton.ca

Abstract. Cell-DEVS is an extension to the DEVS
formalism that allows the definition of cellular models.
CD++ is a modeling and simulation tool that implements
DEVS and Cell-DEVS. Here, we show the use of these
techniques through different application examples. Complex
applications can be implemented in a simple fashion, and
they can be executed effectively. We introduce different
models of physical systems for diffusion applications,
including a model of Diffusion Limited Aggregation,
Snowflake growth, 3D Reaction-Diffusion and Driven
Diffusion.

1. INTRODUCTION

In recent years, many simulation models of real systems
have been represented as cell spaces [1, 2]. Cellular
Automata [3] is a well-known formalism to describe these
systems, defined as infinite n-dimensional lattices of cells
whose values are updated according to a local rule. Cell-
DEVS [4] was defined as a combination of cellular
automata and DEVS (Discrete Event Systems
specifications) [5], with the goal of improving execution
speed building discrete-event cell spaces, and to improve
their definition by making the timing specification more
expressive.

x

s ' = δ ext (s, e, x)

s s ' = δ int (s)

y

λ (s)

t a(s)

Figure 1. Informal definition of an atomic model

DEVS [5] provides an abstract approach of creating
hierarchical and modular models, separating the modeling
from the simulation. The basic building block of any DEVS
model is the atomic model, which can be connected to
others to form what is called a coupled model. A DEVS
atomic model can be informally described as in Figure 1.

Each atomic model can receive inputs (x) and generates
outputs (y) from/to other models. The state (s) of the model
is associated with a time advance (ta) function, which
determines its duration. Once this time is consumed, an
internal transition happens. At that moment, the model
execution results are spread through the model’s output
ports by activating an output function (λ). Then, an internal
transition function (δint) is fired, producing a local state
change. External input events (received from other models)
trigger the external transition function (δext), which specifies
how to react to them.

A DEVS coupled model is composed of several atomic or
coupled sub-models, as shown in Figure 2.

Figure 2. Informal description of a coupled model

Coupled models are defined as a set of basic components
(atomic or coupled), which are interconnected through the
model interfaces. The model’s coupling scheme defines the
interconnectivity between models and the interface with the
external world.

Cell-DEVS 0 has extended DEVS, allowing the
implementation of cellular models with timing delays. Each
cell is defined as a DEVS atomic model, and it can be later
integrated to a coupled model representing the cell space.
Cell-DEVS atomic models can be described as in Figure 3.

Figure 3. Cell-DEVS atomic model

Each cell uses N inputs (from its neighborhood) to compute
its next state. These inputs, which are received through the
model's interface, activate a local computing function (τ). A
delay (d) can be associated with each cell. The state (s)
changes can be transmitted to other models, but only after
the consumption of this delay. Two kinds of delays can be
defined: transport delays model a variable commuting time,
and inertial delays, which have preemptive semantics
(scheduled events can be discarded if the computed value is
different than the future state).

Once the cell behavior is defined, a coupled Cell-DEVS can
be created by putting together a number of cells
interconnected with its neighbors. A sample Cell-DEVS
coupled model is presented in Figure 4. A coupled Cell-
DEVS is composed of an array of atomic cells, with given
size and dimensions. Each cell is connected to its
neighborhood through standard DEVS input/output ports.
Border cells have different behavior due to their particular
locations, which may result in a non-uniform neighborhood.

Figure 4. Cell-DEVS coupled model

The CD++ tool 0 was developed following the definitions of
the Cell-DEVS formalism. CD++ is a tool to simulate both
DEVS and Cell-DEVS models. Cell-DEVS are described
using a built-in specification language, which provides a set
of primitives to define model’s behavior, following the
descriptions presented in figures 1-4. A built-in language
permits defining the τ function of the formal specification
using a set of rules. The language has a large collection of
functions and operators. The most common operators are
included: Boolean, comparison, and arithmetic;
trigonometric, roots, power, rounding and truncation,
module, logarithm, absolute value, minimum, maximum,
G.C.D., L.C.M., etc.

We will show how to apply Cell-DEVS to simulate a variety
of diffusion systems. Reaction-diffusion is a process in
which two or more chemicals diffuse over a surface and
react with one another to produce stable patterns. Reaction-
diffusion can produce a variety of spot and stripe patterns,
and are some of the most popular cellular models available.
We describe different models that are implemented and

executed using the CD++ tool, focusing on particular
characteristics of each system. We will show how complex
applications can be implemented in a simple fashion using
the advanced features provided by Cell-DEVS and the
CD++ implementation

2. DIFFUSION LIMITED AGGREGATION

Diffusion Limited Aggregation (DLA) occurs when
diffusing particles stick to and progressively enlarge an
initial seed represented by a fixed object. The seed typically
grows in an irregular shape resembling frost on a window 0.
Diffusion is a random motion with respect to the direction.
There are two kinds of particles in a grid: fixed (seeds) and
mobile. A mobile particle has same probability of walking
toward each direction. When a mobile particle finds a seed,
it sticks to the fixed particle, and it becomes fixed. In other
words, they form aggregates. A mobile particle disappears it
strays too far from the center. The process continues until all
mobile particles either have disappeared or they have
become fixed. Some illustrations of DLA can be found in 0.

We built a Cell-DEVS model of DLA, as follows. The DLA
model was implemented as a 2D Cell-DEVS. We will
briefly present some of the rules we used (details can be
found in 0). Initially, a certain percentage of the cells are
occupied by mobile particles, and there are at least one or
more seeds. The system evolves with the following rules.

- A particle can move in four directions (N/S/E/W)
- A particle becomes fixed an adjacent cell contains

fixed particles.
- An empty cell will be occupied if there is at least

one mobile particle trying to move in, and there is
no seed adjacent to the mobile particle.

- In the case that there are more than one particle that
intend to move toward a same empty cell, the
moving direction is used as priority.

- A mobile particle that cannot move will select a
new direction at random.

- A mobile particle disappears if it strays too far
from the center.

A cell with a value of 0 indicates is empty; a value of 1 to 4
denotes a mobile particle and its moving direction. A cell
with a value of 5 indicates a seed. When a cell is empty, it
checks to see if there are any mobile particles wanting to
move to that cell. Such mobile particle can move only if it
does not have any adjacent seed:

rule : {round(uniform(1,4))} 100 { (0,0)=0 and (((0,-1)=2
and (-1, -1) !=5 and (1,-1) !=5 and (0,-2) !=5) or
((-1,0)=3 and (-1,-1)!=5 and (-2,0) !=5 and (-1,1) !=5)or
((0,1)=4 and (1,1) !=5 and (0,2) !=5 and (1,1) !=5) or
((1,0)=1 and (1,1) !=5 and (2,0) !=5 and (1,-1) !=5)) }

The following rules illustrate the resolution of moving
conflict for a particle that is attempting to move a cell up. A
mobile particle with moving direction 1 (up) can move in an
empty cell above if there is no other mobile particle that
attempts to move in.

% direction=1 (up): change direction when nowhere to move
rule : {round(uniform(1,4))} 100 { (0,0)=1 and (-1,0)!=0}
rule : {round(uniform(1,4))} 100 { (0,0)=1 and (-1,0)=0
and
(((-2,0)=3 and (-2,-1)!=5 and (-3,0)!=5 and(-2,1)!=5) or
((-1,-1)=2 and (-1,-2)!=5 and(-2,-1)!=5 and (0,-1)!=5)or
((-1,1)=4 and (-2,1) !=5 and (-1,2) !=5 and (0,1) !=5))}

Whenever a mobile particle is in a cell with any fixed
particle adjacent to it, it becomes fixed.

% particle becomes fixed if adjacent cell contains a seed
rule : 5 100 { (0,0)> 0 and (0,0)<5 and
((-1, 0) = 5 or (0, -1) = 5 or (0, 1) = 5 or (1, 0) = 5)
}

Several scenarios were executed with different number of
seeds and percentages of concentration (details can be found
in 0). The following figure presents a version with a
concentration of 30% (grid size: 71x71)

Figure 5: Initial/Final Execution Results (Two seeds and

30% concentration)

The following figure shows similar results for a model with
two seeds and a concentration of 40%

Figure 6: Initial /Final Execution Result: (One seed and

40% concentration)

3. SNOWFLAKE GROWTH SIMULATION

We built a model of Snowflake Growth, based on the Local
Cellular Model for Snow Crystal Growth described on 0.
The dendrite growth of snowflake is very complex, and
influenced by many factors in its natural environment. Here,
we will show a simplified 2D Cell-DEVS model with some
parameters to influence the desired diversity, and use this
model to investigate the impact of varying conditions of
growth. The form of snow crystals depends heavily upon the
saturation and temperature during growth. The forms
observed include dendrites, stellar forms, sectors, plates,
needles, spatial, columns, scrolls, etc.

Wolfram popularized a Boolean model for snowflake
growth [12], in which, at each time step, each cell is either
ice or not. On the subsequent step, cells that were ice,
remain ice; instead, cells that were not, become ice if
exactly one of the neighboring cells is ice. The model we
built is more realistic, but the transition rules we used work
mostly on a similar spirit than Wolfram’s model.

Our model uses a arrangement of cells containing a real
value. We assume the value of any cell as measuring the
amount of water at that cellular location in air. Values of
one or higher correspond to ice, while lower values are
taken to represent water in a form that may possibly move to
neighboring cells. Each cell is classified as either receptive

or non-receptive. The first stage is to determine the
receptive sites: those that are ice or have an immediate ice
neighbor. At the next stage, the values of the cells are given
by the values at the receptive sites plus a constant γ plus a
diffusion term. The diffusion term is a local average of a
modified cellular field obtained by setting the receptive sites
to zero. The averaging algorithm as below:

Vu =0.5*Vo+0.5*?Vn /8 (1)
Vu: Update value of Cell
Vo: Original value of cell
Vn: Value of 8 immediate neighbors

Therefore, the center cell has weight 1/2 while the 8
neighboring cells each has a weight of 1/16. The motivation
for the model is that receptive sites are viewed as
permanently storing any mass that arrives at that point. The
mass in the unreceptive sites is free to move, and hence
moves toward an average value. Lastly, the constant γ added
to receptive sites corresponds to the idea that not only is
"add a constant" an especially simple generalization to the
model. Informally, this captures the idea that some water
may be available from outside the plane of growth. The
constant to be added to the receptive sites is one of the
parameters that we vary. The second parameter that we vary
is the background level β. We begin with a single cell of
value one (an ice seed) in a sea of a constant background.
We denote the added constant by γ and the background level
by β. The boundary conditions are fixed at the background
level at a fixed (Euclidean) distance from the initial cell.
These boundary conditions attempt to make the boundary
conditions as isotropic as possible [3].

All cells can be divided into three types, and we have three
rules addressing independently to each cell group.

a. Cells made of ice

Rule : {(0,0)+ 0.001} 10 {(0,0)>= 1}

Every ice cell will absorb more and more water in the air
continuously.

b. Cells that are not ice, and has no ice neighbors
c. Cells that have no ice but have ice neighbors

Following, we present the rules used for the cells that have
no ice and no ice neighbors, which are computed based on
Equation (1). The rules for Cells with no ice but ice
neighbors are equivalent and they are not presented here.

rule : {(0,0)*0.5 +(
if((if((-2,2)>=1,1,0)+if((-1,2)>=1,1,0)+
 if((0,2)>=1,1,0)+if((-2,1)>=1,1,0)+if((0,1)>=1,1,0)+
 if((-2,0)>=1,1,0)+if((-1,0)>=1,1,0)) = 0,(-1,1),0)+
 if((if((-1,2)>=1,1,0)+if((0,2)>=1,1,0)+if((1,2)>=1,1,0)+

if((-1,1)>=1,1,0)+if((1,1)>=1,1,0)+if((-1,0)>=1,1,0)+
if((1,0)>=1,1,0))=0,(0,1),0)+if((if((0,2)>=1,1,0)+
if((1,2)>=1,1,0)+if((2,2)>=1,1,0)+if((0,1)>=1,1,0)+
if((2,1)>=1,1,0)+if((1,0)>=1,1,0)+
if((2,0)>=1,1,0))=0,(1,1),0)+
if((if((-2,1)>=1,1,0)+if((-1,1)>=1,1,0)+if((0,1)>=1,1,0)+
if((-2,0)>=1,1,0)+if((-2,-1)>=1,1,0)+if((-1,-1)>=1,1,0)+
if((0,-1)>=1,1,0)) = 0,(-1,0),0)+
if((if((0,1)>=1,1,0)+if((1,1)>=1,1,0)+if((2,1)>=1,1,0)+if
((2,0)>=1,1,0)+if((0,-1)>=1,1,0)+
if((1,-1)>=1,1,0)+if((2,-1)>=1,1,0)) = 0,(1,0),0)+
if((if((-2,0)>=1,1,0)+
if((-1,0)>=1,1,0)+if((-2,-1)>=1,1,0)+
if((0,-1)>=1,1,0)+if((-2,-2)>=1,1,0)+
if((-1,-2)>=1,1,0)+
if((0,-2)>=1,1,0)) = 0,(-1,-1),0)+
if((if((-1,0)>=1,1,0)+if((1,0)>=1,1,0)+
if((-1,-1)>=1,1,0)+if((1,-1)>=1,1,0)+
if((-1,-2)>=1,1,0)+if((0,-2)>=1,1,0)+
if((1,-2)>=1,1,0)) = 0,(0,-1),0)+if((if((1,0)>=1,1,0)+
if((2,0)>=1,1,0)+if((0,-1)>=1,1,0)+if((2,-1)>=1,1,0)+
if((0,-2)>=1,1,0)+if((1,-2)>=1,1,0)+if((2,-2)>=1,1,0))

= 0,(1,-1),0))/16}

10

{(0,0) < 1 and (if((-1,1)>=1,1,0)+if((0,1)>=1,1,0) +
if((1,1)>=1,1,0)+if((-1,0)>=1,1,0)+if((1 ,0)>=1,1,0) +
if((-1,-1)>=1,1,0)+if((0,-1)>=1,1,0)+if((1,-1)>=1,1,0))=0
}

The rule computes equation (1) described before. In the rule,
(0,0)*0.5 means the original value of center cell has weight
1/2 of the final updated value of cell. The the another 1/2
weight be contributed by the 8 groups of "nested if"
structures, each of them represents the value of one
immediate neighbor[(-1,1),(0,1),(1,1),(-1,0),(1,0),(-1,-1),(0,-
1),(1,-1)] of the center cell. In each "nested if" structure, the
rule will also estimate the values of "neighbor's neighbor" to
determine the contribution value of this structure will be
zero or unchanged. For instance, if the values of immediate
neighbors of cell (-1,1) are all zero, which means they are
all non-ice cells, we will let the contribution value of (-1,1)
to center cell as unchanged, otherwise, this value will be
zero. The rest may be deduced by analogy based on the
same principle. After the predefined elapse time, the value
of the center cell will be updated by the new value which we
computed using this rule.

Based on the detailed description of rules list above, we can
find when we calculated the updated value of the particular
non-ice cell whatever it has ice neighbor or not, we need to
know the value of immediate neighbor’s neighbors.
Therefore, we introduced the extra outer neighbor other than
8 immediate neighbors for each cell. Furthermore, the one
special rule defines the boundary conditions of the cell
space will be executed at first. We assume the boundary
conditions of cell space will be fixed at the whole process of
simulation.

In order to investigate different results from the model by
using different variables, we set three different group
variable vectors (γ ,β) and size of the cell space 30 x 30.

This model was tested using different models for the three
vectors, as shown in the following figure:

Figure 7. Snowflake formation. 10000 iterations cell space
= (30x30) (a) ß = 0.3, ? = 0.001, (b) ß = 0.4, ? = 0.01, (c) ß

= 0.05, ? = 0.0035.

4. A 3D MODEL OF REACTION-DIFFUSION

We created a 3D reaction-diffusion model, based on the one
presented in 0. Reaction diffusion systems can be described
by a set of partial differential equations as follows:

xi’ = Di ∇
2xi+ fi(x1,x2,…xn), i=1..n (2)

where the first term represents the diffusion equation and
the second term is the reaction equation (fi are always non-
linear; xi’ = dxi/dt). To simulate reaction diffusion systems
we apply diffusion first, and then we reaction. In this case,
we implemented the models as a 4D diffusion Cell-DEVS.

∑
∈

=
Nxi

xi
cardN

x
1

ˆ (3)

Then, we apply reaction on this new value. Reaction
differential equation is:

)(xfx =& (4)

)(
)()(

xf
t

ttxtx
=

∆
∆−− (4’)

In this case, we need to know the previous state of the cell
so we will use a second 3D hyperplane as memory of the

previous state. According to 0 we will use the following
structure for neighboring cells.

Figure 8. Neighborhood shape

To do so, we use 4 dimensions in our representation, as we
need a 3D hyperplane to memorize the previous state of the
system, and the neighborhood shape in figure 8.

[rd]
type : cell dim : (5,5,5,2)
delay : transport border : nowrapped
neighbors : (0,0,-1,0) (-1,0,0,0) (0,0,1,0)
neighbors : (0,-1,0,0) (0,0,0,0) (0,1,0,0)
neighbors : (1,0,0,0) (0,0,0,-1) (0,0,-1,1)
neighbors : (-1,0,0,1) (0,0,1,1) (0,-1,0,1)
neighbors : (0,0,0,1) (0,1,0,1) (1,0,0,1)
localtransition : rd-rule

zone : rd-rule { (0,0,0,0)..(4,4,4,0) }
zone : memory-rule { (0,0,0,1)..(4,4,4,1) }

[memory-rule]
rule : {(0,0,0,-1)} 70 { t }

[rd-rule]
rule : {(#macro(diffusion)-(0,0,0,1))/ 100 }

100 { t }

In the memory rule we save the value from the cell “below”
and in the rd-rule, we calculate first the diffusion as follows,
computed as (4’).

#BeginMacro(diffusion)
(((0,0,0,0)+(-1,0,0,0)+(1,0,0,0)+(0,-1,0,0)
 + (0,1,0,0)+ (0,0,1,0)+ (0,0,-1,0)) / 7)
#EndMacro

Then we substract the previous value of the cell stored in the
“above” cell. The rd-rule is applied on the reaction diffusion
zone { (0,0,0,0)..(4,4,4,0) }, while the memory-rule, which
saves the previous state of all cells from reaction diffusion
zone, is saved in { (0,0,0,1)..(4,4,4,1) }.

The following figures represent the different reaction of two
substances. The first group of 5 squares (each square
consisted of 5x5 cells) from the first row in Figure 8
represents the first step of our simulation; the next group of
5 squares (5x5 cells) from the same row represents the
initial state.

Figure 8. Execution results

The second row in Figure 8 represents the second step in our
simulation: first 5 squares are the actual state of the system
and the next 5 squares are the previous step. The third row
in Figure 8 is the state of the system in the 20th step of
simulation. The fourth row is the 34th step of simulation
where the system reached the equilibrium, is stable. The
fifth row in Figure 8 proves this fact: the current state is the
same with the previous state (represented by the memory
layer) after indefinite number of simulation steps following
the 34th step.

5. DRIVEN DIFFUSION

Our last model describes the random motion of two types of
particles in a system under the influence of an external field.
The field may drive one species of particles move along the
field direction while the other species move against that
direction 0. This kind of model can simulate the behavior
for certain kinds of materials such as superionic conductors,
fast ion conductors, and solid electrolytes. These two
species of particles are differentiated by their attribute of
positive charge or negative charge. The particle space
contains approximately the same amount of positive and
negative particles so that the total charge of the system is
zero. We created a Cell-DEVS model to simulate the system
and to study how the density of the particle space affects the
behavior of the system.

Initially, the space is occupied by the two randomly
distributed particles A and B and each particle has a
randomly chosen direction to face (N/E/S/W). The density
of the occupied space is denoted as P. In the case of an
external electrical field appearance (assuming the field
points to the north-east), the preferable moving direction of
particle A is North or East while the preferable moving
direction of particle B is South or West. The probability of

A and B hops along that preferable direction is a, and the
probability of hopping against the direction is (1-a).

The rules for a particle of either type to move are as follows:

1) The cells only move towards the direction that they
are facing now. The adjacent cell mentioned below
refers to the neighboring cell that the particle is
facing now.

2) If the adjacent cell is occupied, then the particle
remains in its current place and randomly chooses a
direction to face.

3) If the adjacent cell is empty but faced by one or
more particles, then the particle remains in its
current place and randomly chooses a direction to
face.

4) If the adjacent cell is empty and faced by no other
particles, then the particle moves to the adjacent
cell and chooses randomly a direction to face.

Rules for a particle to randomly choose a direction to face
are as follows:

- For particle A, the probability of choosing north,
east, south or west to face are (a/2), (a/2), (1-a)/2
and (1-a)/2 respectively.

- For particle B, the probability of choosing north,
east, south or west to face are (1-a)/2, (1-a)/2, (a/2)
and (a/2) respectively.

The rules for updating cells are as follows:

1) If the cell is empty and faced by no particles, then
it remains empty.

2) If the cell is empty and faced by exactly one
particle, then the cell will be occupied.

3) If the cell is empty and faced by two or more
particles, then the cell remains empty.

4) If the cell is occupied and the inside particle faces
an empty cell that is not faced by other particles,
then this cell will be vacated.

Different tests were carried out, considering different
density values, space size, and initial states. Particles are
initially distributed at random in the space according to the
given density value.

Since the model is used to study how the system behavior
are affected by the density of the particles distributed in the
space, several test cases have been designed and the results
along with their analysis are presented below.

In our first case, about 10% of the cell space is occupied by
the randomly distributed (as seen in Fig. 9 a).

Figure 9. low density 10% Initial State (b) after 100 time

steps

After 100 time steps, the particles are still randomly
distributed. The cell space remains disordered over the
simulated time steps, while the distributions of particles A
and B are homogeneous (high current in the system).
Similar results were obtained with a density of 20%, as
showed in Fig. 10.

Figure 10. density of 20%. Initial cell space (b) after 100

time steps

Then, we tested a case in which density of the whole space
is higher (40%). The initial cell space is illustrated in Figure
11 below.

Figure 11. density of 40% (a) Initial Cell Space (b) 100

time steps

From the results at time step 100 as shown in Figure 6, we
can see that the distribution of the two particles is now
pretty ordered. It exhibits striped, banded structure. Within
each strip, there exist two sub-strips with each having
approximately the same amount of particles. This indicates

the non-homogeneities of the distribution of two particles
and thus results in reduced current in the system.

Figure 12. (a) Initial Cell Space at density of 50%; (b) Cell

Space at density of 50% after 100 time steps; (c) Initial
Cell Space with density of 70%; (d) Cell Space with density

of 70% after 100 time steps

6. CONCLUSIONS

Cell–DEVS allows describing complex systems using an n-
dimensional cell-based formalism. Complex timing
behavior for the cells in the space can be defined using very
simple constructions. The CD++ tool, based on the
formalism entitles the definition of complex cell-shaped
models. We have used CD++ to build a Cell-DEVS to build
different diffusion models. Diffusion-limited aggregation is
an example of fractal growth model. A snowflake formation
model showed how to define pattern formation models. Our
Driven Difussion model showed how particles align in a
system where external excitation occurs. Finally, our 3D
reaction-difussion model showed how to create higher
dimensional models in a simple fashion.

The tool and the examples are the public domain and they
can be obtained in:

http://www.sce.carleton.ca/faculty/wainer/

REFERENCES

[1] D. Talia. "Cellular processing tools for high-

performance simulation". IEEE Computer. September
2000. Pp. 44 –52.

[2] M. Sipper. "The emergence of cellular computing".
IEEE Computer. July 1999. Pp. 18-26.

[3] Wolfram S. “A new kind of science”. Champaign:

Wolfram Media; 2002.

[4] G. Wainer, N. Giambiasi "N-Dimensional Cell-DEVS".

In Discrete Events Systems: Theory and Applications,
Kluwer. Vol. 12, No. 1. January 2002. pp. 135-157.

[5] B. Zeigler, T. Kim, and H. Praehofer. Theory of Modeling and

Simulation. Academic Press. 2000.

[6] Taylor, M. 1996. Partial Differential Equations: Basic

Theory. Springer Verlag, NY

[7] G. Wainer. “CD++: a toolkit to develop DEVS models”.

Software-Practice and Exp. 32, 1261-1306. 2002.

[8] T. Toffoli and N. Margolus, Cellular Automata

Machines: a New Environment for Modeling, MIT
Press, London, England, 1978.

[9] “Five Cellular Automata: Diffusion-Limited

Aggregation”. Online document, available on:
http://www.hermetic.ch/pca/da.htm

[10] C. Lin; G. Wainer. “Modeling DLA”. Internal Report.

Carleton University, Dept. of Systems and Computer
Engineering. 2003.

[11] C. Reiter. A Local Cellular Model for Snow Crystal

Growth, Chaos, Solitons & Fractals 23. 1111-1119
(2005).

[12] Packard NH. Lattice models for solidification and

aggregation. Theory and Applications of Cellular
Automata. Wolfram S, ed., Singapore: World Scientific
Publishing; 1986. p. 305-310.

[13] J. Weimar “Three-dimensional Cellular Automata for

Reaction Diffusion Systems”. Fundamenta
Informaticae, 52(1–3) pp. 275–282. (2002)

[14] R. J. Gaylord, K. Nishidate, “Modeling Nature”,

Springer-Verlag New York, Inc., 1996

