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ABSTRACT: The DEVS formalism defines a theory for discrete-events systems specification. It is a formal approach to 
build the models, using a hierarchical and modular approach. DEVS formal nature showed to be useful for easy reuse 
of models that have been validated. In this way, the security of the simulations can be improved, reducing the testing 
and maintenance times, and improving the productivity of the development process. The discrete-event nature of the 
formalism also allows reducing the execution times of complex simulations. In this work we will discuss the results of an 
experiment on the interoperation between two existing DEVS environments (namely, CD++ and DEVS/C#), in an effort 
within the DEVS Standardization study group. This work would provide the basis for future discussion on the 
standardization effort, by providing an actual experimental result on sharing of DEVS models developed by different 
teams using different DEVS simulation engines, permitting discussing the basic issues involved in this effort. We will 
present the basic API provided by the engines, how to use them to provide interoperability at the level of the models, 
and a detailed discussion on interoperation of the underlying simulators. 
 
1. Introduction 
  
In recent years, we have witnessed tremendous advances 
in model building and simulation execution thanks to the 
improvements in software and hardware technology. The 
definition of the High Level Architecture (HLA) standard 
[1] raised fundamental issues, such as model credibility 
and interoperation. The HLA focuses on the 
interoperation of existing geographically dispersed 
simulation assets. However, the HLA does not address 
how to solve the problem of creating models to be 
executed in the simulation environment. Current practices 
in development still use ad-hoc techniques, trying to 
encapsulate models, simulators and experimental frames 
into tightly coupled packages. As a result, testing, 
maintenance and software reuse become  difficult tasks 
[2]. 
 
At present, there is a need to solve these problems, 
enabling interoperability (including digital and analog 
simulations), model reuse (using centralized or distributed 
repositories), while keeping high performance in the 
model execution. There are different efforts addressing 
these issues, for instance, the Base Object Model 
specifications, C4ISR, Extensible Modeling and 
Simulation Framework, Simulation Conceptual Modeling, 
etc. [3]. Other efforts consider the use of widely used 
standards like the UML, or simu lation languages 

including support for execution on the RTI. Our proposal, 
instead, is based on the use of the DEVS formalism [4]. 
 
DEVS (Discrete Event systems Specifications) allows 
modular description of models that can be integrated 
using a hierarchical approach. DEVS has been proved to 
be a universal representation for all discrete event models 
and has been successfully used in previous efforts in 
model interoperability (see, for instance, [5, 6]) providing 
ease for reuse of simulation models. Another advantage of 
using DEVS is that different existing techniques (Bond 
Graphs, Ce llular Automata, State Charts, Partial 
Differential Equations, Petri Nets, Queuing models, 
Timed Automata, etc.) have been mapped to DEVS. This 
permits sharing information at the level of the model, and 
different submodels can be specified using different 
techniques, while keeping independence at the level of the 
simulation engine. Exis ting DEVS tools have showed 
their ability to execute this wide variety of models with 
high performance in standalone or distributed 
environments. 
 
DEVS has a theoretical foundation which makes it in 
principle independent of various programming languages 
and hardware platforms. There is a wide variety of groups 
working on extensions to the DEVS formalism, with 
several modeling tools based on these extensions. The 
goal of SISO DEVS Study Group [7] is to find a core of 
the DEVS formalism that is suitable for standardization.  



 

 

Figure 1.1 Standardization at the right level. DTSS: 
Discrete Time System Specification; ODESS: Ordinary 
Differential Equation System Specification; PDESS: 
Partial Differential equation System Specification  
 
The primary objective of this effort is to support 
interoperability at the right level. In Figure 1, we can see 
that DEVS allows interchange of information at the level 
of models developed in different paradigms (Discrete-
Time, Differential Equations, etc). The DEVS 
specification model is constructed on top of existing 
standard software support (like the HLA). This 
organization supports model composability and 
technology independence (for instance, we can replace the 
software support by a different type of middleware 
without modifying the models). This organization has 
proved to successfully include all modeling paradigms  
that are being widely used in academia, industry and 
government, enabling research collaboration between 
experts in these different areas. 
 
Such a standard would also allow modelers to reason 
about the validity of model composition independently of 
the underlying simulation middleware technology.  
Similarly, simulation developers can integrate their DEVS 
simulation engines using a component based simulation 
standard that promotes the construction of verifiable, 
large-scale simulation systems. Finally, this standard 
would be a stepping stone toward realization of a standard 
for expression of DEVS models themselves [8]. 
 
In this work we will discuss the results of an experiment 
on the interoperation between two existing DEVS 
environments within the activities of the SISO DEVS SG 
(namely, CD++ and DEVS/C#). This work would provide 
the basis for future discussion on the standardization 
effort, by providing an actual experimental result on 
sharing of DEVS models developed by different teams 

using different DEVS simulation implementations. This 
permits discussing the basic issues involved in this effort. 
We show the basic APIs provided by both 
implementations, how to use them to provide 
interoperability at the level of the models, and how to 
integrate the underlying simulators. The models are split 
between the two simulators, and they execute in an on-
line fashion, having both engines active and sharing 
execution results in real-time. 

2. Background 
In this section we will explore the theory behind the 
formalisms and implementations used in the interfacing of 
CD++ and DEVS C#. 
 
A model is a set of rules, instructions, equations and 
behaviour reacting to input and generating output 
according to those rules, instructions and equations. 
Models can be simulated based on a number of different 
formalisms, but this case deals with the Discrete Event 
System Specification (DEVS) formalism [4]. Models 
transition between states based on inputs received or 
internal stimuli such as timer expiration. A model’s 
behaviour is the set of all possible data generated by 
following its rules and instructions.  
 
A simulator is a system with the capability to execute a 
model, thereby generating its behavior. Simulators differ 
in capability as follows: 
(i) dedicated to a model or a small group of closely 
related models  
(ii) able to simulate the behavior of models belonging to a 
related field (for example, plant growth models) 
(iii) contain logic to execute models adhering to a single 
formalism (the DEVS formalism for instance) 
(iv) have the ability to simulate models adhering to more 
than one formalism 
 
DEVS is an increasingly accepted framework for 
understanding and supporting the activities of modeling 
and simulation. DEVS is a sound formal framework based 
on generic dynamic systems, including well defined 
coupling of components, hierarchical, modular 
construction, support for discrete event approximation of 
continuous systems and support for repository reuse. 
DEVS theory provides a rigorous methodology for 
representing models, and presents an abstract way of 
thinking about the world withcompletely indepedent of 
the simulation mechanisms, underlying hardware and 
middleware.  
 
A real system modeled with DEVS is described as a 
composite of submodels, each of them being behavioral 



(atomic) or structural (coupled). A DEVS atomic model is 
can be informally described as in Figure 1.  
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Figure 2.1. Informal description of an atomic model. 

 

A DEVS atomic model has the structure: 

taYSXM ext ,,,,,, int λσσ=   

Where: 
X  is the set of inputs  
S  is the set of states  
Y  is the set of outputs  

i n tδ  is the internal transition function 

extδ  is the external transition function 

conδ  is the confluent transition function 

λ  is the output function 
ta  is the time advance function 

 

The value of the time advance function can be any 
positive real number, zero or infinity. If ta is equal to 
zero, the system is changing states. If ta is infinity, the 
system is in a passive state and will not change states 
without external stimuli. The internal transition function 
is triggered by an elapsed wait time equal to that supplied 
by the ta function. The external transition function is 
triggered by input from an external source. When all 
models in a simulation are in a passive state, the 
simulation has ended. The confluent function allows the 
modeler to specify what happens when both an external 
input and an internal transition are about to occur. 
 
A coupled model has a composite structure in that it can 
be made up of other models. Through these input and 
output ports, all interaction between models is mediated. 
Coupled models make it possible to model more complex 
systems. A coupled model consists of a set of input ports 
from which external events are received, a set of output 
ports through which the model can send outputs outside 
the system 

 
Figure 2.2 Informal description of a coupled model. 

 
Coupled models are defined as a set of basic components 
(atomic or coupled), which are interconnected through the 
model's interfaces. The model’s coupling defines how to 
convert the outputs of a component into inputs for other 
peers, and to convert inputs/outputs of the components to 
the exterior of the model [4].  
 
CD++ [9] is a modeling environment that was defined 
using the specifications presented in the previous section, 
and the basic simulation techniques introduced in [4]. 
DEVS Atomic models can be programmed and 
incorporated onto a class hierarchy programmed in C++. 
Coupled models can be defined using a built-in 
specification language. CD++ makes use of the 
independence between modeling and simulation provided 
by DEVS, and different simulation engines have been 
defined for the platform: a stand-alone version, a Real-
Time simulator, and a Parallel simulator. CD++ is built as 
a class hierarchy of models related with simulation 
processing entities.  
 
class Atomic : public Model  { 
public: 
virtual ~Atomic(); // Destructor 
 
protected:      //Kernel services 
Time nextChange(); 
Time lastChange(); 
holdIn(AtomicState::State &, Time &); 
passivate(); 
ModelState* getCurrentState() ; 
sendOutput(Time &time, Port &port, Value value); 
 
//User defined functions. 
initFunction(); 
externalFunction(ExternalMessage & ); 
internalFunction(InternalMessage & ); 
outputFunction(CollectMessage & ); 
string className() const 
}; // class Atomic 

Figure2.3 The Atomic Class 



DEVS Atomic mo dels can be programmed and 
incorporated onto the Model basic class hierarchy using 
C++. A new atomic model is created as a new class that 
inherits from the Atomic base class. The state of a model 
is defined in the AtomicState class. When creating a new 
atomic model, a new class derived from Atomic has to be 
created. Atomic is an abstract class that declares a model’s 
API and defines some service functions the user can use 
to write the model. The Atomic class provides a set of 
services and requires a set of functions to be redefined:   
nextChange()/lastChange() return the time until the 
next internal transition/since the last state change;  
holdIn(state, Time): tells the simulator that the model 
remains in a state during a given Time. It corresponds to 
the ta(s) function of DEVS. The passivate() function 
sets the next internal transition time to infinity. The model 
will only be activated again if an external event is 
received, while getCurrentState(): returns the current 
model’s phase. The sendOutput(Time, port, value) 
transmits an output message through the specified port.  
 
Any newly defined class should override the following 
functions: initFunction() (invoked at the beginning the 
simulation), externalFunction (ExternalMessage &) 
(δext function), internalFunction(InternalMessage &) 
(δint function) and outputFunction(const 
CollectMessage&) (λ function of the DEVS formalis m). 
 
Once an atomic model is defined, it can be combined with 
others into a multicomponent model using a specification 
language specially defined with this purpose. The coupled 
model at the higher level is always named [top]. Four 
properties must be configured: components, output ports, 
input ports and links between models. The following 
syntax is used: 
 
Components: name1[@atomicClass1] name2 ... Lists 
the components of the coupled model (atomic or 
coupled). For atomic models, an instance and a class 
name must be specified, allowing a coupled model to use 
more than one instance of a given atomic class. For 
coupled models, only the model name must be given, and 
it must be defined as another group in the same file. 
 
Out: portname1 portname2 ... Enumerates the model’s output ports 
(optional clause). 

In: portname1 portname2 ... Enumerates the input ports (optional 
clause). 

Link: source[@model] destination[@model]. It 
describes the internal and external coupling scheme. If the 
name of the model is not included, the default will be the 
coupled model currently being defined. 
 

DEVS C# is a DEVS engine created in the University of 
Arizona’s ACIMS laboratory A revised version of the 
engine will be released later this year under the new title 
DEVS .NET. DEVS C# is a real time, parallel DEVS 
engine programmed in C# .NET. Models created in 
DEVS C# can be embedded in aspx web pages or exposed 
as web services due to .NET’s service-oriented nature. 
DEVS C# is a self contained environment that allows 
users to easily model systems on a desktop computer. 
 
In DEVS C#, models are written as C# classes that extend 
the Atomic class. The Atomic class, as discussed above 
contains a set of rules governed by the DEVS formalism’s 
atomic level. A DEVS C# model consists of input and 
output ports, a constructor function, an initialization 
function, internal and external transition functions and an 
output function. The initialization function is invoked by 
the simulator at the beginning of the simulation and 
serves to put the model in its initial state and sets its initial 
context. The internal function is invoked when the time 
advance expires. The external function is invoked when a 
message is received at an input port. The output function 
outputs messages on one or more of the model’s output 
ports. Similar to CD++, the DEVS C# Atomic class 
provides a set of services to all models extending the 
class. The hold(time) function tells the simulator that the 
model stays in its current state for the time specified. The 
passivate() function sets the model’s next internal 
transition time to infinity. The TimeNext and TimeLast 
properties get/set the time of the next event and the time 
of the previous event respectively. The TimeCurrent 
property gets/sets  the current time, The following is the 
code for a simple timer model: 
 
public class SimpleTimer : Atomic{ 
   public SimpleTimer() { } 
   // Initialize the SPTimer 

   public override void init(){ 
         hold(3.3);              } 
   // Internal transition function. 

   public override void delta_int(){ 
         hold(3.3);                   } 
   // External transition function. 

   public override void delta_ext(double e, 
      Bag<PortValue> x) {} 

   // Output function 
   public override void 

output_func(Bag<PortValue> y){ 
      Console.WriteLine("Alarm at " +  

      TimeCurrent); 
   } 
} 

Figure 2.4 The Simple Timer model 



The above C# class extends the base type Atomic. For 
this simple case, the constructor is empty. For more 
complex models, member variables may be set and helper 
functions can be invoked. In the init function, the 
hold(time) function is called specifying when the first 
internal transition will occur. The external transition 
function is empty in this case, meaning that external 
events (messages) are ignored. In this model, state change 
only occurs due to timer expiration. The internal 
transition function calls the hold(time) helper function, 
setting the time until the next internal transition. The 
output function displays the time of the alarm, utilizing 
the Atomic classes TimeCurrent property to get the 
current time. 

3. Interfacing CD++ and DEVS C# 
 
As a DEVS simulation proceeds, models in the simulation 
change their state based on internal or external events [4]. 
External events are sent between models as messages. 
Messages sent by a model are based on events it has 
encountered, both internal and external. These messages 
trigger the external transition function of the model 
receiving them. The external transition function of the 
receiving model could result in more messages being 
passed to other models (although not directly [10]). 
Simply put, we must have message passing among 
models in order to simulate behavior in a system. A 
message includes the source model and port names, and 
the destination model and port names as well as the 
message body. 
 
The simulation in CD++ is carried out by Processors that 
drive the simulation by exchanging messages. Two types 
of Processors exist: 
 

1. Simulators: drive the simulation of atomic 
models, and 

2. Coordinators: drive the execution of coupled 
components and coordinate the activities of all 
their dependant children. 

 
A simulator object manages an associated atomic object, 
handling the execution of its δint (internal transition 
function), δext (external transition function) and λ (output 
function). A coordinator object manages an associated 
coupled object.  
 
The following figure shows a sample model with a few 
components: 
 

 Coupled Model # 1 (TOP) 

Atomic 
Model # 1 

Atomic 
Model # 2 

Atomic 
Model # 3 

Coupled Model # 2  

Atomic 
Model # 4 

Atomic 
Model # 5 

 
Figure 2.5 Sample model 

The figure shows a sample model whose topmost 
component has three atomic submodels (Atomic Models 
#1, #2 and #3) and one coupled model (Coupled Model 
#2). That inner-coupled component is formed by two 
atomic components (Atomic Models #4  and #5). The 
corresponding model hierarchy for the depicted sample is 
shown below: 

 
   
    

Coupled Model # 1   
   

Coupled Model # 2   
   

Atomic Model # 1   
   

Atomic Model # 2   
   

Atomic Mod   el # 3   
   

Atomic Model # 4   
   

Atomic Model # 5   
   

  
Figure 2.6 Hierarchical models’ hierarchy 

The processor hierarchy corresponding to this example is 
shown in the following figure. 
 

   

Coordinator # 1 
  

Coordinator # 2 
  Simulator # 1 

  Simulator # 2 
  Simulator # 3 

  
Simulator # 4 

  Simulator # 5 
  

Root Coordinator 
  

     
Figure 2.7. Processors’ hierarchy (hierarchical 

approach) 

Only one root coordinator exists in a simulation. It 
manages global aspects of the simulation. It is involved 
with the topmost-coupled component, which has the 
highest level in the model hierarchy. Moreover, the root 
coordinator maintains the global time, and it starts and 
stops the simulation process. Lastly, it receives the output 
results that must be sent to the environment. 
 
A split simulation is a source system whose components 
have been broken into two or more groups prior to 
execution. These groups of components (component 
groups hereafter) will run under separate simulators 
which may or may not be implemented using the same 
simulation engine (CD++ or DEVS C# specifically). 
There are different mechanisms that have been used for 
making these simulators interact. One way is to split the 



execution of the coordinators/simulators between multiple 
processors within a single simulation engine. This is the 
approach taken by DEVS/HLA [5], DEVS/Corba [11] or 
Parallel CD++ [12]. Another alternative is to construct a 
model wrapper to make the two distributed simulators 
interact at a higher level of communication. This 
approach was used in [13], where the author created a 
wrapper for CD++ using the HLA as middleware, 
enabling multiple CD++ simulation engines to interact at 
the level of the top model. A wrapper is a software piece 
that hides the component and provides a means of 
communication with components modeled in the other 
environment. 
 
Here, we extend this concept, permitting to compose a 
coupled model consisting of both CD++ and DEVS C# 
components and then execute that coupled model in 
distributed fashion. Some of the source system’s 
components are modeled in CD++ and run in the CD++ 
simulation environment. The remaining components of 
the source system are modeled and simulated in DEVS 
C#. Any component that needs to be coupled to a 
component modeled in the other environment is 
encapsulated in a wrapper. These wrappers communicate 
with each other (in this case, via a TCP connection). 
Wrappers send messages between components that would 
have no means of communication otherwise. These 

wrappers make the interfacing of CD++ and DEVS C# 
possible. After receiving a message from another 
component’s wrapper, the receiving wrapper must pass 
the message to its component so that the simulation can 
progress. CD++ wrappers and DEVS C# wrappers have 
different means of passing a received message to their 
encapsulated component. At this point, we have used 
TCP/IP sockets as the communication mechanism, as the 
focus of our approach is on the modeling aspects of the 
experience. This is the first successful effort in making 
two independent DEVS engines, developed by completely 
isolated teams of developers, to execute simultaneously 
and interchanging information in runtime. Mapping the 
results of this effort to other middleware (HLA, SOA, 
Corba, MPI) is straightforward: we need to adapt the calls 
made to the current API, and to incorporate calls to the 
corresponding middleware. As these advanced 
middleware provide advanced services, an extension 
would permit improving the simulation aspects of the 
experiments. The following examples serve as a proof of 
concepts of these ideas, focusing our experiments at the 
modeling level, and leaving advanced simulation aspects 
for future implementations. 
 
The following diagram represents a simple split 
simulation comprised of two component groups 
 

 

 

Figure 3.1 Connection between a CD++ simulation and a DEVS C# model using wrappers. 

 
The component group on the left is modeled in CD++ and 
contains 3 atomic models coupled using CD++ coupling. 
The component “Atomic Model 3” is encapsulated in a 
CD++ wrapper. Atomic Model 3 can send messages to, 
and receive messages from, components connected to this 
wrapper. In figure 1 a connection exists to “Atomic 
Model 1” and “Atomic Model 2” in the DEVS C# 
component group. The component group on the right is 

modeled in DEVS C# and contains a DEVS C# coupled 
model. Both the components in this group are 
encapsulated in DEVS C# wrappers in order to 
communicate with the CD++ component group. It is 
important to mention that wrapped components need not 
occur in coupled models, a component group can consist 
of just one component. The links shown between 



component groups are made with TCP connections over 
which messages are passed. 
 
Both CD++ and DEVS C# send messages between 
simulations in a similar manner. In each atomic model’s 
output function, in addition to sending the message to the 
simulator, the message is passed to the component’s 
wrapper which will forward it to another wrapper. This 
creates an explicit, loose coupling between the component 
groups. The following code fragment from a generator 
component modeled in DEVS C# shows how this 
coupling is achieved: 
 

// Output function 
public override void output_func(Bag<PortValue> 

y){ 
   y.Add(new PortValue(portOut, 

m_count.ToString())); 
   m_wrapper.send(portOut.Name, “transducer”, 

“arriv”, 
      m_count.ToString()); 
} 

Figure 3.2 DEVS C# output finction 

 
First, the bag of port values (here called “y”) passed by 
reference to the function is appended to include a message 
from the generator’s “portOut” port containing the job 
number that has been generated. The DEVS C# simulator 
will use the coupling defined to deliver this message to all 
of its intended recipients. Next, we have a message being 
sent from the wrapped component to a component in 
another component group. This is done by invoking the 
wrapper’s send function. When a component modeled in 
CD++ needs to send a message to another component 
group, a similar call is made from the component’s output 
function to its wrapper. The setWrapper(Wrapper) 
function is invoked when a split simulation will be run. 
This function encapsulates the model in the Wrapper. 
 
Received messages are handled differently in CD++ 
wrappers than they are in DEVS C# wrappers. In CD++ 
wrappers, all messages are routed from the wrapper 
directly to the atomic model. The wrapper calls the atomic 
model’s external function, passing the received message 
as the argument. The following is a fragment of the CD++ 
wrapper’s receive function, showing how received 
messages are handled: 
 
m_model.externalFunction( receivedMessage );  

 

The variable m_model is the component encapsulated by 
the wrapper. The variable receivedMessage is the 
message received from another wrapper.  
 
In contrast, DEVS C# wrappers have a reference to their 
component’s simulator. This means messages can be 
injected directly into the simulation by the wrapper. This 
results in the receipt of the message by its intended 
recipient models. The following is a fragment from the 
DEVS C# wrapper’s listen function, which listens for and 
handles messages as they arrive: 
 

PortValue pv = new PortValue(port, value); 
m_wrappedSim.inject(pv);  
 
The first line shows the creation of a PortValue, using the 
port and value received from the other wrapper. The 
second line shows the injection of the PortValue into the 
simulator, here named m_wrappedSim. 
 
Prior to initiating the split simulation, each of the DEVS 
C# wrappers must know the IP address of the CD++ 
wrapper to which they will connect. Currently, only the 
default of localhost is used (this means all component 
groups are running on the same computer.) Upon 
execution of the DEVS C# simulation, each wrapper will 
try to connect to the CD++ wrapper specified. If a 
connection fails, the DEVS C# wrapper retries to connect 
until the user aborts the attempt or until a connection is 
made. When a connection can be made, two sockets are 
created with the CD++ wrapper. Two sockets are used so 
that there can be asynchronous communication between 
the two models (i.e. both models can be sending a 
message at the same time). Upon execution of a CD++ 
wrapper, two listening sockets are created and the 
wrapper waits for a connection from a DEVS C# wrapper. 
After a connection has been established and both sockets 
are ready for communication, the simulation is initiated 
and started. Messages are passed between the wrappers 
until the simulation is completed. At this time, the model 
where completion has been decided or detected sends out 
a termination message and all wrapper connections are 
closed. 

4. AN EXAMPLE OF APPLICATION 
 
The Generator, Processor, Transducer (GPT) model is a 
simple coupled model composed of three atomic models 
(components) each with a simple purpose. The generator 
component creates jobs and sends them out on the out 
port. The processor accepts jobs on an input port, 
processes them for a given time and then forwards them 
on an output port. The transducer accepts jobs from the 



generator on the arrived input port and notes the 
generation time. Jobs processed by the processor are 
forwarded to the transducer’s solved input port. The 
transducer notes the time the job was solved and 
calculates the elapsed time. This time is used later when 
calculating throughput. In this simple coupled model the 
internal coupling is as follows: the generator’s output port 
is coupled to the processor’s input port and the 
transducer’s arrived port. The processor’s output port is 
coupled to the transducer’s solved port. The transducer’s 

output port is coupled to the generator’s stop port. The 
GPT model also has external coupling to receive events 
from other systems and provide events to other systems. 
The GPT model’s start and stop ports are coupled to the 
generator to control job generation. The coupled model’s 
out port is coupled to the processor’s out port so that jobs 
are forwarded externally as well as to the transducer. The 
coupled model’s result port is coupled to the transducer’s 
out port so that the simulation’s final result will be 
forwarded to other systems.  

 

 
Figure 4.1 The GPT model and its internal and external connections 

 

The following excerpts show the Generator/Processor and 
Transducer component groups as they defined in their 
respective DEVS environments. The Transducer 
component group is defined in DEVS C# as follows: 
 

m_transducer = new Transd(observationTime, 
"transducer"); 

DevsThSim sim = new DevsThSim(m_transducer); 
Wrapper wrap = new Wrapper(9998, 10000, 

m_transducer.Name, sim); 
m_transducer.setWrapper(wrap);  
 
The first lines deal with the creation of the simulator 
containing the transducer component. First a transducer is 
created, then a simulator is created to simulate the 
transducer’s behavior. The final two lines show the 
integration between this component group and the 
Generator/Processor component group. First a wrapper is 
created by setting the TCP ports it will send and receive 
on, the source model’s name and a reference to the 
simulator controlling the model. Then, a reference to the 
newly created model is set in the transducer, so that the 

wrapper’s functions (send for instance) can be invoked by 
the transducer. The Generator/Processor component group 
is  defined in CD++ as follows: 
 

[top] 
components : Generator@Generator Processor@CPU 
Out: out 
 
Link : out@Generator in@Processor 
Link : out@Processor out 
 
[Generator] 
distribution : poisson 
mean : 10 
 
[Processor] 
distribution : exponential 
mean : 10 

 
The top section defines the component’s highest level, 
which contains a Generator, a CPU and an output port 
named out. This section also defines the couplings 



between the two components in this group. The Generator 
and Processor sections of the component group’s 
definition define the details of their respective 
components. 
 
Now that we have seen how coupled models are defined 
in CD++ and DEVS C#, we can see why it is possible to 
construct a wrapper that has a reference to the simulator, 
allowing messages to be injected directly into it. In the 
DEVS C# definition, the simulator and wrapper are 
defined on separate lines and the simulator is passed to 

the wrapper’s constructor so a reference can be made. In 
contrast, CD++ coupled models are defined using a high 
level script, parsed by helper classes. It is not possible to 
define the wrapper in this script, but rather the wrapper is 
created and initialized in the CD++ atomic model’s 
constructor. 
 
The following figure shows the GPT model as it has been 
created through the interfacing of DEVS C# and CD++ 
components:

 

 
Figure 4.2 The split GPT model 

 

The following sections will cover the steps involved in 
simulating the system using both CD++ and DEVS C#. 
Please note that for this experiment, the simulations are 
run in real time. 

4.1 Initialization 

The generator/processor application is started and the 
CD++ wrappers wait for a connection from another 
wrapper (in this particular case from the transducer’s 
wrapper). The transducer application is started and 
sockets are opened to the generator and processor 
wrappers. After the socket initialization is complete, the 
simulation can begin. 

4.2 Job Generation 

The generator creates a job (in this case it is an integer 
starting at 0 and incrementing by 1 with each job created.) 
The job is sent from the generator to the processor via the 

CD++ coupling and to the transducer via the wrapper. 
Upon receiving a job, the transducer adds a timestamp 
which will be used for calculation when completed job 
messages arrive. Time-stamping a message at arrival 
rather than prior to sending it has advantages and 
disadvantages. The main disadvantage is that a lost or 
delayed message will have a timestamp that indicates the 
job was generated far later than it actually was. However, 
in order to attach a timestamp prior to sending the 
message, we must have synchronized simulation clocks. 
This means that both simulation engines must have timers 
that use s imilar units of time. 
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Figure 4.3 Path a job takes from the generator to the 

transducer through the wrappers. 

4.3 Job Processing 
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Figure 4.4. Path a processed job takes from the 

processor to the transducer. 

Upon arrival at the processor, the job is “worked on” for a 
set amount of time. In reality, the processor sleeps for the 
amount of processing time set during initialization. Upon 
completion of processing, the processor forwards, via the 
wrapper the job message to the transducer. Upon arrival at 
the transducer an elapsed time for the job is calculated. 
This will aid in statistics calculation later. 

4.4 Simulation Termination 

Upon the expiration of its simulation timer, the transducer 
sends a message on its out port which is delivered to 
systems external to the simulation. A termination message 
is sent to the generator via the wrappers, and the DEVS 
C# simulation is terminated. The termination message is 
received by the generator’s wrapper, which terminates the 
CD++ simulation.  
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Figure 4.4. Steps in the termination of a split simulation 
 
The GPT model was implemented in CD++ and 
DEVS/C# following the description presented in the 
previous section. The following figures show output from 
the two environments for a short period of simulation of 
the split GPT model.  
 
 
 
 
 
 



I/00:000/Root(00) to top(01) 
I/00:000/top(01) to generator(02) 
I/00:000/top(01) to processor(03) 
D/00:000/generator(02) / 00:00:00:000 to top(01) 
D/00:000/processor(03) / ... to top(01) 
D/00:000/top(01) / 00:00:00:000 to Root(00) 
*/00:000/Root(00) to top(01) 
*/00:000/top(01) to generator(02) 
Y/00:000/generator(02) / out / 0 to top(01) 
D/00:000/generator(02) / 00:00:10:000 to top(01) 
X/00:000/top(01) / in / 0 to processor(03) 
D/00:000/processor(03) / 00:00:10:000 to top(01) 
D/00:000/top(01) / 00:00:10:000 to Root(00) 
*/10:000/Root(00) to top(01) 
*/10:000/top(01) to generator(02) 
Y/10:000/generator(02) / out / 1 to top(01) 
D/10:000/generator(02) / 00:00:10:000 to top(01) 
X/10:000/top(01) / in / 1 to processor(03) 
D/10:000/processor(03) / 00:00:10:000 to top(01) 
D/10:000/top(01) / 00:00:10:000 to Root(00) 
*/20:000/Root(00) to top(01) 
*/20:000/top(01) to generator(02) 
Y/20:000/generator(02) / out / 2 to top(01) 
D/20:000/generator(02) / 00:00:10:000 to top(01) 
X/20:000/top(01) / in / 2 to processor(03) 
D/20:000/processor(03) / 00:00:10:000 to top(01) 
D/20:000/top(01)/00:00:10:000 to Root(00) 

Figure 4.4 CD++ Results of a short split simulation 
 
The above figure shows the output generated by CD++ 
representing the message chatter of the 
Generator/Processor component group or the first 20 
seconds of simulation. Please note that the time stamp has 
been truncated for space constraints and is usually 
formatted as follows: hh:mm:ss:ms. The first messages 
we see are of type I. These messages are initialization 
messages. First, the root coordinator sends an 
initialization message to the external model (top). The 
external model is responsible for distributing messages 
between the processor and generator and forwards the 
initialization message to them. The second set of 
messages are of type D. These are done messages in reply 
to the initialization messages. First the models reply to the 
external model, then the external model replies to the root 
coordinator. Along with the reply, the models send the 
time until their next event. The external model forwards 
the time until the first event to the root coordinator. In this 
case it is 0 seconds. The reply from the root coordinator is 
a * message. It is sent to imminent children (to the 
external model, then forwarded to the generator). The 
imminent children simulate and their simulators return Y 
and done messages. The root coordinator decides which 
output from a model needs to be distributed to other 
models and responds with x messages. This flow of 
events repeats until the simulation is terminated. 
 
The following figure shows the DEVS C# output for the 
transducer component group over the same 20 second 
period. Information for each messages is formatted to take 
2 lines. The first line shows the time of the event, the 
name of the model and the function triggered (internal, 

external or confluent). The second line shows the 
previous state, the port name and value on the port and the 
new state. For this example the states are blank since the 
transducer has only one non-passive state and it is 
unnamed. Following termination, the transducer displays 
its results, showing the end time of the simulation, the 
number of arrived and solved jobs, the total and average 
time advance and the processor’s throughput. 
 
0 transducer's ext: 
         -- {portAriv:0} --> 
10 transducer's ext: 
         -- {portSolv:0} --> 
10 transducer's ext: 
         -- {portAriv:1} --> 
20 transducer's ext: 
         -- {portSolv:1} --> 
20 transducer's ext: 
         -- {portAriv:2} --> 
 
End Time     : 20 
Jobs Arrived : 3 
Jobs Solved  : 2 
Total TA     : 20 
Average TA   : 10 
Throughput   : 0.1 

Figure 4.5 DEVS C# results for the split simulation 

5. Conclusion 
 
We have presented the results of an experiment on the 
interoperation between two existing DEVS environments 
(namely, CD++ and DEVS/C#), in an effort within the 
DEVS Standardization study group. The DEVS 
formalism defines a theory for discrete-events systems 
specification, which permits building formal models using 
a hierarchical and modular approach. DEVS formal nature 
showed to be useful for easy reuse of models that have 
been validated.  
 
Although this interface between CD++ and DEVS C# is 
done through explicit coupling via a set of interconnected 
wrappers, it serves as a proof of concept. At present, we 
are working on the definition of a central coordinator to 
provide synchronization between simulations using SOA 
services, and adding managed coupling, rather than 
explicit wrapper coupling. By having the simulator 
sending the messages to a different peer rather than a 
specific wrapper, the model programming becomes easier 
for the user. This is one of the main strenghts of the 
approach: the DEVS simulation protocol is the same 
indepdendent of the way the models are expressed. The 



DEVS coordinator (for CD++ or DEVS-C# will be used 
and interfaced to simulators  for the  two groups). 
 
This work provides the basis for future discussion on the 
standardization effort, by providing an actual 
experimental result on sharing of DEVS models 
developed by different teams using different DEVS 
simulation engines, permitting discussing the basic issues 
involved in this effort. It provides a framework to conduct 
experiments, and to address the main issues of our 
standardization effort, namely, in which way a DEVS 
simulation engine can be standardized to provide 
simulation services to multiple modeling environments, 
which would later influence a higher level definition for a 
standard modeling mechanism to share modeling 
information at the level of the DEVS model. 
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