PARALLEL ALGORITHMSFOR CELLULAR MODELSSIMULATION

SHAFAGH JAFER
and
GABRIEL A. WAINER
Department of Systems and Computer Engineering, Carleton University, 1125 Colonel By Drive
Ottawa, Ontario, K1S 5B6

ABSTRACT

DEVS is a sound formal modeling and simulation (M&@&mework based on generic dynamic system coec&psll-
DEVS is a formalism for cell-shaped models basedD&VS. This work presents a new simulation techeidor
execution of DEVS and Cell-DEVS models in paradlakironments. These techniques are modificatiortheooriginal
Time Warp mechanism offered by WARPED kernel. Thviarp functionalities are revised to include two redgorithms
namely, Local Rollback Frequency Model (LRFM) andblal Rollback Frequency Model (GRFM). The resytin
simulator is used as new simulation engine for CDar+ M&S toolkit that implements DEVS and Cell-DEW®ories.
The results obtained allowed us to achieve corsiderspeedups due to the reductions that LRFM &RENGprotocols
perform on number of rollbacks and anti-messages.
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1. Introduction

Modeling and simulation (M&S) methodologies havedrae crucial for implementing, designing, and
analyzing a broad verity of systems. Among thetawgssimulation techniques, tH2EVS (Discrete Event
System Specificatiorfprmalism [1] provides a discrete-event M&S apptoadich allows construction of
hierarchical models in a modular manner. DEVS &and formal framework based on generic dynamic
systems concepts that allows model reuse, and tiedum development and testing time due to its
hierarchical approach in constructing modésll-DEVS [2] is an extension to DEVS which integrates
DEVS and cellular automata by presenting eachasein atomic DEVS model.

Cell-DEVS introduced a novel mechanism for compatabased on asynchronous cellular models with
explicit timing constructions. The technique hasrbesed to develop a wide variety of models inedét
fields, ranging from environmental sciences, teaffiiology and physics. When large complex modeds a
defined, the computing power of a parallel simulatan improve execution times. Here, we present new
technigues for executing DEVS and Cell-DEVS modlelparallel and distributed environments based on
the WARPED kernel [3], an implementation of the €itvarp protocol [4]. Our optimistic simulator,
called as PCD++, is built as a new simulation eador CD++ [5], an M&S toolkit that implements the
DEVS and Cell-DEVS formalisms. Algorithms in CD+ndathe WARPED kernel are redesigned based on
Near Perfect State Information technique to camy optimistic simulations using a non-hierarchical
approach that reduces the communication overheaeh few algorithms namely, Local Rollback
Frequency Model (LRFM) and Global Rollback FrequeModel (GRFM) have been implemented and
used by our PCD++ simulator. These two algorithmgehbeen tested using different Cell-DEVS models.
Here we present in details an evacuation model gfig and a model of the Synapsin-Vesicle readtion
neurons. Also, a brief description of two other misdhamely Fire Propagation model, and Game of Life
model are provided.

We have designed many Cell-DEVS models which vargite, complexity, and functionality. As the
main contribution of this work, we have implementggd new optimism control mechanisms based on
NPSI protocols. These two protocols, namely LRFM &RFM were integrated into the existing optimistic
PCD++ simulator and therefore two distinct optimisontrolling simulators were modeled. This led to



creating a workbench consisting of four differeimidators; Conservative, Pure Optimistic, LRFM-lzase
Optimistic, and GRFM-based Optimistic simulatorkisTworkbench serves as simulation environment that
can be used as the base in studying parallel siimotaof DEVS and Cell-DEVS. On the other hand, the
precise and detailed testing scenarios that wepegsenting can be used along with this workbench to
analyze the capability, performance, and robustaEBECD++ simulators.

2. Background

DEVS [1] is a formalism for modeling and simulatidor Discrete Events Dynamic Systems that
provides a framework for the definition of hieraicai models in a modular way by decomposing thé rea
system into behavioral (atomic) and structural fted) components. DEVS theory provides a rigorous
methodology for representing models, and it doesgmt an abstract way of thinking about the woiitth w
independence of the simulation mechanisms, underlyardware and middleware. A DEVS atomic model
is formally defined by:

M=<X,Y, S,8, Oex A, t8>,
where
X={(p,v) | pO IPorts, VO X,} is the set of input ports and values;
Y ={(p,v) | pd OPorts, \J Y} is the set of output ports and values;
S is the set of sequential states;
S S — Sis the internal state transition function;
Sec Q X X = S is the external state transition function, where
Q={(s,e) | 4I5S, 0 <O <ta(s)}is the total state set, e is the tim@sta since the last state transition;
A S =Y is the output function;
ta: S— R'y.is the time advance function.

The semantics for this definition is given as falfn At any time, a DEVS coupled model is in a stdie
S. In the absence of external events, the modélstel in this state for the duration specifiedthgg).
When the elapsed timesta(s), the state duration expires and the atomic matdlkesend the outpuk(s) and
performs an internal transition to a new state ifigelcby &;x(s). Transitions that occur due to the expiration
of ta(s) are called internal transitions. However, sted@dition can also happen due to arrival of anragte
event which will place the model into a new statecified byde,(s,e,X); where s is the current state, e is the
elapsed time, and x is the input value. The timeade function ta(s) can take any real value fraim®.

A DEVS coupled model is composed of several subisaata it is formally defined by:

CM=<X,Y, D, {Mq| dID}, EIC, EOC, IC,Sdect>,
where
X={(p,v) | pO IPorts, VO X,} is the set of input ports and values;
Y ={(p,v) | pd OPorts, \J Y} is the set of output ports and values;
D is the set of the component names, and the folpwequirements are imposed on the componentshwhi
must also be DEVS models:
For each d1 D, Mg = (Xg, Yd, S Oints Oexs 4, 1) is @ DEVS model.
Sdect: 2° — D is the tie-breaking function for imminent compats.

Due to the closure property, a coupled model isndgd as a new DEVS model [1]. This property
clarifies that the overall behavior of a coupleddelois equivalent to a basic atomic model, andettoee
allows hierarchical model construction.

Cell-DEVS [2] is an extension to DEVS which integrates DEM® @ellular automata by presenting
each cell as an atomic DEVS model. Two types oifgnaelays can be used, nhamilgnsport andinertial
[6]. When transport delay is used, the future vatuadded to queue sorted by output time, alloviireg



previous values that were scheduled for outputhawe not yet been sent to be kept. On the othett,han
inertial delays allow a preemptive policy at whigty previous scheduled output value will be deleted
the new value will be scheduled. Cell-DEVS formalis defined by:
TDC =<X Y, 1, S,6, N, d,0nt, Oext, T, A, D >

where X is a set of external input evend;is a set of external output evenksiepresents the model's
modular interface; S is the set of sequential stéde the cell;8 is the cell state definition; N is the set of
states for the input events; d is the delay forceig d;, is the internal transition functiod, is the external
transition functiony is the local computation functioh;is the output function; and D is the state's dorat
function. The model uses N inputs to compute ite state. These inputs, which are received thrabgh
model's interfaceX, Y), activate the local computing functiot).(State §) changes can be transmitted to
other models, but only after the consumption otkay d). Two kinds of delays can be defingchnsport
delays model a variable commuting time, amgttial delays, which have preemptive semantics (scheduled
events can be discarded). Once the cell behavidefined, a coupled Cell-DEVS is created by putting
together a number of cells interconnected by ahfithood relationship.

By integrating atomic Cell-DEVS, coupled models dan constructed representing the cell space. A
coupled Cell-DEVS model is formally defined as dois:

GCC = <Xligt, Yligt, I, X, Y, n, {t,...t.;}, N, C, B, Z, select >

whereXlist is the input coupling listYlist is the output coupling list; represents the definition of the
model’s interfaceX is the set of external input evend;is the set of external output eventsjs the
dimension of the cell space;ft.,t;}is the number of cells in each of the dimensidwss the neighborhood
set; C is the cell space; B is the set of bordls;c2is the translation function; arsdlect is the tie-breaking
function for simultaneous events. The above forsnalexplains that a coupled model is composed of an
array of atomic cells with given size and dimensiarhere each cell is connected through standardDEV
input/output ports to the cells defined in the héigrhood . Since the cell space is finite, the bsaf the
cells are either connected to a different neighbodhthan the rest of the space, or they are “wrdpje
which they are connected to those in the opposite osing the inverse neighborhood relationship.
However, border cells have a different behavior thu¢heir particular locations, which result in ann
uniform neighborhood. A Cell-DEVS coupled modeinformally presented in Fig. 1.
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Fig. 1. Description of a Cell-DEVS atomic model [6]

CD++ [5] is a modeling tool that implements the DE®nd Cell-DEVS theories by applying the original
formalisms. The toolkit includes facilities to hliIDEVS and Cell-DEVS models. CD++ toolkit also
includes an interpreter for Cell-DEVS models [6heTlanguage is based on the formal specificatidns o



Cell-DEVS. The model specification includes theinitibn of the size and dimension of the cell spabe
shape of the neighborhood and the type of cellisléxng. The cell's local computing function is ihefd
using a set of rules with the forROSTCONDITION DELAY { PRECONDITION }. These indicate that
when thePRECONDITION is met, the state of the cell will change to thsigieatedPOSTCONDITION
after the duration specified RYELAY. If the precondition is not met, then the nexerid evaluated until a
rule is satisfied or there are no more rules.

In parallel and distributed environments the entisk of simulation is divided among the processors
nodes (Logical ProcessL-P) and therefore each one of them handles a snwtilenk of the simulation
while the whole process of execution takes plageairallel and as a result in a significantly redltee.

In sequential simulations, events are executed bagenestamp order; in contrast, parallel andrithisted
simulations require a mechanism to ensure thatelelt of concurrent execution is identical to tbét
sequential one [7]. Therefore, synchronization agnbRs is needed. The most widely used strategies fo
event driven simulations can be classifiedCamservative (or Pessimistic), in which causality violations
are strictly avoided [8], an@ptimistic [4], in which causality errors are fixed by thetina of rollbacks.

Conservative synchronization can cause deadlockéchwcan be avoided by providingokahead
information (i.e., the smallest time stamp of tsvrevents that a process can schedule in the Jutud
messages are responsible to carry out the lookah&athation among LPs. This way each LP, based on
the lookahead information that it receives fromadher LPs can derive a lower bound on the timmgta
(LBTS) of the events that it will receive in futur&s a result, the LP would know which event isestf
process. The biggest drawback of the conservatimehsonization approach is the time wasting flow of
null messages which degrade the simulation perfocmaignificantly. Optimistic techniques [4] coresid
that each LP has a Local Virtual Time (LVT) whiativances every discrete step as events are exemuted
the process. Therefore, time warp processes exdoeieown portion of the simulation based on LP’s
LVT. Since every LP has its own LVT, causality esroccur when LPs send messages to each other. This
way, an LP may receive a message with time stangdlesnthan its current LVT. Such events are reférre
to as straggler events. Once a straggler evept@ved the process will rollback. Rollback is tiperation
performed upon reception of a straggler event, ehbe process recovers from the causality error by
undoing the effects of all the events that werepssed and had timestamp greater than the time sthm
the straggler event. Therefore, these messages faksely sent to other processes and now must be
cancelled. This cancellation is performed by segdinti-messages.

Optimistic approaches offer two important advansageer conservative techniques:

() They have a higher degree of parallelism unlike ¢baeservative approaches where they are
overly pessimistic and force the simulation to hehsequentially when it is not necessary.

(i) Conservative approaches rely very much on appinagpecific information when making run-
time decisions on whether it is safe to processetfent or not. Optimistic mechanisms allow a
simplified software development and more transgasgnchronization.

3. Definition of a Parallel Simulator

PCD++ optimistic simulator implements the DEVS &ll-DEVS formalisms in parallel and provides
the framework for building and executing DEVS arelDEVS models in parallel environments using the
Time Warp protocol. We have modified CD++ sequérgimulator to enable parallel and distributed
simulations by implementing optimistic synchroniaatprotocol [4]. PCD++ executes the simulation via
several Time Warp processes [3] by exchanging sitagiped event messages. The Time Warp protocol



used by PCD++ consists of two parts: kbeal control mechanism and theglobal control mechanism. The
local control mechanism which is provided in eadmd Warp process is in charge of rollback operation
which include: sending anti-messages, restoringstate of the LP, readjusting Local Virtual TimeJT),
etc. On the other hand, the global control mecianiakes care of global issues such as memory
management, /O operations, and termination detecti

We used the WARPED [14] simulation kernel, whiclaisonfiguration middleware that implements the
Time Warp mechanism and a variety of optimizatidgoathms. Warped uses the Message Passing
Interface (MPI), a standard specification of messpgssing library for high-performance communigaio
on both massively parallel machines and on worikstatclusters [12]. We have used the MPICH [12]
portable implementation of MPI which provides a ie&h for MPI implementation research and for
developing parallel and distributed application®+& simulation is driven by message passing.
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Fig. 2. Model and Processor hierarchies.

As seen on in Fig. 2, there are four types of PCPracessors (associated to the Modeling hierarchy):
Smulator, Flat Coordinator (FC), Node Coordinator (NC), andRoot Coordinator (RC). When DEVS and
Cell-DEVS models are executed over multiple machimedistributed processor structure is construicted
PCD++ to carry out the simulation. Lets consider fisllowing example to see how partitioning takéscp
(on two machines). Fig. 3 shows a scenario with fdomic models (A1, A2, A3, and A4) where Al and
A2 are part of the coupled model C1, and C1, aedbther two atomic models A3, and A4 are then pfart
the TOP coupled model. Since we will execute theukition on two machines, we will allocate modefs b
putting A1 and A2 in Machine 0, and A3 and A4 indfimel.
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Fig. 3. Example model structure and distributedcpssor structure for the example
In this case, two logical processes are createddrOLP1 (one per machine). LPs group together the
PCD++ processors on the machine they belong toallmessages are handled by the FC, and the remote



messages are handled by the NC and then sent &ppinepriate Simulator through the destination Ha
root coordinator is created only on machine 0. It starts the sitfaiaand handles I/O operations. The NC
on each machine is the local central controlleeaoh LP and the end point of inter-LP communication
The FC residing between the NC and the Simulatresponsible for synchronizing the execution of it
child Simulators. Finally, the Simulator is respibies for executing DEVS abstract functions defimednhe
atomic models. When a Simulator sends a messagaadther Simulator sitting on a remote machine, the
message is first directed to the FC, then to tlealldlC through direct communication. Once the mgssa
gets to the NC, it will be forwarded to the dedfima NC through MPI communication. On the receiving
end, the NC will then forward the message to ttsidation Simulator through the child FC.

There are two types of communications among Isgxhronous intra-LP communications, carried out
by all PCD++ processors, arasynchronous inter-LP communications, carried out only by NGénce
inter-LP communications are asynchronous, the N@gire a special structure named\&sMessage Bag
to handle message passing between LPs with diffdreis. The following properties hold foNC
Message Bag:

(i) Messages insideMessage Bag can have different timestamps.

(i) The time of aMessage Bag is equal to the minimum timestamp among the coathimessages. If
the Message Bag is empty, then its time is set to infinity.

(iif) Messages inside lflessage Bag are processed based on their timestamp in anaisiog order.
Once a message is processed, it is then removedtire bag, and the bag’s time is advanced to
the next minimum value among the timestamps of¢heaining messages. Once all the messages
are processed and removed from the bag,Mbssage Bag's time is restored back to infinity
implying that the bag is empty.

In contrast, synchronous intra-LP communicatiores teandled by the Simulators and the FC since they
are local to the LP. Similar to tidC Message Bag, for intra-LP messages the FC holdsessage bag. In
this case, when two local Simulators (i.e. sittingthe same LP) need to communicate to each dtiesyr,
send the message to the local FC, and then theagessll be directed to the destination local Sewoit by
the FC. There is no direct communications betwaemnlators, even the ones sitting on the same LRalLo
Simulators can only communicate with each othesugh their FC.

PCD++ processors exchangentent or control messages. The first category includes the external
messagex) and the output messagg,(and the second category includes the initiadbramessagel), the
collect message@), the internal message)( and the done messade)( External and output messages are
used to exchange simulation data between the modélialization messages start the simulation)eail
and internal messages trigger the output and #te stansition functions respectively in the atoREVS
models, done messages handle synchronization lyirgarthe model timing information. Each PCD++
processor defines its own functionality for eaghetpf message, as follows:

Simulator: upon receiving I( 0) from the parent FC, the current simulationetify) and the next
scheduled event Jtare recorded. Then the simulator initializes Hagiables defined in its associated
atomic model, and after that, it informs its pare6t of the value of,tby sending alone message stamped
with time 0. When a@, t) message is received, the Simulator invokes thyubdunction £) of the atomic
model and as a result an output messgge (s sent to the FC. After this, the Simulator vedind D, t) to
the FC with § = O to indicate that it is imminent. Following thellect message, &,f) will arrive to trigger
internal/external/ confluent function of the atomiodel depending on the timing of the message hed t
status of the Simulator’'s message bag. A messagjeig simply inserted into the Simulator’s messagg.b



Flat Coordinator: when (, 0) is received, the FC records the total numlbéiscchildren and forwards
the (, 0) message to each child. After this, the FC saait all its children to respond to this initiaiion
by sending back &), 0). The FC will only pass the control over to th€ if all its children have finished
their previous computation and have sent done rgessas notification messages. Upon receivin@at)
message, the FC forwards it to all imminent Sinarkgnd will keep a record of this for later usekhow
which children need to do state transitions whigrt)(is received). Moreover, wheg, t) is received, the
FC searches the model coupling information to find the correct destination. The destination isezitan
input port on an atomic model, or an output porttom topmost coupled model. In case of receivigg)(
message, the FC will simply insert the message iteatmnessage bag. Upon receivirfg ) message, the
external messages inside the FC's message baduahed to the local receiving Simulators. This will
trigger the imminent Simulators to perform a sta#msition. Finally, when al}, t) message is received
from a child Simulator, the FC updates the chitg's

Node Coordinator: upon receivingl( 0), the NC simply forwards it to the child FC.dase of receiving
(x, 1), NC will insert this message into thNC Message Bag. These external messages contain values sent
from remote Simulators to local ones. Whert)is received the NC simply forward it the Rooth#s to be
sent to the environment). Reception oy {) message by the NC from a child FC indicates tiiatis a
response to a control message that was previoestyosit by the NC.

Root Coordinator: this processor only handles environment-orientetpudumessages during the
simulation. Output to the environment is done tigtoa test file called as output file or OUT file.

Aside from the functionalities of each of the PCDprocessors, we have modified the WARPED [3]
kernel in order to run simulations under differgmbtocols. These protocols are modifications of the
optimistic one that WARPED implements. The idetoiseduce the number of rollbacks by suspending the
LP that has large number of rollbacks and therestopping it from flooding the net with anti-messag
However, the LP will still be able to receive inmutents and they will be inserted into the corresirg
message bags. After a predefined duration, theesdspP is released and will go on simulating. These
protocols [15], namely Local Rollback Frequency Mb(LRFM) and Global Rollback Frequency Model
(GRFM) are based on the “Near Perfect State Infaoma- NPSI” protocol [16]. The NPSI protocol
implements the Elastic Time mechanism. Briefly,sfiaTime is composed of two parts: (i) identifyitige
NPSI of the simulation, and (ii) translating the SIfh optimism on the simulation objects.

Each part can be implemented in many ways. The e@igept is to associate each LP withotential
error (PE) to control the optimism of LLPDuring the simulation run, the value of each Blkept updated
by evaluating a function calledl1 which uses state information that is received fthmfeedback system.
Then, the functioM2 translates dynamically every update of PElelays in the execution events.

3.1. Local Rollback Frequency Model

The Local Rollback Frequency Model (LRFM) proto@bnly based on local information of the logical
processes. That is, the simulation object withicPawill be suspended or allowed to continue siningat
only based on the number of rollbacks it had. Fivit and M2 functions must be defined:

Function M1: The error potential of a simulationjeatt is the number of rollbacks that the object had
from a time T1 until the actual time T2, havingtti@ - T1< T, where T is the interval after which the
local number of rollbacks of the simulation objgets restarted back to zero.

Function M2: If the number of rollbacks for a simtibn object at the interval T is greater than a
specified value, then the object is suspended, tadp@ conservative behavior. By suspending the



simulation object, the LP where the object residileswill still be able to receive incoming eventsi the
events are not processed until the simulation oligemgain given the permission to resume. Howefére
number of rollbacks of the simulation object issleban the predefined value, then the object simsila
aggressively, adopting its usual optimistic beha@s in Time Warp).

To implement this protocol each LP has to be infminthe maximum number of allowed rollbacks
before suspension of the simulation objeatx_rollback), and the duration for which the simulation object
will stay suspendedériod). The algorithm is presented in Fig. 4.

1. In each LP, at the beginning predefine:
max_rollbacks and period
2. In each simulation object, at the simulation start:
previous_time =0
3. In each object, when the LP is scheduled to run:
actual time = Warped. TotalSimulationlTime ()
if (actual_time - previous_time >= period)
simulateNextEvent()
previous_time = actual_time
rollbacks =0
else
if (rollbacks < max_rollbacks)
simulateNextEvent()
/* else, SUSPEND the simulation object */

Fig. 4. LRFM algorithm

From the LRFM algorithm we see the following thpeessible scenarios:

. The LRFM period has expired, therefore the simatatibject starts a new period, its number of
rollbacks gets reset to zero, and it is given #mernission to continue its execution.

. The period has not yet expired. If the number dibazks of the simulation object is less than
the allowable range (i.enax_rollbacks), it continues its normal execution.

. The LRFM period has not yet expired, but the numioér rollbacks has exceeded

max_rollbacks, thus it gets suspended for the entire duratiche@fturrent LRFM period.

With the inclusion of this protocol, in every siratibn cycle an object will simulate the lowest tgtaamp
event if the number of its rollbacks in the peribé smaller than the maximum allowable rollbacksiat,
the object suspends executing until the new peoiotdme T, after which Warped restarts the rollbacks
number to zero. In order for an LP to be able nauthte objects that mustn't be delayed, we havefiedd
the scheduler policy to choose the next objecintwlate. It chooses the first object of the inputr list
(that is, the object with the lowest input evemhastamp) only if its rollbacks count does not ercee
max_rollbacks; else, the scheduler checks the next object ofrijigt event list and so on, until it finds an
object in condition to be simulated or until it chas the end of the list.

3.2. Global Rollback Freguency Model



In the Global Rollback Frequency Model (GRFM) puimb each simulation object uses global
information in such a way that among all the siriataobjects residing on all LPs, the one with ¢eet
number of rollbacks must be suspended for the iuratf time defined at the beginning of the simialat
Therefore, at each simulation cycle all the LPstrhusadcast the information regarding the rollbeclints
of all of their simulation objects. As in LRFM, Mind M, functions must first be defined:

Function M1: The error potential of a simulationjesdt is the number of rollbacks that the object had
minus the maximum number of rollbacks of the otkienulation objects (both local and remote ones)
participating in the simulation, from a time T1 iitlhe actual time T2, having that T2 - EIT, where T is
the interval after which the local number of rottka of the simulation object gets restarted.

Function M2: If the number of rollbacks for a simtibn object at the interval T is greater than pthe
number of rollbacks of the other simulation objetien the object is suspended, adopting a cortberva
behavior. By suspending the simulation object, ltFewhere the object resides on will still be alde t
receive incoming events, but the events are notgzsed until the simulation object is again givies t
permission to resume. However, if the number ofbeaks of the simulation object is less than the
predefined value, then the object simulates agiyedgs adopting its usual optimistic behavior (asTime
Warp). The algorithm is presented in Fig. 5.

1. In each LP, at the beginning predefine: period
2. In each simulation object, at the beginning predefine:
previous time =0
max_rollbacks = 0
3. In each simulation object, when the LP is scheduled to run:
actual time = Warped. TotalSimulationlTime ()
if (actual time - previous time >= period)
simulateNextEvent()
previous time = actual time
rollbacks = 0
else
if (rollbacks < max rollbacks)
simulateNextEvent()
/* else, SUSPEND the simulation object */
4. For i from 1 until the number of LPs
if (7 is NOT this LP id)
send to LP i the number of rollbacks of the objects of the LP id
Subroutine that receives the number of rollbacks from other LP:
Forj from 1 until the numbers received
If (rollbacks[j] > max rollbacks)

max_rollbacks = rollbacksl[j]

Fig. 5. GRFM algorithm

As in LRFM, the GRFM algorithm yields three diffatescenarios:

- The GRFM period has expired, therefore the sitmaraobject starts a new period, its number of
rollbacks gets reset to zero, and it is given t@rnission to continue its execution.

- The GRFM period has not yet expired, if the numdferollbacks of the simulation object is lessrtha
the allowable range (i.enax_rollbacks), then the simulation object continues its noreadcution.



- The GRFM period has not yet expired, but the nemds rollbacks has exceedawx rollbacks, thus
the simulation object gets suspended for the edtiration of the current GRFM period.

The main difference of GRFM and LRFM is the wmgax rollbacks is initialized. In LRFM, the
maximum allowable rollbacks are predefined by tkerwat run time, while in GRFM maximum allowable
rollbacks is set to the largest number of rollbaakall participating simulation objects. Thatughenever a
simulation objects is scheduled to execute, it nsesid the number of rollbacks it had so far toottler
simulation objects, both local and remote onesaAssult, at any timmax_rollbacks is the largest number
of rollbacks among all the existing simulation altge

By implementing LRFM and GRFM protocols in our opistic PCD++ simulator, different simulation
results can be collected since the Rp&fiod (and in case of LRFM thmax_rollbacks) can be modified
very easily at the beginning of the simulation. sTls done by changing these values in the configura
files right before the simulation starts and theref there is no need to rebuild the whole simulet@rder
for these modifications to have effect.

4. Testing models

In this section we introduce the description ofati#nt models we used to carry out the testinchef t
simulation engine, including a Synapsin-Vesicle dtiea at Nerve Terminal (which represents the
interaction of synapsin with vesicles at nerve ieat), Fire Spread (illustrates fire propagatioraiforest),
and Ship Evacuation (an emergency ship evacuatiemasio). We have run a variety of tests to anallgee
performance of our existing PCD++ simulators; tiptiroistic and the conservative as well as our LRFM
and GRFM Time Warp-based protocols.

4.1. Ship Evacuation Model
The first model we used represents an evacuatienasio of a ship under emergency [9]. The rules
defining the model are based on the following retstns:
(i) Each cell representing a person on the ship, akesllits shortest path toward the exit. During
initialization phase, people are placed randomigrig empty cell.
(i) People run in their initial direction until they@yunter another person or an obstacle (e.g. wall).
At the end of simulation, there should be no offede the ship. The neighborhood of each cell cstgsi
of 10 cells (i.e. they can be walls, exit doorygde, or empty cells) as shown on Fig. 6.

UU (-2,0)
UL(-1,-1) | U(-1,0) | UR(1, 1
L (0,-1) (0,0) R, 1 RR (0, 2
DL (1, -1) D(10 | DR(, 1

Fig. 6. Cell neighborhood
Each value on the cell space defines a distint¢,ssaich as the type of the cell: wall, empty, dgior, a

moving person. Also each type of movement is gevaitate value in order to identify the next positio
Table 1. State values and their description

Name | Value Comments
N/A 0 Unknown Empty cell
Wall 1 Represents an obstacle or a wall.




Name | Value Comments
Exit 2 Represents an exit (e.g. stairs, dc
ED 3 Empty cell and its down (D) cell is the shortedhpa the nearest ex
ER 5 Empty cell and its right (R) cell is the slesttpath to the nearest exit.
EU 7 Empty cell and its up (U) cell is the shorfgsth to the nearest exit.
EL 9 Empty cell and its left (L) cell is the shortestipto the nearest e»
FD 4 Full cell (cell with person) and its down (D) cillthe shortest path toe exit
FR 6 Full cell (cell with person) and its right (Bll is the shortest path to the exit.
FU 8 Full cell (cell with person) and its up (U) celltlee shortest path to the e
FL 10 Full cell (cell with person) and its left (L) cedl the slortest path to the ex

Based on these values, we define different ruleshi® movement of people in the vessel. The folhgwi
rules initialize the model by calculating the skesttpath. When a cell detects that one of its lattcells
has changed its state to “defined”, it would knbattthe attached cell is the shortest path.

Result Precondition
3 or4 (ED or FD) (0,0) = Undefined and (1,0) &ided.
50r6 (ER or FR) (0,0) = Undefined and (0,1) ifirck.
7 or 8 (EU or FU) (0,0) = Undefined and (-1,0) &fided.
9 or 10 (EL or FL) (0,0) = Undefined and (0, -1pifined.

The following rules define the case when a cellvimdhat a person will move towards it, which will
occur if it is empty and it is the shortest pattatdeast one cell with a person occupying it.

Result Precondition
4 — FD state (0,0) =ED and ((0,1) = FL or (-1,0) = 8X0,-1) = FR))
6 — FR stat (0,0)=ER and ((1,0) =FU 0-1,0) = FD or ((-1) = FR
8 — FU state (0,0)=EU and ( (1,0) = FU or (0,1) =d#(0,-1) = FR)
10— FL statt (0,0)=ELand ((1,00=FUor (0,1) =FL ¢1,0)=FD

The next rules define when a cell occupied wittreespn is attached to the exit. Then, the cell knihas
a person will leave it and exit.

Result Precondition
3— ED state (0,0) = FD and (1,0) is exit
5— ER stat (0,00=FRand (0,1) is e
7— EU state (0,0) = FU and (-1,0) is exi
9— EL statt (0,0) = FL and ((-1) is exi

Finally, the next rules define when a cell knowatth person will leave it when it is not near ait.ex
person will leave it when the cell is occupied byesison and its shortest path cell is empty. Howewsy
one person can move to the empty cell when moredha person is trying to move to the same cethil
case, the priority is first with the person wharighe upper cell, second the one in the right, d¢bitd the
one in the down cell, and finally the one in thi éell has the lowest priority.

Result Precondition
3— ED state | (0,0) = FD and down (D) cell is empty.

5— ER stat | (0,0) = FR and right cell (R) is empty and UR,RRdJ &R cells havino person movinto R.
7— EU state | (0,0) = FU and upper cell (U) is emptgt &l and UR don’t have a person moving to U.




Result Precondition
9— EL statt | (0,0) = FL and le cell (L) is empty and UL doesn’t have a person mgupL.
Fig. 7 shows an extract of the model’s definitinrCD++.

[top]
components : ship

[ship]
type : cell dim : (20,20) delay : transport
defaultDelayTime : 20 border : nowrapped

neighbors : (-2,0) (-1,-1) (-1,0) (-1,1) (0,-1)
neighbors : (0,0) (0,1) (0,2) (1,-1) (1,0) (1,1)

localtransition : ship-rule

[ship-rule]

rule : {3 + randInt(l)} 0O {(0,0)=0 and (1,0)>1 and (1,0)<11}
rule : 4 100 {(0,0)=3 and ((0,1)=100r(-1,0)=4 or (0,-1)=6)}
rule : 3 100 { (0,0) = 4 and (1,0) = 2}

rule : 3 100 { (0,0) = 4 and odd((1,0)) }

rule : {(0,0)} 100 { t }

Fig. 7. Definition of ship evacuation model in CD++

The ship evacuation model can be modified by addioge exit doors or changing the position of these
cells. As presented in Fig. 8, four different typdscells appear on the grid: empty spaces, wpésple,
and exit doors. The final result of the simulatgiiows no presence of people, i.e. the ship is etadu

Fig. 8. Model Execution Results; initial valuesidl execution

4.2. Synapsin-Vesicle reaction Model

We built a model representing the reserve poolyofaptic vesicles in a presynaptic nerve terminal,
predicting the number of synaptic vesicles reledsmah the reserve pool as a function of time untrex
influence of action potentials at differing freques. Time series amounts for the components are
obtained using rule-based methods (the rules ditfigeCell-DEVS) [10].

Synapsin is a neuron-specific phosphoprotein thmatshto small synaptic vesicles and actin filamémis
phosphorylation-dependent pattern. Microscopic nsdeave demonstrated that synapsin inhibits



neurotransmitter release either by forming a cageral synaptic vesicles (cage model) or by anclgorin
them to the F-actin cytoskeleton of the nerve teainil1].

We modeled the molecular interactionsghapsin (S) with vesicles (V) which occur inside a nerve cell.
The model describes the behavior of synapsin monemeitil reaching a vesicle and binding to it. ©nc
binding has occurred, dependingaifrate V and S can again go apart and break their birsdifigeonrate
and offrate describe how often bindings occur or break thdarafThe following formula describes the
nature of the reaction:

S+V« SV

From the above formula, the left hand side of theation demonstrates the binding scenario where
synapsin andvesicles perform a bind at a rate specified dyrate, while the right hand side of the equation
illustrates the bind-break scenario wherespmapsin-vesicle at anoffrate which is always smaller than
onrate breaks apart and agasgnapsin and vesicles get released. Thesynapsin and vesicles can again
perform binding and break apart then after. Thisa¢éign shows an on-going process of “binding” and
“breaking apart” which depends affrate/onrate. The larger theffrate is, the more bindings get broken
apart. Similarly, the larger thenrate is, the more V-S binds are produced. Three diffeseenarios are
modeled: 1) V is stationary (with a fixed position cell space), and S is mobile, 2) V is mobile &nid
stationary, and 3) V and S are both mobile (leadmaximum number of total movements and therefore
bindings).

The coupled Cell-DEVS model for this applicatiord&scribed as follows.

M=<I,X,Y,Xlist,Ylist, n, N,{m,n}, C, B, Z, select>
Xlist=® Ylist=} n=9 I=<P*,P> with P‘={ ®},PY={®};
N={(-1,-1), (-1,0), (-1,1), (0,-1), (0,0), (0,101,-1)(1,0) (1,1)};
X=Y={0,1,2,11,12,13,14,21,22,23,24,31,32,33,34,2)48,44};
m=26; n=22; B={b}; C={Cij/i €[1,26], je[1,22]}
select ={ (-1,-1), (-1,0), (-1,1), (0,-1), (0,0p,1), (2,-1), (1,0), (1,1) };
Z is defined by Cell-DEVS specifications.

The cell space, the value 1 was used to represesmd/the value 2 was used to represent S. Theerumb
0 represents an empty cell for which a mobile Sarzmupy. To give direction to the V (although thedal
assumes fixed V) or S, a two digit number was uBed example, the following represent:

11 “up” moving V 21 “up” moving S
12  “right” moving V 22 “right” moving S
13 “down” moving V 23 “down” moving S
14 “left” moving V 24 “left” moving S

As we can see, Cell-DEVS provides great supportdéining these models, for having independent cell
states and random mobility of cells, provide anedigat environment to simulate the process of sgimap
vesicles interactions of a nerve. As mentionedierarthe model constructed can be further extertded
include the movement of both synapsin (S) and esi@/) as well as defining different off and ortes
Aside from V-S reactions, the model can also inelédtins, which bind to synapsins. Actins can be
represented as a string of cells being fixed air tbell space position. A summarized version of the
model’s definition in CD++ is as follows:



[top]
components : chemCell

[chemCell]

type : cell dim : (26,22) delay : transport
defaultDelayTime : 100 border : wrapped
neighbors : (-1,-1) (-1,0) (-1,1) (0,-1) (0,0) (0,1)
neighbors : (1,-1) (1,0) (1,1)

localtransition : chemCell-rule

[chemCell-rule]
rule : {round(uniform(11,14))} 100 { (0,0) =1 }

rule : {round(uniform(31,34))} 100 {((0,0)=21 or (0,0)=22 or
(0,0)=23 or (0,0)=24) and(((-1,0)-10=1 or (-1,0)-10=2 or..}

$moving up
rule : 91 100 {(0,0)=21 and (-1,0)=0 and t}
rule : {round(uniform(21,24))} 0 {(0,0)=0 and (1,0)=91 }

%release 0.1 of the S (the offrate is 0.1)
rule : {round(uniform(21,24))} 100 {((0,0)=33 or (0,0)=32 or
(0,0)=31 or (0,0)=34) and random < 0.10}

rule : { (0, 0) } 100 { t}

Fig. 9. Synapsin-Vesicle Reaction model in CD++

The following rules initialize cells with 11-14 (f&/esicles) and 21-24 (for Synapsin), where binding
have not yet been performed.

rule : {round(uniform(11,14))} 100 { (0, 0)

1
rule : {round(uniforn(21,24))} 100 { (0,0) 2 !

}

Once bindings occur, cells change their valuesi4 et replaced with 31-34, and 21-24 get replaced
with 41-44. Also for Synapsins, four intermediatdues 91-94 are used to represent a moving célhtsm
not yet being settled down. Once it settles dowvatlue changes back to 21-24 (depending on istitin
of movement) and gets ready to bind to a vesicltsineighborhood.

rule : {round(uniforn(31,34))} 100 {((0,0)=21 or(0,0)=22 or(0,0)=23 or (0,0)=24) and
(((-1,0)- 10 =1 or (-1,0)- 10 =2 or (-1,0)- 10 =3 or (-1,0)- 10 =4 )or
((1,0)- 10 =1 or (1,0)- 10 = 2 or (1,0)- 10 =3 or (1,0)- 10 = 4) or
((0,-1)- 10 =1 or (0,-1)- 10 =2 or (0,-1)- 10 =3 or (0,-1)- 10 = 4) or
((0,1)- 10 =1 or (0,1)- 10 =2 or (0,1)- 10 =3 or (0,1)- 10 = 4) or
((-1,1)- 10 =1 or (-1,1)- 10 =2 or (-1,1)- 10 =3 or (-1,1)- 10 = 4) or
((1,-1)- 10 =1 or (1,-1)- 10 =2 or (1,-1)- 10 =3 or (1,-1)- 10 = 4) or
((1,1)- 10 =1 or (1,1)- 10 =2 or (1,1)- 10 =3 or (1,1)- 10 = 4) or

((-1,-1)- 10 =1 or (-1,-1)- 10 = 2 or (-1,-1)- 10 =3 or (-1,-1)- 10=4))
and random > 0. 10}

The above rule describes the following scenarithéfe is a synapsin having the value 21, 22, 2240
(a synapsin that can move up/right/down/left) amere is a vesicle in its neighboring which couldde
adjacent cell or a diagonal cell, then the synapsd cells) will move toward this vesicle and ading
will occur soon, the value of the synapsin getsnged to 31, 32, 33, or 34 (i.e. 21 changes to 21, 2
changes to 32, 23 changes to 33, and 24 chan@ds3 to represent a synapsin that is bonded toialees

rule : {round(uniforn(41,44))} 100 {((0,0)=11 or (0,0)=12 or (0,0)=13 or (0,0)=14) and
( ((-1,0)- 30 =1 or (-1,0)- 30 =2 or (-1,0)- 30—30r(10) 30 = 4) or
((2,0)- 30 =1 or (1,0)- 30 =2or (1,0)- 30 =3 or (1,0)- 30 = 4) or
((0,-1)- 30 =1 or (0,-1)- =2or (0,-1)- 30 =3 or (0,-1)- 30 = 4) or
((0,1)- 30 =1 or (0,1)- 30=20r (0,1)- 30=30r (0,1)- 30= ) or



((-1,1)- 30 =1 or (-1,1)- 30
((1,-1)- 30 =1 or (1,-1)- 30
((1,1)- 30 =1 or (1,1)- 30 =
((-1,-1)- 30 =1 or (-1,-1)- 3

2 or (-1,1)- 30
2 or (1,-1)- 30
or (1,1)- 30

=30

2 or (-1,-1)-30

3
3
r

(o]
(o]

(

r
r
1,

(-1,1)- 30
(1,-1)- 30
1)- 30 = 4)

4) or
4) or
or

3 or (-1,-1)-30=4)) and random > 0. 10}

Similarly, the above rule describes the case witlesicle having the value 11, 12, 13, or 14 (aclesi
that can move up/right/down/left) and a synapsiitameighborhood. Then, since the synapsin witheo
toward this vesicle and a binding will occur sothe value of the vesicle gets changed to 41, 420434
(i.e. 11 changes to 41, 12 changes to 42, 13 ckangé3, and 14 changes to 44).

For the movement of synapsin the following fouesiare implemented:

rule :
rule :
rule :

91 100 {(0,0)=21 and (-1,0)=0 and t}
{round(uni form(21,24))} 0 {(0,0)=0 and (1,0)=91 }
00 0 {(0,0)=91}

step 1. checking to see if there is an empty cell so §ymapgsin can move into it, for example if the
synapsin’s direction is upward (value = 21), therfirat we need to check if there is an empty ciglht

above it. (91 is used as an intermediate valuetamy the empty cell)
step 2: once an empty cell is found, it gets occupiedhgysynapsin (i.e. the cell’s value changes from O

to a random number 21-24).

step 3: the previous position of the synapsin that jusveabto an empty cell gets cleared by setting the

value of the cell to 0.

The same procedure is used for right, left, andrdowvement. The following rule is used to break the
S-V bindings using an offrate=0.10. According t&stH10% of the bindings get broken and synapsis ge

released to be given another direction and thedymdle around until finding a vesicle and bindingtt

% elease 0.1 of the S (the offrate is 0.1)
{round(uni form(21, 24))} 100 {((0,0)=33 or (0,0)=32 or (0,0)=31 or (0,0)=34) and

rule :
random < 0. 10}

Fig. 10 shows the grid at the initial case wher@n8 V have not yet interacted. Then, Fig. 11 shioows
bounds are formed and the corresponding cells ehtggr values to represent the binding.
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Fig. 10. V and S before binding at Time: 00:00:00: {bold boxes represent examples of binding siras)



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
0| 13 32 41 22 32 34 31 44 42 34 31 12 ]
1| 12 32 44 21 42 12 23 42 32 13 I
2| I
3] 41 42 41 32 14 42 32 22 33 33 44 I
4| 32 43 14 41 34 23 13 43 14 32 I
5] 33 I
6| m 44 32 31 43 32 21 44 42 42 34 I
71 42 31 34 32 41 42 23 42 32 44 31 I
8| 12 31 41 24 34 33 41 13 43 34 42 31 ]
9l |

10| 42 44 42 41 23 31 43 32 33 11 I
11] 41 32 32 33 44 44 13 33 33 33 43 I
12| 42 31 41 32 42 43 33 32 12 22 12 I
13] 22 41 32 42 13 34 42 32 44 31 14 ]
14| I
15| 41 34 32 33 44 42 42 42 34 32 13 I
16| 44 31 42 31 31 31 42 |31 44 33 41 13 ]
17| 12 43 43 42 32 31 44 33 12 ]
18| 24 I
19| 14 22 13 32 14 42 31 13 33 13 I
20| |
21) 43 33 22 44 31 22 13 44 13 I
22| 23 32 42 32 33 I
23] 33 41 I
24| 12 33 43 31 33 33 42 14 42 23 44 34 I
25| 42 32 34 41 42 42 31 34 21 14 I
Fig. 11. V and S after binding at Time: 00:00:0@30

As illustrated above, the bold boxes show bindibgsveen synapsin (31-34) and vesicle (41-44). The
first illustration (Fig. 10) represents the initedenario where synapsins (21-24) and vesiclesl4)lare
free and have not yet performed bindings. Once @8ina move toward vesicles, the values of the
corresponding cells change to 31-34 (bonded synspsind 41-44 (bonded vesicles). Vesicles can be
surrounded by more than one synapsin, but eaclpsiynean bind to only one vesicle at any time. Fthen
above figure we can see the following possible inipdcenarios:

bz =1 corresponds to: V—S

1z 4z
Zl 31

L — 31 corresponds to: S-V

I
S

5. Experiments and Performance Analysis

The main goal of this section is to show the cdjgf PCD++ in terms of handling the number of
nodes driving the simulation, complexity of the mabdand the size of the model. We have selected
different models with distinguishable functionalippmplexity, and size to better judge the capghilf the
simulators. Our experiments were carried out onRaRHROLIANT DL Server, a cluster of 32 compute
nodes (dual 3.2GHz Intel Xeon processors, 1GB PC2B6MHz DDR RAM) running Linux WS 2.4.21
interconnected through Gigabit Ethernet and comaoatimig over MPICH 1.2.6.

Each Cell-DEVS model consists of a number of nengsand optional files grouped together in a
package. Since the simulation can be distributedngm. to 32 nodes of the cluster, we used a pariitg
mechanism implemented earlier in [17,18] which éyetivides the cell space into horizontal rectasgle
Different partitioning strategies can be implementehich in return result in a significant impact thre
performance of the simulation.



5.1. Performance Metrics

The total elapsed time value was collected from the execution environntermheasure the performance
of the simulators in terms of execution time. Alte speedups with respect to changing the number o
simulating nodes were calculated to show how thallgh simulation outperforms the sequential or&ng
only one node). Theverall speedup for N nodes is given as follows.

T

Owverall Speedup = T(N)

Where T (1) represents the serial execution timasueed on one node, and T (N) is the total executio
time taken by the simulation running on N nodes<hzaf the models which were presented in Chaptisr 5
executed on four different simulators:

. The optimistic PCD++ simulator [18];

. The conservative PCD++ simulator [17];

. The optimistic PCD++ simulator implementing LRFMofwcol; and
. The optimistic PCD++ simulator implementing GRFMarcol.

The goal is to identify the execution performandeeach simulator as we increase the number of
participating nodes. Due to the partitioning meddrmnthat is used by our optimistic and conservative
simulators, we can only increase the number of addea certain limit. That is, the maximum numbér o
nodes that a model can be simulated on is equidletmumber of rows of the cell gird for that pastar
model. For instance, if we have a model of 400scaifanged in a 20x20 mesh, we can run the modg&l on
to 20 nodes. In order to obtain stable resultsgfmh model, simulations were run on 1 to N nodessfar
each scenario five trials were collected. The etteouesults which will be presented in the nexttiom
reflect the average of these five trials whichwaithin a confidence interval of 95%.

5.2. Smulation Results
In the following points we will present the simudat results of executing our models.
- Ship Evacuation M odel

This model consists of 400 cells arranged in a RGx2sh with a total execution time of 6.4327 sesond
when run on standalone CD++. Fig. 12 representsstkeution time resulting from running the modehwi
four different simulators on 1 to 8 nodes.

B —e— Optimistic
—=— LRFM

1 .\ — —+—GRFM

T — Conservative

T T T
1 2 3 4

Number of machine

Execution time (sec)
o B N W A~ 00O N

Fig. 12. Ship evacuation model execution time différent simulators

From the execution time graph, we can see thatdmservative simulator outperforms the other three
simulators. This is due to the causality-error daoce mechanism of this simulator which avoidsealks
and anti-message flows. The optimistic and LRFMeldasimulators produce very similar results for 5 to



and 8 nodes. However, the GRFM-based simulator doepresent good results. This is mainly due & th
huge message-passing mechanism among the LPs whseading messages back and forth reporting
information about their rollbacks. To prove thise wan see that the GRFM-based simulator reduces the
execution time when there are two computing nodesas the number of nodes increases, the perf@enan
degrades.

- Synapsin-Vesicle Reaction M odel

This model consists of 676 cells arranged in a B@x2sh with a total execution time of 3.7621 sesond
when run on standalone CD++. Fig. 13 representsstkeution time resulting from running the modehwi
four different simulators on 1 to 8 nodes.
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Fig. 13. Synapsin-vesicle model execution time difi&rent simulators

We can see that the optimistic and LRFM-based sitats produce very close results on 1 to 8 nodes.
Also, the GRFM-based simulator has similar resfdts1, 2, 3, and 5 nodes. However, it degrades the
performance when 4, 6, 7, and 8 nodes are patticgpaOn the other hand, the conservative simulator
shows different behavior as the number of nodeeases. The conservative simulator improves tha tot
execution time significantly when more than 2 nodes available. Again, as in the previously disedss
models, as the number of computing nodes increades, GRFM-based simulator has the lowest
performance among other ones. The main reasomisnoaication overhead among the participating LPs
which leads in a noticeable time added to the chmaif the model execution.

- Gameof Life Model

This model consists of 1200 cells arranged in a480mesh with a total execution time of 4.6723
seconds when run on standalone CD++. The Gamef®@fids created by mathematician John Conway in
1970 [19]. It is the best-known example of celldatomata algorithms. The standard Game of Life ase
two-dimensional grid. We will use this simple exdenpo show the basic facilities of CD++ to define
model’s rules. Cells can be either on (alive) dr(déad). The key rule is known as “B3/S23": a reail is
born when it has exactly 3 neighbors; an existiel @live cell) survives if it has 2 or 3 neighboin all
other cases the cell dies, either of overcrowdimigh(more than three live neighbors) or lonelinésgh
less than two). At each time step all cells updiagér state simultaneously. We have modeled the éafm
Life using CD++, on a 20x20 cell grid (400 cell§jg. 14 illustrates the cell gird at four differetime
stamps of the simulation. The first cell grid shdis initial scenario where seventeen alive cellsteAs
the simulation proceeds, either new cells are botive cells die (based on the “B3/S23” rule).



Time 00:00:00:000 Time 00:00:00:100 Time 00:00:00:200 Time 00:00:00:300

Fig. 14. Game of life model at four different tiseps throughout the simulation

Fig. 15 represents the execution time resultingifranning the model with four different simulatans 1
to 6 nodes. From the execution time graph, we eantlsat the optimistic, LRFM-based, and GRM-based
simulators outperform the conservative one on @ nodes and at the same time produce very clogéges
However, as the number of machines goes beyonige3cdnservative simulator starts dropping down the
execution time. Among the three optimistic simutajcghe GRFM-based simulator takes longer timetdue
its time consuming mechanism in broadcasting in&diom about each LP’s rollbacks among the
participating nodes.
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Fig. 15. Game of life model execution time on 4ediént simulators

- Fire Propagation M odel

This model consists of 900 cells arranged in a 8dx&sh with a total execution time of 6.2145 sesond
when run on standalone CD++. This model represantse propagation scenario in forest based on
Rothermel’'s mathematical definition [20]. The modemputes the ratio of spread and intensity of ifire
forest based on specific environmental and vegetatonditions. Three parameter groups determine the
fire spread ratio: 1) vegetation type (caloric em mineral content and density); 2) fuel proms:ti3)
environmental parameters (wind speed, humidity, feeld slope).

Time 00:00:00:000 Time 00:09:34:017 Time 00:22:45:720 Time 01:59:40:578

Fig. 16. Fire propagation at four different snagstibroughout the simulation
Fig. 16 illustrates snapshots of the simulatiorultesat four different times. Initially, fire starias fire
spot (the dark cell on the grid). Then as time pasy, fire spreads to the neighboring cells indinection
of wind. Therefore, each cell, depending on itstpmsand heat, fires its surrounding cells. Asgergted on



the final scenario of Fig. 16, the wind directi@adis the fire from the starting point, cell (19), t6wards
southeast of the forest. Fig. 17 represents theutiom time resulting from running the model witbuf
different simulators on 1 to 8 nodes.

\ —e— Optimistic
—=—LRFM
& s —a— GRFM

Consenvative

Execution time (sec)
o = nN w B (5] o ~

1 2 3 4 5

Number of machine

Fig. 17. Fire propagation model execution time dtifferent simulators

As seen on the graph, our parallel simulators Bagmitly improved the execution time of the fire
propagation model. The three optimistic simulafmm@duced very similar results on 1 to 7 nodes. thisr
model, we can definitely remark that the optimigimulators outperform the conservative one. Fer th
optimistic simulators the best results were acldesa 5 nodes, while the conservative one had itgd0
execution time on 4 nodes.

6. Conclusions

This work presented the parallel simulation of DEs81 Cell-DEVS models using PCD++, a parallel
and distributed environment based on the Time Vatpmistic synchronization protocol. PCD++ serves a
an extension to the CD++ toolkit which was devetbjy previous researcher [18] aiming at exploiting
parallelism for the purpose of fast and efficiemtdation of complex models. The concept of Pataltel
Distributed Simulation was presented.

We illustrated the software architecture of theabuoptimistic parallel CD++ simulator (PCD++). The
layered architecture of the optimistic PCD++ sintmlaconsists of five layers (from top to bottom)oael,
PCD++, Time Warp - WARPED, and the operating systetrere ach layer was explained in details. A
variety of optimization strategies of the Time Wdmrnel were pointed out and discussed thoroughly.
Some optimizations in terms of GVT calculation, dyric memory management, and state management
were mentioned.

We have analyzed the performance of our two exjgparallel CD++ simulators, namely Conservative
PCD++ simulator [17] and Optimistic PCD++ simulafb8]. We looked at the design and implementation
of these two simulators and compared their strestas well as functionalities in parallel and disired
simulations.

The hierarchical structure of the conservative PEB#mulator was compared against the flattened
structure of the optimistic PCD++ simulator. Thegration from a hierarchical structure to a flaténe
structure was illustrated as two major modificasioine. the departure from conservative-based sitouto
an optimistic-based simulator, and flattening ttracdure of the simulator. Then it was illustratealv the
optimistic PCD++ simulator deals with the commutima overhead dilemma by using the flattened
structure.

Aiming at improving the performance of the optintssimulator, we modified th&ARPED kernel to
handle rollbacks in a more efficient way. We présdriwo new algorithms that we have implemented in



WARPED kernel. The Near-perfect State Information protocol was discussed and after that our new
algorithms; Local Rollback Frequency Model (LRFM)daGlobal Rollback Frequency Model (GFRM)
were presented. Finally, we have run a varietyesfstto analyze the performance of our existing PED
simulators; the optimistic and the conservativewsd! as our LRFM and GRFM Time Warp-based
protocols [21].
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