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Abstract: DEVS theory (originally defined for modeling and simulation of discrete event systems) was extended in order 
to permit modeling simulation of continuous and hybrid systems. In this work, we present algorithms we presented to 
construct a compiler of a subset of Modelica, a modular and acausal standard specification language for physical sys-
tems modeling. Models are defined in Modelica are translated into Bond Graphs, which are used to analyse correctness 
of the specifications, prior their translation as DEVS models. We show how to map Modelica into BG, and the algo-
rithms for detection error implemented.  
 

1. INTRODUCTION 

Continuous Systems are those represented by continuous variables on a continuous time basis. Analysis of these com-

plex systems (which include, for instance, mechanical, electrical, hydraulic, etc.) has usually been studied using Differ-

ential Equations [1]. A variety of numerical methods were created to find approximate solutions to these equations. 

Most of these methods (Euler, Runge-Kutta, Adams, etc.) are based on the discretization of time [2]. In the last few 

years, different approaches developed tried to simulate continuous systems under the discrete event paradigm. This pre-

sents some advantages over discrete time simulation, including reduction of the number of calculations for a given ac-

curacy [3] and seamless integration of complex systems composed by both continuous time and discrete event para-

digms. These solutions are based on the DEVS (Discrete Event Specification) formalism [4], originally created for 

specifying discrete event models. The idea of this method, called Quantized Systems theory (Q-DEVS), is to provide 

quantization of the state variables obtaining a discrete event approximation of the continuous system [5].  

Using these ideas, we developed M/CD++ [6] a modeling and simulation tool for continuous and hybrid systems 

based on Modelica [7] and CD++ [8], a modeling and simulation tool implementing DEVS theory. Modelica is an ob-

ject-oriented language created for modeling physical systems, designed to support library development and model ex-

change. Models in Modelica are mathematically described by differential, algebraic and discrete equations. Modelica 

has many libraries of standard components in different ODEs, block diagrams, and electrical and mechanical models. 

M/CD++ allows the creation of dynamic systems belonging to the electrical domain [6]. The architecture of M/CD++ is 

defined by several core components related to file parsing, model generation, compilation and CD++ simulator invoca-

tion. The steps performed to simulate an electrical circuit model specified in the input file, can be summarised as in 

Figure 1. The compiling process starts with an electrical circuit model specified using Modelica, and finishes with a log 

file including the simulation results. As we can see in the figure, the models internally are represented using the Bond 

Graph (BG) formalism [9], which permit to reuse models created by the toolkit to support simulation of physical sys-

tems within different domains. The user must provide a source code file as input to the Modelica compiler. As a result, 

the model of the circuit is converted into a BG representation. These models are used to check for algebraic loops and 

singularities (elements that have discontinuities; e.g. diodes). Then, we generate an optimized BG corresponding to the 

electrical circuit, which, in turn, is used to generate a DEVS model specification according to the rules used by CD++.  

In this work we discuss the techniques employed to create BG for M/CD++, and the different algorithms employed 

by the compiler to check correctness of the physical system developed. 



  

 
Figure 1. M/CD++ components interaction 

 

2. BACKGROUND 

Modelica presents a successful effort to model complex physical system via system decomposition (dividing the system 

into a number of smaller subsystems interfaced by distinct connections). Modelica uses object-oriented modeling to 

promote models specification in a more natural way, decreasing the abstraction gap existent between the real system 

and the representation model and permitting the development and reusability of models within a hierarchical construc-

tion process [9]. Numerous of these concepts were adopted and applied to the design of a new family of modeling and 

simulation tools for continuous systems modeling. Modelica [7], which was created for modeling within many applica-

tion domains such as electrical circuits, hydraulics, chemical processes, thermodynamical systems, etc. It supports sev-

eral formalisms, e.g. ODEs, DAEs, etc. Modelica is built on non-causal modeling with mathematical equations and ob-

ject-oriented constructs allowing library development and model exchange.  

The semantic of these models is specified by a set of rules used to translate the model to its corresponding flat hy-

brid DAE description. A model is represented using classes that can be developed hierarchically, allowing components 

and knowledge reuse.  

The tool we implemented is able to simulate electrical circuit models defined using a subset of the Modelica’s lan-

guage specification (for a complete description of the subset of the grammar of Modelica supported, check [6]). 

M/CD++ models are converted into BG, a modeling formalism that allows domain-independent description of the dy-

namic behavior of the physical systems we model. It can be used to specify systems within different domains, i.e. elec-

trical, mechanical, hydraulic, thermodynamic, etc. Systems can be described in a hierarchical way, using BG submodels 

connected via ports through its interface. The election of the BG formalism to model electrical circuits was 

mainly based on:  



  

• BG can be applied to multiple physical domains, allowing code reuse (library implementation) 

• BG allows modular and hierarchical models constructions 

• BG models can be directly simulated in a simple way 

• No algebraic manipulation is needed  

• BG models can be easily translated to an equivalent block diagram 

In M/CD++, we generate intermediate BG that are subsequently translated into DEVS, a formalism for modeling 

and simulation of discrete-event dynamic systems. DEVS can be seen as a mechanism to specify systems whose inputs, 

states and outputs are piecewise constant, and whose transitions are identified as discrete events [4]. DEVS models can 

be described using atomic and coupled components. Atomic models are independent modular objects that specify be-

havior; these can be composed in order to form coupled components. Formally, atomic models are defined by: 

M = < X, S, Y, δint, δext, λ, ta > 

A DEVS model state s ∈ S, is determined by the transition functions. In the absence of external events, the time for 

the next internal transition is determined by ta(s), the time advance function applied to the current state s. The new state 

is given by δint (s), the internal transition function applied to s. Before the internal state change, the model can generate 

an output event, which is defined by the output function λ(s). In case that an external event occurs, the new state is de-

termined by the external state transition function δext(s, e, x), where s is the current state, e is the time elapsed since the 

last transition and x∈ X, is the external event received. In DEVS, basic components can be coupled in order to develop 

complex models. A coupled model is composed by several atomic or coupled submodels. A coupled model is defined 

by: 

CM = <Xself, Yself, D, {Mi}, {Ii}, {Zij}, select> 

For each j in Ii, Zi,j is a function that translates the output from i to j. The connection between i and j is specified de-

fining j as an influencee of i. When an internal event occurs on i, a signal is sent to component j at the same time. The 

mappings for these sets are also specified by function Z, which determines where the input and output events for the 

coupled model itself should be redirected to. In a coupled model, it might occur that two or more components had its in-

ternal transition scheduled at the same time, generating ambiguity during the simulation process. DEVS solves this 

problem with the select function, which defines the rules needed to determine which one of the imminent components 

will execute the next event.  

Recently, DEVS has been used recently for continuous systems simulation. In most cases, the techniques are based 

on Q-DEVS [5], whose main idea is to represent continuous signals by the crossing of an equal spaced set of bounda-

ries. This approach requires a fundamental shift in thinking about the system as a whole. Instead of determining what 

value a dependant variable will have (its state) at a given time, we must determine at what time a dependant variable 

will enter a given state. QSS (Quantized State Systems) [10] is an extension to Q-DEVS, which allows continuous sys-

tems simulation based on quantization and hysteresis.  

 
Figure 2. Signal Quantization. 



  

CD++ is a toolkit that implements DEVS and Q-DEVS theories [8]. Atomic models are implemented using a 

built-in specification language or in C++, adding flexibility and construction power to the developer. New atomic mod-

els extend the behavior of the basic atomic model and they must inherit from the Atomic class, provided by the tool. 

Coupled models are described in a configuration file using a specification language provided by the tool. The file in-

cludes information about the components, the coupling and the input and output ports associated to the model. In [11], 

we showed how to create BG models using DEVS and the CD++ toolkit. This library was used as a base for M/CD++.  

M/CD++ allows simulating dynamic systems in the electrical domain using CD++. M/CD++ includes Modelica 

v2.1 language support for electrical circuits construction [7]. The resulting CD++ model represents the equations sys-

tem associated to the electrical circuit that has to be solved. Based on the QSS and QBG theory, atomic models were 

constructed and added to CD++, in order to numerically approximate the solution using a discrete event approach.  

M/CD++ parses and checks input files, building and validating the electrical circuit model. The component takes as 

input the file with the electrical circuit specification under Modelica language. Once the input file is completely parsed 

and validated, the corresponding electrical circuit model is generated. Then, the model created is used as the input ob-

ject for the next phase within the main simulation process. A hierarchy of classes was implemented to model the electri-

cal circuit objects, its components and attributes. The definitions of pin (positive and negative), port, one-port element, 

two-port element, electrical component (resistance, capacitor, source, etc) and circuit were implemented in order to 

generate the associated models. Several verifications were implemented to preserve the model inherent properties; these 

restrictions are checked during the electrical circuit building phase accomplished by the parser, e.g.: 

• Valid specification of pin references 

• Definition of connections between existing elements 

• None of the connections are from a component to itself 

• The specification of at least one source component 

Figure 3 shows an example of the electrical circuit objects model constructed by the parser given the corresponding 

Modelica specification file: 

model circuit 
  Modelica.Electrical.Analog.Sources.PulseVoltage  
                          V(V=200, period=1, width=10); 
  Modelica.Electrical.Analog.Basic.Capacitor C(C=200); 
  Modelica.Electrical.Analog.Basic.Resistor R(R=1.5); 
  Modelica.Electrical.Analog.Basic.Inductor I(L=40); 
  Modelica.Electrical.Analog.Basic.Ground Gnd; 
 equation  
  connect(V.p, R.p);    connect(R.n, I.p); 
  connect(R.n, C.p);    connect(I.n, V.n); 
  connect(C.n, V.n);   connect(C.n, Gnd.p); 
 end circuit; 

EC : ECircuit

C : Capacitor I : Inductor

R : Resistance

Gnd : Ground

«usos»

«usos»

«usos»«usos»

V : VoltageSource

«usos»

 

Figure 3. (a) Electrical circuit input file (b) Objects model generated by the MCD++ parser 

The electrical circuit object, EC, is modeled as the composition of the following objects: 

• R (instance of the Resistance). It models an electrical resistor component as a one-port element. 

• V (instance of VoltageSource): it models a voltage source, with signal s, as a one-port element. 

• C (instance of Capacitor): it models a capacitor component as a one-port element. 

• I (instance of the Inductor): it models an inductor component as a one-port element. 

• Gnd (instance of the Ground): it models a ground component as an electrical element with 1 positive pin. 

The electrical circuit is modeled using an OO abstraction, which has an internal representation based on a graph no-

tation, presented in the following example: 
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Figure 4 . (a) Electrical circuit  model, (b) Electrical circuit graph representation on MCD++ 

Every electrical component on the circuit is represented in the graph using n nodes, where n corresponds to the 

number of pins that the element has defined. One-port elements are represented by two nodes, element.port1.p (positive 

pin) and element.port1.n (negative pin). Two-port elements are represented by four nodes, element.port1.p, ele-

ment.port1.n, element.port2.p and element.port2.n. Generalizing, k-port elements will be represented by 2.k nodes as: 

element.port1.p, element.port1.n, ..., element.portk.p and element.portk.n. There are two types of connections between 

nodes: physical and logical. The former type corresponds to the physical coupling between the elements of the circuit 

(solid lines). Logical connections correspond to the associations between pins and ports of an element; the pins of a 

given port connector are linked by dashed lines, port connectors of a given component are linked by dotted lines.  

 
Figure 5 . Node representation of port elements (a) one-port (b) two-port (c) k-Port element 

These  implementation decisions were made having in mind the BG generation algorithm, developed for the map-

ping simulation phase. The idea was using a suitable data structure and model representation to optimize the generation 

process of the BG associated to the electrical circuit. 

 

3. BOND GRAPHS 

BG allows graphical representation of any continuous dynamic system, which can be described in a hierarchical way. 

BG models are non-causal, improving the exchange and reuse of components. BG modelling concepts are based on two 

main assumptions for dynamic systems representation using network like descriptions: energy conservation law and the 

use of a lumped approach. These characteristics imply that dynamic system properties can be separated from each other, 

using submodels, and then connected using ideal connections. These connections represent the energy flow and the 

ideal property guaranties the power continuity quality. The last property indicates that no energy is generated or dissi-

pated in the ideal connections.  

In BGs, physical processes are represented as vertices in a directed graph and the edges represent the ideal ex-

change of energy between the vertices [12][13]. The energy (or its time derivative, the power), is the fundamental quan-

tity exchanged between elements of the system. Power is the product of flow and effort (in translation mechanics, 

power is the product of force and velocity; in electrical systems, it is the product of voltage and current; in any system, a 

generalised flow and effort variable could be defined). The energy flow is represented via bonds with direction and the 

elements exchange effort and flow through them. The exchange of power is assumed to occur through abstract entities 

called energy port; this way, the concepts of one-port and two-port elements are introduced. One-port elements are the 



  

components that have associated one energy port, represented with a bond. Two-port elements are those that have two 

energy ports, represented with two bonds. Interactions between components are also restricted and the connectors im-

plement constrained exchanges between elements.  

 
Figure 6. BG representation of energy flow from Ei to Ej. 

As we represent the exchange of power between elements, a fundamental concept to understand how information 

flows between components is causality. No component can determine the two power variables, effort and flow, at the 

same time. Given a pair of elements connected through a bond, causality determines which of the components causes 

the flow information and which causes the effort. Causal analysis is essential to describe a BG model in computational 

terms and to derive the set of differential equations.  

                                    (a)                  (b)                                               (c) 

Figure 7. Causality form (a) Causalized bond, (b) Equivalent graph, (c) Associated equations  

 

The BG elements are the following: 

• Capacitor (C)  

• Inductor (I).  

• Resistor (R) 

 

• Effort source (Se) 

• Flow source (Sf) 

• Transformer (TF) 

 

• Gyrator (GY) 

• 1-junction 

• 0-juction

Following, we show two examples of specification of these components: Resistors and Gyrators. 

- Resistor: R elements dissipate energy. Examples of the resistor element are resistor, in electrical domain 

and dampers, in mechanical context. The constitutive equation is defined by an algebraic equation relating flow 

and effort: )( fre = .The electrical resistor is mostly linear and the corresponding equation is: iRu .= , where 

R is the resistance’s constant. 

 
Figure 8 . (a) (b) (c) R element with flow in causality, equations and block diagram representation 

(d) (e) (f) R element with effort in causality, equations and block diagram representation 

Ei Ej 

f 

e Ei Ej Ei.e = Ej.e 

 

Ej.f = Ei.f 



 

 

- Gyrator: a gyrator is a two-port element, and, like transformer, it is power continuous (no power is stored 

or dissipated). An electromotor is an example of the gyrator element. The gyrator establishes the relation be-

tween the effort on one side to the flow on the other and vice versa, indicated by 12 . fe µ= ; 21 . fe µ= , satisfy-

ing the power balance between the both sides. 

              (a)         (b)                                  (c) 

              (d)         (e)                                  (f) 

Figure 9. (a)(b)(c)(d)(e)(f) Gyrator element, related equations and block diagram for the two causality types 

 

In the absence of differential causality (non-dependent storage elements) and algebraic loops, the set of state 

equations derived from the causalized BG corresponds to a set of ordinary first-order differential equations 

(ODEs). Causal conflicts describe implicit models, whose causalized BG representation generates a set of differ-

ential and algebraic equations (DAEs). As it was introduced in chapter 1, different simulation algorithms exist to 

numerically solve both types of equations systems, most of them based on the discretization of time. 

 

4. MAPPING M/CD++ ELECTRICAL CIRCUITS TO BOND GRAPHS 

This component of M/CD++ compiler is responsible for generating the BG model associated to a given electrical 

circuit. This way, the electrical circuit object, modeled using the class hierarchy mentioned on the previous sec-

tion, represents the input to the mapper. The generated BG constitutes the output, which is used as the input 

model on the next simulation phase. The BG generation algorithm is based on the Karnopp’s circuit construction 

method [14]. The basic approach is to construct a bon graph that resembles the circuit structurally and then to 

simplify the BG based on selected circuit properties. The following steps can be distinguished: 
1. For each node with a distinct potential write a 0-junction. 

2. Insert each 1-port circuit element by adjoining it to a 1-junction, inserting 1-

junctions between the appropriate pair of 0-junctions (C, I, R, Se, Sf elements) 

3. Assign power directions to all bonds 

4. If the circuit has explicit ground potential, delete the 0-junction and its bond; 

if no explicit ground potential is shown, choose any 0-junction and delete it. 

5. Simplify the resulting BG 
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• Step 1: 0-junction insertion 

The 0-junction insertion process was implemented using the transitive closure function, applied to every node on 

the graph.  The transitive closure tells if there is a path between arbitrary nodes x and y, given only the adjacency 

information. Calculating the transitive closure for every node on the graph guarantees that the 0-junction ele-

ments will be correctly inserted, no matter how connections between coupled elements were described on the 

Modelica input file. The last is related to the number of different possibilities that the user has to specify parallel 

coupling between the elements of the circuit. The 0-junction insertion process is illustrated on Figure 10. 

 

 

 
Figure 10. 0-junction insertion process (a) and (b)Alternative specifications and graph representations for the 

circuit of Figure 4. (c) Graph representation with 0-junctions inserted 

• Step 2: 1-junction insertion: A 1-junction component is adjoined to each 1-port 

element, inserting it between the corresponding pair of 0-junctions. In fact, the method was extended to support 

k-port elements, adding k 1-junction elements adjoined to each k-port component on the circuit.  This step also 

merges the nodes linked by the edges describing logical relations (dashed lines). As the representation of these 

relations is no longer needed for the simulation process, this kind of edges is deleted, and the corresponding 

nodes joined, reducing the cardinality of the graph nodes and edges sets. 



 

 

 
Figure 11. (a) Transformer element (b) Graph representation with 0-junctions insertion (c) Graph with 1-

junctions insertion and logical-linked nodes merging 

 

 
Figure 12. 1-junctions insertion and logical-linked nodes merging for the graph on Figure 10 . c 

• Step 3: Assign power direction: The power direction specifies the direction in which the 

power flow is assumed to be positive. There is a standard convention that assumes possitive direction of power 

when it flows out of the sources (Se and Sf) and into C, I and R elements. For two-port elements, TF and GY, 

power in convention is used. To assign power direction to all bonds, a power propagation algorithm was devel-

oped. This algorithm “extends” the power through the graph using the standard conventions and the information 

compiled from the Modelica input file. Depending on the connections specified and the elements port type (posi-

tive/negative), power direction is inferred for the bonds connecting two junctions, where no conventions apply. 

Once the algorithm assigns direction to all bonds, a directed BG is obtained. 

 
Figure 13. (a),(b) Electrical circuit and its directed BG representation  

(c),(d)Capacitor change reflected on the bonds power direction 



 

 

 
Figure 14. Power direction assigned to the graph on Figure 12 

• Step 4: Delete ground potential: All the explicit ground potentials are deleted from the 

graph; if no explicit ground potential is found, the 0-junction nearest to each source element is erased. The 0-

junctions selected are only those associated with the negative pin of every source’s port. 

 
Figure 15. Ground potential elimination for the graph on Figure 14. 

• Step 5: BG simplification. The BG is simplified applying the following rules: 

I. A junction between two bonds having through power direction can be left out from the graph 

II. A bond connecting two junctions of the same type can be deleted and the junctions joined  

Rule I) 

 

 
Rule II) 

 

 
 

The simplification rules are applied to the example BG on Figure 15. 

 



 

 

 

 
Figure 16. Simplification rules applied to the BG on Figure 15 (a) Simplification by rule I, (b) Simplifica-

tion by rule II, (c) Resulting BG 

 

5. BG VALIDATION 

After the BG is constructed and simplified, we apply different error detection techniques for the resulting BG. 

Causalization is the process where the signal direction of the bonds is determined. Once this process is applied 

to the graph, each bond can be interpreted as a bi-directional signal flow. The causal BG can then be seen as a 

compact block diagram. There ARE four different causal constraints that a port element can impose to their con-

nected bonds, depending on its constitutive equations: 

• Fixed causality: this constraint appears when the equations only allow one of the two port variables to be the 

outgoing variable, i.e. source effort (Se) and source flow (Sf) components 

• Constrained causality: there exist relations between the causalities of the different ports within the compo-

nent that define causal constraints. At 0-junctions, where all efforts are equal, exactly one bond has flow 

causality (flow-out causality). The causal constraint at a 1-junction is the dual form of the 0-junction. TF 

and GY elements also have constrained causality. At a TF element, one bond has effort causality (effort-out 

causality) and the other flow causality. At GY, both bonds have either effort causality or flow causality. 

• Preferred causality: the causality on storage elements determines whether integration or differentiation with 

respect to time will be used. Integration has preference above differentiation, representing the preferred cau-

sality. Then, at C elements, the preferred causality is the effort causality; at I elements, the flow causality.  

• Arbitrary causality: arbitrary causality is used when no causal constraints exist, i.e. at R elements. 

The Sequential Causality Assignment Procedure (SCAP) method [14] was developed by Karnopp and 

Rosenberg in order to assign causality to the bonds of a given BG. The method starts choosing a fixed causality 

element (source) and then propagates the assignment through the structural components (junctions, transformer 

and gyrator) whenever it is possible, according causality restrictions. Once that all sources have been processed, 

a storage element (C or I) is selected and the preferred causality applied, restarting the propagation step. That is 

repeated until all storages have their causalities assigned. At last, if the graph is not completely causalized, the it-

eration is repeated beginning with a dissipator (R). If the last step is reached, the model contains algebraic loops. 

The automatic causality asignment process implemented on MCD++ is almost totally based on the SCAP 



 

 

method. The algorithm described above was developed with the addition of some restrictions, in order to check 

and inform structural conflicts within the model. Only the preferred causality was implemented for the storage 

elements, given the drawbacks inherent to differentiation algorithms (i.e. infinite output for a step input func-

tion). The causalization process was applied to the graph on Figure 16, the resulting BG is shown on Figure 17. 

Effort-out causality is represented with a causal stroke outwards the component. The flow-out causality is indi-

cated using a causal stroke inward the component. 

 
Figure 17. Causality assignment to the BG on Figure 16.  

Structural singularities and algebraic loops within a model are automatically detected but not corrected. 

Whatever any of these properties are discovered on the causalized BG, the processing is aborted and the excep-

tion informed to the modeler. Several actions can be taken by the user in order to solve the error. Some solutions 

include adding elements to the circuit. Anyway, the corrections have to be done manually and, when finished, 

the MCD++ simulator newly invoked. On the implemented causalization procedure, only integral causalities are 

assigned to the storage components. Then, in presence of a structural singularity, i.e. coupled storages, one of the 

elements should be assigned the derivative causality, causing the toolkit to generate an exception. The error mes-

sage informed will contain the name of the component causing the preferred causality violation. That can be 

used to detect dependent storages, which are storages that do not represent a state variable of the system.  

 
Figure 18. (a) Electrical circuit with coupled capacitors not supported by MCD++ (b) BG representation 

An example of a model with a structural singularity and not supported on MCD++ is shown on Figure 18. 

The circuit can be modified as shown on Figure 19, adding a dissipator with a very low resistance value, in order 

to allow simulation within the toolkit.  

 
Figure 19. (a) Electrical circuit on Figure 18 with a low resistance dissipator (b) BG representation 

Algebraic loops are found by inspection of closed causal paths. A causal path is a path defined by bonds 

with the same causal orientation, not including storage or source elements.  IF the step 9 of the SCAP procedure 

is reached, that indicates that at least one algebraic loop exists on the model. The closed causal path inspection 

algorithm implemented within MCD++ allows the listing of the resistance elements defining the loop. 



 

 

 
Figure 20. Closed causal path 

An example of a model with an algebraic loop is shown on Figure 21. The circuit can be modified as shown 

on Figure 22, adding a storage element to break the loop.  

 
Figure 21. (a) Electrical circuit  with an algebraic loop between R1 and R2 (b) BG representation 

 
Figure 22. (a) Storage insertion to break the algebraic loop (b) BG representation 

 

6. IMPLEMENTATION ISSUES 

Once the BG model from the electrical circuit is generated, and completely causalized, it is ready to be simu-

lated. As it was mentioned, the discrete event approach represents the simulation paradigm used on MCD++.  In 

order to perform the BG simulation, the CD++ simulator is internally invoked from MCD++. Regarding that the 

input to CD++ must be a valid DEVS (or Cell-DEVS) model, the BG generated on the previous phase must be 

transformed into its corresponding DEVS representation. The BG Compiler for CD++, developed within 

MCD++, is the component responsible for this transformation. As a result of the compilation phase, a valid 

CD++ DEVS model specification is generated. The components in the BG to be constructed are translated into 

Quantized BG (QBG), that is, a BG where all the storages and sources are quantized elements. Given that QSS 

modifies the original system adding quantizers equipped with hysteresis to the integrators output, only the stor-

age elements (capacitor and inertia) need to be changed in order to use the QSS method on QBG [15]. A capaci-

tor defines the following relation between the power variable (e = effort) and the energy variable (q = displace-

ment)   

0))(()( =− tqgte  (4.1a) 

0)()(
.

=− tftq   (4.2a) 

In a capacitor, the integral causality asignment causes function f(t) to represent the input and e(t) the corre-

sponding output. The displacement, q(t), is the state variable (integrator’s output). Using the QSS method, trans-

forms 4.1a: ))(()( tqgte q= being qq(t) the quantized version of q(t) [15]. This equation can be rewriten using 



 

 

the composition of the quantization function with function g: ))(()( tqgte q= where gq is a quantized function 

(the composition of a quantization function with a continuous function). 

The same reasoning can also be applied to the inertias; then, the QSS method can be used for BG simula-

tion. The capacitors and intertias functions have to be replaced by their quantized version functions, obtaining 

the QBG representation. The QSS error, convergence and stability properties, described on chapter 3, are valid 

on QBG models too [15].  

Several atomic DEVS models where developed on CD++, implementing the QSS and QBG concepts on the 

toolkit. That provides the extensions needed to simulate dynamic systems within the CD++ simulator. Each 

component of the QBG was implemented as an atomic DEVS model on CD++, using the BG and QSS defini-

tions. They are listed bellow: 

 

• QBGCapacitorFlowIn 

• QBGInductorEffortIn 

• QBGResistanceFlowIn  

• QBGResistanceEffortIn 

• QBGSourceEffort_Constant 

• QBGSourceEffort_Step 

• QBGSourceEffort_Sine 

• QBGSourceEffort_Pulse 

• QBGSourceFlow_Constant 

• QBGSourceFlow_Step 

• QBGSourceFlow_Sine 

• QBGSourceFlow_Pulse 

• QBGTransformer 

• QBGGyratorFlowIn 

• QBGGyratorEffortIn 

• QBGSerialJunction 

• QBGParallelJunction

 

A coupled DEVS representing the resulting model can be formally defined as: 

CQBG = <Xself, Yself, D, {Mi}, {IC}, select> 

 Xself  = {∅}   no external inputs are defined 

Yself  = {∅} no external outputs are defined 

 D  is the set integrated by all the elements representing BG components, for each i in D, 

 Mi  is a DEVS atomic model representing a QBG component  

 IC  is the internal coupling set defined as: IC = {iceui,vj} ∪ {icfvj,ui}  where iceui,vjand  icfvj,ui  

represent the coupling between effort and flow ports on components  u and v, being the effort calculated by ele-

ment u (the causal stroke outwards u).  





=
otherwisef

 source)(flow  sourcea not is v if) ) in v, ( ), out u, ( (
ice

ejei
vjui,   

 if u is a serial junction then i = 1 (only one effort-out port) 





=
otherwisef

 source)(effort  sourcea not isu  if) ) in u, ( ), out v, ( (
icf

fifj
uivj,   

 if v is a parallel junction then j = 1  (only one flow-out port) 

select  the tie-breaking function gives priority to the structural components (junctions, transformer and 

gyrator) in order to avoid loosing any output message. 



 

 

Given the definition of the coupled DEVS model associated to a QBG, the developed compiler takes the in-

put BG and performs the compilation. That generates the structured DEVS model which is described using the 

specification language supported by the CD++ simulator (.ma file). To generate the CD++ specification file, the 

compiler executes the following steps: 
1. For each component u of the QBG, add u to the declaration section within the .ma 

file. Considering the assigned causalization, select the valid implementation class 

for the component (for components having both causality types two different imple-

mentations were developed) 

2. For each bond b = (u,v) of the QBG, generate the coupling information between u and 

v on the links section within the .ma. Follow the coupling definitions formalized 

above. 

3. For each component u of the QBG, generate the component’s configuration information 

within the parametrization section on the .ma file. 

 

Figure 23 shows a graphical representation of the BG to the coupled DEVS model transformation, given an input 

circuit specification: 

 
 

 
Figure 23. (a) Electrical circuit, (b) BG associated to the circuit, (c) Coupled DEVS model representation 

 

The CD++ coupled model generated by the compiler is shown in the following figure. 

 

 

 



 

 

 [top] 
 components : $PJ2@QBGParallelJunction $PJ3@QBGParallelJunction $SJ2@QBGSerialJunction  
 $SJ3@QBGSerialJunction C@QBGCapacitorFlowIn  L1@QBGInductorEffortIn L2@QBGInductorEffortIn  
 R1@QBGResistanceFlowIn R2@QBGResistanceEffortIn V@QBGSourceEffort_Pulse 
 
 link : e2n@$PJ2 e2p@$SJ2 
 link : f2p@$SJ2 f2n@$PJ2 
 link : f3n@$SJ2 f2p@$PJ3 
 link : e2p@$PJ3 e3n@$SJ2 
 link : f1n@$PJ3 f1p@C 
 link : e1p@C    e1n@$PJ3 
 link : e3n@$PJ3 e1p@R2 
 link : f1p@R2   f3n@$PJ3 
 link : e1n@$SJ2 e1p@I2 
 link : f1p@I2   f1n@$SJ2 
 link : f1p@$PJ2 f1n@$SJ3 
 link : e1n@$SJ3 e1p@$PJ2 
 link : f2n@$SJ3 f1p@R1 
 link : e1p@R1   e2n@$SJ3 
 link : f3p@$SJ3 f1n@V 
 link : e1n@V    e3p@$SJ3 
 link : e3n@$PJ2 e1p@I1 
 link : f1p@I1   f3n@$PJ2  
 
 [C] 
 quantum : 0.0002   hystWindow : 0.01   C :     10.000     initialLoad :      0.000 
 
 [L1] 
 quantum : 0.0002  hystWindow : 0.01     I :    500.000    initialLoad :      0.000 
 
 [L2] 
 quantum : 0.0002   hystWindow : 0.01    I :   2000.000   initialLoad :      0.000 
 
 [R1] 
 R :      0.001 
 
 [R2] 
 R :   1000.000 
 
 [V] 
 quantum : 0.0002      hystWindow : 0.01       signal : Pulse       offset : 000    startTime : 000 
 amplitude : 010       period : 2.5            width : 050           outputFile : out/V.out 

Figure 24. File generated by the compiler (.ma) 

The simulation of the example circuit was run for 1 minute of simulated time, using a quantum value equal to 

0.0002 and an hysteresis window size of 0.01, applied to all of the quantizable components within the circuit (I1, 

I2, C1). 

    
Figure 25. (a) Pulse Voltage Source (b) Current on inductor I1 (c) Voltage on Capacitor C 

 

7. CONCLUSION 

The DEVS formalism is a method defined for modeling and simulation of discrete event systems. During the last 

years the DEVS theory has evolved, and it was recently upgraded in order to permit simulation of continuous 

and hybrid systems. We introduced a tool for modeling and simulation of continuous systems based on DEVS. 

Models are described using Modelica, a modular and acausal standard specification language for physical sys-



 

 

tems modeling. Examples of model simulation with their execution results are included. The simulation results 

generated by MCD++ were compared with those produced by a complex physical system simulation environ-

ment with Modelica support called Dymola.  

We presented the techniques used for transformation of M/CD++ electrical models into Bond Graphs, and 

the methods to detect causality and algebraic loops in the resulting models. MCD++ approximates the system so-

lution based on the QSS method, which uses a simple first order integration approach.  

In the long term, we want to attack the development of hybrid systems based on the DEVS formalism and its 

extensions, building libraries to make easy to use components developed on top of DEVS modeling tools. One of 

the benefits is that for a given accuracy, the number of transitions can be reduced, decreasing the execution time 

of simulations. Discrete time models can be simulated under discrete event paradigm, thus allowing the devel-

opment of a simulation environment for complex systems, modeled as hybrid systems, where all paradigms 

merge together (continuous time, discrete time, discrete event). 
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APPENDIX: BOND GRAPH CLASS HIERARCHY 

+getId()
+getCausalityType()
+getPreferredCausality()
+getAllowedCausality()
+getPowerDir()
+isJunction()
+getVarsAsString()
+quantifiable()

-id
-powerDir
-causalityType

BGComp

-C
-initialLoad

BGCapacitor

-I
-initialLoad

BGInductor

-R

BGResistance

-T

BGTransformer

-G

BGGyrator

BGParallelJunctionBGSerialJunction

-signal

BGSourceEffort

+f()
+der()
+isContinuous?()
+isDerivable?()
+getParameter()
+setParameter()
+parameterCount()

Signal

«usos»

-signal

BGSourceFlow

«usos»

+addComponent()
+delComponent()
+addBond()
+delBond()
+findComponent()
+simplify()
+assignCausality()
+containsAlgebraicLoops()
+print()

-graph
-components

BondGraph

GraphIterator

-constant

Constant

-height
-startTime

Step

-duration
-height
-startTime

Ramp

-amplitude
-waveFrequency
-phase

Sine

-amplitude
-waveFrequency
-phase
-damping

ExpSine

-amplitude
-width
-period

Pulse

-heigth
-startTime
-riseTime
-riseTimeConst
-fallTimeConst

Exponential

1*

«usos» «usos»

 


