
Studying the Impact of Web-Services Implementation of
Distributed Simulation of DEVS and Cell-DEVS Models

Rami Madhoun
Dept. of Systems and Computer Eng.

Carleton University, Ottawa, ON

K1S-5B6 Canada

rmadhoun@sce.carleton.ca

 Gabriel Wainer
Dept. of Systems and Computer Eng.

Carleton University, Ottawa, ON

K1S-5B6 Canada

gwainer@sce.carleton.ca

ABSTRACT
DEVS is a Modeling and Simulation formalism that has been used
to study the dynamics of discrete event systems. Cell-DEVS is a
DEVS-based formalism that defines the cell space as a group of
DEVS models connected together. This work presents the design
and implementation of a distributed simulation engine based on
CD++; a modeling and simulation toolkit capable of executing
DEVS and Cell-DEVS models. The proposed simulation engine
follows the conservative approach for synchronization among the
nodes, and takes advantage of web service technologies in order
to execute complex models using the resources available in a grid
environment. In addition, it allows for the integration with other
systems using standard web service tools. The performance of the
engine depends on the network connectivity among the nodes;
which can be commodity Internet connections, or dedicated point-
to-point links created using User Controlled Light Path (UCLP).
UCLP is a web service-based network management tool used by
grid applications to allocate bandwidth on demand.

1. INTRODUCTION
Modeling and simulation (M&S) plays an important role in
studying complex natural and artificial systems. For some
systems, analytical analysis is not always feasible due to the
complexity pertinent to them, for others, it is too dangerous or
impractical to experiment with them. One of the fields of M&S is
discrete event simulation which is related to studying systems that
exist in finite set of discrete states over continuous periods of
time. Some examples of these systems include customer queues in
a bank, computer networks, and manufacturing facilities.

Discrete Event System Specification (DEVS) [Zei00] is a
modeling and simulation formalism that has been used to study
discrete event systems. It depends on modeling the system as
hierarchal components, each of which has input and output ports
to interact with other components and with the external
environment. The success of using the DEVS approach in the
field of M&S has inspired researchers to define other DEVS-
based formalisms. In this regard, Timed Cell-DEVS [Wai01] is an
extension to the traditional cellular automata [Wol86]; it allows
for representing each cell in the cell space as a DEVS model that
is only activated when it receives external inputs from its
neighbouring cells. This improves the performance of the
simulation since only active cells are evaluated as opposed to
evaluating the whole cell space as in the case of cellular automata.

CD++ [Wai02] is a modeling and simulation toolkit that was
developed to execute DEVS and Cell-DEVS models. It follows

the definition of the DEVS abstract simulator [Zei00] in that there
are two separate class hierarchies: one for representing the model
and the other for representing the simulator. Each DEVS atomic
model has a simulator and each coupled DEVS model (group of
atomic and/or coupled models connected together) has a
coordinator to represent its behaviour. The simulation is carried
out by processing events by the simulators and coordinators and
advancing the simulation clock to the timestamp of the event that
is about to be processed. Different versions of CD++ have been
developed to work on different platforms; the stand-alone version
runs on regular workstations, PCD++ [Tro03][Gli04] runs on
high performance distributed-memory clusters, and the real time
version runs on specialized real-time hardware [Gli02].

 As the system under study gets more complicated, the model
complexity tends to increase. This causes more resources to be
needed in order to execute the model, in which case using a single
machine to run the simulation may be impractical. This has
inspired the research in the area of parallel and distributed
simulation in order to use the hardware resources in distributed
environments to execute complex models. At the same time, as
more and more systems got connected through the Internet, a
framework to integrate their resources to execute complex models
started to gain the attention of the research community. Grid
computing represents a new paradigm for sharing compute and
storage resources in heterogeneous environments where resources
reside on different platforms connected together using standard
communication protocols. In a grid environment, resources are
virtualized as services consumed by clients in a way similar to the
way electricity is consumed in a power grid. The objective of grid
computing is to provide the client with compute and storage
“services” on demand, with minimal or no limitation to the
platform on which these resources reside. Some of the grid
middleware adopted web services to facilitate grid application
development and to expose the application functionality in a
platform-independent manner. The use of the parallel simulation
algorithms with the emerging grid and web service technologies
provides an appealing opportunity to use the resources available
in a grid environment to run complex distributed simulations. In
this context, the idle CPU time and memory resources in a
machine can offer simulation “services” to remote users/services
while the local user is performing other tasks.

We are interested in running increasingly complex models that
represent natural and artificial systems and to integrate this
capability with larger systems to provide better use of the
simulation results. Although other versions of CD++ have been
developed to run complex models on distributed-memory clusters,

they are specific in terms of the hardware, software, and network
connectivity among the nodes running the simulation. We aim at
providing a flexible framework for integrating resources running
on commodity hardware and connected using commodity Internet
connections to run complex models.

The need to integrate the simulation capabilities into larger
systems is evident when the user of the simulator is not proficient
in interpreting the simulation results or when it is not convenient
for him to do so. Our objective of using web services is to provide
standard means of interacting with the simulator taking into
account the wide spread of web service technologies in grid
environments. The examples in which simulation can be applied
in order to better understand the system under study are countless.
One of these examples is using an orchestration language such as
Business Process Execution Language (BPEL) [And03] to
establish a workflow between the simulation services and other
services such as visualization services. These services are being
integrated in a larger project in order to help architecture
engineers to simulate different incidents taking place in their
designs and visualize the effect of their decisions on people’s
behaviour in case of emergency. By being able to design a
building, simulate the people’s behaviour in that building, and
visualize the results of the simulation, the architects can have
better understanding of the consequences of their designs. The
resources used for that project are located in geographically
dispersed locations that are connected together using User
Controlled Light Path (UCLP) [Arn03]. UCLP is a web service-
based network management tool that can be easily integrated with
the simulation services. This allows for on-demand connectivity
between the simulation services, the visualization services, and
the users, in a seamless and efficient manner.

2. BACKGROUND
Discrete Event System Specification (DEVS) [Zei00] is a M&S
specification that is aimed to study discrete event systems. The
formal definition of DEVS models is given as [Zei00]:

M = < X, S, Y, δint, δext, ?, ta >

The model exists initially in state s, and it was scheduled to
remain in that state for duration of ta(s). However, before ta(s) is
elapsed, the model receives an external input (x), which causes the
model to execute its external transition function (δext) in order to
evaluate the model’s new state after receiving the input. The
external transition function takes into account the model’s total
state (Q), which is defined by the model state (s) and the time
elapsed since the model was in that state (e). Had the model not
received an external input, it would have executed the output
function (?) after being in state s for ta(s) time units. This would
have been followed by the internal transition function (δint),
which determines the model’s next state because of an internal
transition.

An exceptional case may take place if the states of two different
models connected together expire at the same time. The decision
of whom to evaluate next may have some implications on the
correctness of the model. This situation may have a serialization
effect on the model, and the decision as of which model to
evaluate first is left to the modeller through the select function. In
order to overcome this issue, Parallel-DEVS (P-DEVS) [Cho94a]
formalism executes all the imminent models (models with the
earliest scheduled state change) in parallel. This has a major effect

on allowing the DEVS simulator to take advantage of the
parallelism that might be available in the model and in the
hardware resources (in the case of using parallel machines to run
the model). In P-DEVS, the model has two message bags, one to
store the external input messages, and the other is used to store
the output messages. The formal definition of a P-DEVS model is
presented in [Cho94a]:

M = < X, S, Y, δint, δext, δconf, ?, ta >

The main difference between DEVS and P-DEVS formalisms is
the addition of the confluent function (δconf), which is responsible
for determining the next state of the model when an external input
arrives at the same time of an internal transition. The definition of
the confluent function is determined by the modeller so that the
correct behaviour can be modeled depending on the system under
study. The physical system model is created by integrating the
different DEVS models together though their input and output
ports; resulting in a coupled DEVS model. A coupled DEVS
model consists of atomic and/or other coupled models connected
together.

Cell-DEVS [Wai01] is an extension to cellular automata [Wol86]
that depends on defining the cell as an atomic DEVS model. The
asynchronous evaluation of the cells provides the modeller with
powerful means to define complex temporal behaviours. Two
types of delays can be defined; transport delay simulates queued
future states. Another type of delay is inertial delay. Using the
inertial delay, the newly evaluated state will pre-empt the
scheduled one if they were different. Since each cell is
represented as an atomic DEVS model, the cell behaviour is
defined by the various functions used to define an atomic DEVS
model. Once an external input arrives to the cell from one of its
neighbours, it activates the external transition function, which
calculates the next state of the model. The time advance function
is represented by the delay associated with the cell. Once the
delay expires, the output function is triggered to generate the
cell’s output, followed by the internal transition function, which
evaluates the cell’s new state. The limitation associated with the
original DVES model definition, in terms of activating only one
DEVS model at a time (through the select function) restricts the
capabilities of the coupled Cell-DEVS model. The Parallel Cell-
DEVS formalism [Wai00] was introduced to extend the
functionality of the Cell-DEVS formalism taking advantage of the
features provided by the Parallel-DEVS formalism; which
include, executing imminent models in parallel avoiding the
serialization problem that can lead to incorrect execution of the
model. Coupled Cell-DEVS models can be formed by connecting
different cells together. The cell space can take different
dimensions and shapes. For example, 2D cell space can be used to
model the spread of fire in a forest; 3D cell space can be used to
model the spread of a specific type of viruses in a city. The
borders of the coupled cell DEVS model can be one of two types;
a wrapped border indicates that the cells at the edge of the cell
space are neighboured by the cells on the opposite side. On the
other hand, non-wrapped border indicates that the cells at the
borders have special rules that need to be defined by the modeller.

CD++ [Wai02] is an object-oriented modeling and simulation
toolkit capable of executing DEVS and Cell-DEVS models.
CD++ executes the model by creating a collection of model and
simulator classes following [Zei00]. In order to run in distributed

environments, the model is decomposed into components that are
executed by different simulators running on multiple machines.

The success of the DEVS/Cell-DEVS formalism in modeling and
simulating different complex systems, has attracted a lot of
researchers to extend the basic abstract simulator presented in
[Zei00] into a parallel/distributed one.:

• DEVS/Grid [Seo04] implements a grid-enabled DEVS
simulator following a layered approach.

• vGrid [Kha03] is an overall architecture for running DEVS
and Cell-DEVS models in grid environments.

• DEVS/P2P [Che04] is a distributed DEVS simulator aimed
to peer-to-peer networks. It exploits JXTA [JXT06] as an
implementation of P2P communication middleware with the
DEVS modeling and simulation capabilities.

• DEVS/RMI [Zha05] is a distributed DEVS simulator based
on Java Remote Method Invocation (RMI). It aims at
providing a fully re-configurable distributed simulation
environment with the capability of load-balancing and fault-
tolerance.

• DEVS/Cluster [Kim04] is multi-threaded distributed DEVS
simulator based on CORBA [OMG02].

• PCD++ [Tro03] [Gli04] is a parallel simulation engine
developed using WARPED [War06] middleware and uses
MPI [MPI95] for communications. PCD++ uses Time Warp
[Jef85] protocol for synchronization among the different
nodes participating in the simulation.

The methodology we followed to design and implement a
distributed simulation engine depends on extending the CD++
toolkit in two dimensions. In one dimension, the toolkit was
wrapped by a web service wrapper to expose its functionality to
remote users/services using SOAP. We use the main web service
standards such as XML [Bra04], SOAP [Gud03], Web Service
Description Language (WSDL) [Chr01] for storing and parsing
the configuration files used by the service, describing and
exposing the service functionality, and messaging among the
simulation services themselves as well as with the users,
respectively. In another dimension, the simulation web service
and the CD++ engine were extended to execute distributed models
in a grid environment. The model is decomposed into different
partitions, each of which is assigned to a machine for execution
with SOAP being used for messaging among the machines. The
difference between the approaches followed by other grid-based
DEVS simulation engines and our approach, is that we aim to
implement the simulation services in a modular manner to provide
the flexibility required for integration with larger systems with
minimal or no changes to the simulation services.

Web services are group of standards and languages aiming to
facilitate developing, publishing, and discovering web-enabled
applications. In other words, a web service is a software system
designed to support interoperable machine-to-machine interaction
over a network. It has an interface described in a machine-
understandable format (specifically Web Service Description
Language WSDL [Chr01]). Client systems interact with the web
service in a manner prescribed by its description using SOAP
[Gud03] messages, typically conveyed using HTTP with an XML
serialization in conjunction with other standards [Alo03]. WSDL
documents include enough information for the web service clients
in order to know the operations it offers, the parameters required
to invoke an operation, and the return type of the operation.

SOAP plays an important role in any web service transaction. It is
the messaging protocol used to convey information to and from
the web service. It was designed in a manner that enables
decentralized communication among multiple parties.

Figure 1. A web service container [Glo05]

3. WEB SERVICE-ENABLED CD++
CD++ was developed as traditional command-line application to
run on Unix/Linux platform. It is capable of executing two kinds
of models, DEVS and Cell-DEVS. To execute DEVS models, the
modeller needs to define each atomic DEVS model as a C++ class
(defined in header (h) and implementation (.cpp) files) that is to
be integrated in the class hierarchy of CD++. For coupled DEVS
models, and Cell-DEVS models, the modeller needs to provide a
model definition file in a text format. The model definition file
includes (among other things) the coupling scheme for the
coupled model, initial values for the cells, rule definition to
calculate the state of the cells, etc. In a regular invocation of
CD++, the user submits the model definition and configuration
files to the simulator as arguments. Once the simulation is over,
the user gets the results in the form of output and log files. The
output file contains the events that were generated through the
output ports of the model; the log files contain detailed
information about the progress of the simulation and can be used
for debugging or animating the results using a visualization
engine [Kha05]. In the context of our modeling and simulation
environment, web services are introduced to serve two main
purposes:

i) To expose the functionality of the CD++ toolkit as a web
service, allowing for executing simulations and retrieving the
results through web services, as shown in Figure 2.

ii) Using SOAP as a messaging protocol to enable distributed
CD++ to execute complex models on multiple machines.

Figure 2. A typical invocation of the simulation web service

The simulation web service was redesigned to avoid the
limitations of the JVM and provide a robust environment for
running different simulation sessions concurrently and

independently. The simulation service was split into two
independent and separate parts: the web service components
(implemented in Java) are used to handle the web service
activities of the simulation service, and the simulation
components (implemented in C++) are used to interact with CD++
by accessing and manipulating its internal objects and data
structures. Both parts interact with each other though message
queues maintained by the Linux kernel (through the
WrapperProxy).

The advantages of this approach are that:

i) It provides a separate running workspace for each simulation
session; the simulator runs as an operating system process
independent from the simulators running other sessions.

ii) It allows for extending the functionality of each part with
minimal or no change to the other part. For example, the
simulation components of the service were developed to
work with the parallel version of CD++ (PCD++) with
minimal changes to the web service components.

Figure 3. Simulation service using JNI/message queues

The web service components of the simulation service are
compiled into Java archive (.jar) files and deployed in an Axis
server, which in turn runs within an Apache Tomcat server. When
the Tomcat server is started, it automatically starts the Axis
engine. Axis loads all the libraries available in the directory of
deployed services, which include the JavaWrapper (the backbone
of the web service components), the server-side stubs, and the
client-side stubs. In addition, when the JavaWrapper class is
loaded, it loads the WrapperProxy, which is implemented as a
collection of C/C++ procedures, and is loaded as a shared native
library into the JVM. At this point the simulation service is
considered ready to receive client requests.

3.1 Service Architecture
The web service components were developed as a collection of
Java classes; they fall into three main categories:

i) The web service wrapper (WS-Wrapper): is responsible for
most of the functionality of the web service components.
This is the backbone of the web service components since it
is linked to the server-side stubs deployed within the Axis
server. When Axis receives a web service request from the
client, it passes the request to the server-side stub, which in
turn retrieves the instance of the JavaWrapper class
associated with the user’s session, before executing the
corresponding method in the JavaWrapper object to fulfill
the client’s request.

ii) Utility classes: are used to perform secondary functions
required by the WS-Wrapper such as parsing the users and
configuration files. This takes place at two points: when the
service is started, the users file is parsed to load the user
information such as usernames, passwords, etc; and when the
user submits a grid configuration file, the file is parsed to
retrieve the model partition information as well as the
addresses of the nodes participating in the simulation.

iii) Stub classes: include the client-side and server-side stubs.
The server-side stub classes are required by the Axis server
and are part of the code required to define and deploy the
service. The client-side stubs are required by the
JavaWrapper class to invoke the services offered by the
slave nodes when running distributed simulations.

Some of the operations performed by the JavaWrapper include:

• User authentication.
• Session initialization: Part of the session creation process

includes creating a JavaWrapper instance to handle the
newly created session; this instance will be used by the
server-side stub class deployed within the Axis server to
fulfill the requests submitted by the user.

• Setting the model definition.
• Setting configuration information for distributed sessions.
• Starting the simulation: this includes some initialization to

take place such as compiling the submitted DEVS models
with the source code of the simulator, sending the model
definition to slave machines, and starting the slave sessions.

• Checking the status of the simulation: This is used since
some models might take long time to be executed; in which
case, the client can start the simulation and do some other
processing until the simulation is over. In addition, the user
can kill the simulation process (if needed).

• Retrieving the results of the simulation: In case of running
distributed simulations, the JavaWrapper will utilize the
services running on the slave machines in order to retrieve
and archive all the log files.

• Logging off: This method will cause the JavaWrapper class
to reclaim the resources used by the session and to send
messages to the slave sessions to do the same.

In general, the services offered by the simulation service through
its WSDL interface, are mapped into methods invoked on the
JavaWrapper class/instance. Parts of the methods defined in the
JavaWrapper class are actually native methods that were
implemented in C/C++. Those constitute the WrapperProxy
component of the service, and are implemented as procedures
written in C/C++ since Java can’t access the Linux message
queues. These methods are interfaced to the JavaWrapper class
using the Java Native Interface (JNI) [Lia99].

The JavaWrapper class uses utility classes to handle tasks such as
parsing the users and grid configuration files. The Parser class is
the main class used for parsing and it uses the SAXParser,
SAXParserFactory, and MyContentHandler classes to do so. The
users file is used for authentication and it contains the usernames,
passwords, and roles for all the users that are authorized to use the
service. The grid configuration file is an XML file that contains:

i) URLs of the simulation services participating in a session;
ii) Model partitioning information, which includes the parts of

the model running on each machine in a distributed session.

Client and server-side stubs are required for the deployment and
utilization of the simulation service. While the client stubs are not
a must for using the simulation service, the client can create the
SOAP requests dynamically, the server stub classes are required
by the Axis server in order to properly deploy the service. The
CDppPortTypeSoapBindingImpl represents the server-side stub;
when the Axis server receives a request from the client in the form
of a SOAP message, it does some processing on the SOAP
message and extracts the attributes necessary to execute the
service. Once the attributes are extracted, it invokes a method in
the JavaWrapper class corresponding to the operation requested
by the client. The CDppPortTypeService and
CDppPortTypeServiceLocator are used to locate the web service
using its Unified Resource Locator (URL). The former is an
interface that is implemented by the latter and it is usually used at
the beginning of any web service invocation process. The
CDppPortTypeSoapBindingStub is a client-side stub that can be
used by the program accessing the simulation service. It defines
the attributes and methods that allow the client to deal with the
web service as if it was local classes residing on his machine.

4. DISTRIBUTED CD++ (DCD++)
CD++ executes the model by passing messages among the
different processors in the simulation. Coordinators are the
processors responsible for executing coupled models while
Simulators are associated with atomic DEVS models and they are
responsible for executing each of the functions defined by the
model depending on the time and type of the received message. A
Root coordinator is in charge of driving the simulation as a whole
and interacting with the environment. The processors are created
and initialized at the beginning of the simulation in a hierarchy
that matches the model hierarchy in terms of the parent-child
relationship. The Parallel-DEVS (P-DEVS) algorithms [Cho94a]
were introduced to solve the serialization problem with the
original DEVS algorithm and to enable efficient execution of
DEVS models in parallel and distributed environments. The main
additions in P-DEVS are the message bags, and the confluent
transition function (dconf). Message bags are used to hold multiple
input messages arriving to the model and multiple output
messages generated by the model. The confluent function allows
the modeller to define the behaviour of the model when it receives
an external message while being scheduled for internal transition.
In such case, the confluent transition function is executed in place
of the internal and external transition functions. The abstract
simulator for DEVS models was extended to run P-DEVS models
so that multiple imminent models can be executed together. In the
P-DEVS abstract simulator, five kinds of messages are used and
can be categorized into content messages and synchronization
messages. Content messages include external messages (X) and
output messages (Y) that are used to represent events generated by
the model. Synchronization messages include internal messages

(*), collect messages (@), and done messages (D). Internal
messages are used by the coordinators to trigger three different
transitions depending on the message arrival time and the status of
the external message bag. Collect messages are used to trigger the
output function of the model before any internal transition. Done
messages are used by the simulator to report the time of the next
transition to its coordinator.

By implementing the previous algorithms, CD++ is able to
activate imminent models concurrently avoiding the serialization
problem introduced in the original version. This is of considerable
importance to the Cell-DEVS models as it allows for executing
cells with zero time delay (due to the availability of message
bags). In addition, it provided the possibility of extending the
simulator into a distributed engine which can execute concurrent
imminent models in parallel. Figure 5 shows the difference
between the previous and current implementation of the CD++
engine in the case of two imminent simulators. The original
implementation (left part) required the use of the select function
in order to choose the simulator to activate first. However, when
implementing the P-DEVS algorithms, the coordinator is
activating both simulators at the same time (right part), solving
the issue of serialization introduced in the original DEVS.

Figure 5. Concurrent model activation in Parallel-DEVS

Implementing the P-DEVS algorithms required changes to be
made in the class and model hierarchies of CD++. The processor
class is the parent of all the classes in charge of executing the
model. Those include the Simulator, Coordinator,
FlatCellCoordinator, and Root classes. The Processor class
implements the basic functionality required by all simulation
classes. Those include the receive methods, which are responsible
for receiving and processing the different simulation messages.
The messages are sent among processors through the MsgAdmin
class. The sending processor would send the message to the
MsgAdmin through the send method, which will cause the
message to be queued until it gets sent. Sending a message is done
by executing the receive method on the receiving processor.

Figure 6. The simulation class hierarchy

The Simulator class extends the Processor class and overrides the
receive function in order to execute the function of the DEVS
model corresponding to the type of the received message. For
example, when a Simulator receives a collect message from its
parent coordinator, it executes the output function associated with
its model in order to generate the model output. This is followed
by the Simulator sending a done message to the coordinator
reporting the time of the next change of the model. The Simulator
receives only specific types of messages; no done or output
messages are received by the Simulator.

The Coordinator class is responsible for forwarding messages
among the Simulators and for synchronizing the events taking
place during the simulation. The receive method has the same
functionality as in any processor class, but the behaviour of the

method is different from that in the Simulator class. That is, to
implement the P-DEVS algorithms, the coordinator receives all
kinds of synchronization and content messages and reacts
accordingly. The message bag associated with the coordinator is
processed through the sortExternalMessages method which gets
invoked at the time of receiving an internal message (*). This
causes the messages in the bag to be forwarded to their
destinations (Simulators and/or Coordinators). The
sortOutputMessages method is invoked whenever a child
Simulator or Coordinator sends an output message to its parent
coordinator. This, results in the message either being translated
into external message(s) sent to the local destination(s), or an
output message being forwarded upward in the class hierarchy.
The calculateImminentChild is responsible for evaluating the

imminent child processors by examining the minimum time of the
next state change. The FlatCellCoordinator is in charge of
executing flat Cell-DEVS models, which differ from Cell-DEVS
models in that they are executed by one processor instead of using
a processor for each cell in the cell space. The Root coordinator is
in charge of starting and stopping the simulation, interacting with
the environment, and clock advancement.

Messages are implemented as separate classes, each representing a
message type with all the classes inheriting the Message class.
Different messages have different attributes; for example, the
Done Message class has an extra field (nextChange) to indicate
the time of the next state change.

Model partitioning information is provided through the grid
configuration file (an XML file containing the addresses of the
machines executing the model and the parts of the model running
on each machine). Using the original implementation of the
Coordinator class will add unnecessary overhead if two child
processors want to exchange messages and are running in a
machine different than the coordinator. As shown in Figure 7,
Simulator 3 sends an output message that is to be translated into
an external message to Simulator 2. When sending the message to
the coordinator, it ends up being transmitted twice as remote
messages due to the fact that the coordinator is running on a
different machine than the source and destination of the message.

Figure 7. Unnecessary remote messages

This problem could have been avoided if there is a processor
responsible for message routing locally in each machine. One
approach to solve this issue is to use one coordinator in each
machine for message routing among the local processors; this was
initially adopted by PCD++ [Tro03] in order to minimize the
remote message transmission among the machines. The idea
depends on using two kinds of coordinators for each coupled
DEVS/Cell-DEVS model:

i) Master Coordinator: it is responsible for synchronizing the
model execution, interacting with upper level coordinators
and message routing among local and remote components.

ii) Slave Coordinator: is responsible for message routing among
the local model components dispensing with the need to send
remote messages if the master coordinator is residing on a
different machine than that used to run the sending and
receiving processors.

Having a slave coordinator in Machine 2 (as shown in Figure 8),
causes the message from Simulator 3 to Simulator 2 to be sent
locally improving the performance of the simulator.

Implementing the distributed simulator includes extending CD++
in three main aspects:

i) The simulation mechanism is implemented mainly using the
master and slave coordinators;

ii) The model loading mechanism is extended to maintain the
partitioning information;

iii) The message passing mechanism is extended to handle local
and remote message passing;

Figure 8. Master and Slave coordinators

4.1 A Sample Scenario
In order to present the overall operation of the simulator in a
distributed environment, a coupled DEVS model is executed
using two machines. The model consists of four DEVS models;
the generator is an atomic DEVS model producing jobs to be
processed by the processor, the queue is used to queue the
arriving jobs before they get processed, the processor is
responsible for processing the jobs, and the transducer is in
charge of calculating statistics such as the throughput of the
processor. The structure of the model is shown in Figure 9:

Figure 9. The Generator-Processor-Transducer (GPT) model

Two machines were used to execute the model, one located in
Ottawa and the other in Montreal. They were connected using a
commodity Internet connection. The generator component of the
model was set to run on Machine 1(Ottawa), and the queue,
processor, and transducer models were running on Machine
2(Montreal). When loading the models and simulators, Machine
1 loads three processors: the Root coordinator, the top master
coordinator, and the generator. Machine 2 loads the top slave
coordinator, the QPT (coupled DEVS model consisting of the
Queue, Processor, and Transducer models) master coordinator,
the transducer, the queue, and the processor. The simulation
starts by the Root coordinator sending an initialization message
(I) to the top master coordinator, which in turn forwards it to its
child processors (generator and top slave coordinator). The
message to the top slave coordinator is sent remotely using a
SOAP message. When the top slave coordinator receives the
initialization message, it forwards it to its child processor (QPT).
The initialization message causes the simulators to initialize their
models and report their next state change to their parent
coordinators. DCD++ saves the progress of the simulation in each

machine into a log file that includes an entry for each message
received by the processors running on that machine.

Figure 10. GPT model partitioning on two machines

The first field in a log entry is the machine id, followed by the
source of the message (L: local, R: remote), then the timestamp of
the message is listed, followed by the source and destination
processors. In the case of external and output messages, two extra
fields are listed, which are the port name and message value sent
through the port. Figure 11 shows an excerpt of the log file of
Machine 1 while executing the GPT model. After sending the
initialization message, the top master coordinator receives done
messages from its child processors. This includes the done
message sent from the generator (line 3 in Figure 11) reporting
the time of the next change as “00:00:00:000”; in addition, it
includes a remote done message from the top slave coordinator
(line 4 in Figure 11) running on Machine 2 reporting the
minimum time of the next change as “00:00:02:000”. The top
master coordinator sends the minimum time of next state change
to the Root coordinator (line 5 in Figure 11). In the next
simulation cycle, the Root coordinator sends a collect message at
time “00:00:00:000” to the top master coordinator that in turn
forwards it to the generator. The collect message causes the
generator to execute its output function to generate the output that
is forwarded to its parent coordinator. Line 8 in Figure 11 shows
the output message sent from the generator to the top master
coordinator through the out port carrying a value of zero. No
collect message is sent to the top slave coordinator at this point,
since its next transition occurs at time “00:00:02:000”.

Figure 11. An excerpt of the log file of Machine 1

The output message generated by the generator is translated by
the top master coordinator into an external message that is sent to
the top slave coordinator via SOAP (line 1 in Figure 12). The top
slave coordinator saves the message into its external message bag
until it receives an internal message from the top master
coordinator (line 2 in Figure 12); at which point, it forwards the
message to the QPT master coordinator through the in and
arrived ports. This causes the QPT master coordinator to send the
external messages in its bag to the transducer and queue models
(lines 6, 7 in Figure 12). The internal message sent to the QPT

master coordinator is forwarded to the queue and transducer
models (lines 8, 9 in Figure 12). This results in the queue and
transducer models executing their external transition functions
and reporting the time of the next change as “00:00:00:001” and
“00:00:02:000”, respectively (lines 10, 11 in Figure 12). The done
message (generated by the top slave coordinator) is forwarded to
the top master coordinator using SOAP (line 14 in Figure 11).
Then the top master coordinator evaluates the minimum time of
the next change (“00:00:00:001”) and sends it to the Root
coordinator. The Root coordinator advances the clock of the
simulation to “00:00:00:001” and the simulation continues until at
leas one of the following conditions holds: there are no more
events/messages scheduled by any of the processors; or, the
simulation clock reaches the maximum execution time.

Figure 12. An excerpt of the log file of Machine 2

5. PERFORMANCE ANALYSIS
Using web services to implement the distributed simulation
engine has allowed for the execution of complex models in grid
environments. However, it introduced some overhead that affects
the execution time of the models. That is, the time it takes for a
local message (implemented as a C++ object) to be transmitted
between two local processors is much shorter than the time it
takes for a SOAP message carrying the same information to be
transmitted between two remote processors. The overhead is
contributed to by two main parts of the message path between two
remote processors. The first part is the time it takes to transmit a
message between the simulator and the web service through the
Linux kernel; the other part is the time it takes to transmit the
SOAP message between the two simulation web services.

In order to study the performance of the simulator, different
sessions were executed using two machines; one of the machines
was located in Montreal, and the other in Ottawa. Two different
models were executed using two different connections between
the machines. In the first group of runs, the machines were
connected using a commodity Internet connection; in the second
group, User Controlled Light Path (UCLP) was used to create a
point-to-point (P2P) connection between the Montreal and Ottawa
sites. The results of these two groups were compared to each other
as well as to the results obtained when executing the models using
a single machine. The readings obtained during the runs include:

i) The simulation time required to execute the models;
ii) The average time it takes in each run to transmit a SOAP

message from Ottawa to Montreal.
iii) The average time it takes in each run to transmit a message

within the Linux kernel using message queues.
iv) The average time it takes in each run to transfer a local

message within a single machine.
v) The bandwidth available for the simulator when using the

Internet and UCLP connections.

Figure 13. Sending remote messages in distributed simulation

The model used for performance analysis is a fire spread in a
forest and it is implemented as 30x30 coupled Cell-DEVS model
[Ame01]. It is composed of 30x30 cell space; each cell represents
a square area of the forest. The cell is considered to be burned if
its temperature exceeds a specific value. Figure 14 shows an
excerpt of the model definition and initial values of the cells.

Figure 14. An excerpt of the Fire model definition

The cell space is 30x30 using inertial delay. The neighbourhood
of the cell (defined by the neighbors construct), is defined by the
8 cells from all sides. Fire(-1,-1) represents the cell in the North
West side (NW), Fire(0, -1) represents the cell to the W, etc.

Table 1: Execution results of the Fire model using one machine

 Average Std.
Deviation

Confidence
Interval 95%

Local Msg. (us) 3.655 0.16843255 3.562=X= 3.748

Init. Time (ms) 99.811 24.0301940 86.53=X=113.0

Simulation Time(s) 2.695 0.00805221 2.691 = X = 2.7

Total Exec.Time(s) 2.795 0.02272537 2.782=X= 2.808

In order to study the performance of the distributed simulator,
three types of experiments were performed. The first experiment
was carried out using one machine in order to estimate the
simulation time without the overhead incurred by sending remote
messages using SOAP. The second experiment was conducted by
splitting the fire model into two equal partitions; each of which
was assigned to one machine that is connected to the other
machine using a commodity Internet connection. In the third
experiment, the two machines were connected using a dedicated
P2P fibre optic link created using UCLP, as we discuss following.
The Local Message time is the time required to transmit a message
from one simulation processor to another in the same machine.
The transmission of a local message in a single machine is
implemented as a method call (receive) in the receiving processor,

which explains the short time required to communicate between
two local processors (average of 3.655 microseconds). The
Initialization Time is the time required by the simulator to load
the model into memory, parse the configuration files, etc; this is
done before starting the simulation process. The Simulation Time
is the time of running the simulation which begins before
processing the first event and ends after processing the last event.

Total Execution Time (Fire model- 1 Machine)

2.76

2.78

2.8

2.82

2.84

2.86

2.88

0 2 4 6 8 10 12 14 16

Run#

T
im

e
(s

)

Figure 15. Fire model total execution time using one machine

Figure 15 shows the total execution time of the model. Although
it shows variations in the execution time of the model in one
machine, they are very small compared to the average value of the
total execution time (standard deviation of 0.022725378 with an
average of 2.795 seconds). These variations are the result of the
different processes and daemons running on the machine. In the
second experiment, the cell space was split into two equal parts
(15x30) and each part was assigned to run on a different machine.

Table 2: Results of Fire model using two machines (Internet)

 Avg
.

Std.
Dev.

Confidence Interval
(95%)

Local Msg. (us) 3.98 0.113 3.9251 = X = 4.051

Kernel Msg.(ms) 0.86 0.792 0.424 = X = 1.3

SOAP Msg. (ms) 892 177.5 794.553= X = 990.708

Init. Time (ms) 315 352.3 120.307= X = 509.705

Simulation Time (s) 98.9 5.172 96.119 = X = 101.835

Total Exec.Time (s) 99.2 5.191 96.424 = X = 102.161

Bandwidth (KB/s) 811 29.60 794.863= X = 827.581

Due to the nature of the Internet, the bandwidth between the
machine in Ottawa and Montreal was not constant since the
connection speed was dependant on the Internet usage in both
sites. In order to estimate the bandwidth available for the

machines during the simulation runs, a separate software utility
(Iperf [Gat06]) was run concurrently with the simulation.

Total Execution Time (Fire Mode- 1&2 Machines)

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Run#

T
im

e
(s

)

1 Machine

2 Machines

Figure 16. Comparing total execution time (Internet)

The local message transfer is close to that when using a single
machine since the messages are sent between local processors.
When two machines are used to run distributed simulation,
sending a message from one processor to another remote one
involves sending it through the Linux kernel first to reach the web
service components of the simulation service, then sending it as a
SOAP message through the network (Internet), and finally from
the web service components to the simulator at the receiving end
(through the Linux kernel). The average time for message transfer
through the kernel is .862 milliseconds. On the other hand, the
time for SOAP transfer from one machine to another is much
longer than the kernel message transfer time, and it is the main
contributing factor to the overhead associated with the distributed
simulator. Another point to notice is that the initialization time is
longer when running distributed simulation; this is due to the
extra processors created to manage message passing among
multiple machines (master and slave coordinators). By comparing
the execution time when using one and two machines, the
overhead introduced by the distributed simulator can be
visualized, as shown in Figure 16.

To minimize the overhead incurred by the distributed simulator,
the two machines were connected through a P2P connection using
UCLP as opposed to using a commodity Internet connection. In
order to estimate the bandwidth available to the simulator, Iperf
[Gat06] was used to estimate the average bandwidth as 241.13 M
Bit/second.

Table 3: Results of the Fire model using two machines (UCLP)

 Avg. Std.
Deviation

Confidence
Interval (95%)

Local Msg.(us) 3.856 0.28587709 3.698 = X = 4.014

Kernel Msg.(ms) 0.709 0.51641039 0.424 = X = 0.995

SOAP Msg. (ms) 489.3 178.939812 390.470=X=588.215

Init. Time (ms) 256.1 349.078392 63.219=X = 448.983

Simul. time (s) 27.62 0.44313255 27.377 = X = 27.867

Total Exec. (s) 27.87 0.53910035 27.580 = X = 28.176

By examining the execution time when using UCLP, it was
noticed that the performance is much better than that when using a
regular Internet connection. That is, UCLP provides a dedicated
P2P connection that is solely used for the simulation session.
Another point to notice is that the variation in execution time

when using UCLP is less than that when using a regular Internet
connection.

Total Execution Time (Fire Model- 1&2 Machines)

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Run#

T
im

e
(s

) 1 Machine

2 Machines (Internet)

2 Machines (UCLP)

Figure 17. Comparing total execution time (Internet, UCLP)

In order to confirm the previous results, another model was
executed following the same configurations: one machine, two
machines connected via the Internet, and two machines connected
via UCLP. The model is a sand-pile model [Saa03] consisting of a
DEVS model simulating a sand particle generator and a coupled
Cell-DEVS model representing the sand-pile formation. A
summary of the results is shown in Table 4:

Table 4: Summary of execution results: Fire and Sand-pile

 Sand-
pile#1

Sand-
pile#2(Int.)

Sand-
pile#2(UCLP)

Init. Time (ms) 25.925 46.597 19.259

Sim. Time (s) 0.1091 50.439 8.117

Total Exec. Time (s) 0.135 50.485 8.136

SOAP Delay (ms) NA 846.544 483.525

No. of Messages 3710 4191 4191

Local Msg. (%) 100 88.52 88.52

Remote Msg. (%) 0 11.48 11.48

The overall results show few points that are worth emphasizing.
The time to execute the model in one machine is usually shorter
than that when using two machines. This is due to the overhead
incurred by sending remote messages as SOAP, which seems to
be the major contributor to the overhead. There are other factors
affecting the overhead such as the time required to send messages
through the Linux kernel (message queues); however, it is
insignificant compared to the delay caused by SOAP. The
initialization time for the Fire model was longer when running the
simulation on two machines due to the extra coordinators required
for message passing and synchronization (master and slave
coordinators).

In order to study the contribution of the remote messages sent
between remote processors to the overhead introduced by the
distributed simulator, the average simulation times when using
two machines were divided by those when using a single machine.
The results are compared with the percentage of remote messages
sent in each case. By dividing the simulation time when using two
machines by the time when using one, a measure of the slowdown
of the simulation can be obtained. This measure is compared with
the percentage of the remote messages sent during the simulation
in order to examine the relationship between the two.

Table 5: Percentage of remote messages

 Remote
Msgs.(%)

Sim_Time2(Int
.)/Sim_ Time1

Sim_Time2(UC
LP)/Sim_ Time1

Fire 3.76 36.73 10.25

Sand-pile 11.48 462.32 74.4

The Effect of Remote Messages on The
Simulation Time

0

100

200

300

400

500

0 5 10 15

% of Remote Messages

S
im

. T
im

e(
2-

M
ac

h
in

es
)/S

im
. T

im
e(

1-
M

ac
h
in

e)

Internet

UCLP

Figure 18. Remote messages/simulation times relation

Figure 18 shows the effect of the remote messages on the
execution times of the models in distributed simulations. The
effect is more evident when using regular Internet connections
than when using UCLP. The curve in pink represents the
slowdown of the model execution versus the percentage of remote
messages when using commodity Internet connections. The curve
in blue represents the slowdown when connecting the machines
using UCLP.

6. CONCLUSIONS
Discrete event simulation plays an important role in studying
complex systems, especially those that are not feasible for
analytical studies. The nature of discrete event models tends to be
more complex as the modeled system evolves or more information
needs to be considered when developing the model. This has
required more efficient simulation engines that are able to execute
complex models in a reasonable amount of time. CD++ is a
simulation engine that was developed to execute DEVS and Cell-
DEVS models on different platforms. In this dissertation, a
framework of using web services with CD++ was presented in
order to accomplish two main goals.

The first goal is to interface the original version of the simulator
to web service technologies using web service wrappers. This has
enabled the modeller to execute the simulation, check the progress
of the model execution, and retrieve the results remotely using
SOAP (and its extensions) protocol. In addition, it allowed for
integrating the simulation services into larger systems to form a
complex workflow. Business Process Execution Language
(BPEL) can be used in this context to integrate the simulation
services with visualization services that enable the modeller to
study the results of the model execution in a user-friendly manner.
The other goal achieved through using web services, is the
implementation of distributed simulation engine that is able to
execute complex models using multiple machines. The model can
be split into different partitions, each of which is assigned to run
on a different machine. By establishing network connectivity
among the machines, the different simulators can exchange
messages during the distributed session using SOAP. The
advantage of using SOAP is that it can be embedded into HTTP

traffic which in turn can be used on different network
infrastructures, such as LAN, WAN, Ethernet, fibre optic, etc.

The approach followed for implementing the distributed simulator
depends on having master and slave coordinators. The master
coordinator is responsible for passing messages between its child
models and the upper level components in the model hierarchy.
On the other hand, the slave coordinator is responsible for passing
messages among its local children instead of involving the master
coordinator that might be running on a different machine. This
has a considerable effect of reducing the remote message traffic
among the machines when running distributed simulations. This
minimizes the overhead incurred with sending and receiving
SOAP messages and hence improves the performance of the
simulator.

The web service components added to CD++ have introduced
some overhead that is mostly apparent when running distributed
simulations. The time of transferring a SOAP message from one
machine to another is by far longer than the time it takes to
exchange messages locally. This is especially true when the
machines are connected using commodity Internet connections.
The advancement in the area of application-controlled networks
where the network management can be handled at an upper layer
(the application layer), has enabled grid applications to take
control on their needs of the network bandwidth. User Controlled
Light Path (UCLP) is a web service-based management services
for fibre optic networks that were used in conjunction with CD++
in order to establish the connectivity between different machines
in a distributed environment. Having a point-to-point connection
between the machines running distributed simulation has
improved the performance of the simulator a lot in terms of
shorter execution time of the model. In addition, the bandwidth
could be relinquished when the application doesn’t need it
anymore, which results in an efficient use of the network
resources.

7. REFERENCES
[Alo03] Alonso, G. Web services : concepts, architectures and
applications. Springer. 2003.

 [And03] Andrews T.; Curbera, F.; Dholakia, H.; Goland, Y.;
Klein, J.; Leymann, F.; Liu, K.; Roller, D.; Smith, D.; Thatte, S.;
Trickovic, I.; Weerawarana, S. “Business Process Execution
Language for Web Services version 1.1”. May, 2003. Available
via <http://www-
128.ibm.com/developerworks/library/specification/ws-bpel/>.
[Accessed February, 2006].

[Arn03] Arnaud, B.; Wu, J.; Kalali, B. “Customer Controlled and
Managed Optical networks “. IEEE/OSA Journal of Lightwave
Technology, special issue on Optical Networks. Vol. 21(11), pp.
2804-2810. November, 2003.

[Axi06] Web Services-Axis. Available via
<http://ws.apache.org/axis/>. [Accessed February, 2006].

[Ban01] Banks, J.; Carson, J.; Nelson, B.; Nicol, D. Discrete-
Event System Simulation. Prentice Hall. 2001.

[Bra04] Bray, T.; Paoli, J.; Sperberg-McQueen, C.M.; Yergeau, F.
“Extensible Markup Language, XML 1.0 (Third Edition)”.
February, 2004. Available via
<http://www.w3.org/TR/2004/REC-xml-20040204/>. [Accessed
October, 2005].

[Che04] Cheon, S.; Seo, C.; Park, S.; Zeigler, B.P. “Design and
Implementation of Distributed DEVS Simulation in a Peer to Peer
Network System”. Advanced Simulation Technologies
Conference, Arlington Virginia. April, 2004

[Cho94a] Chow, A.; Zeigler, B. “Parallel DEVS: A parallel,
hierarchical, modular modeling formalism”. Proceedings of the
Winter Computer Simulation Conference. Orlando, FL. USA.
1994.

[Cho94b] Chow, A.; Kim, D.; Zeigler, B. “Abstract Simulator for
the parallel DEVS formalism”. AI, Simulation, and Planning in
High Autonomy Systems. Gainesville, FL. USA. 1994.

[Chr01] Christensen, E; Curbera, F.; Meredith, G.; Weerawarana,
S.” Web Service Desctiption Language (WSDL) 1.1”. March,
2001. Available via <
http://www.w3.org/TR/wsdl>. [Accessed December, 2005].

[Fuj99] Fujimoto, R.M. Parallel and Distribution Simulation
Systems. Wiley. 1999.

[Gat06] Gates, M.; Warshavsky, A. “Iperf version 1.1.1”.
February, 2000. Available via
<http://dast.nlanr.net/Projects/Iperf1.1.1/>. [Accessed July, 2006].

[Gli02] Glinsky, E.; Wainer, G. "Performance Analysis of Real-
Time DEVS models". Proceedings of 2002 Winter Simulation
Conference. San Diego, U.S.A. 2002.

[Gli04] Glinsky, E. “New Techniques for Parallel Simulation of
DEVS and Cell-DEVS Models In CD++”. Master Thesis.
Carleton University 2004.

[Glo05] “A Globus Primer”. Available via
<http://www.globus.org/toolkit/docs/4.0/key/GT4_Primer_0.6.pdf
>. [Accessed January, 2006].

[Gud03] Gudgin, M.; Hadley, M.; Mendelsohn, N.; Moreau, J.;
Nielsen, H. “SOAP Version 1.2 Part 1: Messaging Framework”.
June, 2003. Available via <http://www.w3.org/TR/soap12-
part1/>. [Accessed November, 2005].

[Jef85] Jefferson, D.R. “Virtual time”. ACM Transactions on
Programming Languages and Systems. vol. 7(3), pp. 404-425.
July, 1985.

[JXT06] www.jxta.org. [Accessed June, 2006]

[Kha03] Khargharia, B.; Hariri, S.; Parashar, M.; Ntaimo, L.;
Kim, B. “vGrid: A Framework for Building Autonomic
Applications”. International Workshop on Challenges for Large
Applications in Distributed Environments (CLADE 2003), pp. 19-
26. June, 2003.

[Kha05] Khan, A.; Wainer, G. "A visualization engine based on
Maya for DEVS models". Proceedings of SISO Fall
Interoperability Workshop. San Diego, CA. U.S.A. 2005.

[Kim04] Kim, K.; Kang, W. “CORBA -Based, Multi-threaded
Distributed Simulation of Hierarchical DEVS Models:
Transforming Model Structure into a Non-hierarchical One”.
International Conference on Computational Science and Its
Applications (ICCSA). Assisi, Italy. 2004.

[Lia99] Liang, S. Java Native Interface (JNI), Programmer’s
Guide and Specification. Addison-Wesley. 1999

[MPI95] Message Passing Interface Forum. MPI: A Message-
Passing Interface standard (version 1.1). Technical report.

Available via: <http://www.mpi-forum.org >. [Accessed May,
2006].

[OMG02] Object Management Group. The common object
request broker: architecture and specification. Revision 3.0. OMG
Technical report. June, 2002. 492 Old Connecticut Path,
Framingham, MA. USA.

[Saa03] Saadawi, H.; Wainer , G. “Modeling a sand pile
application using Cell-DEVS”. Proceedings of the 2003 Summer
Computer Simulation Conference. Montreal, QC. Canada. 2003.

[San06] Sandy, L.; Liang, Y.; Spencer, B. “Eucalyptus: A
Service-oriented Participatory Design Studio Supported by
UCLP”. Available via <
http://www.cs.unb.ca/itc/ResearchExpo/posters/2006/abs20a.pdf>
. [Accessed February, 2006].

[Seo04] Seo, C.; Park, S.; Kim, B.; Cheon, S.; Zeigler, B.
“Implementation of Distributed high-performance DEVS
Simulation Framework in the Grid Computing Environment”.
Advanced Simulation Technologies conference (ASTC).
Arlington, VA. USA. 2004.

[Tom06] Apache Tomcat. Available via
<http://tomcat.apache.org/>. [Accessed February, 2006].

[Tro03] Troccoli, A., Wainer, G. "Implementing Parallel Cell-
DEVS". Proceedings of 36th IEEE/SCS Annual Simulation
Symposium. Orlando, FL. USA. 2003.

[Wai00] Wainer, G. "Improved Cellular Models with Parallel
Cell-DEVS". Transactions of the Society for Computer
Simulation International. Vol. 17(2), pp. 73-88. June, 2000.

[Wai01] Wainer, G.; Giambiasi, N. “Timed Cell-DEVS:
modelling and simulation of cell spaces". Invited paper for the
book Discrete Event Modeling & Simulation: Enabling Future
Technologies. Springer-Verlag. 2001

[Wai02] Wainer, G. “CD++: a toolkit to develop DEVS models”.
Software - Practice and Experience. vol. 32, pp. 1261-1306. 2002.

[War06] Warped: A Time Warp Simulation Kernel. Warped
Documentation for version 1.0. Available via
<www.ececs.uc.edu/~paw/warped/>. [Accessed April, 2006.]

[Wol86] Wolfram, S. Theory and applications of cellular
automata. Advances Series on Complex Systems. World
Scientific. Singapore. 1986.

[Zei00] Zeigler, B.; Kim, T.; Praehofer, H. Theory of Modeling
and Simulation: Integrating Discrete Event and Continuous
Complex Dynamic Systems. Academic Press. 2000.

[Zha05] Zhang, M.; Zeigler, B.; Hammonds, P. "DEVS/RMI-An
Auto-Adaptive and Reconfigurable Distributed Simulation
Environment for Engineering Studies". ITEA Journal. July. 2005.

