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The fire-spreading phenomenon is highly complex, and existing mathematical models of fire are
so complex themselves that any possibility of analytical solution is precluded. Instead, there has
been some success when studying fire spread by means of simulation. However, precise and reliable
mathematical models are still under development.They require extensive computing resources, being
adequate to run in batch mode but making it difficult to meet real-time deadlines.As fire scientists need
to learn about the problem domain through experimentation, simulation software needs to be easily
modified.The authors used different discrete event modeling techniques to deal with these problems.
They have qualitatively compared the Discrete Event System Specification (DEVS) and Cell-DEVS
simulation results against controlled laboratory experiments, which allowed them to validate both
simulation models of fire spread. They were able to show how these techniques can improve the
definition of fire models.
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1. Introduction

Currently, concerns for the environment have caused an in-
creasing interest in monitoring and predicting ecosystem
changes. One of the areas where these activities are cru-
cial is the study of fire spreading. The devastating fires that
have occurred over the past few years (Australia, United
States, Greece, Corsica, etc.) have stressed the necessity
for firefighters to have tools providing rapid and relatively
accurate information concerning fire position.
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Describing fire behavior is extremely complex, and the
volume of data that the models have to grasp is particu-
larly large. In fire spreading, the different interacting phe-
nomena that occur (radiation, convection, diffusion, etc.)
can be modeled in different ways. Although mathematical
models can help us understand the influence of these phe-
nomena on fire propagation, existing models are extremely
complex, precluding any possibility of analytical solution.
Instead, simulation of fire spread has been shown to be an
adequate technique to analyze fire properties. Fire spread
simulators numerically exercise the models for the inputs
concerned and see how they affect the output measures.
Comparing simulation models outputs with experimental
data, the model definition can be gradually modified to
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improve its definition. Simulation can help us better un-
derstand fire behavior, improving existing models.

Real-time simulators can help to predict fire spread
on the fly. Existing real-time simulators use simple semi-
empirical models [1], which integrate wind and slope
empirically. There are more precise models (still under
development) using more robust approaches to integrate
wind and slope effects. These models take into account
the finest mechanisms involved in fire spreading (chemi-
cal species, combustion phenomena, and hydrodynamics).
They require more computing resources, thus making dif-
ficult to meet real-time deadlines [2], resulting in data and
computation overloads.

Our long-term goal is to solve these problems and to be
able to model fire spread with precision within real-time
constraints. We intend to provide a user-friendly, high-
performance environment to assist physicists in model-
ing fire spread and to use it to give real-time advice for
firefighters.

We have used an approach based on reductionism [3]
and program evolvability [4]. Program evolvability pro-
vides the ability to modify a program easily as we learn
about the problem domain. To increase productivity, the
simulation program corresponding to the fire spread model
must be able to take the model modifications into ac-
count easily; a fire spread model may need to be dynami-
cally modified according to numerous conditions: climatic
(wind and ambient temperature), geographic (slope, non-
homogeneous vegetation, and natural barrier), and external
(firefighters) conditions.

Reductionism allows one to decrease the complexity of
the phenomenon, reducing the behavior of the system to
the behavior of its parts. Diffusion processes (oil spills,
fire spread, insect infestation, etc.) are usually represented
as partial differential equations (PDEs) discretized in the
form of finite differences or finite elements. In our case, fire
spread was represented using a reaction-diffusion equation
[5], and using a reductionistic view, we uniformly meshed
the propagation domain, conforming with a cellular model
in which each cell is composed of earth and plant matter.
This simplifies the problem definition, enabling the effi-
cient execution of simulations in real time. Nevertheless, it
is still necessary to investigate more accurate descriptions,
using simulation to understand new phenomena.

Our research started by doing a set of experiments,
which were used to propose a model of the behavior and
later validate the results. Experimental fires were con-
ducted on Pinus Pinaster litter, in a closed room with-
out any air motion, at the INRA (Institut National de la
RechercheAgronomique) laboratory nearAvignon, France
[5]. These experiments were performed to observe fire
spread for point-ignition fires under no slope and no wind
conditions. The experimental apparatus was composed of
a 1–square meter aluminum plate protected by sand. A
porous fuel bed was used, made up of pure oven-dried pine
needles spread as evenly as possible on the total area of the

combustion table (to obtain a homogeneous structure). The
experiment consisted of igniting a point using alcohol. The
resulting spread of the flame across the needles was closely
observed with a camera and thermocouples.

Our first model used a cellular automaton (CA) [6]
containing continuous state variables (the cells’ temper-
atures) [7]. CAs are idealizations of physical phenomena
with space, state, and time discretized. CA components
(called cells) are geometrically located on an infinite grid
and connected in a uniform way. Cells are identical and
contain a computational apparatus that is influenced by the
cell’s neighborhood (i.e., those cells geometrically close
to the origin cell). From a modeling point of view, phys-
ical arguments in disciplines ranging from physics to bi-
ology and artificial life support the adjacent neighborhood
assumptions [6]. CA may thus be considered as discrete
idealizations of PDEs.

In our model, the temperature of each cell was repre-
sented by a PDE. Starting with a PDE with independent
derivatives in time and space, we discretized the model to
obtain a continuous simulation model in cellular form with
equal derivative functions. The code for this CA proved to
be very efficient in terms of performance, but it did not
support program evolvability or detailed system behavior.
Furthermore, the simulation cost of CA could be highly re-
duced if the calculation area (the set of cells whose state is
computed at a given time step) amounts to the flame front.
None of these needs is supported by CA techniques. In-
stead, the Cell–Discrete Event System Specification (Cell-
DEVS) formalism [9] is especially tailored to solve prob-
lems such as this one and can be helpful in achieving our
goals. This technique is based on the DEVS formalism
[10], which enables modular and hierarchical modeling
associated with a discrete event technique. Every cell of
a Cell-DEVS is considered an atomic DEVS model with
explicit timing delays, and a procedure to create composite
models is depicted. To attack the complexity of a system, a
simulation model should be able to record the system’s tim-
ing information and lifetimes for state values of the system.
Cell-DEVS provides a sound methodology for describing
complex timing behavior without knowing the simulation
mechanism of the delays. This enables the definition of
complex cellular models, reducing development time re-
lated to the programming of timing control.

We will present the benefits of applying Cell-DEVS for
complex cellular systems, providing algorithms of both
DEVS and Cell-DEVS models of fire spread. For that pur-
pose, we consider program evolvability, algorithmic com-
plexity for the modeler, and computation efficiency of the
simulation. First, a brief description of DEVS and Cell-
DEVS formalisms is introduced. After, we present some
background material on the simulation of mathematical
models of fire spread and the model we use. Then, DEVS
and Cell-DEVS models of fire spread are described. Fi-
nally, we show how comparisons between simulation re-
sults and controlled laboratory experiments allowed us to
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validate the simulation models, and we discuss advantages
and problems of both DEVS and Cell-DEVS models of
fire spread.

2. Background

DEVS [10] is a system specification formalism based on
concepts of modularity and hierarchical composition. Us-
ing a hierarchical approach, DEVS uses different models
and submodels coupled in a modular way to specify sys-
tems behavior and structure. Modular specifications view a
model as possessing input and output ports through which
all interactions with the environment are mediated. In the
discrete event case, events determine values appearing on
such ports. External events are received on input ports and
sent on output ports. This allows one to easily combine
different simulation models and to connect them with ex-
perimental data.

DEVS atomic models give a local description of the dy-
namic behavior of the studied problem, while the coupled
models represent the different interconnections between a
set of model elements (other atomic or coupled models).

A DEVS atomic model is described as

M =< X, S, Y, δint , δext , λ, D >,

where X is the input events set, S is the state set, Y is the
output events set, δint is the internal transition function, δext

external transitions are the external transition function, λ
is the output transition function, and D is the time advance
function.

A DEVS coupled model is defined as

CM =< X, Y, D, {Mi}, {Ii}, {Zi,j }, select >,

where X is a set of input events, Y is a set of output events,
D is an index of the basic DEVS model, {Mi} is the set of
classic DEVS models, {Ii} is the set of influences of model
i, Zi,j is the i to j translation function, and select is the
tie-breaking selector.

The Cell-DEVS formalism was built to solve cell-based
systems. Using DEVS properties, cellular models can be
easily built, improving their execution speed and precision
for continuous systems. Their timing definition is simpli-
fied using delay functions. Each cell in a Cell-DEVS model
is defined as an atomic DEVS model, and they are inte-
grated into a coupled model. Timing delays allow a mod-
eler to define different timing behavior.

The atomic models (the cells) can be described as

T DC =< X, Y, θ, N, delay, d, δint , δext , τ, λ, D >,

where X defines the external inputs, Y is the external out-
puts defining the model’s interface, θ is the cell state def-
inition, N is the neighborhood set represented by a list
defining the relative position between the neighbors and
the origin cell, delay defines the kind of delay for the cell
(transportation or inertial) and d its duration, δint manages

Neighborhood list: { (0,-1), (0,0), (0,1), (-1,0) } 

Note: -1: left, up and 1: right, down

Figure 1. Informal definition of a Cell-DEVS model and its
neighborhood

internal transitions, δext manages external transitions, τ is
used for local computations (which uses the state values of
the neighborhood to compute the future value of a cell), λ is
used for outputs, and D is used for the state’s duration. The
delay function allows one to differ the transmission of the
results. A transport delay can be associated with each cell,
allowing one to defer the transmission of the cell’s changes.
To provide transport delays, the external transition func-
tion schedules an internal event after the time defined by
the delay. When the delay has expired, the state change is
transmitted to the influencees (the output function sends
the first scheduled output showing a state change, and the
internal transition function schedules a new internal event).
If there is no other scheduled output, the cell passivates.
When inertial delays are used, a scheduled output can be
preempted if a new input arrives before the scheduled time.
This only happens if the state change produced by the new
input is different from the one previously scheduled for
output. An input will be discarded if it is not steady during
the inertial delay of the cell.

The atomic cell models can be coupled with others,
forming a multicomponent model. These are defined as a
space consisting of atomic cells connected by the neighbor-
hood relationship. After, they can be integrated with other
Cell-DEVS or DEVS models. An informal description of
coupled models is included in Figure 1.

A Cell-DEVS coupled model is defined by

GCC =< Xlist , Ylist , X, Y, n, {t1, . . ., tn},
N, C, B, Z, select >,

Volume 81, Number 2 SIMULATION 3
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where Xlist and Ylist are the input/output coupling lists,
used to define the model interface; X and Y represent the
input/output events; n value defines the dimension of the
cell space; {t1, . . ., tn} is the number of cells in each di-
mension; N is the neighborhood set; B is the set of border
cells; Z is the translation function; and C defines the cell
space with

Cij =< Xij , Yij , Sij , Nij , dij , δintij , δextij , τij , λij , Dij > .

The B set defines the cell’s space border. If the set is
empty, every cell in the space has the same behavior. The
space is wrapped, meaning that cells in one border are
connected with those in the opposite. Otherwise, the border
cells will have different behaviors than those of the rest of
the model. The interface I is built using Xlist and Ylist ,
two lists defining the model’s outputs/inputs. Finally, the
Z function allows one to define the coupling of cells in the
model. Select is the tie-breaking function.

3. Simulation of Mathematical Models of Fire
Spread

In fire spread modeling, the problem consists of calculating
the flame front position using the temperature distribution
in complex fuel. To achieve real-time simulation, complex-
ity of fire spread and data volume require having simple
mathematical models capable of predicting the main be-
havioral features of fire.

Weber’s [McArthur IN REF.] [11] classification iden-
tified three types of mathematical models for fire propa-
gation according to the methods used in their construc-
tion. The first are the statistical models [12], which do not
attempt to involve physical mechanisms, being merely a
statistical description of test fires. The results can be very
successful in predicting the outcome of similar fires to the
test fires. However, the lack of a physical basis means that
the statistical models must be used cautiously outside the
test conditions.

The second category of models incorporates semi-
empirical models [13] based on the principle of energy
conservation but does not distinguish between the differ-
ent mechanisms of heat transfer. At present, most real-time
simulators [14-17] are based on Rothermel’s stationary
model [13]. This is a one-dimensional model empirically
integrating wind and slope, in which a second dimension
can be obtained using propagation algorithms [18]. Cur-
rently, a great deal of effort has been placed in improving
the simulation of Rothermel’s model. In the CA field, re-
cent studies pinpoint the need for developing new classes of
CA for fire-spreading applications [19]. Other applications
have proposed to improve CA capabilities for fire spread
simulation using the DEVS formalism. Unlike CA, DEVS
models can receive external updated information, and the
fire perimeter can be updated at any moment due to the
continuous time nature of the discrete event specifications
[20]. Cell-DEVS formalism allowed for the simplification

of Rothermel’s model implementation [21], and the Dy-
namic Structure Cellular Automata (DSCA) [22] allowed
for dynamically creating active cells and removing the qui-
escent ones, saving memory for large cell spaces.

A third category incorporates physical models [23],
which integrate wind and slope effects in a more robust
manner describing the various mechanisms of heat trans-
fer and production. Among the latter, the multiphase ap-
proach takes into account most mechanisms involved in fire
spreading (chemical species, combustion phenomena, and
hydrodynamics) [24, 25]. Although the simulation of such
models requires a very long calculation time, the multi-
phase approach can be used to improve or develop simpler
models dedicated to fire spread simulators [26, 27]. We
developed a strategy based on the reduction of multiphase
models, leading to a reduced physical model focusing on
the main mechanisms involved in fire spreading [5]. The
latter is nonstationary and two-dimensional.

The basic model uses elementary cells of earth and plant
matter. Under no wind and no slope conditions, the tem-
perature of each cell is represented by the following PDE:

∂T

∂t
= −k(T − Ta) + K∆T − Q

∂σv

∂t
, (1a)

in the domain

σv = σv0 if T < Tig, (1b)

σv = σv0.e
−α(t−tig ) if T ≥ Tig, (1c)

T (x, y, t) = Ta at the boundary, (1d)

T (x, y, t) ≥ Tig for the burning cells, (1e)

T (x, y, 0) = Ta for the nonburning cells at t = 0. (1f)

Here, Ta (27◦C) is the ambient temperature, Tig (300◦C)
is the ignition temperature, tig (s) is the ignition time,T (◦C)
is the temperature, K (m2 s−1) is the thermal diffusivity,
Q (m2 ◦C/kg) is the reduced combustion enthalpy, ∆ is
the Laplacian in two-dimensional Cartesian coordinates,
α (s−1) is the combustion time constant, σv (kg m−2) is
the vegetable surface mass, and σv0 (kg m−2) is the initial
vegetable surface mass (before the cell combustion). The
model parameters are identified from experimental data
of temperature versus time. In a previous study, the finite
element method (FEM) and the finite difference method
(FDM) were used to discretize the model [28]. FDM was
chosen because it provided equivalent results, while FEM
appeared more complex to implement and involved longer
execution time.

The study domain was meshed uniformly with cells of
1 cm2 and a time step of 0.01 sec. The physical model
was solved by the FDM, leading to the following algebraic
equation:

4 SIMULATION Volume 81, Number 2



Pr
oo

f C
op

y

SPECIFICATION OF DISCRETE EVENT MODELS FOR FIRE SPREADING

T
i,j

k

T
i,j

k+1

Cardinal

influencers

T
i+1,j

k+1

T
i,j+1

k+1

T
i-1,j

k+1

T
i,j-1

k+1

Figure 2. Cellular model of fire spread

T k+1
i,j

= a(T k

i−1,j
+ T k
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) + b(T k

i,j−1 + T k

i,j+1)

+ cQ

(
∂σv

∂t

)k+1

i,j

+ dT k

i,j
. (2)

Here, Tij is the grid node temperature. The coefficients a,
b, c, and d depend on the time step and mesh size con-
sidered. As illustrated in Figure 2, the propagation domain
thus consists of a cellular model in which each future cell’s
temperature is calculated using the current cell’s tempera-
ture and temperature in the cardinal neighbors.

4. DEVS Modeling of Fire Spread

The numerical solution of the physical problem presented
in equation (2) needs the meshing of the spread domain.
First, we split up the problem in a mesh of cells and im-
plemented each cell as a DEVS model [29], as illustrated
in Figure 3. In this case, each atomic model (C element)
corresponded to each cell of the propagation domain. The
whole components were interconnected by means of a cou-
pled model M .

A single atomic model, the generator element, was
linked to each C element, initiating fire spread by spec-
ifying ignition zones. The generator’s input port, in.G, was
used to determine ignition location and type of ignition
(punctual or linear).A punctual ignition consists of igniting
a point of the domain, thus resulting in a circular fire spread.
A linear ignition consists of igniting different points lined

G
en

er
at

or

 in.G

out0.G

out8.G

C6 C7 C8

C3 C4 C5

in_G.C6

out_T.C6
out_T.C0

out_T.C8

in_G.C2

M

in.M

out0.M

out8.M

out_T.C2C0 C1 C2

out6.G

Figure 3. DEVS model of fire spread

C i
in _ W .C

in _ E .C

in _ N .C

in _ S .C

o u t_ N .C

o u t_ S .C

o u t_ E .C

o u t_ W .C

o u t_ T .C i

in _ G .C i

phase

Figure 4. C element description

up, thus resulting in a linear propagation of a fire front. The
generator’s output ports, out0.G to out8.G, were linked to
each C element to send ignition temperatures. With this
separation between the model and the experimental frame,
we could study the same model under different conditions
just by changing the generator model.

As detailed in Figure 4, the C elements use different
ports to interact with the cell’s neighbors and external
models:

• an input port in_G.Ci (where i corresponds to the number
of the cell) for ignition,

• an output port out_T.Ci to obtain the temperature value of
the element,

• four input ports (in_N.C, in_S.C, in_E.C, and in_W.C) and
four output ports (out_N.C, out _S.C, out _E.C, and out

Volume 81, Number 2 SIMULATION 5
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 active

 t  (Ta, tig)

 inactive

 Tf  = 60°C
 Tig  = 300 °C 

 T (K)

unburned burned  burning

Figure 5. Simplified temperature curve of a cell in the propagation domain

_W.C) corresponding to the cardinal neighborhood. These
ports are used for information exchanges between the cell
and its neighbors.

Figure 5 depicts a simplified temperature curve of a
cell in the propagation domain. Transitions from a state
to a next state with a different applicable model signify
a qualitative change in the dynamic behavior [10]. Such
qualitative states are called phases. Different phases cor-
responding to time advances and the cell’s behavior can be
defined from Figure 5. Hence, the C elements represented
phases inactive, active, unburned, burning, and burned,
with corresponding time advance functions ta of infinity,
0, 1, 1, and infinity.

As long as a cell does not receive a temperature differ-
ent from the ambient temperature Ta , it does not propagate
its temperature, and it remains in the inactive phase. This
allows the restriction of the calculation domain around the
flame front, thus reducing calculation time. The intermedi-
ate active phase allows activating the cell when receiving
the temperature of a neighbor. When a cell receives temper-
atures different from Ta , it changes to the unburned phase.
The physical description of section 3 assumes that above a
threshold ignition temperature Tig, the combustion occurs
(see equation (1c)). Hence, when the cell’s temperature
becomes higher than Tig, the cell passes from unburned to
burning. Under a Tf temperature, the combustion is con-
sidered as finished, and the cell passes from burning to
burned, deliberately neglecting the end of the real curve to
save simulation time.

Figure 6 depicts the C element’s algorithm correspond-
ing to the cell’s behavior. We define the input/output ports
on lines 0 and 2. Line 1 sets out the state variables used.
The behavior of the δext and δint transition functions, the

output function λ, and the time advance function Ta is then
described from lines 3 to 95.

The external transition function (depicted from lines 3-
16) stores the neighboring temperatures received (lines 7-
16) or the initialization temperature of the cell (lines 4-6).
This is made by testing the input ports (lines 4 and 7).

The output function (lines 17-43) returns the cell’s state.
If the cell is burned, the function will return the ambient
temperature Ta . Otherwise, the function will check if the
cell’s temperature changed and will send it to the neigh-
bors. In any other case, it returns the cell’s temperature
to the neighbor that has sent its temperature (if the latter
is different from Ta). When the function has received the
temperature values from every neighbor, it calculates the
cell’s value according to the current phase.

The internal transition function (lines 44-77) affects the
cell’s phase after the output function execution. At ini-
tialization, if the cell ignites (lines 46-53), the phase cor-
responding to the ignition temperature will be affected.
Otherwise, a new phase is activated, the cell’s temperature
is updated, and the simulation time is incremented (lines
54-77).

Finally, the time advance function Ta sets the output tim-
ing delays (lines 78-95). The model was simulated using
the abstract simulator principles introduced in Wainer [30].
Every atomic model is connected to a simulator and every
coupled model to a coordinator. The coordinator manages
the simulation process of the lower level. This organization
results in the definition of a simulation tree such as the one
depicted in Figure 7. The Root processor writes and reads
data received from the simulators and activates the coordi-
nator Coo. The coordinator synchronizes the message ex-
changes between the simulators SG, S0, S2, . . ., S8, which
handle the atomic models Generator, C0, C1, . . ., C8.

6 SIMULATION Volume 81, Number 2
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0. X: in_N.C, in_S.C, in_E.C, in_W.C, in_G.C 
1. S: phase, old_phase, T(t-1),T(t), T(t+1), tig, Tig, Tf, T(t)_N, T(t)_E, T(t)_S, T(t)_W 
2. Y: out_N.C, out_S.C, out_E.C, out_W.C, out_T.C 

3. ext(C):

4. If (port==in_G.Ci)

5.    T(t) in_G.Ci.value

6. send a d-message containing T(t) at t 
7. Else 

8.    old_phase phase

9.    phase active

10.    If (old_phase!=burned) 
11.       store neighboring cell temperature 
12. send a d-message at t containing the port received 
13.    Else
14.       send a d-message at t containing the port received 
15.    Endif 
16. Endif 

17. (C):

18. If (*-message empty)
19.    If (phase==burned) 
20.       send a y-message containing Ta to the root 
21.    Else 
22.       If (T(t)!=T(t-1)) 
23.          send a y-message containing T(t) to the neighboring cells 
24.       Endif 
25. Else

26.    phase old_phase

27.    Switch(phase) 
28.       Case ‘inactive’: 
29.          send a y-message, at t=0,containing T(0) to the neighboring cells and to the root 
30.       EndCase 
31.       Case ’unburned’,‘burning’: 
32.          If (the cell received a neighboring cell temperature different from Ta)
33.             send a y-message containing T(t) to the neighboring cells 
34.             If (all neighboring cells temperature are known)
35.                calculate the cell’s temperature 
36.                send a y-message, containing T(t+1) to the root 
37.             Endif 
38.          Endif 
39.       EndCase 
40.       Case ’burned’: 
41.          send a y-message containing Ta to the neighboring cell, which has sent its temperature 
42.       EndCase 
43.    End Switch 

Figure 6. Algorithm of the C components [29] (continued on next page)

The simulation evolves through message passing. When
a simulator receives an x-message, it executes the exter-
nal transition function, which returns a d-message. This
message is transformed into a *-message, which leads to
the execution of the output function, which returns a y-
message. The internal transition function is then executed,
returning a d-message.

The simulation evolution can be analyzed by consider-
ing both the C component’s algorithm of Figure 6 and mes-
sage exchanges between processors schematized in Figures
9 and 10. Processors allow the sharing of messages between
the models (generator and cells), thus activating their be-
havioral functions. The function activation process can be
followed by considering both Figures 9 and 10, while the
functions of the algorithm are detailed in Figure 6.

Figure 8 illustrates the point ignition applied at the ini-
tialization (t = 0) on the plate center, thanks to a tem-
perature gradient. This gradient allows one not to create a
thermal shock for the mathematical model. As described in
Figure 9, this is simulated by an incoming x-message on the
generator (2), with the coordinates and the type of ignition
(linear or punctual). Then, the generator sends immediately
n y-messages (one message per ignited cell) containing the
ignition temperatures to the coordinator (5). The coordina-
tor then transforms the y-messages into x-messages and
addresses them to the simulators Ci involved in the igni-
tion (6).

The x-messages carry out the external transition func-
tions δext of the Ci elements associated with the simulators.
Each δext function stores the cell’s temperature and sends

Volume 81, Number 2 SIMULATION 7
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44. int(C):

45. If (the temperature of the cell has not been calculated)   // initialization phase 
46.    If (phase==inactive and T(t)!=Ta)
47.       If (T(t)<Tig)

48.          phase unburned

49.       Else 

50.          phase burning

51.       Endif 
52.    Endif 
53. Else 
54.    Switch(phase): 
55.        Case ‘unburned’: 

56.           If (T(t+1) Tig)

57.              tig t

58.              phase burning

59.           Endif 

60.           T(t-1) T(t)

61.           T(t) T(t+1)

62.           T(t+1) 0

63.           send an empty d-message at t+1 
64.        EndCase 
65.        Case ‘burning’: 

66.           If (T(t+1) Tf)

67.              phase burned

68.              T(t) Ta
69. send an empty d-message at t 
70.           Else 

71.              T(t-1) T(t)

72.              T(t) T(t+1)

73.              T(t+1) 0

74.              send an empty d-message at t+1 
75.           Endif 
76.        EndCase 
77. End Switch

78. Ta(C):

79. Switch(phase) :
80.    Case ‘inactive’:

81.       ta

82.    EndCase 
83.    Case ‘active’:

84.       ta 0

85.    EndCase 
86.    Case ‘unburned’:

87.       ta 1

88.    EndCase 
89.    Case ‘burning’:

90.       ta 1

91.    EndCase 
92.    Case ‘burned’:

93.       ta

94.    EndCase 

95. End Switch

Figure 6. (continued from previous page)
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Figure 7. DEVS simulator associated with the fire spread
model
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Figure 8. Initial temperature gradient for a punctual ignition

a d-message to the coordinator (7), which transforms it in
a *-message. The *-messages finally induce the execution
of the output functions λ (8).

The λ functions send four y-messages (9) containing
the cell’s temperature to the four neighbors. Each neighbor
will send, by turn, four y-messages to its own neighbors
until they propagate a temperature equal to Ta . In that case,
the requested cells will not respond. The internal transition
function δint finally assigns the phase corresponding to the
ignition temperature of the cells.

The algorithm to pass at time t + 1 is depicted in Fig-
ure 10. When a cell receives the fourth temperature (1), λ
calculates the cell’s temperature and sends a y-message to

the root (4). The δint function is then executed. This one
assigns the phase corresponding to the cell’s temperature
and sends a d-message to pass at time t + 1 (6). Above
t = 1, a cell will be activated if at least one of its cardinal
neighbors has a temperature greater than Ta .

Finally, when a cell is burned, it passes in the burned
phase and then sends its temperature (Ta) to the root. If a
neighbor sends it a y-message, the burned cell returns the
temperature Ta .

Although the DEVS model of fire spread allowed pro-
gram evolvability, the computer implementation proved to
be complex. Important model modifications can take a long
time because of the configuration of the message interfaces.
The debugging phase proved to be complex due to both
timing delay verifications and code complexity. Finally,
the whole simulation model proved difficult to understand
and was modified by a noncomputer science specialist. To
solve these problems, we redefined the model using the
Cell-DEVS formalism.

5. Cell-DEVS Modeling of Fire Spread

The CD++ environment [31] provides a means to imple-
ment DEVS and Cell-DEVS models. To implement Cell-
DEVS models, a user simply specifies the cell domain di-
mensions, the cell’s neighborhood, and the cell’s behavior
by defining simple, logical rules using a built-in specifica-
tion language. It has the format {result} delay {condition}.
The semantics of the sentences is that, if the condition is
true, the cell will take the result value and will send it
through output ports after a delay time. If the condition is
not valid, the next rule is evaluated (according to the order
in which they were defined), repeating this process until a
rule is satisfied. The most common operators are included:
Boolean (AND, OR, NOT, XOR, IMP, and EQV ), compar-
ison (=, !=, <, >, <=, and >=), and arithmetic (+, –, *,
and /). In addition, different types of functions are avail-
able: trigonometric, roots, power, rounding and truncation,
module, logarithm, absolute value, minimum, maximum,
greatest common denominator (GCD), and least common
denominator (LCM). Other existing functions allow one to
check if a number is an integer, even, odd, or prime. Space
zones, defined by a cell range, can be associated with a set
of rules different from the rest of the cell space.

With these considerations in mind, we redefined our fire
model using Cell-DEVS [32]. As described in Figure 11,
we used two planes representing different phenomena. The
first one describes fire spread, and each cell computes tem-
perature, whereas the second plane stores the ignition time
tig of each cell (see equation (1c)). Every cell in this plane
detects the corresponding cell of the propagation plane
when it starts burning.

Figure 12 represents the model specification in CD++.
Lines 0 and 1 of this specification declare the components
of the top-level coupled model. Then, we include a defi-
nition for the Cell-DEVS coupled model representing the

Volume 81, Number 2 SIMULATION 9
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Figure 9. Message exchanges for the C element ignition
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Figure 11. Cell’s neighborhood specification

fire spread model by including the parameters mentioned
earlier (neighborhood, dimension, type of delay, etc.).

In the propagation plane, we defined a border zone (cst)
corresponding to the model behavior in the boundaries of
the cell space (see equation (1d)). These cells stay at the
ambient temperature (lines 15 and 16). A second zone (ti)
represents the area of plane 1, which will use a different
set of rules, defined on line 17. These rules show how we
store the ignition times: if the corresponding cell in plane
0 starts to burn, we will record the current simulation time
in the cell.

The rules used to compute the cells’ temperatures start
on line 20. Macros were used to make the model specifica-
tion more readable. The two macros (lines 25-30) contain
the rules corresponding to the temperature calculus when
the cell is in the unburned or burning phase. The first rule
used to compute the cell temperatures is presented on line
21. The latter corresponds to the unburned phase. If the
computed cell temperature is higher than the present value,
the cell will take the computed value. As cells only con-
tain one state variable, this checking is necessary to know
which part of the temperature curve we are computing. The
same occurs during the transient period (simulation time
smaller than 20), when the cell’s state is neither burning
nor burned. Based on the same principles, rules on lines
22 and 23 correspond to the burning and burned phases.
The last rule on line 24 is used for cells that are away from
the fire front or burned. These cells remain unchanged, and
they are not reactivated.

Cell-DEVS simplifies the construction of the fire spread
model, allowing simple and intuitive model specification.
The Cell-DEVS rules facilitated the debugging phase and

reduced development time. Complex model modifications
can now be easily and quickly integrated with the cur-
rent model of fire spread, even by a noncomputer science
specialist.

6. Validation of the Simulation Model Outputs

As mentioned earlier, our research started by doing a set of
experiments, which were used to study the problem. The
results of these experiments were also used to validate the
simulated results. We built different applications in each
phase of the project. We started by implementing a CA
model written in C [33]. Then, the DEVS model of section 4
was implemented on the JDEVS environment [34]. Finally,
CD++ was used to implement the Cell-DEVS fire spread
model. Our goal was to validate the DEVS and Cell-DEVS
models with experimental data and to compare them with
an already validated CA model.

Different experimental and simulated results have been
compared: rate of spread of the fire front, temperature
growth of a cell, and fire spread over the domain. The
different qualitative comparisons allow one to validate the
mathematical model and the associated simulation models.

An overview of the simulation of a point ignition is
provided in Figure 13. Outputs of the CA, DEVS, and
Cell-DEVS models consisted of temperature grids at given
time steps. Fire front evolution has been achieved by link-
ing isothermal points at Tig = 300◦C at each time step.
The white squares in Figure 1 represent the front posi-
tions obtained with the CA model that were already vali-
dated against experimental data [33]. Both DEVS and Cell-
DEVS simulation models’ outputs are equivalent and have
been illustrated by the color gradation corresponding to the
cells’ temperatures.

At time t = 30 sec, we observe that the circular wave
fronts are the same. At t = 50 sec, a difference appears
between the fire front widths of the CA and both DEVS
and Cell-DEVS models. This is due to the end combustion
assumption (Tf = 60◦C) described in section 4. Hence, the
temperature of the flame front obtained with the DEVS
and Cell-DEVS models decreases more quickly, reducing
the active zone (corresponding to the cells calculating their
temperatures).

Over the whole propagation domain, the active zones of
the DEVS and Cell-DEVS simulation models correspond
to the red gradations. While a CA will calculate the temper-
ature of every cell of the domain (even the inactive ones in
yellow), the DEVS and Cell-DEVS models allow one to fit
the active zone by specifying significant events in front of
the fire front and threshold conditions at the end of the fire
front. For the DEVS model, the significant event tests can
be observed on line 32 of the algorithm presented in Fig-
ure 6, and the threshold condition can be observed on line
66. CD++ directly implements the principle of significant
event detection for the simulation of Cell-DEVS models.
The threshold condition can be observed on lines 22 and
23 of Figure 12.

Volume 81, Number 2 SIMULATION 11
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0. [top] 
1. components : ForestFire 
2. [ForestFire] 
3. type : cell 
4. dim : (100,100,2) 
5. delay : transport 
6. border : nowrapped 
7. neighbors : ForestFire(-1,0,0) ForestFire(0,-1,0) ForestFire(1,0,0)
8. neighbors : ForestFire(0,1,0)  ForestFire(0,0,0)  ForestFire(0,0,-1) ForestFire(0,0,1)
9. zone : cst { (0,0,0)..(0,99,0) }
10. zone : cst { (1,99,0)..(99,99,0) } 
11. zone : cst { (99,0,0)..(99,98,0) }
12. zone : cst { (1,0,0)..(98,0,0) } 
13. zone : ti { (0,0,1)..(99,99,1) } 
14. localTransition : FireBehavior 

15. [cst] 

%Constant border cells 
16. rule : { (0,0,0) } 1 { t } 
17. [ti] 
18. rule : { time * 0.01 } 1 { (0,0,0) = 1.0 AND (0,0,-1) >= 300  } 
19. rule : { (0,0,0) } 1 { t } 

20. [FireBehavior] 
 %Unburned 
21. rule : { #macro(unburned) } 1 { (0,0,0) < 300 AND (0,0,0) != 26 AND ( #macro(unburned) > (0,0,0)

OR time <= 20 )  } 
 %Burning 
22. rule : { #macro(burning) } 1 { (0,0,0) != 26 AND ( ( (0,0,0) > #macro(burning) AND (0,0,0) > 60)

OR (#macro(burning) > (0,0,0) AND (0,0,0) >= 300) ) } 
 %Burned 
23. rule : { 26 } 1 { (0,0,0) <= 60 AND (0,0,0) != 26 AND (0,0,0) > #macro(burning) } 

%Stay Burned or constant 
24. rule : { (0,0,0) } 1 { t } 

%Macros definition 
25. #BeginMacro(unburned) 
26. ( 0.98689 * (0,0,0) + 0.0031 * ( (0,-1,0) + (0,1,0) + (1,0,0) + (-1,0,0) ) + 0.213 ) 
27. #EndMacro 

28. #BeginMacro(burning) 
29. ( 0.98689 * (0,0,0) + 0.0031 * ( (0,-1,0) + (0,1,0) + (1,0,0) + (-1,0,0) ) + 2.74 * exp(-0.19 * ( 

(time + 1) * 0.01 - (0,0,1) ) ) + 0.213 ) 
30. #EndMacro 

Figure 12. Fire spread model specification: Fire.ma

The effect of the threshold assumption can also be ob-
served in Figure 14, which shows the simulated and ob-
served temperature curves of a cell of the domain. The
end of the simulated curve is cut down, but this no longer
has any influence on fire propagation [7]. The preheat-
ing of the unburned zone depends on the fire front. The
burned area has no influence on the burning one. The end
of the fire front can thus be neglected to improve simulation
performances.

Rothermel’s stationary model considers a fire rate of
spread (ROS) as constant even in the ignition phase, which
is not a correct representation of actual propagation. Fig-
ure 15 depicts the ROS of the fire front obtained with our

mathematical model of fire spread. It can be seen that our
model considers the acceleration phase, proving a better
accuracy of our model in the ignition phase.

Thanks to experimental data, we ensure that the DEVS
and Cell-DEVS models are capable of reproducing, with
sufficient accuracy, laboratory fire propagations under no
wind and no slope conditions. Modularity, hierarchical
modeling, and abstract simulator principles of DEVS pro-
vide program evolvability. Discrete events allow one to
activate only the active cells of the propagation domain
(the cells whose temperature is different from Ta), and
as shown in Zeigler, Praehofer, and Kim [9], this results
in improved execution speeds when compared with CA.

12 SIMULATION Volume 81, Number 2
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Figure 13. Comparison of the circular front positions of the
CA, DEVS, and Cell-DEVS simulations at time (a) t = 30 sec
and (b) t = 50 sec

Explicit timing delays embedded in Cell- DEVS models
and the high-level language included in CD++ simplified
the DEVS model implementation.

7. Conclusion

Based on a fundamental mathematical model, our simula-
tions describe fire spreading precisely in each phase of the
propagation from ignition to propagation. This allowed us
to validate our fire spread model by using different simu-
lation results (rate of spread of the fire front, temperature
growth of a cell, and fire spread over the domain).

DEVS provided us with facilities for program evolvabil-
ity. The developed code can easily be modified to include
new aspects such as wind and slope [35]. This can sim-

Figure 14. Comparison of the DEVS and Cell-DEVS simu-
lation outputs with the experimentation for the temperature
curve of a cell of the domain
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Figure 15. Predicted rate of spread of the fire front obtained
with our mathematical fire spread model

ply be achieved by modifying the cell’s output functions.
Another advantage in using DEVS is that discrete events
allow one to amount the calculation area to the flame front,
thus optimizing model simulation for a large propagation
domain.

Cell-DEVS improved the definition of the fire spread
model. Development time related with the programming
of timing control has been reduced, and the high-level
specification language provided by CD++ allowed us to
simplify the model specification. In fact, DEVS and Cell-
DEVS model executions should be equivalent because
Cell-DEVS uses DEVS simulation mechanisms. However,
Cell-DEVS provides formal and implemented methods to
automate and facilitate cellular modeling.

Digital simulation of continuous phenomena, such as
reaction-diffusion, requires discretization. Classical nu-
merical methods such as Euler, Runge-Kutta, Adams, and

Volume 81, Number 2 SIMULATION 13
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so on are based on the discretization of time [36]. This ap-
proximation procedure results in a discrete time simulation
model.

These models are so fine-grained that it is difficult
to efficiently simulate them with modular and event-
oriented approaches. Synchronization of numerous active
cells overrules performance improvements of these asyn-
chronous approaches for synchronous applications. Hence,
the decision to use modular and discrete event approaches
for cell space simulation is based on how sparse it is and
how often cells need to be updated.

Quantized DEVS theory [37, 38] offers an alternative
for classical discrete time algorithms. Using the quantiza-
tion of state variables allows one to obtain a discrete event
approximation of a continuous system. A significant event
detector, called a quantizer, monitors its input and uses a
logical condition to decide when a significant event change
occurs. This results in reducing the number of messages.
The problem, then, consists of a trade-off between accu-
racy and speed of computation. Interesting perspectives are
currently explored for PDE simulations, reducing the time
to reach the solution provided by conventional numerical
methods [39[*PLS. PROVIDE REF.*]].
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