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The Cell–Discrete Event System Specification (Cell-DEVS) formalism allows defining asynchronous
cell spaces with explicit timing delays (based on the specifications of the DEVS formalism). The
authors used Cell-DEVS to solve different applications and go one step further in the definition
of complex continuous systems by combining Cell-DEVS and Generalized DEVS (GDEVS). They
focus on a model describing the electrical behavior of the heart tissue, as previous research in this
field has thoroughly studied this problem using differential equations and cellular automata. The
authors show that they can provide adequate levels of precision at a fraction of the computing cost
of differential equations. Their thesis is that the use of the GDEVS formalism is perfectly suited to
attack problems such as this one, improving complex systems analysis. The authors show that their
approach permits making models easily extensible to provide different actions in different cells while
not affecting performance.
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1. Introduction

Complex systems analysis has been the object of study
of researchers since the early ages of scientific develop-
ment. A number of mathematical techniques have helped
researchers to better analyze the systems under study; one
of the preferred tools is the partial differential equation
(PDE) formalism [1]. Unfortunately, in most complex
systems, solutions to these equations are very difficult or
impossible to find. Due to this reason, a variety of numer-
ical methods were created to find approximate solutions
to these equations, being successful in studying many dif-
ferent phenomena. The appearance of digital computers
allowed the enhancement of previously existing numerical
methods while enabling the creation of new techniques.
Simulation-based approaches succeeded in providing the
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means of analyzing specific problems (instead of the gen-
eral solutions obtained by solving PDEs), helping to solve
problems with a level of detail unknown in earlier stages
of scientific development.

Many of the simulation-based and numerical methods
were based on extensions to the PDE formalism, but in the
past 20 years, a radically different method has gained popu-
larity. This technique consists of representing physical sys-
tems as cell spaces. The most common method for cellular
computing, called the cellular automata (CA) formalism
[2, 3], has been widely used to describe complex systems.
A cellular automaton is organized as an n-dimensional in-
finite lattice of elements, each holding a state value and
a very simple computing apparatus. The composite action
of thousands of these cells can reproduce the behavior of
complex physical systems. The composite activities of a
CA define a global transition function that updates the state
of the cell space through updates of discrete values in each
cell. Cell states are changed by a local computing func-
tion, which uses the present value for the cell and a finite
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Figure 1. Sketch of a cellular automaton

set of neighbor cells, as shown in Figure 1. Conceptually,
these local functions are computed synchronously and in
parallel, using the state values of the present cell and its
neighbors.

CA popularity has grown in the past few years (see
[4, 5]), and recently it has received a tremendous impulse
thanks to the works by Wolfram [6], which received spe-
cial attention by the scientific community and the media.
Despite these efforts, we have shown that CA has several
problems that constrain power, usability, and feasibility
to analyze complex systems [7]. The first problem we can
identify in CA is related to the use of a discrete time base for
cell updates. This constrains the precision and efficiency of
the simulated models: to achieve higher timing accuracy,
smaller time slots must be used, producing more demand-
ing needs in terms of processing time. A second problem is
that cellular automata, which are asynchronous in nature,
must be implemented in digital computers, which often
results in synchronous implementation. Furthermore, the
discrete time implementation of the formalism makes it
very difficult to handle time-triggered activity in each of
the cells, which is usually required when defining complex
applications.

We defined the Cell–Discrete Event System Specifica-
tion (Cell-DEVS) formalism [8] to overcome these prob-
lems. Cell-DEVS allows defining asynchronous cell spaces
with explicit constructions for the timing definition. This
approach permits describing cell spaces as discrete event
models, based on the formal specifications of the DEVS
formalism [9]. In Cell-DEVS, each cell in a cellular model
is seen as a DEVS atomic model, and a procedure for cou-
pling cells is defined based on the neighborhood relation-
ship. Explicit timing delay constructions can be used to
define precise timing in each cell, which is defined by a
local computing function combined with a delay construc-
tion (a sketch of Cell-DEVS models is presented in Fig. 2).

Figure 2. Informal definition of Cell-DEVS

These models are based on the specifications of the
DEVS formalism. DEVS was defined in the early 1970s as
a way of specifying discrete event systems organized hier-
archically and using a modular description.A DEVS model
is seen as composed by behavioral (atomic) submodels that
can be combined into structural (coupled) models. As the
formalism is closed under coupling, coupled models can
be seen as new base models that can be integrated hierar-
chically. This strategy allows the reuse of tested models,
allowing one to reduce development times.

DEVS models run asynchronously; consequently, ev-
ery cell in a Cell-DEVS model runs asynchronously from
others. Only the active cells in the cell space are triggered
independently from any activation period. The hierarchical
nature of DEVS also permits the integration of these cellu-
lar models with others defined using different formalisms,
resulting in enhanced facilities for the modeling of com-
plex systems.

Cell-DEVS enabled us to successfully solve a variety
of complex problems in different areas [10-12]: biology
(watersheds, fire spread, ant colonies), physics (crystal
growth, lattice gases, heat diffusion), chemistry (flow injec-
tion analysis), and several artificial systems (autonomous
robots, urban traffic, etc.). Nevertheless, even with the cur-
rent advances in cell-based modeling and simulation tech-
niques, problem solving using PDEs is still very popular.
This responds to several facts:

• Most educational institutions around the world provide
extensive instruction in this field.

• Thousands of existing models already have been devel-
oped using this approach, which results in an costly asset
that most organizations using models for research or en-
gineering are not willing to replace.

• Different tools and libraries provide facilities to solve
PDEs.

In most cases, a great deal of resources was spent in this
approach in terms of training, software development, and
human resources. Hence, changing this approach to use
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representations that are more advanced is an unrealistic
assumption for the near future.

Considering this scenario, we have focused on provid-
ing enhanced mechanisms for model definition based on
cellular models integrated with PDEs. We are concentrat-
ing on physical systems that can be described as cellular
models, and we want to improve the precision and execu-
tion speed of these models while using the current expertise
of modeling specialists in different domains. We want to
enable modelers to describe individual components of cel-
lular models using PDEs approximations, which could re-
sult in enhanced model definition and would help to bridge
the gap between traditional modeling techniques and cel-
lular computing. We want to provide a means to defining
cellular models in which individual cells use PDEs. Cell-
DEVS models will be used to create cell specifications
with timing delays, and each cell will run a smaller por-
tion of a complex system of PDEs, embedded as rules in
one cell. The researchers will be able to focus on defining
smaller portions of a problem and expressing it using sim-
pler differential equations, which can be solved easier than
the complete system, creating a very precise model of each
cell. The cell’s timing delays can be used to define asyn-
chronous behavior for each cell, and the resulting cellular
models will be able to run asynchronously and in parallel,
thus improving precision and performance.

We have put into consideration two important issues:
how to keep the ability of CA to describe very complex
systems using very simple rules (which is its main advan-
tage) and how to bridge the gap between a continuous vari-
able formalism such as PDEs and a discrete event descrip-
tion such as DEVS. Our thesis is that the use of the Gen-
eralized Discrete Event System Specification (GDEVS)
formalism [13] attacks both of these problems simultane-
ously. GDEVS is a formalism for the specification of dis-
crete event models of dynamic systems. The originality of
GDEVS stems from the use of polynomials of arbitrary de-
gree (as opposed to constant values) to represent the piece-
wise input/output trajectories of a discrete event model. In
essence, GDEVS constitutes a generalization of the classi-
cal discrete event modeling approaches, including DEVS,
in that a classical model may be viewed as a GDEVS model
of order 0 (the trajectories are represented by a polynomial
of order 0). Classical discrete event abstractions of dynamic
systems are based on the mapping of piecewise constant in-
put/output segments (obtained perhaps through threshold
sensors) onto discrete events. GDEVS adopted a radically
new approach based on a new definition of the concept of
the event [14, 15]. In GDEVS, the target real-world system
is modeled through piecewise polynomial segments. If we
note that the polynomial coefficients have piecewise con-
stant trajectories, we can build a discrete event abstraction
in the coefficient space using the concept of a coefficient
event. A coefficient event is thus considered as an instanta-
neous change of at least one value of the coefficients defin-
ing the piecewise polynomial trajectory of the considered

variable. An event is a list of coefficient values defining the
polynomial that describes the trajectory of the variable.

GDEVS will enable us to keep the complexity of the
rules defining each cell’s behavior to a minimum expres-
sion while still enabling the users to define their problems
using PDEs. Using GDEVS to define the behavior for each
cell will also enable us to provide adequate precision while
incurring fewer time steps when compared with traditional
numerical methods. It will also improve the accuracy ob-
tained if we compare the results obtained by traditional CA
due to the improved definition of model states. This ap-
proach also provides the advantage of traditional CA (e.g.,
the possibility of defining models that are very simple in
terms of representation). Cell-DEVS enables the definition
of specialized behavior in certain areas of the space, thus
permitting modeling-modified phenomena in particular re-
gions of the cell space. Such combined analysis is unfea-
sible using PDEs or CA. Likewise, the use of DEVS as the
basic formal specification mechanism enables us to define
interactions with models defined in other formalisms: indi-
vidual cells can provide data to those models, and integra-
tion between them could enable defining complex hybrid
systems.

We have successfully tested our approach for different
complex systems, and here we introduce the use of the
technique for modeling the electrical behavior in the heart
tissue. Previous research in this field has studied this prob-
lem using PDEs and CA, and we show that we can provide
adequate levels of precision at a fraction of the computing
cost of the numerical methods employed to solve the PDEs.
We also show that we can provide much more precise re-
sults than the ones previously obtained by CA. Finally, we
show that models are easily extensible. The use of Cell-
DEVS/GDEVS highly improved modeling activities, as
the formal specification of the cell spaces helped reduce
development and testing costs [7].

2. Background

A real system modeled using DEVS [9] can be described as
being composed of several submodels, each being behav-
ioral (atomic) or structural (coupled). Each of these basic
models consists of a time base, inputs, states, outputs, and
functions to compute the next states. New models can be
integrated into a model hierarchy, allowing reuse of tested
models, reducing testing time, and improving productiv-
ity. DEVS, as a discrete event formalism, uses a contin-
uous time base, which allows accurate timing representa-
tion. DEVS also provides the advantages of being a formal
approach: formal conceptual models can be validated, im-
proving the error detection process and reducing testing
time.

A DEVS atomic model can be formally described as
follows:

M =< X, S, Y, δint , δext , λ, D > .

X is the input events set;
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S is the state set;
Y is the output events set;
δint : S → S is the internal transition function;
δext : Q × X → S is the external transition function,

where Q = {(s, e)/s ∈ S, and e ∈ [0, D(s)]};
λ: S → Y is the output function; and
D : S → R+

0 ∪ ∞ is the duration function.
Models use input/output ports to communicate. Each

state in a model has a given lifetime, defined by the duration
function. Once the lifetime of a given state is consumed,
the internal transition function is activated to produce an
internal state change. Before that, the output function is
activated to generate the model’s outputs.At any moment, a
model can receive input external events from other models
through its input ports. When an external event arrives, the
external transition function is activated.

An atomic model can be integrated with other DEVS
models to build a structural model. These models are in-
tegrated by other atomic or coupled models. They are for-
mally defined as

CM =< X, Y, D, {Mi}, {Ii}, {Zij }, select > .

X is the set of input events;
Y is the set of output events;
D ∈ N, D < ∞ is an index for the components of the

coupled model, and ∀ ∈ D;
Mi is a basic DEVS model;
Ii is the set of influencees of model i, and ∀j ∈ Ii ;
Zij : Yi → Xj is the i to j translation function; and
Select is the tie-breaking selector.
Each coupled model consists of a set of basic models

(atomic or coupled) connected through the input/output
ports of the interfaces. Each component is identified by
an index number. The influencees of each model define
other models where output values must be sent. The trans-
lation function uses an index of influencees, created for
each model (Ii). The function defines which outputs of
model Mi are connected to inputs in model Mj . When two
submodels have simultaneous events, the select function
defines which of them should be activated first.

The Cell-DEVS formalism extended this basic behavior
to allow the implementation of cellular models. The cells
are defined as atomic models, and they can be specified as
follows:

T DC =< X, Y, S, θ, I, d, δint , δext , τ, λ, D > .

X is the set of external input events;
Y is the set of external output events;
S is the set of sequential states for the cell;
θ is the definition of the cell’s state;
I ∈ Sη+µ is the set of states for the input events;
d ∈ R+

0 , d < ∞ is the transport delay for the cell;
δint : θ → θ is the internal transition function;
δext : Q × X → θ is the external transition function,

where Q is defined as Q = {(s, e)/s ∈ θ × I × d;
e ∈ [0, D(s)]};

τ: I → S is the local computation function;
λ: S → Y is the output function; and
D : θ×I ×d → R+

0 ∪∞ is the state’s duration function.
A cell uses the input values I to compute its next state,

which is obtained by applying the local computation func-
tion τ. A delay function associated with each cell enables
one to defer the moment to transmit the computed result.
There are two types of delays: inertial and transport. For
the transport delay, the next value will be added to a queue
sorted by output time, and the results will be stored during
the delay. When this time is consumed, the value will be
sent out. Inertial delays use a preemptive policy; that is,
if the cell state changes before the delay, the previously
computed result is not transmitted. This basic behavior is
provided by the δint , δext , λ, and D functions.

After the basic activity of a cell is defined, a whole cell
space is built by creating a coupled Cell-DEVS model that
includes copies of each of the atomic cells. The Cell-DEVS
coupled model can be defined as follows:

GCC =< Xlist , Ylist , X, Y, η, {m, n}, N, C, B, Z > .

Xlist = {(k, l)/k ∈ [0, m], l ∈ [0, n]} is the list of input
coupling;

Ylist = {(k, l)/k ∈ [0, m], l ∈ [0, n]} is the list of output
coupling;

X is the set of external input events;
Y is the set of external output events;
η ∈ N is the neighborhood size, and N is the neighbor-

hood set;
{m, n} ∈ N is the size of the cell space;
C defines the cell space, where C = {Cij/i ∈ [1, m],

j ∈ [1, n]}, with Cij =< Xij , Yij , Sij , Nij , dij , δintij ,
δextij , τij , λij , Dij > a Cell-DEVS atomic model;

B is the set of border cells, where

1. B = {∅} if the cell space is wrapped, or

2. B = {Cij/∀(i = 1 ∨ i = m ∨ j =
1 ∨ j = n) ∧ Cij ∈ C}, where Cij =
< Xij , Yij , Sij , Iij , dij , δintij , δextij , τij , λij , Dij > is
a Cell-DEVS atomic model, if the border cells have
different behavior than the rest of the cell space.

Z is the translation function, defined by

• Z : P
Yq

kl
→ P

Xq

ij
, where P

Yq

kl
∈ Ikl , P

Xq

ij
∈ Iij , q ∈

[0,η] and ∀(f, g) ∈ N, k = (i + f )modm; l = (j +
g)modn;

• P
Yq

ij
→ P

Xq

kl
, where P

Yq

ij
∈ Iij , P

Xq

kl
∈ Ikl , q ∈ [0,η]

and ∀(f, g) ∈ N, k = (i − f )modm; l = (j − g)modn;

select is the tie-breaking selector function, with
select ⊆ mxn → mxn.

Here, Xlist and Ylist are input/output coupling lists used
to define the model interface I . X and Y represent the in-
put/output event sets. The space size is defined by {m, n},
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and N defines the neighborhood shape. C, together with
B, the set of border cells, and Z, the translation function,
defines the cell space. The B set defines the cell’s space
border. If this set is empty, the space is “wrapped,” mean-
ing that cells in one border are connected with those in the
opposite. In this case, every cell in the space will be consid-
ered as having identical activity. Otherwise, the border cells
need to be provided with a behavior different from those
of the rest of the model. Finally, the Z function allows one
to define the coupling of cells in the model. This function
translates the outputs of the mth output port in cell Cij into
values for the mth input port of cell Ckl . Each output port
will correspond to one neighbor, and each input port will
be associated with one cell in the inverse neighborhood.
The ports’ names are generated using the following nota-
tion: P

Xq

ij refers to the qth input port of cell Cij , and P
Yq

ij

refers to the qth output port. These ports correspond with
the port names denoted as Xq or Yq for each cell.

We developed our studies using the CD++ tool kit [16],
which was built following the formal specifications of
DEVS and Cell-DEVS, as described in this section. The
tool provides a specification language to describe the be-
havior of each cell and the global parameters for the cou-
pled cell space (including size, influencees, neighborhood,
and borders). Using these parameters, a complete Cell-
DEVS is built using the formal specifications described
earlier. The activities of a cell are defined using rules with
the following form:

VALUE DELAY { CONDITION }

Each rule indicates that, if the CONDITION is satis-
fied, the state of the cell will change to the designated
VALUE, and this new state value will be spread to the
neighboring cell after the chosen DELAY. If the condition
is not valid, the next rule is evaluated (according to the
order in which they were defined), repeating this process
until a rule is satisfied. A neighborhood, which is defined
as a list of offsets from the current set, can be composed
of nonadjacent cells, and the neighborhood’s dimension
can be similar or inferior to the model’s dimension. Space
zones, defined by a cell range, can be associated with a
set of rules different from the rest of the cell space. Com-
mon operators are included: Boolean (AND, OR, NOT,
XOR, IMP, and EQV), comparison (=, !=, <, >, <=, and
>=), and arithmetic (+, –, *, and /). In addition, differ-
ent types of functions are available: trigonometric, roots,
power, rounding and truncation, module, logarithm, abso-
lute value, minimum, maximum, greatest common denom-
inator (GCD), and least common multiple (LCM). Other
existing functions allow one to check if a number is in-
teger, even, odd, or prime. Some functions allow one to
query the cell state of the neighborhood: truecount, falsec-
ount, undefcount, and statecount(n). Common constants
are defined as follows: pi, e, and certain constants used
in the domains of physics and chemistry (gravitation, ac-
celeration, light speed, Planck’s, etc.). The time function

returns the global simulated time. Other functions allow
one to obtain values depending on the evaluation of a cer-
tain condition. IFU(c, t, f, u) evaluates the c condition,
and if it is true, it returns the t value. It returns f if it
is false and u if it is undefined. On the other hand, the
function IF (c, t, f ) returns t if c evaluates to true and
f otherwise. Finally, several functions are used to gen-
erate pseudo-random numbers using different probability
distributions.

We intend to extend the basic behavior provided by Cell-
DEVS atomic models to permit users to specify cells with
continuous variable behavior using the GDEVS formalism.
GDEVS considers the general case of dynamic systems
with piecewise continuous input/output trajectories, and it
has solved how to transform these piecewise continuous
trajectories into discrete event trajectories. This transfor-
mation was done by achieving a partition of the output
trajectory into piecewise polynomial segments. To each of
these output segments corresponds a continuous segment
of the state trajectory and piecewise constant segments in
the space of polynomial coefficients. In a GDEVS model,
an event is an instantaneous change in at least one of the
values of the coefficients of the polynomial describing the
signal.

For example, the continuous signal presented in Fig-
ure 3a can be approximated by the piecewise linear seg-
ment of Figure 3b or by the events of order 1, shown in
Figure 3c (discrete event abstraction). If we identify a tra-
jectory w < t0; tn >→ A as a trajectory on a contin-
uous time base, characterized as a finite set of instants
{t0, t1, . . ., tn} associated with constant pairs (ai ; bi) such
that ∀t ∈ < ti; tj >, w(t) = ait + bi , and w < t0; tn >=
w < t0; t1 > ∗w < t1; t2 > ∗. . . ∗ w < tn−1; tn > (where
* represents the operator left concatenation of segments),
then we can build a piecewise trajectory such as the one in-
troduced in Figure 3b. By using higher or lower order poly-
nomial approximations, we obtain GDEVS models with
different coefficient events.

In our proposal, the behavior of each cell in a Cell-
DEVS model is described using GDEVS. In previous ex-
periences, we were able to include continuous functions in
each cell. Nevertheless, the definition was constrained to
defining discrete time versions of the PDEs running in each
of the cells. This prevented two of the main advantages of
using Cell-DEVS: the use of discrete events and the spec-
ification cellular models as a composite of cells described
with very simple rules. If we apply a cell-based approach,
we might be able to express the continuous functions using
ad hoc simple rules. Nonetheless, most researchers would
still prefer to use a PDE in each cell, which would result in
performance degradation. We will show how Cell-DEVS
models whose components are defined using GDEVS (see
Fig. 4) can overcome these problems. The idea is to approx-
imate a PDE in the local computing function τ by using a
GDEVS of the desired precision. This will provide a means
for improved performance while having simpler rules for
model definition (namely, concatenation of polynomials).

Volume 81, Number 2 SIMULATION 5
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Figure 3. GDEVS approximation of a continuous signal:
(a) continuous segment, (b) piecewise linear segment, and
(c) first-order model

Figure 4. GDEVS approximation of Cell-DEVS local comput-
ing functions

The ideal case in terms of performance is when a lin-
ear approximation is able to provide high precision and
bounded error, as linear models have low cost of execution
and easy definition. Higher precision can be achieved by
using higher order polynomials, with the cost of execution
time and increased complexity of the rules defined. We also

Figure 5. Basic anatomy of the heart

show that defining GDEVS models using polynomials of
order 0 results in automatic definition of traditional CA.

In the remaining sections, we show how to apply these
ideas to a well-known model describing the electrical be-
havior of the heart tissue, which has been solved using
different techniques. This permits us to show the power
of our approach while comparing the results with other
existing formalisms.

3. Modeling Behavior of the Heart Tissue

The heart is a muscle responsible for pumping blood into
the circulatory system. The behavior of the phenomena
occurring in the heart muscle and tissue has been exten-
sively studied, and it has been reported in a wide variety of
medical treaties (see, e.g., [17, 18]). In these documents,
heart activity is usually analyzed according to three kinds
of activities: mechanical, electrical, and cellular.

In terms of mechanical activities, the blood returns to
the heart through the vena cava superior and inferior and
flows to the right atria. The blood flows to the right ventri-
cle, where it is pumped to the lungs to return oxygenated
to the left atria. Then, it flows to the left ventricle, which
returns the oxygenated blood to the body through the aorta.
This is presented in Figure 5.

Mechanical activity is triggered by the electrical activ-
ity of the cells. The heart muscle is excitable, and the cells
in its tissue respond to external stimuli by contracting the
muscular cells. If the stimulus is too weak, the muscle does
not respond; instead, if the voltage received is adequate, the
cells contract at maximum capacity. The electrical conduc-
tion system of the heart is responsible for the control of
its regular pumping. This activity originates in the sinoa-
trial (SA) node, also known as the pacemaker. This is an
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electrically active region of the heart that self-activates.
Cells in the heart tissue are excited when adjacent cells are
charged positively. In that case, an upstroke of its action
potential is provoked, which will spread to nearby cells.

All excitable tissue, once activated, exhibits a refractory
period before returning to rest. During the contraction pe-
riod, the muscle is refractory and does not respond to exter-
nal stimuli. Before starting a new contraction, the previous
one should have finished, and shortly after the contraction,
the muscle is relatively refractory. In this case, minimum
stimuli do not generate response, but a stronger stimulus
is able to generate a response. The electrical activity is
started in the SA node, and it spreads through the atria
muscle at a speed of 1 m/sec (for human beings, 80 msec
are needed to activate the atria).After, the electrical activity
is spread to the atrioventricular (AV) node, where it prop-
agates slowly (0.1 m/sec), and then the excitation travels
at 2 m/sec through the Purkinje fiber.

This electrical activity is originated by the cellular ac-
tivities, which consist of the interchange of potassium and
sodium ions in the walls of the cells. This chemical reac-
tion produces potential differences of mV, which trigger
the electrical activity. This behavior of cell membrane ac-
tivity was originally characterized by Hodgkin and Huxley
[19], in a foundational article that presented the detailed
behavior of the intermembrane action potential function.
They recognized different phases in this function:

1. The heart tissue is relaxed, and the interior of the
membrane is electrically negative in relation to the
surface, with a difference of potential of 50 mV.

2. The surface membrane is repolarized, creating two
zones with a potential difference.

3. Electrical activity starts, and the external surface be-
comes negative, with a potential difference of 30 mV.
This phase is called excitation (or depolarization).

4. Finally, negative voltage on the surface trespasses
the membrane, and the original status is recovered.
This phase is called repolarization.

The Hodgkin-Huxley model showed that virtually all
membrane current models can be defined by writing the
total membrane current, which is a sum of the individual
currents carried by different ions through specific channels
in the cell’s membrane. The calculation is based on sodium
ion flow, potassium ion flow, and the leakage ion flow. This
behavior can be defined as follows:

I = m3hGNa(E − ENa) + n4GK(E − EK)

+ GL(E − EL). (1)

I is the total ionic current across the membrane,
m is the probability that one particle contributed to

activate the sodium gate,
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Figure 6. Action potential in the atria cells using Hodgkin-
Huxley equations

h is the probability that one inactivation particle has not
caused the sodium gate to close,

GNa is the maximum sodium conductance,
E is the total membrane potential,
ENa is the sodium membrane potential,
n is the probability that one of four particles influenced

the potassium gate,
GK is the maximum possible potassium conductance,
EK is the potassium membrane potential,
GL is the maximum leakage conductance, and
EL is the leakage membrane potential.
Hodgkin and Huxley [17] computed empirical formulas

for the sodium gate activation (m), sodium particle activa-
tion probability (h), and potassium gate activation prob-
ability (n). They also found the values of the remaining
parameters of equation (1), which where shown to be con-
stant. By applying the Hodgkin-Huxley equations, we can
obtain the action potential function for the cells in differ-
ent regions of the heart tissue. The behavior of different
cells can be defined by variation in conductivity, length
of the fibers, and so on. The authors also showed that the
results of this equation are equivalent to the results found
in experimental data. For instance, Figure 6 shows the re-
sults obtained when using the Hodgkin-Huxley equations,
using parameters corresponding to cells of the atria. We
use this example in the following sections to build a Cell-
DEVS/GDEVS model of the heart tissue and to compare
the results obtained with other approaches.

4. Modeling Heart Tissue as Cell-DEVS Models

The Hodgkin-Huxley model has been extensively used in
different studies, as it has been shown that it reproduces
with fidelity the electrical properties in the myocardium
cells. Nevertheless, whereas solving this equation using
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[Heart]
type : cell
dim : (5,5)
delay : transport
border : nowrapped
neighbors : (-1,-1) (-1,0) (-1,1) (0,-1)
neighbors : (0,1) (1,-1) (1,0) (1,1) (0,0)
localtransition : Heart-rules

[Heart-rules]
rule : 2 0.48 {(0,0)=0 and statecount(2)>0 }
rule : 1 1.48 { (0,0) = 2 }
rule : 0 17.5 { (0,0) = 1 }
rule : { (0,0) } 0 { t }

Figure 7. Cell-DEVS definition of a simple heart tissue model

Figure 8. Heart tissue model execution

numerical methods for one cell is feasible, the use of this
model in a realistic reproduction of the heart tissue (proba-
bly consisting of millions of cells) can be computationally
expensive. Consequently, different authors have tried to
simplify the complexity of the equations, and various stud-
ies have tried to solve this problem using CA (see, e.g.,
[20-22]). Most of these models are based on simple CA
for excitable media, which discretize the Hodgkin- Huxley
results.

In Ameghino and Wainer [10], we used Cell-DEVS to
build a discrete variable model of heart tissue conduction.
In this model (which uses a similar approach to other mod-
els built using CA), we recognized three states for a cell:
resting, excited, or recovering. We defined this model in
the CD++ tool kit, and Figure 7 includes a complete spec-
ification of it.

Model definition begins by defining the Cell-DEVS
coupled model and its parameters: size (5×5 cells), neigh-
borhood shape (all of the adjacent cells), kind of delay
(transport, as we want every state change to be transmit-
ted without preemption), and borders (this is a nonwrapped
model, and special rules were defined for the borders). The
heart rules section represents the local computing function
for the model. Here, the first rule represents the initiation
of electrical activity in a resting cell (with value 0). In that
case, we check to see if any of the neighbors is excited
(value 2). In that case, the cell is excited. Second and third
rules define the cells changing to the recovering and resting
states. The last rule states that in every other case (t means
“true”), the cell keeps its present state. Figure 8 shows the

results obtained when this model executes. It shows the
evolution of this with a pacemaker cell in (0,0).

As we can see, the model represents the tissue action us-
ing very simple rules, which has several advantages. Cell
behavior is defined using simple rules, which makes it easy
to modify the existing model to experiment with different
conditions. We also see that delay functions are associated
with each of the rules representing each state cell. When
describing this model using CA, timing definition is more
complex, and it can result in extensive simulation time to
achieve the desired precision. Likewise, any changes in the
delay functions can result in complex changes in the CA
definitions. Instead, Cell-DEVS timing delays can provide
complex timing description using rules that are straightfor-
ward to define. For instance, this model represents three
different delays at different scales. To achieve such pre-
cision in CA, we should choose the smallest timeslot for
simulating time advance. Instead, in Cell-DEVS, each rule
is triggered by an event that is executed asynchronously in
each of the cells at randomly chosen instants.

Although representing this problem as CA permits in-
troducing simple rules, it poses a problem in the model’s
precision. As we can see, we have discretized the contin-
uous function shown in Figure 6 with only three different
discrete states. This could seriously affect the execution
results of the model if we needed to introduce modifica-
tions to the cell’s standard behavior. For instance, arrhyth-
mias affect isolated groups of cells, modifying the shape
of the action potential curve, which could require defining
a completely erratic behavior for a group of cells. Another

8 SIMULATION Volume 81, Number 2
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[heart]
type : cell
dim : (5,5,2)
delay : transport
border : nowrapped
neighbors : (-1,-1,0) (-1,0,0) (-1,1,0)
neighbors : (0,-1,0)  (0,0,0)  (0,1,0)
neighbors : (1,-1,0)  (1,0,0)  (1,1,0)  (0,0,1) 
localtransition : heart-rule-AP

[heart-rule-AP]
rule : { AP(cellpos(0) } 1 { cellpos(2)=0 and (

                    (-1,0,0) > 0 or (0,-1,0) > 0 or (-1,-1,0)>0) and (0,0,0) = -
83.0) }
rule : { AP(cellpos(0) } 1 { cellpos(2)=0 }
rule : { if( (0,0,0) = 1.0 or (0,0,0) = -83.0, 0.0, 1.0) } 1 { cellpos(2)=1 }

Figure 9. Cell-DEVS definition of the action potential function for a heart tissue model [23]

example considers analysis of the cell’s behavior during
the refractory period: if enough voltage is received on a
cell, the cell is excited, but if the voltage is not enough,
it will ignore the stimuli. Representing this behavior with
CA is very difficult; instead, if a PDE is included on each
cell, it will be able to adequately react to each possible
modification of the parameters.

As a result, we decided to implement this model as Cell-
DEVS, running the Hodgkin-Huxley model in each of the
cells. We implemented a model of the action potential func-
tion for the cells in the heart atria [23]. This Cell-DEVS
model simulates the electrical behavior of the cells, follow-
ing the Hodgkin-Huxley model, as described in section 3,
discretizing time in each of the cells under execution. Fig-
ure 9 shows the model definition using CD++.

We first define the size of the cell space, which, in this
case, is a 3D model with 5 × 5 × 2 cells. This model uses
a transport delay, and it is nonwrapped (we define special-
ized behavior for the cells in the border). The following
lines in the specification define the neighborhood shape
(in this case, all the adjacent cells in plane 0 and the upper
cell, which will be used to define whether the current cell
should be computed). Then, we define the local computing
function, called heart-rule-AP. The function is defined by
two rules. The first one will be evaluated only by the cells
in the first plane in the model (cellpos(2) = 0) and only if
the cell is resting and a positive voltage is detected in the
cell’s neighborhood. This rule will trigger the update of the
cell state using the Hodgkin-Huxley equations presented
in section 3. The second rule will be used in the subsequent
activations. The third rule is evaluated only by the second
plane (cellpos(2) = 1), and it is used to trigger time-based
actions for the first plane. This plane is just changing its
state from 0 to 1 and vice versa in each time step, triggering
the execution of the rules of the action potential function in
plane 0. This is needed because Cell-DEVS only considers
activation of a cell under asynchronous events, and if no

event is created, the cell goes to a quiescent state, which is
avoided by this rule.

The AP function in this model receives the coordinates
of the current cell and its current state. Using these values,
it recovers the previous state of the current cell and com-
putes the next voltage using equation (1). Figure 10 shows
the execution results of this model. As we can see, the re-
sults obtained are the same as those we obtained earlier
by solving analytically the Hodgkin-Huxley equations (in
fact, most of the source code originally developed to build
the AP function was reused in this Cell-DEVS model).

As we can see, this model improves precision over the
CA, and thus we are able to define advanced cell behav-
ior easily. For instance, by activating the AP function with
different parameters in different cells, we are able to repro-
duce the activity in sick cells (e.g., those with arrhythmias,
fibrillation, or conductivity problems). Nevertheless, this
model is very expensive in terms of computing resources.

5. Using Cell-DEVS/GDEVS to Improve Model
Definition

Having defined the heart tissue model using two traditional
approaches (i.e., CA and Hodgkin-Huxley equations), we
attacked the problem using Cell-DEVS/GDEVS. The first
step in this study was to find a polynomial approximation
to the original PDE defining the cell’s behavior. Figure 11
shows the result of this approximation function.

We approximated the initial equation experimental data
using eight polynomials of degree 1 to build a GDEVS
model of order 1. A higher level of accuracy can be ob-
tained using GDEVS of a higher level with the same num-
ber of states and events to treat. In the present case, the
identification of the parameters in each of the polynomi-
als was obtained by minimizing a quadratic criterion using
minimum squares. The polynomials we used in Figure 11
are defined by

Volume 81, Number 2 SIMULATION 9
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(a) (b)

Figure 10. Model execution using Hodgkin-Huxley equations: (a) individual cell and (b) cell space

Figure 11. Linear approximation of the action potential function

Pi(t) = ait + bi ∀i ∈ [1, 8]
using the coefficients presented in Table 1.

Although the original function appears to be simple, we
needed to use eight polynomials. This was due to the fact
that, when the cell is triggered, the signal generated by the
Hodgkin-Huxley model is nonlinear, as we can see in Fig-
ure 12. Thus, between 0 and 2 msec were needed to approx-
imate the action potential using four different polynomials
(as shown in Table 1). We also introduced an intermediate
state in which the polynomial evaluation would result in
obtaining a positive value, which will trigger activity in
the neighboring cells in this example (polynomial P 2 is in
charge of this).

When using GDEVS for this model, we need to trans-
form the coefficients in the polynomials into discrete event
signals, as explained in section 2. Each cell will use polyno-
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Figure 12. Approximation of the action potential function:
action triggering

mial coefficients to compute the current state and to inform
the cell’s state to the neighbors, as shown in Figure 13. The
specification of the local computing function included in
each of the cells will now receive the current coefficient
from the neighboring cells, as shown in Figure 13a. Each
cell is now defined as shown in Figure 13b, and it will re-
ceive the coefficients of the neighbors by an event of order
1, which will be used to compute the state of the cell. The
cell’s outputs will now be the current cell states specified
as polynomial coefficients. Timing of activation for each
polynomial can be easily defined using the model delay
functions.

Using these ideas and the polynomial definitions in Ta-
ble 1, we can now define the actions of each of the cell’s lo-
cal computing functions, which are described by the state
graph in Figure 14. The figure defines a GDEVS model
with the classical state transition functions using an event
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Table 1.Polynomial coefficients for the action potential model

iii aiaiai bibibi Time (ms)

1 1.0250 –83.1478 [0, 0.35)
2 6.4555 –275.5886 [0.35, 0.43)
3 –0.2765 37.4703 [0.43, 0.48)
4 –0.0661 8.7840 [0.48, 1.48)
5 –0.0073 –8.6492 [1.48, 2.48)
6 –0.0022 –12.1344 [2.48, 9.98)
7 –0.0143 10.6898 [9.98, 17.48)
8 –0.0016 –64.0617 [17.48, 60)
9 –0.0016 –64.0617 [60, +∝ )

(a) (b)

Figure 13. GDEVS cell specification: (a) model interconnection and (b) cell input data

Figure 14. GDEVS specification of a cell

of order 1. The figure represents internal transitions with
dotted lines and external transitions with solid lines.

As we can see, the cell is inactive until it receives an
external stimulus from a neighboring cell. In that case,
the cell is activated, and it produces internal state changes

(represented by the coefficient in the polynomials, which
are transmitted to the neighboring cells after the delay).
The model flows through eight different states represented
by each of the polynomials, plus an extra state to put the
model into a resting state.

This specification will generate an output trajectory sim-
ilar to the one described by the linear approximation in
Figure 11. As we can see, this highly improves model pre-
cision at a low cost, in terms of both execution time and
ease of modeling. We used the cell’s specification in Fig-
ure 14 to define this model using the CD++ tool kit and
compared the results obtained with those shown in section
4. Figure 15 shows the model implementation for a cell
space in which each cell is created using the state machine
in Figure 14.

This specification starts by defining the size of the cell
space (6 × 6) and the remaining parameters needed by a
Cell-DEVS specification—in this case, transport delays, a
nonwrapped model, and the neighborhood shape, which
includes all the adjacent cells. Then, we define the local
computing function, heart-rule-GDEVS. This local com-
puting function follows the specification in Figure 14. If
a stimulus is received when the cell is inactive ((0,0) =
−83), it will check the voltage received from the cells in
the neighborhood (which is received through ports ai and
bi and is computed by the voltage function) reacting to

Volume 81, Number 2 SIMULATION 11
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[heart-GDEVS]

type : cell

dim : (6,6)

delay : transport

border : nowrapped

neighbors : (0,-1) (0,0) (-1,0) (-1,-1)

neighbors : (0,1)  (1,0) (-1,1) (1,1) (1,-1)

localtransition : heart-rule-GDEVS

[heart-rule-GDEVS]

rule : { S1 }    0 {(0,0)=-83 and voltage(0,-1) > 0 or voltage(-1,-1) > 0 or 

voltage(-1,0)>0 }

rule : { S2, send(1.0250,-83.1478) }  0.35 { (0,0) = S1 }

rule : { S3, send(6.4555,275.5886) }  0.08 { (0,0) = S2 }

rule : { S4, send(-0.2765,37.47) }  0.05 { (0,0) = S3 }

rule : { S5, send(-0.0661,8.784) }  1 { (0,0) = S4 }

rule : { S6, send(-0.0073,-8.6492) }  1 { (0,0) = S5 }

rule : { S7, send(-0.0022,-12.1344)} 7.50 { (0,0) = S6 }

rule : { S8, send(-0.0143,10.6898) }  7.50 { (0,0) = S7 }

rule : { S9, send(-0.0016,-64.0617)} 42.5 { (0,0) = S8 }

rule : { S0, send(-0.0016,-64.0617)} 4.15 { (0,0) = S9 }

rule : { (0,0) }    0 { t }

[voltage-function]

voltage(cellpos) = cell.ai * time + cell.bi

Figure 15. Cell-DEVS/GDEVS implementation of the heart tissue model

positive voltage in any of them. It will change to the cor-
responding state (Si, to the left of the specification) and
will send the current ai, bi coefficients to the neighboring
cells after the consumption of the delay. Each of the rules
represents a cell’s state change and the spread of the coef-
ficients to the neighbors. Each of the cells will repeat the
behavior defined here while storing the voltage value for
display, which is shown in Figure 16.

As we can see, we obtained an output trajectory that
is more precise than the one obtained with CA, which is
defined by the output trajectory presented in Figure 11.
This gain of precision involved only a low extra cost in
terms of computing time. Likewise, the complexity added
to the cellular model developed in Cell-DEVS/GDEVS
is reduced when compared with the solution using PDEs
(which required implementing the Hodgkin-Huxley func-
tions of section 3).

The results of our experience are summarized in Fig-
ure 17. This figure shows the number of messages in-
volved in simulating the heart tissue model using differ-
ent approaches discussed here. We computed the number
of messages issued in a Cell-DEVS/GDEVS model using
a simple set of rules (CDSimple, such as the one shown
in Figs. 7 and 8) and a second Cell-DEVS/GDEVS model
with a larger number of intermediate states (CD, permitting
better precision in the results obtained).

The figure also compares the results obtained with tradi-
tional CA (following the rules presented in Fig. 7) and the
results of using numerical approximations for the Hodgkin-
Huxley PDEs (with two different discretization steps to
change the precision of the model approximation). We can
see that the number of messages involved grows expo-
nentially with the number of cells, but we can see that
Cell-DEVS/GDEVS, which provides a much more pre-

cise signal, only reduces performance less than 5% when
compared with traditional Cell-DEVS models. Cellular au-
tomata take longer, as every cell must be activated in every
time step. Therefore, for a small number of cells, the exe-
cution time remains controlled, but when large cell spaces
are considered, performance degrades.

Furthermore, GDEVS approximation highly improves
not only performance when compared with traditional
numerical methods but also precision when compared
with traditional cellular computing. This can be seen in
Figure 18a, in which we compare the average error in
the heart tissue model for CA (or Cell-DEVS) models
with a small number of states (CD simple), CA (or Cell-
DEVS) with a larger number of states (CD/CA), and Cell-
DEVS/GDEVS (GDEVS). We see that the cost of running
Cell-DEVS/GDEVS models is minimum when compared
with Cell-DEVS or CA models (the figure shows the av-
erage error for the 50 × 50 model of Fig. 17). Figure 18b
shows the reason why the precision of Cell-DEVS/GDEVS
models is higher.As we can see, each cell with GDEVS ap-
proximates adequately the original signal, whereas discrete
variable models (such as CA) introduce a larger amount of
error. These discrete values simplify the basic definition of
the model but can make it difficult to detect state values
with significance in terms of defining the other. In this fig-
ure, we can also see that the standard CA definition (like
the one defined in Fig. 7) can be simply represented as a
GDEVS model with a polynomial of order 0, which will
create a piecewise continuous output trajectory.

Our approach has several other advantages:

• If higher precision is required, we can approximate the
function by a higher degree polynomial.

• We can easily modify the model to represent other
phenomena (e.g., abnormal activity in the cells can
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Line : 83 - Time: 00:00:00:000

                0           1           2           3           4           5 

    +------------------------------------------------------------------------+

   0|     1.97000 -83.00000 -83.00000 -83.00000 -83.00000 -83.00000|

   1| -83.00000 -83.00000 -83.00000 -83.00000 -83.00000 -83.00000|

   2| -83.00000 -83.00000 -83.00000 -83.00000 -83.00000 -83.00000|

   3| -83.00000 -83.00000 -83.00000 -83.00000 -83.00000 -83.00000|

   4| -83.00000 -83.00000 -83.00000 -83.00000 -83.00000 -83.00000|

   5| -83.00000 -83.00000 -83.00000 -83.00000 -83.00000 -83.00000|

    +------------------------------------------------------------------------+

Line : 115 - Time: 00:00:00:043

                0           1           2           3           4           5 

    +------------------------------------------------------------------------+

   0|     1.97000     1.99791 -83.00000 -83.00000 -83.00000 -83.00000|

   1|     1.99791     1.99791 -83.00000 -83.00000 -83.00000 -83.00000|

   2| -83.00000 -83.00000 -83.00000 -83.00000 -83.00000 -83.00000|

  3| -83.00000 -83.00000 -83.00000 -83.00000 -83.00000 -83.00000|

   4| -83.00000 -83.00000 -83.00000 -83.00000 -83.00000 -83.00000|

   5| -83.00000 -83.00000 -83.00000 -83.00000 -83.00000 -83.00000|

    +------------------------------------------------------------------------+

Line : 199 - Time: 00:00:00:086

                0           1           2           3           4           5 

    +------------------------------------------------------------------------+

   0|    24.19800    24.19800     1.99791 -83.00000 -83.00000 -83.00000|

   1|    24.19800    24.19800     1.99791 -83.00000 -83.00000 -83.00000|

   2|     1.99791     1.99791     1.99791 -83.00000 -83.00000 -83.00000|

   3| -83.00000 -83.00000 -83.00000 -83.00000 -83.00000 -83.00000|

   4| -83.00000 -83.00000 -83.00000 -83.00000 -83.00000 -83.00000|

   5| -83.00000 -83.00000 -83.00000 -83.00000 -83.00000 -83.00000|

    +------------------------------------------------------------------------+

...

Line : 420 - Time: 00:00:00:148

                0           1           2           3           4           5 

    +------------------------------------------------------------------------+

   0| -0.99880 -0.99880     1.99791     1.99791 -83.00000 -83.00000|

   1| -0.99880 -0.99880     1.99791     1.99791 -83.00000 -83.00000|

   2|     1.99791     1.99791     1.99791     1.99791 -83.00000 -83.00000|

   3|     1.99791     1.99791     1.99791   1.99791 -83.00000 -83.00000|

   4| -83.00000 -83.00000 -83.00000 -83.00000 -83.00000 -83.00000|

   5| -83.00000 -83.00000 -83.00000 -83.00000 -83.00000 -83.00000|

    +------------------------------------------------------------------------+

...

Line : 1087 - Time: 00:00:01:748

                0           1           2           3           4           5 

    +------------------------------------------------------------------------+

   0| -14.30660 -14.30660 -14.30660 -14.30660 -14.30660     1.99791|

   1| -14.30660 -14.30660 -14.30660 -14.30660 -14.30660     1.99791|

   2| -14.30660 -14.30660 -14.30660 -14.30660 -14.30660     1.99791|

   3| -14.30660 -14.30660 -14.30660 -14.30660 -14.30660     1.99791|

   4| -14.30660 -14.30660 -14.30660 -14.30660 -14.30660     1.99791|

   5|     1.99791     1.99791     1.99791     1.99791     1.99791     1.99791|

    +------------------------------------------------------------------------+

...

Line : 1601 - Time: 00:00:10:153

                0           1           2           3           4           5 

    +------------------------------------------------------------------------+

   0| -83.00000 -83.00000 -83.00000 -83.00000 -83.00000 -83.00000|

   1| -83.00000 -83.00000 -83.00000 -83.00000 -83.00000 -83.00000|

   2| -83.00000 -83.00000 -83.00000 -83.00000 -83.00000 -83.00000|

   3| -83.00000 -83.00000 -83.00000 -83.00000 -83.00000 -83.00000|

  4| -83.00000 -83.00000 -83.00000 -83.00000 -83.00000 -83.00000|

   5| -83.00000 -83.00000 -83.00000 -83.00000 -83.00000 -83.00000|

    +------------------------------------------------------------------------+

Figure 16. Cell-DEVS/GDEVS execution of the heart tissue
model

obtain by changing parameter values and defining a Cell-
DEVS/GDEVS zone with the new behavior).

• We can define a more general model by making the slope
and gradient (ai, bj ) of each state to be defined as external
parameters.

• We could easily modify the model specification to ana-
lyze more complex circumstances—for instance, inade-
quate excitation of a cell due to deformation to the action
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Figure 17. Comparing simulation models (logarithmic scale)

potential, detailed analysis of the activities of the Na/K
channels, and so on. This new behavior can be modeled
by simply modifying the rules described in Figure 15.

6. Conclusion

We showed how to combine Cell-DEVS and GDEVS to
build very complex systems. The Cell-DEVS formalism
allows (based on DEVS specifications) one to define asyn-
chronous cell spaces with timing delays. Here, we com-
bined Cell-DEVS with GDEVS models, permitting the
definition of complex continuous systems easily. Cell-
DEVS/GDEVS permits enhancing the modeling activities
as the automatic definition of cell spaces is allowed, sim-
plifying the construction of new models, and easing the
automatic verification of the structural models. In this way,
efficient development of complex models can be achieved.

We focused on the Hodgkin-Huxley model of the elec-
trical behavior of heart tissue and compared the results
obtained against those originally built with PDEs and cel-
lular automata. We showed that we can provide adequate
levels of precision at a fraction of the computing cost of
differential equations. We proved that the GDEVS formal-
ism is perfectly suited to attack problems such as this one,
improving complex systems analysis. GDEVS uses poly-
nomials of arbitrary degree, as opposed to constant values,
to represent the piecewise input/output trajectories of a dy-
namic system. We also showed that our approach permits
making models easily extensible to provide different ac-
tions in different cells. The hierarchical nature of the DEVS
formalism permits attacking different levels of abstraction,
which permits, for instance, building more detailed mod-
els about the behavior of ion interchange within each of
the cells in the system. Likewise, the definition of different
phenomena in groups of cells is straightforward, in terms of
both Cell-DEVS and GDEVS specifications. Finally, the
ability of Cell-DEVS to define delays with explicit con-
structions made the classification of complex timing easy.
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Figure 18. Analyzing model error: (a) average error and (b) a comparison of output trajectories

At present, we are working on the definition of other
complex models using this approach (mainly, a fire spread
model and a watershed formation system). This will pro-
vide us with a variety of different models, enabling us
to start detailed studies on characterizing the error of
this approach. We are also starting some work in related
areas—namely, quantized DEVS models [24] and derived
research—as we obtained good results in modeling con-
tinuous systems using quantized Cell-DEVS [25]. Never-
theless, at this moment, this effort is in a preliminary stage,
as research is still required to simplify rule definition for
quantized models. For instance, we are currently work-
ing on finding quantized versions of the Hodgkin-Huxley
equations, which proved not to be as simple as finding
GDEVS approximations. This particular area requires a
great deal of effort to facilitate any future developments in
building complex continuous systems using DEVS-based
approaches.
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