
Modeling Space-Shaped Defense Applications with Cell-DEVS

Rami Madhoun Gabriel Wainer

Department of Systems and Computer Engineering
Carleton University

1125 Colonel By Drive
Ottawa, ON. K1S-5B6 Canada

{rmadhoun, gwainer}@sce.carleton.ca

ABSTRACT: the DEVS formalism has been used as modeling and simulation technique for different natural and
artificial systems. Cell-DEVS is an extension of DEVS that allows for executing cellular automata models with the
advantage of evaluating the cells asynchronously with different timing delays. Both techniques have shown success in
simulating space-shaped models. In this paper, we describe how they can be used to model and simulate different
defense-related systems. We emphasize on using Cell-DEVS to model a land battlefield between two armies. Each army
is composed of different soldiers and one flag and the goal of each army is to acquire the other’s flag. Different aspects
of the soldier behavior are considered such as soldier state (alive, injured, or dead), soldier movements towards the
enemy’s flag, and soldiers fight with each other. In addition, we introduce two different simulation techniques using
CD++ (a toolkit developed to execute DEVS and Cell-DEVS models) showing the noticeable performance gain when
using some new features introduced in the CD++ toolkit.

1. Introduction

The need for modeling and simulation techniques has
become increasingly important to study the very complex
artificial systems of these days, in which actual
experimentation on the actual system is not feasible or is
too dangerous. One of such techniques that gained a lot of
attention in recent years is called DEVS [1] (Discrete
Event Systems Specifications), a systems -theoretic
formalism. DEVS relies on dividing the system under
study into atomic models; each of which can exist in
specific state at any point of time and has input/output
ports to interact with other models and with the external
world. This allows for building very complex models by
connecting different atomic models in a hierarchical
manner. Different extensions were introduced to extend
DEVS capabilities. One of them, called Cell-DEVS,
allows executing cellular models with different time
delays associated with each cell [2]. We will show how to
use DEVS and Cell-DEVS to model and simulate
different defense-based applications (such a simple model
of an UAV, and land battlefield models, which includes
two armies fighting against each other and trying to
capture/acquire the other’s flag. Two implementation
techniques using the CD++ toolkit [3] are presented. We
discuss the advantages of newly introduced features in
CD++ [4], which accomplished an improvement in terms
of the model execution time and resource utilization.

2. Background

DEVS [1] establishes a framework for mo deling and
simulation of discrete event systems, which depends on
representing the systems by a hierarchy of atomic

components. DEVS provides and abstract approach of
modeling by separating the modeling from the simulation
aspects and hence facilitating the model usability and
interoperability.

The basic building block of any DEVS model is the
atomic model, which can be connected to other atomic
models to form what is called a coupled model. A DEVS
atomic model can be informally described as in Figure 1.

x

s ' = δ ext (s, e, x)

s s ' = δ int (s)

y

λ (s)

t a(s)

Figure 1. Informal definition of an atomic model

Each atomic model has an interface consisting of input (x)
and output (y) ports to communicate with other models.
In addition, the state (s) of the model is associated with a
time advance (ta) function, which determines the duration
of the state. Once the time assigned to the state is
consumed, an internal transition is triggered. At that
moment, the model execution results are spread through
the model’s output ports by activating an output function
(λ). Then, an internal transition function (δint) is fired,
producing a local state change. External input events
(events received from other models) are collected through
the input ports. An external transition function (δext)
specifies how to react to those inputs.

A DEVS coupled model is composed of several atomic or
coupled sub-models, as shown in Figure 2.

Figure 2. Informal description of a coupled model

Coupled models are defined as a set of basic components
(atomic or coupled), which are interconnected through the
model interfaces. The model’s coupling scheme defines
the interconnectivity between models and the interface
with the external world.

Cell-DEVS [2] has extended DEVS, allowing the
implementation of cellular models with timing delays.
Each cell is defined as a DEVS atomic model, and it can
be later integrated to a coupled model representing the
cell space. Cell-DEVS atomic models can be described as
in Figure 3.

Figure 3. Cell-DEVS atomic model

Each cell uses N inputs (from its neighborhood) to
compute its next state. These inputs, which are received
through the model's interface, activate a local computing
function (τ). A delay (d) can be associated with each cell.
The state (s) changes can be transmitted to other models,
but only after the consumption of this delay. Two kinds of
delays can be defined: transport delays model a variable
commuting time, and inertial delays, which have
preemptive semantics (scheduled events can be discarded
if the computed value is different than the future state).

Once the cell behavior is defined, a coupled Cell-DEVS
can be created by putting together a number of cells
interconnected with its neighbors. A sample Cell-DEVS
coupled model is presented in Figure 4. A coupled Cell-
DEVS is composed of an array of atomic cells, with given
size and dimensions. Each cell is connected to its
neighborhood through standard DEVS input/output ports.
Border cells have diffe rent behavior due to their particular
locations, which may result in a non-uniform
neighborhood.

Figure 4. Cell-DEVS coupled model

CD++ [3] is a modeling and simulation environment
developed in C++ following the formal specifications of
DEVS and Cell-DEVS. It is used to build and execute
DEVS and Cell-DEVS models. DEVS Atomic models are
programmed in C++ and incorporated into CD++ class
hierarchy. Once an atomic model is defined, it can be
combined with others into a multi-component model
using a specification language specially defined for this
purpose. In addition, different versions have been
developed for different platforms: a stand-alone version, a
real-time simulator [5], and a parallel simulator [6].

In the case of Cell-DEVS models, the model specification
includes the size, dimension of the cell space, the shape of
the neighborhood and the borders. The cell’s local
computing function is defined using a set of rules with the
following format:

POSTCONDITION DELAY { PRECONDITION }

This indicates that when the PRECONDITION is
satisfied, the state of the cell will change to the designated
POSTCONDITION , which computed value will be
transmitted to the other cells after some DELAY has
elapsed. If the precondition is false, the next rule in the
list is evaluated until a rule is satisfied or there are no
more rules. If no rules are evaluated for a certain cell or
more than one has a condition evaluated to true, CD++
will generate an error in order for the modeler to
crosscheck the rule definition.

[life]
width : 20 height : 20
delay : transport border : wrapped
neighbors : (-1,-1) (-1,0) (-1,1)
neighbors : (0,-1) (0,0) (0,1)
neighbors : (1,-1) (1,0) (1,1)
localtransition : new-life-rule

[new-life-rule]
Rule: 1 10 { (0,0) = 1 and (truecount = 3
 or truecount = 4) }
Rule: 1 10 { (0,0) = 0 and truecount = 3 }
Rule: 0 10 { t }

Figure 5. Definition of the Life game

Figure 5 shows the definition of a simple example. The
rules in this example implies that a cell remains active
when the number of active neighbors is 3 or 4 (truecount)
using a transport delay of 10 ms. If the cell is inactive
((0,0) = 0) and the neighborhood has 3 active cells, the
cell is activated (value = 1). In every other case, the cell
remains inactive (t indicates a condition that is always
true).

3. Defining Defense Applications

DEVS and Cell-DEVS have been used to model and
simulate different military-related systems. In [7], we
presented a model of the synchronization effect between
radar transmitters and receivers, and a Cell-DEVS model
of a simple vehicle seeking a target. We discussed how to
integrate these models to achieve interoperation between
two models defined with different techniques. Here, we
will present new models that can be easily integrated into
these applications, and we present a brief discussion of
the models highlighting the main components in each
model.

The first example we will discuss considers a model of an
is Unmanned Ariel Vehicle (UAV) system that was built
using Cell-DEVS. The UAV traverses an specific area
searching for a target, and avoiding static and moving
obstacles in its way. The model deals with multiple UAVs
moving and avoiding multiple obstacles. In order to
model the behavior of UAVs and obstacles, each entity is
assigned a state value as follows:

Empty Cell UAV
Moving

Obstacle
Static

Obstacle

Color

None None None

State 0 1 5 9

Empty Cell UAV
Moving

Obstacle
Static

Obstacle

Color

Movement None None

State 0 1 5 9

Figure 6. UAV state values

The model is specified using CD++ specification
language, which defines the cell space shape, size and the
rules that govern the model execution. The first portion of
the coupled model defines the cell-space geometry and
initial values as shown in Figure 7. The neighborhood
shape covers the direction in which the UAV is moving
(North-South).

[top]
components : uav

[uav]
type : cell
width : 20
height : 20
delay : transport
defaultDelayTime : 100
border : nowrapped
neighbors : uav(-2,-2) uav(-1,-2) uav(0,-2) uav(1,-2)
uav(2,-2)
neighbors : uav(-2,-1) uav(-1,-1) uav(0,-1) uav(1,-1)
uav(2,-1)
neighbors : uav(-2,0) uav(-1,0) uav(0,0) uav(1,0) uav(2,0)
neighbors : uav(-2,1) uav(-1,1) uav(0,1) uav(1,1) uav(2,1)
neighbors : uav(-2,2) uav(-1,2) uav(0,2) uav(1,2) uav(2,2)
neighbors : uav(3,-2) uav(3,-1) uav(3,0) uav(3,1) uav(3,2)
initialvalue : 0
initialrowvalue : 5 00000000099900000000
initialrowvalue : 0 10010100001000010000
initialrowvalue : 15 00000000900000000000

Figure 7. UAV coupled model specification

As shown in Figure 7, the cell space is composed of
20x20 cells with a Transport delay of 100 time units and
initial values as defined by the InitialRowValue statement.

[noFlyZone9-rule]
rule : 9 100 { (0,0) = 9 }
%rule : 9 100 { (0,0) = 9 }
.
.
.
[uav-rule]
%000
%???
rule : 1 100 { (0,0)=0 and (0,-1)=0 and (0,1)=0 and (1,-
1)!=5 and (1,0)!=5 and (1,1)!=5 and (-1,0)=1}
rule : 0 100 { (1,0)=1 and (0,0)=1 }
.
.

%moving target rule
rule : 5 100 { (1,0) = 5 }
rule : 0 100 { (-1,0) = 5 }

Figure 8. UAV: rule definitions

Figure 8 shows part of the rule definition of the static
obstacles, UAVs, and moving obstacles. The noFlySone9-
rule implements the static obstacle rule (state value=9),
which is constant all the time due to the static nature of
the obstacles. The uav-rule implements the UAV
movement avoiding the static and moving obstacles.
Finally, the ‘move target rule’ implements a moving
obstacle from south to north.

Since the model was built and tested using the CD++
toolkit following the formal Cell-DEVS definition, it can
be incorporated with other DEVS and Cell-DEVS models
such as the radar model and the battlefield model
(discussed in the next section).

Figure 9 shows a snapshot of CD++ Modeler, (part of the
CD++ toolkit) with an initial allocations of UAV and
obstacles. The UAVs (shown in red/dark gray) try to
move from north to south facing static obstacles (shown

in black) as well as moving obstacles (shown in
yellow/light gray).

Figure 9. Initial allocations of UAVs and obstacles

Our second example shows the use of Cell-DEVS to
model and simulate a land battlefield. Different
approaches followed in previous research of this kind of
systems include Cellular Automata as in [8] and software
agents [0]. In our case, we converted these models into
Cell-DEVS, and implemented them using the CD++
toolkit. In this scenario, two armies engage in a fight,
each one is composed of different soldiers and a flag. The
goal of each army is to capture the enemy’s flag or to
defend its own.

The characteristics of the systems can be summarized as
follows:

• A Two dimensional battlefield is considered
without any airplanes or missiles.

• Each soldier can exist in one of three states: alive,
injured, dead.

• The situation awareness of the soldier is limited to
his neighborhood (no telecommunication
equipment are used).

• If a soldier is in state Alive, and attacked by an
enemy soldier, his state changes to injured.

• If a soldier is in state injured and is attacked by an
enemy soldier, he becomes dead.

• The soldier’s ability to fight is dependent on a
randomly assigned factor (Fighting Ability FA). In
addition, the injured soldier will have a less
fighting ability than the alive one.

• Injured soldiers recover to alive state if not
surrounded by enemy soldiers.

• If a soldier is not surrounded by enemy soldiers,
he tends to move towards the enemy’s flag.

• If a soldier is surrounded by an enemy soldier/s,
he engages in a fight. The outcome of this fight

depends on the fighting ability (FA) of the soldiers
engaged in the fight.

• The flag is acquired once an enemy soldier moves
to its neighborhood.

Figure 10. Possible troop allocations

The status of the soldier is represented by a signed integer
to distinguish between the two armies. One of the armies
has positive values (army A) and the other has negative
values (army B).

The following table describes this representation:

Status Description
2 Fighter of army A alive
1 Fighter of army A injured
0 Fighter is dead and cell is empty
-1 Fighter of army B injured
-2 Fighter of army B alive
 5 Flag of army A
-5 Flag of army B

The fighting ability of each soldier is represented by a
randomly assigned real number ranging from 0 to 1. Zero
represents no fighting ability at all (in the case of flag and
dead soldiers), while 1 represents a very high fighting
ability. In addition, the soldier will have an effect on the
enemy soldier only if his fighting ability is greater than
0.5. The assignment is done using random function with a
uniform distribution and is executed at two points:

• At the beginning of the battle
• After engaging in a fight with an enemy soldier

The following table describes the fighting ability factor:

Table 1. Fighting Ability states

Status Fighting Ability
2 Uniformly distributed number in the range

[0.45, 1]
1 Uniformly distributed number in the range

[0,0.55]
0 Fighter is dead and cell is empty 0.0
-1 Uniformly distributed number in the range

[0,0.55]
-2 Uniformly distributed number between in the

range [0.45,1]
5 Does not engage in fights 0.0
-5 Does not engage in fights 0.0

When two or more soldiers engage in a fight, the outcome
depends on the difference between their fighting abilities
(FAs), as seen in Figure 11.

Since each soldier aims to acquire the enemy’s flag, he
needs to know about the flag position. This information is

represented as a real number having the integer part
representing the flag row number (y-coordinate) and the
fractional part representing the flag column number (x-
coordinate), i.e. Row + Column/100 (ex. row=2,
column=4 à 2.04).

FA=
0.54

FA=
0.6

FA=
0.94

FA=
0.84

FA=
0.23

FA=
0.82

FA=
0.74

Alive

Alive

Injured

Dead

Figure 11. The effect of different FAs in a fight

If a soldier is not surrounded by the enemy, he tends to
move towards enemy’s flag. To do so, the soldier needs to
calculate his direction in the next step to come closer to
his target. This is done by comparing the current cell
position of the soldier with the enemy’s flag position. For
example, if the soldier is standing at cell (1, 1) and the
enemy’s flag position is at cell (3, 4); he will have two
options, either to move to the east or to the south as
shown in Figure 12.

Figure 12. Movement directions

After deciding on the direction of the next step, the
directions are assigned integer values according to the
following table:

Table 2. Direction values

The Free Cell move-in factor is an integer number that is
calculated for every free cell to resolve any conflict if two
or more soldiers want to move to the same free cell.

In one of our implementations, this factor is evaluated as
the maximum fighting ability of the soldiers surrounding
the free cell. The following figure illustrates this point.

FA=
0.95

FA=
0 .65

FA=
0.95

0.95FA=
0.65

Figure 13. Free-cell move-in factor evaluation

A different implementation computes the free-cell move-
in factor as the maximum fighting ability of the soldiers in
the neighborhood who intend to move to the cell. Only
the one with the maximum FA will be allowed to move to
the free cell. In this scenario, the free-cell move-in factor
will be the direction of that soldier (the one with
maximum FA) with an opposite sign to indicate that the
cell will be occupied by the soldier coming from that
direction. The following figure illustrates this point.

D=
30

D=
20 -30

>FA FA >FA FA

Figure 14. Free-cell move-in factor with intention

The model was implemented using CD++ (a detailed
definition of the specification can be found in [10]. Each
piece of information was implemented using a different
layer, which resulted in a 3-dimensional cell space. The
layers used to implement the model are as follows:

• Layer 0: soldier’s status and allocation in the
battlefield.

• Layer 1: fighting ability factor (FA), used for
movement and fighting rules evaluation

Direction Value
North 10
East 20

South 30
West 40

• Layer 2: flag position of army B. This
information is needed for all the soldiers of army
to A calculate the next movement direction.

• Layer 3: flag position of army A. This
information is needed for all the soldiers of army
B to calculate the next movement direction.

• Layer 4: movement directions of each soldier.
• Layer 5: move-in factor associated with each free

cell.
Soldier Status (FS)

Fighting Ability (FA)

Army B Flag Position
Army A Flag Position

Moving Directions (A & B)

Free-cell Move -in Factor

Figure 15. Cell space definition.

The model was executed with different test scenarios. The
first one we present here is devoted to analyze only the
movement rules of the fighters towards the enemy’s flag.
Figure 16 shows the initial and final configuration of the
army (one fighter of each army was killed in the battle;
both armies eventually reach the flags).

Figure 16. Testing movement rules.

Different tests were carried out, including several overall
execution of the models. The following figure shows a 3D
visual result of the execution of the model, in which each
of the layers previously discussed is depicted.

Figure 17. Multilayer display: execution results.

4. Advanced Battlefield model definition

The Battlefield model was extended using new advanced
facilities available in a recently developed version of
CD++ [4]. This new CD++ extensions include the ability
to define multiple input/output ports for each cell in the
cell space, and the ability to define multiple state
variables per cell, as shown in Figure 18.

Figure 18. Multi-port cell

The input/output ports connect each cell to all of its
neighboring cells, so it is useful to represent information
that need to be transferable between different cells.
However, the state variables are local to the cell, and are
used to represent any variable that does not need to be
referenced from outside the cell. Both features are used
to re-implement the original battlefield model dispensing
with the need to define extra layer of cells to represent
new piece of information.

The original battlefield model was implemented using
these new services, as a two-dimensional cell space with
the following input/output ports:

 FS

 FA

 Enemy_Flag

 Direction

Figure 19. Multi-port connectivity between two cells

• FS: is used to represent the soldier status (i.e.

alive, injured, dead)
• FA: is used to represent the fighting ability of

the soldier
• Enemy_Flag : is the location of the enemy flag

represented in the same format explained earlier.
• Direction: is used to represent the direction of

the next move of the soldier.

In order to implement the model using the new version of
CD++, different rules were defined to mimic the behavior
of soldiers in a battlefield. These rules include:

• Initialization rules: initialize the cell ports to their
initial values.

• Fighting rules, define the behavior of soldiers when
engaged in a fight.

• Flags-under-attack rules, defines the behavior of the
flag when attacked by an enemy soldier.

• Flags-not-attacked rules, defines the behavior of the
flag when not attacked.

• Movement-direction rules, defines the direction of
the next step for each soldier to come closer to the
enemy flag.

• Movement rules, define the behavior of the soldiers
when moving in the battlefield.

As an example of these rules, we present the
implementation of the fighting rules in CD++.

#BeginMacro(fight_rule_1)
(
if(((-1,0)~fs = -1 or (-1,0)~fs = -2) and (-1,0)~fa > 0.5 and
 ((-1,0)~fa > (0,0)~fa) , -1, 0) +
if(((0,-1)~fs = -1 or (0,-1)~fs = -2) and (0,-1)~fa > 0.5 and
 ((0,-1)~fa > (0,0)~fa), -1, 0) +
if(((0,1)~fs = -1 or (0,1)~fs = -2) and (0,1)~fa > 0.5 and
 ((0,1)~fa > (0,0)~fa), -1, 0) +
if(((1,0)~fs = -1 or (1,0)~fs = -2) and (1,0)~fa > 0.5 and
 ((1,0)~fa > (0,0)~fa) , -1, 0)
)
#EndMacro

Figure 20. Fighting Rules Macros

The macro fight_rule_1 in Figure 20 checks if the soldier
(from army A) is in the neighborhood of an enemy soldier
(from army B). Then, checks if the soldier has a higher
fighting ability, and in that case adds (-1) to the overall
value of the macro for each such soldier.

rule : { ~fs:= 1 ; ~fa:= uniform(0,0.55) ; ~direction := 0 ; } 100
{ (0,0)~fs = 1 and (statecount(-1, ~fs) + statecount(-2, ~fs)) > 0
and (#macro(fight_rule_1)) = 0 }

rule : { ~fs:= 0 ;~fa:= 0 ; ~direction := 0 ; ~enemy_flag := -1 ; } 100
{ (0,0)~fs = 1 and (statecount(-1, ~fs) + statecount(-2, ~fs)) > 0
and (#macro(fight_rule_1)) < 0 }

rule : { ~fs:= 2 ; ~fa:= uniform(0.45,0.99) ; ~direction := 0; } 100
{ (0,0)~fs = 2 and (statecount(-1, ~fs) + statecount(-2, ~fs)) > 0
and (#macro(fight_rule_1)) = 0 }

rule : { ~fs:= 1 ; ~fa:= uniform(0,0.55) ; ~direction := 0 ; } 100
{ (0,0)~fs = 2 and (statecount(-1, ~fs) + statecount(-2, ~fs)) > 0
and (#macro(fight_rule_1)) = -1 }

rule : { ~fs:= 0 ; ~fa:= 0 ; ~direction := 0 ; ~enemy_flag := -1; } 100
{ (0,0)~fs = 2 and (statecount(-1, ~fs) + statecount(-2, ~fs)) > 0
and (#macro(fight_rule_1)) < -1 }

 Figure 21. Fighting Rules

The number generated by fight_rule_1 is used in the main
body of the rule (presented in Figure 21) to evaluate the
following conditions:

• If a soldier in Army A is injured (FS=1) and is

surrounded by enemy soldiers whose fighting ability
are less than his, he will remain injured but will be
assigned a new fighting ability factor.

• If a soldier in Army A is injured (FS=1) and is
surrounded by enemy soldiers whose fighting ability
are higher than his, he will be dead and his fighting
ability is assigned the value 0.

• If a soldier in Army A is alive (FS=2) and is
surrounded by enemy soldiers whose fighting ability
are less than his, he will remain alive and assigned
new fighting ability factor.

• If a soldier in Army A is alive (FS=2) and is
surrounded by enemy soldiers and only one of them
has a higher fighting ability, he will be injured and
assigned new fighting ability factor.

• If a soldier in Army A is alive (FS=2) and is
surrounded by enemy soldiers and more than one of
them has a higher fighting ability, he will be dead and
his fighting ability factor becomes zero.

The same rule is used for B soldiers when surrounded by
an A army soldiers by changing the corresponding soldier
status values.

The following figure shows different scenarios for testing,
each activating some specific rule/s and then testing the
overall model with a scenario that activates all of the rules
simultaneously. Three scenarios were used to test the
model behavior:

• Movement rules: in this scenario, only the movement

rules are activated as the soldiers of army A move
towards and acquire the B flag.

Time: 00:00:00:000
 0 1 2 3 4 5 6 7 8 9
 +-------------------- +
 0| |
 1| |
 2| 2 |
 3| |
 4| |
 5| 2 |
 6| |
 7| 2 |
 8| -5 |
 9| |
 +-------------------- +

Time: 00:00:01:100
 0 1 2 3 4 5 6 7 8 9
 +-------------------- +
 0| |
 1| |
 2| |
 3| |
 4| |
 5| |
 6| |
 7| 2 |
 8| 2 2 |
 9| |
 +-------------------- +

Figure 22. Testing Movement rules

• Fighting rules: in this scenario the fighting rules are

activated when the soldiers of both armies engage in
a fight.

Time: 00:00:00:000
 0 1 2 3 4 5 6 7 8 9
 +-------------------- +
 0| |
 1| |
 2| |
 3| |
 4| -2 |
 5| -2 2-2 |
 6| -2 |
 7| |
 8| |
 9| |
 +-------------------- +

Time: 00:00:00:200
 0 1 2 3 4 5 6 7 8 9
 +-------------------- +
 0| |
 1| |
 2| |
 3| |
 4| -2 |
 5| -2 -2 |
 6| -2 |
 7| |
 8| |
 9| |
 +-------------------- +

Figure 23. Testing Fighting rules

• Global test: all of the rules are activated to test the

overall behavior of the model.

Time: 00:00:00:000
 0 1 2 3 4 5 6 7 8 9
 +-------------------- +
 0| |
 1| 5 2 |
 2| 2 2 |
 3| |
 4| |
 5| |
 6| |
 7| -2-2 |
 8| -2-5 |
 9| |
 +-------------------- +

Time: 00:00:01:700
 0 1 2 3 4 5 6 7 8 9
 +-------------------- +
 0| |
 1| -2 |
 2| |
 3| |
 4| |
 5| |
 6| |
 7| 2 |
 8| 2 2 |
 9| |
 +-------------------- +

Figure 24. Overall test of the model

5. Performance Analysis

After implementing the same model using the old and the
new versions of CD++, some performance metrics
(execution time, CPU load…etc) were collected to
compare between the two versions. The scenario used in
these test is identical to the last scenario in the previous
section. The tests were performed using PIV machine
with 512 MB of RAM and running Redhat Linux.

Execution Time

0

2

4

6

8

 1st Run 2nd Run 3rd Run Average

T
im

e
(s

ec
o

n
d

s)

Original Imp.

New Imp.

Original Imp. 6.79 6.34 6.7 6.61

New Imp. 0.96 0.95 1.15 1.02

1 2 3 4

Figure 25. Comparison of the execution time

between two different implementations

CPU Load

0

20

40

60

80

100

1st Run 2nd Run 3rd Run Average

C
P

U
 L

o
ad

 %

Original Imp.

New Imp.

Original Imp. 92 95 93 93.3

New Imp. 83 86 71 80

1 2 3 4

Figure 26. Comparing CPU load

0

10000

20000

30000

40000

50000

No. of Messages

Number of Messages

Original Imp.

New Imp.

Original Imp. 40279

New Imp. 10502

1

Figure 27. Comparing the number of messages

The memory used by the simulator was the same for both
implementations (~3.6 MB). However, by comparing the
execution time, CPU load, and the number of messages
generated for each implementation, we will find very
noticeable performance enhancement when using the new
extensions offered by CD++. This enhancement is
because the cell space was simplified (2-D instead of 3-D)
when implementing the model using the new CD++
features.

After implementing the original model using the new
CD++ version, some extra features were added to the
model to improve its behavior. These features are:

• Extending the situation awareness of the soldier

(neighborhood) to include the eight surrounding cells.
Hence, the soldier is able to attack and move
diagonally as well as horizontally or vertically.

(-1,0)

(0,0)

(1,0)

(0,1)(0,-1)

(-1,1)(-1,-1)

(1,-1) (1,1)

20

10

40

30

15

2535

45

Figure 28. Extending the soldier’s neighborhood to

Moore’s Neighborhood

• Obstacle avoidance, the soldiers are able to avoid
obstacles (FS=50) while moving towards the enemy’s
flag.

Figure 29. Obstacle avoidance example

• Courage Factor (CF), this factor is used to simulate

that not all the soldiers in a battlefield will have the
same courage to fight the enemy. Hence, this factor
will determine if the soldier is going to attack the
enemy or retreat towards his own base/flag.

CF <
0.5

CF >
0.5

Figure 30. Effect of the Courage Factor FA on the

soldier’s behavior

In order to test the new features incorporated in the
model, two scenarios are considered here:

• The first one tests the diagonal movement and

obstacle avoidance of the soldiers.
• The second one, test the overall behavior of the

model after incorporating the courage factor CF.

The results of these tests are shown in the following
figures:

Time: 00:00:00:000
 0 1 2 3 4 5 6 7 8 9
 +-------------------- +
 0| |
 1| |
 2| |
 3| 2 |
 4| |
 5| 50 |
 6| |
 7| |
 8| -5 |
 9| |
 +-------------------- +

Time: 00:00:00:700
 0 1 2 3 4 5 6 7 8 9
 +-------------------- +
 0| |
 1| |
 2| |
 3| |
 4| |
 5| 50 |
 6| |
 7| |
 8| 2 |
 9| |
 +-------------------- +

Figure 31. Testing the obstacle avoidance feature

Time: 00:00:00:000
 0 1 2 3 4 5 6 7 8 9
 +-------------------- +
 0| |
 1| 5 2 |
 2| 2 2 |
 3| 50 50 |
 4| |
 5| |
 6| 50 50 |
 7| -2-2 |
 8| -2 -5 |
 9| |
 +-------------------- +

Time: 00:00:01:700
 0 1 2 3 4 5 6 7 8 9
 +-------------------- +
 0| |
 1| 5 |
 2| |
 3| 50 50 |
 4| |
 5| |
 6| 50 50 |
 7| |
 8| -2 |
 9| |
 +-------------------- +

Figure 32. Testing the overall behavior of the model

The following figures show an overall performance
analysis of the old model (old and new implementations)
and the improved one (new implementation) is presented.

Execution Time

0

1

2

3

4

5

6

7

8

1st Run 2nd Run 3rd Run Average

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
o

n
d

s
)

Old Model Old Imp.

Old Model New Imp.

New Model New Imp.

Old Model Old Imp. 6.79 6.34 6.7 6.61

Old Model New Imp. 0.96 0.95 1.15 1.02

New Model New Imp. 1.07 1.08 1.08 1.08

1 2 3 4

Figure 33. Comparing execution time between

CPU Load

0

20

40

60

80

100

1st Run 2nd Run 3rd Run Average

C
P

U
 L

o
ad

 (
%

)

Old Model Old Imp.

Old Model New Imp.

New Model New Imp.

Old Model Old Imp. 92 95 93 93.3

Old Model New Imp. 83 86 71 80

New Model New Imp. 93 92 93 92.7

1 2 3 4

Figure 34. Comparing CPU load

0

10000

20000

30000

40000

50000

No. of Messages

Number of Messages

Old Model Old Imp.

Old Model New Imp.

New Model New Imp.

Old Model Old Imp. 40279

Old Model New Imp. 10502

New Model New Imp. 11796

1

Figure 35. Comparing the number of messages

between three different implementations

The previous figures show that the new features in the
model have added some overhead in terms of execution
time, CPU load, and the number of messages exchanged.
However, this overhead is negligible when compared with
the performance gains achieved when re-implementing
the model using the new version of CD++.

6. Conclusion

We have presented how DEVS and Cell-DEVS can be
very useful techniques for modeling and simulating
space-shape models. As both of them are based on sound
mathematical foundations, that offer a better
interoperability capabilities between different models.
One can use an existing model of any system and start
building on top of it or connect different modules to it
provided that he follows DEVS and Cell-DEVS
formalisms. In addition, the separation between the model
and simulator followed by DEVS and CD++, enables the
modeler to concentrate on building the model without
studying the internals of the simulator which results in a
fast learning curve in terms of using the CD++ toolkit.

The examples presented in this paper show the different
aspects to consider when building DEVS and Cell-DEVS
models. One of these aspects is to use simple cell-space
(if possible) as it executes faster that the complex one.
However, some of the systems are highly complex by
nature (such as the battlefield model) and this is where the
new CD++ features become handy. With multi-port cells,
the modeler has the ability to model complex systems by
incorporating different kinds of information about the
system in these ports. These new features come with a
price: the overhead introduced when using this extra
functionality. Thus, the performance gain achieved with
the battlefield model, may not be achievable in the case of
simple models. Previous work [4] has shown that re-
implementing different models using the new CD++
facilities version has introduced overhead when executing
the model [4]. Hence, the model nature and specification

play an important rule in determining whether the old or
new versions of CD++ should be considered. In addition,
one need to be careful when using multiple input/output
ports as they increase the number of messages exchanged
within the model, which in turn affect the performance
when executing the model in parallel.

References

[1] B. Zeigler; T. Kim; H. Praehofer: Theory of Modeling

and Simulation: Integrating Discrete Event and
Continuous Complex Dynamic Systems, Academic
Press, 2000.

[2] G. Wainer; N. Giambiasi: "Application of the Cell-

DEVS Paradigm for Cell Spaces Modeling and
Simulation", Simulation , Vol. 71, No. 1, pp. 22-39,
January 2001.

[3] G. Wainer: "CD++: a Toolkit to Define Discrete-

Event Models", Software, Practice and Experience,
Wiley, Vol. 32, No 3. pp. 1261-1306. November 2002.

[4] A. López, G. Wainer. Improved Cell-DEVS model

definition in CD++. P.M.A. Sloot, B. Chopard, and
A.G. Hoekstra (Eds.): ACRI 2004, LNCS 3305.
Springer-Verlag. 2004.

[5] E. Glinsky; G. Wainer: "Performance Analysis of

Real-Time DEVS models", In Proceedings of 2002
Winter Simulation Conference, San Diego, U.S.A.

[6] A. Troccoli; G. Wainer: “Implementing Parallel Cell-

DEVS”, In Proceedings of Annual Simulation
Symposium. Orlando, FL. U.S.A. 2003.

[7] P. MacSween, G. Wainer: “On the Construction of

Complex Models Using Reusable Components”, In
2004 Spring Simulation Interoperability Workshop,
Arlington, VA, USA, 2004.

[8] A. E. R. Woodcock, L. Cobb, J.T. Dockery: "Cellular

Automata: A New Method for Battlefield Simulation",
Signal, pp. 41-50, January 1988.

[9] A. Ilachinski. “Irreducible Semi-Autonomous

Adaptive Combat (ISAAC)-An Artificial Life
Approach to Land Combat”, Military Operation
Research, Vol. 5, No 3, pp. 29-46, 2000.

[10] R. Madhoun. “Modeling a battlefield using Cell-

DEVS”. On-line report. Dept. of Systems and
Computer Engineering, Carleton University.
http://www.sce.carleton.ca/faculty/wainer/wbgraf [
Accessed: January 22, 2005]

Acknowledgements

This work has been partially supported by NSERC
(National Science and Engineering Research Council of
Canada), the Canadian Foundation for Innovation, the
Ontario Graduate Scholarship program, and the IBM
Eclipse Innovation Grants program.

Biographies

RAMI MADHOUN has received Bachelor in Electrical
and Computer Engineering from the University of Qatar,
Qatar, 2000. Then he joined Qatar Telecom to work in
activities that include Software Development and
Network/System support. He also worked at Convergys as
technical support agent before joining the Dept. of System
and Compute Engineering at Carleton University, Canada
as graduate student. He is first year master student
working in the area of Discrete Event Simulation. His e-
mail address is rmadhoun@sce.carleton.ca.

GABRIEL WAINER received the M.Sc. (1993) and
Ph.D. degrees (1998, with highest honors) of the
Universidad de Buenos Aires, Argentina, and Université
d’Aix-Marseille III, France. He is Assistant Professor in
the Dept. of Systems and Computer Engineering, Carleton
University (Ottawa, ON, Canada). He was Assistant
Professor at the Computer Sciences Dept. of the
Universidad de Buenos Aires, and a visiting research
scholar at the University of Arizona and LSIS, CNRS,
France. He is author of a book on real-time systems and
another on Discrete-Event simulation and more than 100
research articles. He is Associate Editor of the
Transactions of the SCS, and the International Journal of
Simulation and Process Modeling (Inderscience). He is
Associate Director of the Ottawa Center of The McLeod
Institute of Simulation Sciences. He has been awarded
Carleton University's Research Achievement Award
(2005-2006). His e-mail and website address are
gwainer@sce.carleton.ca,
http://www.sce.carleton.ca/faculty/wainer.

