
An Open Issue on Applying Sharing Modeling Patterns in DEVS
Olivier Dalle

MASCOTTE project-team
I3S-CNRS/INRIA/Université de Nice-Sophia Antipolis

B.P. 93, F-06902 Sophia Antipolis Cedex, FRANCE.
E-mail: Olivier.Dalle@sophia.inria.fr

Gabriel Wainer
Carleton University Centre on Visualization

and Simulation (V-Sim)
Dept. of Systems and Computer Engineering
Carleton University, 1125 Colonel By Drive

Ottawa, ON., K1S 5B6 CANADA
E-mail: gwainer@scs.carleton.ca

Keywords: Shared Components, DEVS, Component-based
Modeling, Discrete Event Simulation, Systems Theory

Abstract
This paper presents a discussion on the use of the DEVS for-
malism with the goal of studying how DEVS (or one of its
derivatives) could support sharing modeling patterns. We ad-
dress this open issue and present a discussion of this field
that can be addressed by the DEVS community. On one
hand, we describe the benefits and possible uses of shar-
ing sub-components for component-based modeling; on the
other hand, we explain why supporting such shared sub-
components conflicts with the DEVS formalism.

1 INTRODUCTION
The DEVS formalism[1] provides a hierarchical and mod-

ular modeling mechanism, which tends itself to reuse and in-
teroperability. Here, we introduce and discuss (with respect
to the DEVS formalism) a new construction for hierarchi-
cal modeling called “shared component”. In order to illustrate
the benefits and usefulness of such a construction, we discuss
three different modeling patterns in which this construction
is applied.

Modeling patterns are inspired from the (Software) Design
Patterns of Gamma et al.[2]: a modeling pattern describes a
generic modeling case for which a generic modeling recipe
may be applied. Identifying modeling cases has two benefits:
(i) it provides a common basis of reflexion to the community
in order to find best modeling practices for particular model-
ing cases and (ii) it provides a set of best of modeling prac-
tices to the practitioners when they face a modeling case that
matches a well known modeling pattern.

In a hierarchical component model, a shared component
is a component instance that have more than one parent in
the component hierarchy. In comparison with the existing
terminologies and modeling constructions, component shar-
ing must not be confused with component reusing. Reusing
roughly correspond to the idea of making a copy: every time a
component is reused, it has its own new, independent internal
state. Hence, using the object oriented terminology, reused
components correspond to different instances of a same class.

On the contrary, sharing correspond to the idea of making
an alias: every time a component is shared, it uses the same
identical internal state. Using the object oriented terminol-
ogy, shared components correspond to references to a unique
instance of a given class.

This sharing feature is interesting because it allows new
modeling patterns, such as the proxy, shortcut or matriochka
modeling patterns later described in this paper. Very few com-
ponent models do effectively support this sharing feature: the
Fractal component model[3] does explicitly support sharing
while some others, like JainSLEE[4] provide proxying tech-
niques which is a practical way of implementing sharing. In
this paper, we discuss the use of DEVS for this purpose.

The DEVS formalism is a hierarchical, component ori-
ented formalism used for the modeling and simulation of
systems, according to the principles of the Systems Theory.
Most component models, including DEVS, supports reusing.
However, as we first explain in this paper, formally, the stan-
dard DEVS definition does not allow for the sharing feature.
Therefore, our goal is to describe some of the potential ben-
efits of sharing components and following, to raise the open
issue of finding the best way to integrate this new feature in
DEVS or one of its derivatives.

In the following, we first show why the sharing construc-
tion is not permitted by the standard DEVS definition. Then
we will present three new modeling patterns for which shar-
ing appears to be useful.

2 COMPONENT SHARING IN DEVS
As previously stated, in a hierarchical component model,

a shared component is a component that have more than one
parent in the component hierarchy.

This definition conflicts with the definition of a DEVS hi-
erarchical model (Coupled System) given by Zeigler et al. in
[1] (p. 128):

A coupled system specification is a structure

N = 〈T,XN ,YN ,D,M, I,Z〉

where
XN is the set of inputs of the network N,



YN is the set of outputs of the network N,
D is the set of component references,
M = {Md |d ∈ D} are I/O systems,
I = {Id |d ∈ D∪{N}} are the sets of influencers,
Z = {Zd |d ∈ D∪{N}} are the interface maps.
This definition forbids sharing components because it re-

quires that for a component d ∈ D(N), where D(N) is the set
of components references of a coupled structure N, the set of
influencers Id of the component d is such that:

Id ⊆ D(N)∪{N}

In the case of shared components, the set Id/shared of influ-
encers of d in all the system is the union of the influencers of
d in all the coupled structures Ni that reference d:

Id/shared ⊆
[

i

D(Ni)∪CS(d)

where

CS(d) = {Ni|d ∈ D(Ni)}.

3 SHARING MODELING PATTERNS
This section introduces three modeling patterns, which il-

lustrate the usefulness and need of the shared component.
These modeling patterns are useful for:

• modeling the real connections that may exist between
components that are deeply buried into a component hi-
erarchy (proxy modeling pattern);

• establishing shortcuts between components in order to
reduce the overall simulation complexity of the model
(the shortcut modeling pattern);

• enforcing layer separation and encapsulation in multi-
layered architectures (the matriochka1 modeling pat-
tern).

We use the simple layered protocol stack model depicted in
figure 1 as a basic example model that will be systematically
referred to in the following sections.

This model represents a system made of two identi-
cal communicating nodes. These two nodes communi-
cate with each other using a simplified OSI-like protocol
stack made of the 4 upper layers of the OSI reference
model (application, presentation, session and
transport). These four layers have been chosen arbitrarily
and their implementation needs not to be further described.
At the lowest level, the two nodes communicate with each
other using transport level packets. These packets are handled
and delivered to each peer node by the central transport
network component.

1Matriochka is the Russian name of the Russian dolls.

transport

session

presentation

application
node

transport

session

presentation

application
node

system

transport
network

Figure 1. Two interconnected nodes communicating using
an OSI-like layered protocol stack.

3.1 The proxy modeling pattern
Let’s assume we want to model a road traffic network in

which some of the vehicles, not all, are equipped with the
nodes depicted on figure 1. Assume also that we want to reuse
an already existing hierarchical model of the vehicle depicted
on figure 2.

electronics

command

mechanics

vehicle

road

Figure 2. Decomposition of a simple vehicle model.

If we want to to plug the node component on this vehicle,
we should plug it somewhere in the electronics compo-
nent of the vehicle. However, as shown on figure 3, in order to
plug the node component in the vehicle, the latter needs
to be modified, in order to allow the node to reach the net-
work (grayed area).

These modifications makes the task of reusing components
more complicated. First notice that a node does not finally
communicate with a network but with another node. So if we
insert the same node model in two different kinds of vehicles
and then we want both vehicles to communicate with each
other, then both vehicles need to be modified as shown in the
grayed area. In fact, the same kind of modification need to be
applied to every kind of vehicle in which we want to plug the
node.

Even worse, if the second node is not a vehicle but a very
complex system and unfortunately the node is deeply buried
in that complex system, then all the hierarchical levels of this



command

mechanics

node

other
interconnected

elements

vehicle

electronics

road

network

Figure 3. Model of a communicating vehicle reusing node
and vehicle components.

complex system, potentially up to the root, need to be mod-
ified accordingly. However, it is worth stressing that object
oriented techniques such as heritage may help to reduce (fac-
tor) significantly the amount of such modifications.

These problems can be addressed using shared compo-
nents. The use of such components within the proxy usage
pattern is illustrated on figure 4. This new construction uses
a variant of the model of figure 1 in which the transport
component is used as a shared component. This means that
everywhere the shared transport component appears in
the model, it will have the same content and state (instead of
a new independent copy). Now let’s consider what happens
when the node component and its companion transport
are inserted together multiple times, in various places (vehi-
cles): every time, a new instance of node needs to be created
(because it is a normal, non-shared component), while we
reuse the same (shared) instance of the transport. There-
fore this unique instance acts as a proxy between all the node
instances. And since the transport and node are now lay-
ing close to each other, no modification is needed to the sur-
rounding components.

command

mechanics

node

elements
other

vehicle

electronics

road

transport

shared

Figure 4. Communicating vehicle of figure 3, with a shared
component used as a proxy.

To summarize, the proxy modeling pattern is useful for
modeling new situations in which a given component (eg.
the network) needs to be inserted in several places because
it exhibits a strong ubiquitous nature. In this case the proxy
modeling pattern allows for such an arbitrary insertion with-
out having to modify the target component. This greatly fa-
vors the reuse of existing components, because the required
modifications are local to the place where the new component
is added, without any side effect on the surrounding compo-
nents.

It is also worth stressing that we did not make any assump-
tion on the dynamics of the modifications: the problem ad-
dressed thanks to shared components in this proxy modeling
pattern is exactly the same if the insertion of a the new com-
ponent need to be done once for all (the node is a fixed com-
ponent of the vehicle) or dynamically during the simulation
(the node is a component that may be plugged in or removed
from the vehicle at any time). Hence, the benefits of sharing
component are the same in the standard DEVS or in the Dy-
namic Structure variant such as DS-DEVS[5].

3.2 The shortcut modeling pattern
The shortcut modeling pattern consists in using a shared

component to build interaction shortcuts between compo-
nents. This construction may be used to shorten the interac-
tion path between multiple components, and hence reduce the
simulation complexity of the model (see for example [1] for a
definition of the simulation complexity).

It is worth stressing that compared to the previous proxy
pattern, the main goal of this shortcut is to create an interac-
tion that does not physically exist in the real system: it is a
new, fake interaction, that is only added in order reduce the
simulation complexity. This kind of shortcut applies well to
layered architectures, such as networks, in which peers at a
given level need to use the services of lower layers to com-
municate with each other instead of directly exchanging mes-
sages.

The shortcut modeling pattern is illustrated by figure 5: the
application inner component is the same as the original
one described in figure 1; the app-sc-wrapper is a new
hierarchical component that replaces the application
component in the original model of figure 1 (both compo-
nent have exactly the same interfaces); the app-shortcut
component is a shared component that provides an alternate
shorter path (hence the shortcut name) between every compo-
nent in which it is plugged in. The decision to use this shorter
path or not to use it is taken dynamically, for every packet, by
the app-switch-filter component.

Thanks to this construction, an outgoing packet from the
application inner component will either be directed to-
ward the realistic path (the one with high simulation com-
plexity) toward the presentation component, or toward



application

presentation

app−switch−filter

app−shortcut
app−sc−wrapper

node

shared

...

Figure 5. The shortcut modeling pattern applied to the
application layer component.

the less realistic path through the app-shortcut compo-
nent.

Compared to DS-DEVS, the dynamic structure variant of
DEVS, notice that the decision to use the shortcut for a partic-
ular packet does not mean that subsequent packets will have
also to use the shortcut. Since both path are needed at any
time, the need here is not for a dynamic change of structure,
but for the simultaneous availability of both structures.

transport
network

system

node node
app−sc−wrapper

pres−sc−wrapper

ses−sc−wrapper

tpt−sc−wrapper

app−sc−wrapper

pres−sc−wrapper

ses−sc−wrapper

tpt−sc−wrapper

pres−shortcut

ses−shortcut

tpt−shortcut

app−shortcut

Figure 6. The shortcut modeling pattern may be applied (in-
dependently) to each level of a protocol stack.

This construction may be applied several times in the
same model. For example, as shown on figure 6, this short-
cut construction may be applied to each of the four compo-
nents that model a network layer: the application, as al-
ready described in figure 5 but also the presentation,
the session and the transport ones. In each case a
new dedicated “switch-filter” component needs to be imple-
mented.

Therefore, this shortcut modeling pattern provides a pow-
erful mean for adjusting the simulation complexity of a

model. However, deciding in which cases it is relevant to use
the shortcut path and in which cases it is not is a difficult
question because it strongly depends on the model and the
simulation goals. This question is not further addressed in this
paper.

3.3 The matriochka modeling pattern
The matriochka (or Russian doll) modeling pattern applies

to models of systems that exhibit a recursively hierarchical
structure. The OSI-like layered model of figure 1 is a good
illustration of such a system.

However, despite the flat design of the model depicted on
figure 1 reflects the usual layered representation of OSI-like
models, it does not fully reflect the hierarchical philosophy
of the OSI-layered reference model. Indeed, this flat design
somehow violates (ignores) one of the fundamental principles
of the layered approach (see for example [6] for a summarized
description of the OSI layered model philosophy and its as-
sociated terminology): an entity of level (N) can only interact
with entities of level (N + 1) and entities of level (N − 1).
Indeed, despite no violation of this principle appears in the
example of figure 1, this flat design cannot help to prevent
such a violation: one could, mistakenly or on purpose, de-
cide to connect the application component directly to
the transport component (provided that these two com-
ponents have compliant interfaces).

Since we are considering hierarchical modeling in this pa-
per, a convenient way to fully enforce this fundamental iso-
lation principle of layering is to enforce isolation by means
of the component hierarchy. At this point we have two op-
tions: either we decide that the upper-most (OSI-like) layer
is the outer-most component in the hierarchy or conversely
(and paradoxically), we decide that the lower-most (OSI-like)
layer is outer-most component in the hierarchy.

The first option is illustrated on figure 7: the left side
of the figure represents the component hierarchy that im-
plements the OSI-like layered hierarchy depicted on the
right side of the figure. However, since each layer except
the lowest one is implemented as a hierarchical compo-
nent, new components are introduced in order to distinguish
the implementation parts of the layers from their surround-
ing container (application entity, presentation
entity and session entity).

Figure 7 also clearly demonstrates why this matriochka
modeling pattern strongly appeals for shared components.
First, the actual interactions are supposed to occur at the low-
est (OSI-Layer) level. Therefore, we need some way of es-
tablishing connections between the inner-most transport
components, which leads back to the proxy modeling pattern
described in section 3.1.

Furthermore, the model depicted on figure 1 is a simplistic
case of a more general interaction model in which the follow-



entity
session

entity
presentation

transport

session

presentation

application

OSI Layers
hierarchy

entity
application

MUST
be shared

MAY
be shared session

applicationhierarchy
component

presentation

transport

prohibited
interaction

Figure 7. One of the two possible hierarchical implemen-
tation of the simple OSI-Layered model depicted in figure 1
that strictly enforces the OSI interaction policy.

ing interaction patterns could also occur:

• the services provided by an entity of level (N) may be
used by several upper entities of level (N +1) ;

• an entity of level (N) may be build on top of several
services of level (N − 1), provided by one or possibly
several entities of level (N −1).

Let’s consider the case of the first pattern. Applied to the
upper-most layer of our reference example, this leads to the
situation depicted on figure 8, where three application
components use the same presentation component. Ap-
plying the matriochka modeling pattern means that the
presentation component needs to be inserted at the same
time in each of the three application components, as
shown on figure 9. In other words, the presentation
component needs to be shared.

appli1 appli3appli2

presentation

...

Figure 8. An example of a more complex interaction pat-
tern: three applications interact with the same presentation
component (OSI-like layered representation).

If we generalize the previous example at every possible
level of our layered protocol stack, this means for any layer
(N), the component entity (object instance) that implements
the services of this layer (N) may be shared several times

entity1
appli

appli1

presentation

entity2
appli

entity3
appli

same shared

component
(hierarchical)

appli2

presentation

appli3

presentation
... ... ...

Figure 9. The matriochka modeling pattern applied to the
example of figure 8.

amongst entities of the upper layer (N + 1). The number of
times the same entity is shared depends on the number of
times entities of level (N +1) need the services of level (N).
Hence, this matriochka pattern strongly appeals for sharing
because situations are possible in which a component shared
at the highest level contains one or several sub-components
that are shared themselves at the next level and so own down
to the bottom of the hierarchy.

4 CONCLUSION
The goal of this paper was to raise an issue about sharing

components in DEVS. The issue is to decide whether DEVS
should eventually support sharing and if so, to decide how and
to what extent component sharing could be added in DEVS
and its variants. We presented three modeling patterns, that
represent three different kind of modeling problems for which
we claim that the sharing feature is useful.

The proxy modeling pattern describes a situation in which
sharing components helps to better support the ubiquitous na-
ture of a sub-system that may be found in various places of a
global system. In this situation, sharing component(s) avoids
structural modification on the surrounding components. The
shortcut modeling pattern describes a situation in which shar-
ing components helps the simulationist to lower the simula-
tion complexity of his models. In this situation, sharing is
used to install low complexity shortcuts in addition to the
regular (high complexity) interaction paths of the model. The
matriochka modeling pattern describes a situation in which
sharing components helps to recursively enforce encapsula-
tion in order to better reflect the layered architecture of a
(sub-)system. In this situation, sharing is used to decide which
(where) interaction paths should be allowed.

The technical issue of implementing the sharing feature in
a DEVS simulator is not addressed in this paper. For exam-
ple, sharing adds a noticeable complexity to the process of
switching from a sequential to a parallel and distributed im-
plementation of the simulator. More generally, as soon as a



component may have several parents in the hierarchy, which
is the definition of the shared component, we may face vari-
ous problems of concurrency of (hierarchical) control.

These technical issues are currently being partly addressed
by the few component models implementations that offer the
sharing feature, such as the ObjectWeb’s Fractal component
model[3], that fully support sharing and parallel and dis-
tributed execution thanks to the FractalRMI library2.

Experiments and further studies about sharing are cur-
rently conducted in the Open Simulation Architecture (OSA)
project3 which is component-based discrete-event simulator
built on top of the Fractal component model.

5 ACKNOWLEDGMENTS
This work is partly co-supported by the IST-FET “AEO-

LUS” project and NSERC.

REFERENCES
[1] B. P. Zeigler, H. Praehofer, and T. G. Kim, Theory of

Modeling and Simulation, 2nd ed. Academic Press,
2000.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns – Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley, 1994.

[3] E. Bruneton, T. Coupaye, and J. Stefani, “The frac-
tal component model specification,” Available from
http://fractal.objectweb.org/specification/, February
2004, draft version 2.0-3.

[4] S. B. Lim and D. Ferry, Jain SLEE 1.0 Spec-
ification, Sun Microsystems Inc. & Open
Cloud Ltd., 2002, final release, availble from
http://jcp.org/aboutJava/communityprocess/final/jsr022/index.html.

[5] F. Barros, “Modeling Formalisms for Dynamics Structure
Systems,” ACM Transactions on Modeling and Computer
Simulation, vol. 7, no. 4, pp. 501–515, 1997.

[6] H. Zimmerman, “OSI Reference Model–The ISO Model
of Architecture for Open Systems Interconnection,” IEEE
Transactions on Communications, vol. COM-28, no. 4,
pp. 425–432, April 1980, (Invited paper).

BIOGRAPHY
OLIVIER DALLE is assistant professor in the C.S. dept.

of Faculty of Sciences at University of Nice-Sophia Antipo-
lis (UNSA). He received is BS from U. of Bordeaux 1 and
his M.Sc. and Ph.D. from UNSA. From 1999 to 2000 he
was a post-doctoral fellow at the the french space agency

2http://fractal.objectweb.org/fractalrmi/index.html.
3http://osa.gforge.inria.fr/

center in Toulouse (CNES-CST), where he started working
on component-based discrete event simulation of complex
telecommunication systems. In 2000, he joined the MAS-
COTTE project, a common team of the I3S-UNSA/CNRS
Laboratory and the INRIA Research Unit, in Sophia Antipo-
lis.

GABRIEL WAINER received the M.Sc. (1993) and Ph.D.
degrees (1998, with highest honors) of the Universidad de
Buenos Aires, Argentina, and Université d Aix-Marseille
III, France. In July 2000, he joined the Department of Sys-
tems and Computer Engineering, Carleton University (Ot-
tawa, ON, Canada), where he is now an Associate Professor.
He has been a Professor at the Computer Sciences Depart-
ment of the Universidad de Buenos Aires, Polytech de Mar-
seille, and a Visiting Research Scholar at the ACIMS (Uni-
versity of Arizona) and LSIS (CNRS, France). He is Asso-
ciate Editor of the Transactions of the SCS, and the Interna-
tional Journal of Simulation and Process Modeling. He is a
chairman of the DEVS standardization study group (SISO),
Director of the Ottawa Center of The McLeod Institute of
Simulation Sciences and chair of the Ottawa M&SNet.


