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ABSTRACT: the DEVS formalism has been used as modeling and simulation technique for different natural and 
artificial systems. Cell-DEVS is an extension of DEVS that allows for executing cellular automata models with the 
advantage of evaluating the cells asynchronously with different timing delays. Both techniques have shown success in 
simulating space-shaped models. In this paper, we describe how they can be used to model and simulate different 
defense-related systems. We emphasize on using Cell-DEVS to model a land battlefield between two armies. Each army 
is composed of different soldiers and one flag and the goal of each army is to acquire the other’s flag. Different aspects 
of the soldier behavior are considered such as soldier state (alive, injured, or dead), soldier movements towards the 
enemy’s flag, and soldiers fight with each other. In addition, we introduce two different simulation techniques using 
CD++ (a toolkit developed to execute DEVS and Cell-DEVS models) showing the noticeable performance gain when 
using some new features introduced in the CD++ toolkit.  
 
1. Introduction 
 
The need for modeling and simulation techniques has 
become increasingly important to study the very complex 
artificial systems of these days, in which actual 
experimentation on the actual system is not feasible or is 
too dangerous. One of such techniques that gained a lot of 
attention in recent years is called DEVS  [1] (Discrete 
Event Systems Specifications), a systems -theoretic 
formalism. DEVS relies on dividing the system under 
study into atomic models; each of which can exist in 
specific state at any point of time and has input/output 
ports to interact with other models and with the external 
world. This allows for building very complex models by 
connecting different atomic models in a hierarchical 
manner. Different extensions were introduced to extend 
DEVS capabilities. One of them, called Cell-DEVS, 
allows executing cellular models with different time 
delays associated with each cell [2]. We will show how to 
use DEVS and Cell-DEVS to model and simulate 
different defense-based applications (such a simple model 
of an UAV, and land battlefield models, which includes 
two armies fighting against each other and trying to 
capture/acquire the other’s flag. Two implementation 
techniques using the CD++ toolkit [3] are presented. We 
discuss the advantages of newly introduced features in 
CD++ [4], which accomplished an improvement in terms 
of the model execution time and resource utilization. 
 
2. Background  
 
DEVS [1] establishes a framework for mo deling and 
simulation of discrete event systems, which depends on 
representing the systems by a hierarchy of atomic 

components. DEVS provides and abstract approach of 
modeling by separating the modeling from the simulation 
aspects and hence facilitating the model usability and 
interoperability.  
 
The basic building block of any DEVS model is the 
atomic model, which can be connected to other atomic 
models to form what is called a coupled model. A DEVS 
atomic model can be informally described as in Figure 1. 
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Figure 1. Informal definition of an atomic model 
 
Each atomic model has an interface consisting of input (x) 
and output (y) ports to communicate with other models. 
In addition, the state (s) of the model is associated with a 
time advance (ta) function, which determines the duration 
of the state. Once the time assigned to the state is 
consumed, an internal transition is triggered. At that 
moment, the model execution results are spread through 
the model’s output ports by activating an output function 
(λ). Then, an internal transition function (δint) is fired, 
producing a local state change. External input events 
(events received from other models) are collected through 
the input ports. An external transition function (δext) 
specifies how to react to those inputs.  
 



A DEVS coupled model is composed of several atomic or 
coupled sub-models, as shown in Figure 2.  

 
Figure 2. Informal description of a coupled model 

 
Coupled models are defined as a set of basic components 
(atomic or coupled), which are interconnected through the 
model interfaces. The model’s coupling scheme defines 
the interconnectivity between models and the interface 
with the external world.  
 
Cell-DEVS [2] has extended DEVS, allowing the 
implementation of cellular models with timing delays. 
Each cell is defined as a DEVS atomic model, and it can 
be later integrated to a coupled model representing the 
cell space. Cell-DEVS atomic models can be described as 
in Figure 3. 

 
Figure 3. Cell-DEVS atomic model 

 
Each cell uses N inputs (from its neighborhood) to 
compute its next state. These inputs, which are received 
through the model's interface, activate a local computing 
function (τ). A delay (d) can be associated with each cell. 
The state (s) changes can be transmitted to other models, 
but only after the consumption of this delay. Two kinds of 
delays can be defined: transport delays model a variable 
commuting time, and inertial delays, which have 
preemptive semantics (scheduled events can be discarded 
if the computed value is different than the future state).  
 
Once the cell behavior is defined, a coupled Cell-DEVS 
can be created by putting together a number of cells 
interconnected with its neighbors. A sample Cell-DEVS 
coupled model is presented in Figure 4. A coupled Cell-
DEVS is composed of an array of atomic cells, with given 
size and dimensions. Each cell is connected to its 
neighborhood through standard DEVS input/output ports. 
Border cells have diffe rent behavior due to their particular 
locations, which may result in a non-uniform 
neighborhood.  

 
Figure 4. Cell-DEVS coupled model 

 
CD++ [3] is a modeling and simulation environment 
developed in C++ following the formal specifications of 
DEVS and Cell-DEVS. It is used to build and execute 
DEVS and Cell-DEVS models. DEVS Atomic models are 
programmed in C++ and incorporated into CD++ class 
hierarchy. Once an atomic model is defined, it can be 
combined with others into a multi-component model 
using a specification language specially defined for this 
purpose. In addition, different versions have been 
developed for different platforms: a stand-alone version, a 
real-time simulator [5], and a parallel simulator [6].  
 
In the case of Cell-DEVS models, the model specification 
includes the size, dimension of the cell space, the shape of 
the neighborhood and the borders. The cell’s local 
computing function is defined using a set of rules with the 
following format: 

 
POSTCONDITION   DELAY  { PRECONDITION } 

 
This indicates that when the PRECONDITION is 
satisfied, the state of the cell will change to the designated 
POSTCONDITION , which computed value will be 
transmitted to the other cells after some DELAY has 
elapsed. If the precondition is false, the next rule in the 
list is evaluated until a rule is satisfied or there are no 
more rules. If no rules are evaluated for a certain cell or 
more than one has a condition evaluated to true, CD++ 
will generate an error in order for the modeler to 
crosscheck the rule definition.  
 
[life] 
width : 20  height : 20 
delay : transport      border : wrapped 
neighbors : (-1,-1) (-1,0) (-1,1)  
neighbors : (0,-1)  (0,0)  (0,1) 
neighbors : (1,-1)  (1,0)  (1,1) 
localtransition : new-life-rule 
 
[new-life-rule] 
Rule: 1 10 { (0,0) = 1 and ( truecount = 3  
                   or truecount = 4 ) } 
Rule: 1 10 { (0,0) = 0 and truecount = 3 } 
Rule: 0 10 { t } 

Figure 5. Definition of the Life game 
 



Figure 5 shows the definition of a simple example. The 
rules in this example implies that a cell remains active 
when the number of active neighbors is 3 or 4 (truecount) 
using a transport delay of 10 ms.  If the cell is inactive 
((0,0) = 0) and the neighborhood has 3 active cells, the 
cell is activated (value = 1). In every other case, the cell 
remains inactive (t indicates a condition that is always 
true). 
 
3. Defining Defense Applications  
 
DEVS and Cell-DEVS have been used to model and 
simulate different military-related systems. In [7], we 
presented a model of the synchronization effect between 
radar transmitters and receivers, and a Cell-DEVS model 
of a simple vehicle seeking a target. We discussed how to 
integrate these models to achieve interoperation between 
two models defined with different techniques. Here, we 
will present new models that can be easily integrated into 
these applications, and we present a brief discussion of 
the models highlighting the main components in each 
model.  
 
The first example we will discuss considers a model of an 
is Unmanned Ariel Vehicle (UAV) system that was built 
using Cell-DEVS. The UAV traverses an specific area 
searching for a target, and avoiding static and moving 
obstacles in its way. The model deals with multiple UAVs 
moving and avoiding multiple obstacles. In order to 
model the behavior of UAVs and obstacles, each entity is 
assigned a state value as follows: 
 

Empty Cell UAV
Moving 

Obstacle
Static 

Obstacle

Color

None None None

State 0 1 5 9

Empty Cell UAV
Moving 

Obstacle
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Obstacle
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Movement None None

State 0 1 5 9

 
Figure 6. UAV state values 

 
The model is specified using CD++ specification 
language, which defines the cell space shape, size and the 
rules that govern the model execution. The first portion of 
the coupled model defines the cell-space geometry and 
initial values as shown in Figure 7. The neighborhood 
shape covers the direction in which the UAV is moving 
(North-South). 
 

[top]
components : uav

[uav]
type : cell
width : 20
height : 20
delay : transport
defaultDelayTime : 100
border : nowrapped
neighbors : uav(-2,-2) uav(-1,-2) uav(0,-2) uav(1,-2) 
uav(2,-2)
neighbors : uav(-2,-1) uav(-1,-1) uav(0,-1) uav(1,-1) 
uav(2,-1)
neighbors : uav(-2,0) uav(-1,0) uav(0,0) uav(1,0) uav(2,0)
neighbors : uav(-2,1) uav(-1,1) uav(0,1) uav(1,1) uav(2,1)
neighbors : uav(-2,2) uav(-1,2) uav(0,2) uav(1,2) uav(2,2)
neighbors : uav(3,-2) uav(3,-1) uav(3,0) uav(3,1) uav(3,2)
initialvalue : 0
initialrowvalue : 5    00000000099900000000
initialrowvalue : 0     10010100001000010000
initialrowvalue : 15    00000000900000000000  

Figure 7. UAV coupled model specification 
 
As shown in Figure 7, the cell space is composed of 
20x20 cells with a Transport delay of 100 time units and 
initial values as defined by the InitialRowValue statement.  
 
[noFlyZone9-rule]
rule : 9 100 { (0,0) = 9 }
%rule : 9 100 { (0,0) = 9 }
.
.
.
[uav-rule]
%000
%???
rule : 1 100 { (0,0)=0 and (0,-1)=0 and (0,1)=0 and (1,-
1)!=5 and (1,0)!=5 and (1,1)!=5 and (-1,0)=1}
rule : 0 100 { (1,0)=1 and (0,0)=1 }
.
.

%moving target rule
rule : 5 100 { (1,0) = 5 }
rule : 0 100 { (-1,0) = 5 }

 
Figure 8. UAV: rule definitions 
 
Figure 8 shows part of the rule definition of the static 
obstacles, UAVs, and moving obstacles. The noFlySone9-
rule implements the static obstacle rule (state value=9), 
which is constant all the time due to the static nature of 
the obstacles. The uav-rule implements the UAV 
movement avoiding the static and moving obstacles. 
Finally, the ‘move target rule’ implements a moving 
obstacle from south to north.  
 
Since the model was built and tested using the CD++ 
toolkit following the formal Cell-DEVS definition, it can 
be incorporated with other DEVS and Cell-DEVS models 
such as the radar model and the battlefield model 
(discussed in the next section). 
  
Figure 9 shows a snapshot of CD++ Modeler, (part of the 
CD++ toolkit) with an initial allocations of UAV and 
obstacles. The UAVs (shown in red/dark gray) try to 
move from north to south facing static obstacles (shown 



in black) as well as moving obstacles (shown in 
yellow/light gray). 
 

 
Figure 9. Initial allocations of UAVs and obstacles 

 
Our second example shows the use of Cell-DEVS to 
model and simulate a land battlefield. Different 
approaches followed in previous research of this kind of 
systems include Cellular Automata as in [8] and software 
agents [0]. In our case, we converted these models into 
Cell-DEVS, and implemented them using the CD++ 
toolkit. In this scenario, two armies engage in a fight, 
each one is composed of different soldiers and a flag. The 
goal of each army is to capture the enemy’s flag or to 
defend its own.  
 
The characteristics of the systems can be summarized as 
follows: 

• A Two dimensional battlefield is considered 
without any airplanes or missiles. 

• Each soldier can exist in one of three states: alive, 
injured, dead. 

• The situation awareness of the soldier is limited to 
his neighborhood (no telecommunication 
equipment are used). 

• If a soldier is in state Alive, and attacked by an 
enemy soldier, his state changes to injured. 

• If a soldier is in state injured and is attacked by an 
enemy soldier, he becomes dead. 

• The soldier’s ability to fight is dependent on a 
randomly assigned factor (Fighting Ability FA). In 
addition, the injured soldier will have a less 
fighting ability than the alive one.  

• Injured soldiers recover to alive state if not 
surrounded by enemy soldiers. 

• If a soldier is not surrounded by enemy soldiers, 
he tends to move towards the enemy’s flag. 

• If a soldier is surrounded by an enemy soldier/s, 
he engages in a fight. The outcome of this fight 

depends on the fighting ability (FA) of the soldiers 
engaged in the fight. 

• The flag is acquired once an enemy soldier moves 
to its neighborhood. 

 

 
Figure 10. Possible troop allocations 

 
The status of the soldier is represented by a signed integer 
to distinguish between the two armies. One of the armies 
has positive values (army A) and the other has negative 
values (army B).  
 
The following table describes this representation: 
 

Status Description 
2 Fighter of army A alive 
1 Fighter of army A injured 
0 Fighter is dead and cell is empty 
-1 Fighter of army B injured 
-2 Fighter of army B alive 
 5 Flag of army A 
-5 Flag of army B 

 
The fighting ability of each soldier is represented by a 
randomly assigned real number ranging from 0 to 1. Zero 
represents no fighting ability at all (in the case of flag and 
dead soldiers), while 1 represents a very high fighting 
ability. In addition, the soldier will have an effect on the 
enemy soldier only if his fighting ability is greater than 
0.5. The assignment is done using random function with a 
uniform distribution and is executed at two points: 

• At the beginning of the battle 
• After engaging in a fight with an enemy soldier 

The following table describes the fighting ability factor: 
 
Table 1. Fighting Ability states  

Status Fighting Ability 
2 Uniformly distributed number in the range 

[0.45, 1] 
1 Uniformly distributed number in the range 

[0,0.55] 
0 Fighter is dead and cell is empty             0.0 
-1 Uniformly distributed number in the range  

[0,0.55] 
-2 Uniformly distributed number between in the 

range [0.45,1] 
5 Does not engage in fights                        0.0 
-5 Does not engage in fights                        0.0 



When two or more soldiers engage in a fight, the outcome 
depends on the difference between their fighting abilities 
(FAs), as seen in Figure 11. 
 
Since each soldier aims to acquire the enemy’s flag, he 
needs to know about the flag position. This information is 

represented as a real number having the integer part 
representing the flag row number (y-coordinate) and the 
fractional part representing the flag column number (x-
coordinate), i.e. Row + Column/100 (ex. row=2, 
column=4 à   2.04). 
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Figure 11. The effect of different FAs in a fight  

 
If a soldier is not surrounded by the enemy, he tends to 
move towards enemy’s flag. To do so, the soldier needs to 
calculate his direction in the next step to come closer to 
his target. This is done by comparing the current cell 
position of the soldier with the enemy’s flag position. For 
example, if the soldier is standing at cell (1, 1) and the 
enemy’s flag position is at cell (3, 4); he will have two 
options, either to move to the east or to the south as 
shown in Figure 12.    
 

 
Figure 12. Movement directions 

 
After deciding on the direction of the next  step, the 
directions are assigned integer values according to the 
following table: 
 
Table 2. Direction values 
 
 
 
 
 
 
The Free Cell move-in factor is an integer number that is 
calculated for every free cell to resolve any conflict if two 
or more soldiers want to move to the same free cell. 
 
In one of our implementations, this factor is evaluated as 
the maximum fighting ability of the soldiers surrounding 
the free cell. The following figure illustrates this point. 

FA= 
0.95

FA= 
0 .65

FA= 
0.95

0.95FA= 
0.65

 
Figure 13. Free-cell move-in factor evaluation  

 
A different implementation computes the free-cell move-
in factor as the maximum fighting ability of the soldiers in 
the neighborhood who intend to move to the cell. Only 
the one with the maximum FA will be allowed to move to 
the free cell. In this scenario, the free-cell move-in factor 
will be the direction of that soldier (the one with 
maximum FA) with an opposite sign to indicate that the 
cell will be occupied by the soldier coming from that 
direction. The following figure illustrates this point. 
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Figure 14. Free-cell move-in factor with intention 

 
The model was implemented using CD++ (a detailed 
definition of the specification can be found in [10]. Each 
piece of information was implemented using a different 
layer, which resulted in a 3-dimensional cell space. The 
layers used to implement the model are as follows: 
 

• Layer 0: soldier’s status and allocation in the 
battlefield. 

• Layer 1: fighting ability factor (FA), used for 
movement and fighting rules evaluation 

Direction Value 
North 10 
East 20 

South 30 
West 40 



• Layer 2: flag position of army B. This 
information is needed for all the soldiers of army 
to A calculate the next movement direction. 

• Layer 3: flag position of army A. This 
information is needed for all the soldiers of army 
B to calculate the next movement direction. 

• Layer 4: movement directions of each soldier. 
• Layer 5: move-in factor associated with each free 

cell.  
Soldier Status (FS)

Fighting Ability (FA)

Army B Flag Position
Army A Flag Position

Moving Directions (A & B)

Free-cell Move -in Factor

 
Figure 15. Cell space definition. 

 
The model was executed with different test scenarios. The 
first one we present here is devoted to analyze only the 
movement rules of the fighters towards the enemy’s flag. 
Figure 16 shows the initial and final configuration of the 
army (one fighter of each army was killed in the battle; 
both armies eventually reach the flags). 
 

  
Figure 16. Testing movement rules. 

 
Different tests were carried out, including several overall 
execution of the models. The following figure shows a 3D 
visual result of the execution of the model, in which each 
of the layers previously discussed is depicted.  

 
Figure 17. Multilayer display: execution results. 

 
4. Advanced Battlefield model definition 
 
The Battlefield model was extended using new advanced 
facilities available in a recently developed version of 
CD++ [4].  This new CD++ extensions include the ability 
to define multiple input/output ports for each cell in the 
cell space, and the ability to define multiple state 
variables per cell, as shown in Figure 18. 

 
Figure 18. Multi-port cell 

 
The input/output ports connect each cell to all of its 
neighboring cells, so it is useful to represent information 
that need to be transferable between different cells. 
However, the state variables are local to the cell, and are 
used to represent any variable that does not need to be 
referenced from outside the cell.  Both features are used 
to re-implement the original battlefield model dispensing 
with the need to define extra layer of cells to represent 
new piece of information.  
 
The original battlefield model was implemented using 
these new services, as a two-dimensional cell space with 
the following input/output ports: 
 

 FS 

 FA 

 Enemy_Flag 

 Direction 
 

 
Figure 19. Multi-port connectivity between two cells 

 
• FS: is used to represent the soldier status (i.e. 

alive, injured, dead) 
• FA: is used to represent the fighting ability of 

the soldier 
• Enemy_Flag : is the location of the enemy flag 

represented in the same format explained earlier. 
• Direction: is used to represent the direction of 

the next move of the soldier. 
 
In order to implement the model using the new version of 
CD++, different rules were defined to mimic the behavior 
of soldiers in a battlefield. These rules include: 
 



• Initialization rules: initialize the cell ports to their 
initial values. 

• Fighting rules, define the behavior of soldiers when 
engaged in a fight. 

• Flags-under-attack rules, defines the behavior of the 
flag when attacked by an enemy soldier. 

• Flags-not-attacked rules, defines the behavior of the 
flag when not attacked. 

• Movement-direction rules, defines the direction of 
the next step for each soldier to come closer to the 
enemy flag. 

• Movement rules, define the behavior of the soldiers 
when moving in the battlefield. 

 
As an example of these rules, we present the 
implementation of the fighting rules in CD++. 
 
#BeginMacro(fight_rule_1)
(
if( ((-1,0)~fs = -1 or (-1,0)~fs = -2) and (-1,0)~fa > 0.5 and          
  ((-1,0)~fa > (0,0)~fa) , -1, 0) + 
if( ((0,-1)~fs = -1 or (0,-1)~fs = -2) and (0,-1)~fa > 0.5 and       
  ((0,-1)~fa > (0,0)~fa), -1, 0)  +
if( ((0,1)~fs = -1 or (0,1)~fs = -2) and (0,1)~fa > 0.5 and        
  ((0,1)~fa > (0,0)~fa), -1, 0) +
if( ((1,0)~fs = -1 or (1,0)~fs = -2) and (1,0)~fa > 0.5 and       
  ((1,0)~fa > (0,0)~fa) , -1, 0)  
)
#EndMacro

Figure 20. Fighting Rules Macros 
 
The macro fight_rule_1 in Figure 20 checks if the soldier 
(from army A) is in the neighborhood of an enemy soldier 
(from army B). Then, checks if the soldier has a higher 
fighting ability, and in that case adds (-1) to the overall 
value of the macro for each such soldier.  
 
rule : { ~fs:= 1 ; ~fa:= uniform(0,0.55) ; ~direction := 0 ;  } 100     
{  (0,0)~fs = 1 and ( statecount(-1, ~fs) + statecount(-2, ~fs) ) > 0  
and (#macro(fight_rule_1)) = 0  }

rule : { ~fs:= 0 ;~fa:= 0 ; ~direction := 0 ; ~enemy_flag := -1 ; } 100 
{  (0,0)~fs = 1 and ( statecount(-1, ~fs) + statecount(-2, ~fs) ) > 0 
and  (#macro(fight_rule_1)) < 0  }

rule : { ~fs:= 2 ; ~fa:= uniform(0.45,0.99) ; ~direction := 0; } 100 
{  (0,0)~fs = 2 and  ( statecount(-1, ~fs) + statecount(-2, ~fs) ) > 0 
and (#macro(fight_rule_1)) = 0  }

rule : { ~fs:= 1 ; ~fa:= uniform(0,0.55) ; ~direction := 0 ;  }  100 
{ (0,0)~fs = 2 and ( statecount(-1, ~fs) + statecount(-2, ~fs) ) > 0 
and  (#macro(fight_rule_1)) = -1 }

rule : { ~fs:= 0 ; ~fa:= 0 ; ~direction := 0 ; ~enemy_flag := -1; } 100 
{  (0,0)~fs = 2 and ( statecount(-1, ~fs) + statecount(-2, ~fs) ) > 0 
and  (#macro(fight_rule_1)) < -1 }

 Figure 21. Fighting Rules 
 
The number generated by fight_rule_1 is used in the main 
body of the rule (presented in Figure 21) to evaluate the 
following conditions: 
 
• If a soldier in Army A is injured (FS=1) and is 

surrounded by enemy soldiers whose fighting ability 
are less than his, he will remain injured but will be 
assigned a new fighting ability factor. 

• If a soldier in Army  A is injured (FS=1) and is 
surrounded by enemy soldiers whose fighting ability 
are higher than his, he will be dead and his fighting 
ability is assigned the value 0. 

• If a soldier in Army A is alive (FS=2) and is 
surrounded by enemy soldiers whose fighting ability 
are less than his, he will remain alive and assigned 
new fighting ability factor. 

• If a soldier in Army A is alive (FS=2) and is 
surrounded by enemy soldiers and only one of them 
has a higher fighting ability, he will be injured and 
assigned new fighting ability factor. 

• If a soldier in Army A is alive (FS=2) and is 
surrounded by enemy soldiers and more than one of 
them has a higher fighting ability, he will be dead and 
his fighting ability factor becomes zero. 

 
The same rule is used for B soldiers when surrounded by 
an A army soldiers by changing the corresponding soldier 
status values. 
 
The following figure shows different scenarios for testing, 
each activating some specific rule/s and then testing the 
overall model with a scenario that activates all of the rules 
simultaneously. Three scenarios were used to test the 
model behavior: 
 
• Movement rules: in this scenario, only the movement 

rules are activated as the soldiers of army A move 
towards and acquire the B flag.  

 
Time: 00:00:00:000
      0 1 2 3 4 5 6 7 8 9 
    +-------------------- +
   0|                    |
   1|                    |
   2|     2              |
   3|                    |
   4|                    |
   5|     2              |
   6|                    |
   7|     2              |
   8|                -5  |
   9|                    |
    +-------------------- +

Time: 00:00:01:100
      0 1 2 3 4 5 6 7 8 9 
    +-------------------- +
   0|                    |
   1|                    |
   2|                    |
   3|                    |
   4|                    |
   5|                    |
   6|                    |
   7|                 2  |
   8|               2 2  |
   9|                    |
    +-------------------- +

Figure 22. Testing Movement rules  
 
• Fighting rules: in this scenario the fighting rules are 

activated when the soldiers of both armies engage in 
a fight. 



Time: 00:00:00:000
      0 1 2 3 4 5 6 7 8 9 
    +-------------------- +
   0|                    |
   1|                    |
   2|                    |
   3|                    |
   4|          -2        |
   5|        -2 2-2      |
   6|          -2        |
   7|                    |
   8|                    |
   9|                    |
    +-------------------- +

Time: 00:00:00:200
      0 1 2 3 4 5 6 7 8 9 
    +-------------------- +
   0|                    |
   1|                    |
   2|                    |
   3|                    |
   4|          -2        |
   5|        -2  -2      |
   6|          -2        |
   7|                    |
   8|                    |
   9|                    |
    +-------------------- +

 
Figure 23. Testing Fighting rules  

 
• Global test: all of the rules are activated to test the 

overall behavior of the model.  
 
Time: 00:00:00:000
      0 1 2 3 4 5 6 7 8 9 
    +-------------------- +
   0|                    |
   1|   5 2              |
   2|   2 2              |
   3|                    |
   4|                    |
   5|                    |
   6|                    |
   7|              -2-2  |
   8|              -2-5  |
   9|                    |
    +-------------------- +

Time: 00:00:01:700
      0 1 2 3 4 5 6 7 8 9 
    +-------------------- +
   0|                    |
   1|  -2                |
   2|                    |
   3|                    |
   4|                    |
   5|                    |
   6|                    |
   7|                 2  |
   8|               2 2  |
   9|                    |
    +-------------------- +

 
Figure 24. Overall test of the model 

 
5. Performance Analysis  
 
After implementing the same model using the old and the 
new versions of CD++, some performance metrics 
(execution time, CPU load…etc) were collected to 
compare between the two versions. The scenario used in 
these test is identical to the last scenario in the previous 
section. The tests were performed using PIV machine 
with 512 MB of RAM and running Redhat Linux. 
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Figure 25. Comparison of the execution time 

between two different implementations 
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Figure 26. Comparing CPU load  
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Figure 27. Comparing the number of messages 

 
The memory used by the simulator was the same for both 
implementations (~3.6 MB). However, by comparing the 
execution time, CPU load, and the number of messages 
generated for each implementation, we will find very 
noticeable performance enhancement when using the new 
extensions offered by CD++. This enhancement is 
because the cell space was simplified (2-D instead of 3-D) 
when implementing the model using the new CD++ 
features. 
 
After implementing the original model using the new 
CD++ version, some extra features were added to the 
model to improve its behavior. These features are: 
 
• Extending the situation awareness of the soldier 

(neighborhood) to include the eight surrounding cells. 
Hence, the soldier is able to attack and move 
diagonally as well as horizontally or vertically. 
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Figure 28. Extending the soldier’s neighborhood to 

Moore’s Neighborhood 



• Obstacle avoidance, the soldiers are able to avoid 
obstacles (FS=50) while moving towards the enemy’s 
flag. 

 

 
Figure 29. Obstacle avoidance example 

 
• Courage Factor (CF), this factor is used to simulate 

that not all the soldiers in a battlefield will have the 
same courage to fight the enemy. Hence, this factor 
will determine if the soldier is going to attack the 
enemy or retreat towards his own base/flag. 
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Figure 30. Effect of the Courage Factor FA on the 

soldier’s behavior  
 
In order to test the new features incorporated in the 
model, two scenarios are considered here: 
 
• The first one tests the diagonal movement and 

obstacle avoidance of the soldiers.  
• The second one, test the overall behavior of the 

model after incorporating the courage factor CF.  
 
The results of these tests are shown in the following 
figures: 
 
Time: 00:00:00:000
      0 1 2 3 4 5 6 7 8 9 
    +-------------------- +
   0|                    |
   1|                    |
   2|                    |
   3|       2            |
   4|                    |
   5|          50        |
   6|                    |
   7|                    |
   8|                -5  |
   9|                    |
    +-------------------- +

Time: 00:00:00:700
      0 1 2 3 4 5 6 7 8 9 
    +-------------------- +
   0|                    |
   1|                    |
   2|                    |
   3|                    |
   4|                    |
   5|          50        |
   6|                    |
   7|                    |
   8|                 2  |
   9|                    |
    +-------------------- +  

Figure 31. Testing the obstacle avoidance feature 
 

Time: 00:00:00:000
      0 1 2 3 4 5 6 7 8 9 
    +-------------------- +
   0|                    |
   1|   5 2              |
   2|   2 2              |
   3|        50  50      |
   4|                    |
   5|                    |
   6|        50  50      |
   7|              -2-2  |
   8|          -2    -5  |
   9|                    |
    +-------------------- +

Time: 00:00:01:700
      0 1 2 3 4 5 6 7 8 9 
    +-------------------- +
   0|                    |
   1|   5                |
   2|                    |
   3|        50  50      |
   4|                    |
   5|                    |
   6|        50  50      |
   7|                    |
   8|                -2  |
   9|                    |
    +-------------------- +  

Figure 32. Testing the overall behavior of the model 

 
The following figures show an overall performance 
analysis of the old model (old and new implementations) 
and the improved one (new implementation) is presented.  
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Figure 33. Comparing execution time between  
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Figure 34. Comparing CPU load  

 



0

10000

20000

30000

40000

50000

No. of Messages

Number of Messages

Old Model Old Imp.

Old Model New Imp.

New Model New Imp.

Old Model Old Imp. 40279

Old Model New Imp. 10502

New Model New Imp. 11796

1

 
Figure 35. Comparing the number of messages 

between three different implementations 
 
The previous figures show that the new features in the 
model have added some overhead in terms of execution 
time, CPU load, and the number of messages exchanged. 
However, this overhead is negligible when compared with 
the performance gains achieved when re-implementing 
the model using the new version of CD++.  
 
6. Conclusion 
 
We have presented how DEVS and Cell-DEVS can be 
very useful techniques for modeling and simulating 
space-shape models. As both of them are based on sound 
mathematical foundations, that offer a better 
interoperability capabilities between different models. 
One can use an existing model of any system and start 
building on top of it or connect different modules to it 
provided that he follows DEVS and Cell-DEVS 
formalisms. In addition, the separation between the model 
and simulator followed by DEVS and CD++, enables the 
modeler to concentrate on building the model without 
studying the internals of the simulator which results in a 
fast learning curve in terms of using the CD++ toolkit. 
 
The examples presented in this paper show the different 
aspects to consider when building DEVS and Cell-DEVS 
models. One of these aspects is to use simple cell-space 
(if possible) as it executes faster that the complex one. 
However, some of the systems are highly complex by 
nature (such as the battlefield model) and this is where the 
new CD++ features become handy. With multi-port cells, 
the modeler has the ability to model complex systems by 
incorporating different kinds of information about the 
system in these ports. These new features come with a 
price: the overhead introduced when using this extra 
functionality. Thus, the performance gain achieved with 
the battlefield model, may not be achievable in the case of 
simple models. Previous work [4] has shown that re-
implementing different models using the new CD++ 
facilities version has introduced overhead when executing 
the model [4]. Hence, the model nature and specification 

play an important rule in determining whether the old or 
new versions of CD++ should be considered. In addition, 
one need to be careful when using multiple input/output 
ports as they increase the number of messages exchanged 
within the model, which in turn affect the performance 
when executing the model in parallel.  
 
References 
 
[1] B. Zeigler; T. Kim; H. Praehofer: Theory of Modeling 

and Simulation: Integrating Discrete Event and 
Continuous Complex Dynamic Systems, Academic 
Press, 2000. 

 
[2] G. Wainer; N. Giambiasi: "Application of the Cell-

DEVS Paradigm for Cell Spaces Modeling and 
Simulation", Simulation , Vol. 71, No. 1, pp. 22-39, 
January 2001.  

 
[3] G. Wainer: "CD++: a Toolkit to Define Discrete-

Event Models", Software, Practice and Experience, 
Wiley, Vol. 32, No 3. pp. 1261-1306. November 2002. 

 
[4] A. López, G. Wainer. Improved Cell-DEVS model 

definition in CD++. P.M.A. Sloot, B. Chopard, and 
A.G. Hoekstra (Eds.): ACRI 2004, LNCS 3305. 
Springer-Verlag. 2004. 

 
[5] E. Glinsky; G. Wainer: "Performance Analysis of 

Real-Time DEVS models", In  Proceedings of 2002 
Winter Simulation Conference, San Diego, U.S.A. 

 
[6] A. Troccoli; G. Wainer: “Implementing Parallel Cell-

DEVS”, In Proceedings of Annual Simulation 
Symposium. Orlando, FL. U.S.A. 2003. 

 
[7] P. MacSween, G. Wainer: “On the Construction of 

Complex Models Using Reusable Components”, In 
2004 Spring Simulation Interoperability Workshop, 
Arlington, VA, USA, 2004. 

 
[8] A. E. R. Woodcock, L. Cobb, J.T. Dockery: "Cellular 

Automata: A New Method for Battlefield Simulation", 
Signal, pp. 41-50, January 1988. 

  
[9] A. Ilachinski. “Irreducible Semi-Autonomous 

Adaptive Combat (ISAAC)-An Artificial Life 
Approach to Land Combat”, Military Operation 
Research, Vol. 5, No 3, pp. 29-46, 2000. 

 
[10] R. Madhoun. “Modeling a battlefield using Cell-

DEVS”. On-line report. Dept. of Systems and 
Computer Engineering, Carleton University. 
http://www.sce.carleton.ca/faculty/wainer/wbgraf [ 
Accessed: January 22, 2005] 



Acknowledgements 
 
This work has been partially supported by NSERC 
(National Science and Engineering Research Council of 
Canada), the Canadian Foundation for Innovation, the 
Ontario Graduate Scholarship program, and the IBM 
Eclipse Innovation Grants program. 
 
 
Biographies 
 
RAMI MADHOUN has received Bachelor in Electrical 
and Computer Engineering from the University of Qatar, 
Qatar, 2000. Then he joined Qatar Telecom to work in 
activities that include Software Development and 
Network/System support. He also worked at Convergys as 
technical support agent before joining the Dept. of System 
and Compute Engineering at Carleton University, Canada 
as graduate student. He is first year master student 
working in the area of Discrete Event Simulation. His e-
mail address is rmadhoun@sce.carleton.ca. 

GABRIEL WAINER received the M.Sc. (1993) and 
Ph.D. degrees (1998, with highest honors) of the 
Universidad de Buenos Aires, Argentina, and Université 
d’Aix-Marseille III, France. He is Assistant Professor in 
the Dept. of Systems and Computer Engineering, Carleton 
University (Ottawa, ON, Canada). He was Assistant 
Professor at the Computer Sciences Dept. of the 
Universidad de Buenos Aires, and a visiting research 
scholar at the University of Arizona and LSIS, CNRS, 
France. He is author of a book on real-time systems and 
another on Discrete-Event simulation and more than 100 
research articles. He is Associate Editor of the 
Transactions of the SCS, and the International Journal of 
Simulation and Process Modeling (Inderscience). He is 
Associate Director of the Ottawa Center of The McLeod 
Institute of Simulation Sciences. He has been awarded 
Carleton University's Research Achievement Award 
(2005-2006). His e-mail and website address are 
gwainer@sce.carleton.ca, 
http://www.sce.carleton.ca/faculty/wainer. 

 

 

 

 
 


