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We present the definition of a specification language to outline sections
of cities as discrete-event cell spaces. Streets are characterized by
their traffic direction, number of lanes, etc. Specialized behavior is
included to model traffic lights, trucks, traffic signs, railways, etc.
The models are formally specified as DEVS and Cell-DEVS models,
avoiding a high number of errors in the developed application. As the
modelers can focus in the problem to solve, development times for the
simulators can be highly reduced. We present the formal definitions
for the language, and its translation into discrete-event models.
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1 INTRODUCTION

The use of computer simulation for urban traffic analysis and control is
gaining acceptance due to the complexity of the phenomena involved, which
cannot be studied analytically. Simulation models have been widely applied
to solve these problems, allowing to improve traffic control, to measure
the consequences of collisions, avoid pollution, congestion, etc. Nowadays,
most existing techniques are based on microscopic models, which describe
both the system entities and their interactions at a high level of detail (for
example, a lane change could consider nearby cars, as well as detailed
driver decisions).
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Different modeling techniques have been used to create traffic simulations,
including queuing networks (Schmidt 2000), Cellular Automata (Treiber
et al. 2000, Rodrı́guez Zamora 2004), DEVS (Lee and Chi 2005), software
agents (Balmer et al. 2004), object-oriented programming (Sadoun 2003)
and other approaches, including Game Theory (Chen and Ben-Akiva 1998),
Petri Nets (Tolba et al. 2005), up to fluid or electrical flow models. Following
these ideas, we created a microsimulation language to precisely describe
the behavior of traffic in closed sections. The goal is to let a modeler to
analyze behavior in cities with complex urban design, or in closed traffic
conditions (parking, roads in shopping malls, amusement parks, etc).

Cellular Automata (CA) is a popular technique widely used for defining
these kinds of models (Maniezzo 2004, Nagel et al. 2000, Nagel 2002,
Esser and Schreckenberg 1997, Marinosson 2002, Rickert et al. 1996).
CA define a grid of cells using discrete variables for time, space and
system states (Chopard and Droz 1998, Wolfram 2002). Cells are updated
synchronously and in parallel for every cell in the space according with a
local rule using a finite set of nearby cells (the neighborhood). Cellular
models represent a quite intuitive way of analyzing the traffic flow in detail,
and they enable good visualization of the results. Nonetheless, CA are
synchronous, a fact that poses precision constraints and extra compute time.
The Cell-DEVS formalism (Wainer and Giambiasi 2002) was proposed to
solve these problems by defining cell spaces as DEVS (Discrete Events
systems Specifications) models (Zeigler et al. 2000). Using Cell-DEVS, a
cell space is described as a discrete event model in which explicit delays
can be used to accurately model the cell timing properties.

ATLAS (Advanced Traffic LAnguage Specifications) allows one to
represent city sections, and its constructions are translated into discrete event
models represented using DEVS and Cell-DEVS. DEVS and Cell-DEVS
are discrete event formalisms, providing precision and speedups in the
simulations. Likewise, these formal approaches allowed us to guarantee
the correctness and completeness of the simulation models, as DEVS
and Cell-DEVS simulators have been formally proved to ensure correct
execution. In this way, errors in the simulation can be detected by analyzing
the specification, without considering the underlying software system. The
streets can be defined, analyzing the traffic direction, number of lanes,
traffic lights, etc. The language is focused in the description of precise
microsimulations, allowing analyzing different behavior according with the
shape of the city and different traffic characteristics. In Wainer (2006)
we presented the general ideas about ATLAS, focusing on the language
definition, the creation of the ATLAS Traffic Simulation Compiler, and
showing the simulation results obtaining in applying the tool to a real city
section, allowing us to validate the proper behavior of the simulation tool.
Here, we focus on ATLAS constructions, and present a detailed mapping
of the language constructions into discrete event and cellular models.
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2 THE DEVS FORMALISM

In this section we introduce the formal techniques employed to define the
ATLAS modeling language. We will present classic DEVS models, and
then we introduce Cell-DEVS.

2.1 Classic DEVS
A real system modeled using DEVS (Zeigler et al. 2000), can be described
as composed of several submodels. Each of them can be behavioral (atomic)
or structural (coupled). A DEVS atomic model can be formally described as:

M =< X,S, Y, δint, δext, λ,D >

X is the input events set;
S is the state set;
Y is the output events set;
δint: S → S, is the internal transition function;
δext: Q x X → S, is the external transition function; where Q = { (s, e) /

s ∈ S, and e ∈ [0, D(s)]};
λ: S → Y, is the output function; and
D: S→ R+0 ∪∞, is the elapsed time function.

Each state in a model has a given lifetime, defined by the elapsed time
function. Once the lifetime of a given state is consumed, the output and
the internal transition functions are activated. At any moment, a model can
receive input external events. When an external event arrives, the external
transition function is activated, which computes a new state for the model
using the present state, the input values, and the elapsed time for the model.

An atomic model can be integrated with other DEVS models to build a
structural model. These models are called coupled, and are integrated by
base models, that is, atomic or other coupled ones. DEVS coupled models
are formally defined as:

CM =< X, Y,D, {Mi}, {Ii}, {Zij}, select >

X is the set of input events;
Y is the set of output events;
D ∈ N , D <∞ is an index for the components of the coupled model,

and ∀ i ∈ D, Mi is a basic DEVS model,
Ii is the set of influencees of model i, and ∀ j ∈ Ii, and
Zij: Yi → Xj is the i to j translation function.

Finally, select is the tie-breaking selector.
Each coupled model consists of a set of basic models (atomic or coupled)

interconnected through the model’s interfaces. Each component is identified
by an index number. The influencees of each model define other models
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where output values must be sent. The translation function uses an index
of influencees, created for each model (Ii). The function defines which
outputs of model Mi are connected to inputs in model Mj. When two
submodels have simultaneous events, the select function defines which of
them should be activated first.

2.2 Cell-DEVS
Cell-DEVS allows defining complex cellular models that can be integrated
with other DEVS. Here, each cell of a space is defined as an atomic DEVS.
Transport and inertial delays allow defining timing behavior of each cell
in an explicit and simple fashion. A transport delay allows us to model a
variable response time for each cell. Instead, inertial delays are preemptive:
a scheduled event is executed only if the delay is consumed. Cell-DEVS
atomic models are formally specified as:

TDC =< X, Y, I, S, θ,N, d, δint, δext, τ, λ,D >

where for # T <∞∧ T ∈ {N, Z,<, {0, 1}} ∪ {φ}
X ⊆ T is the set of external input events;
Y ⊆ T is the set of external output events;

I = < η, µ, Px, Py > represents the definition of the model’s modular
interface. Here, η ∈ N is the neighborhood’s size, µ ∈ N is the number of
other input/output ports, and ∀j ∈ [1,η], i ∈ {X,Y}, Pj

i is a definition of a
port (input/output), Pj

i = {(Nj
i , Tj

i ) / ∀ j ∈ [1, η + µ], Nj
i ∈ [i1, iη+µ]

(port name), Tj
i ∈ Ii (port type)}, Ii = { x / x ∈ X if X } or Ii = { x / x

∈ Y if i = Y } ;

S ⊆ T is the set of sequential states for the cell;
θ is the definition of the cell’s state, θ = { (s, phase, σqueue, σ )/s ∈ S is

the status value for the cell, phase ∈ {active, passive}, σqueue = {
((v1, σ1),...,(vm,σm))/m ∈ N ∧m <∞) ∧ ∀(i ∈ N , i ∈ [1,m]), vi ∈
S ∧σi ∈ R+0 ∪∞}; and σ ∈ R+0 ∪∞};

N ∈ Sη+µ is the set of input events;
d ∈ R0

+, d <∞ is the transport delay for the cell;
δint: θ → θ is the internal transition function;
δext: QxX → θ is the external transition function, where Q = { (s, e) / s

∈ θ x N x d; e ∈ [0, D(s)]};
τ : N → S is the local computation function;
λ: S → Y is the output function; and
D: θ x N x d → R+0 ∪∞ , is the state’s duration function.

The state for each cell is defined as a set composed by its present value
and phase. A queue is also used to keep the next events values and their
scheduled simulated time. The N set is used to represent the input values
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for the cell and it is composed by an η + µ-tuple (s1,..., sη+µ), where
si ∈ S. This set is used to record the present values used to compute the
future value for the cell through the local computation function τ . The
duration function D manages the cell’s lifetime. Here, D(s, phase, σqueue,
σ , N, d) = t represents the time during which a cell keeps the present
status if no external events are detected. The transition and output functions
(λ, δint, δext) are used to activate the model’s local and delay functions.
Each cell can have an associated delay (d), allowing to delay the execution
of the internal transition function.

A Cell-DEVS coupled model is defined by:

GCC =< Xlist,Ylist, I, X, Y, n, {t1, ..., tn},N,C,B,Z >

Here, Ylist is an output coupling list, Xlist is an input coupling list and
I represents the interface of the model. X are the external input events
and Y the external outputs. The n value defines the dimension of the cell
space, {t1,...,tn} is the number of cells in each dimension, and N is the
neighborhood set. C is the cell space, B is the set of border cells and
Z the translation function. The cell space defined by this specification is
a coupled model composed of an array of atomic cells. Each of them
is connected to the cells defined by the neighborhood. As the cell space
is finite, the borders should have a different behavior than the remaining
cells. Otherwise, the space is wrapped, meaning that cells in a border are
connected with those in the opposite one. Finally, the Z function allows
one to define the internal and external coupling of cells in the model.
This function translates the outputs of m-eth output port in cell Cij into
values for the m-eth input port of cell Ckl. The input/output coupling lists
can be used to transfer data with other models. This informally presented
in Figure 1.

3 THE ATLAS MODELING LANGUAGE

ATLAS allows the definition of a city section with detail. The language
constructions allow to build the structure of a model that represents the
topology of a city section. The basic structure is the segment, (a portion of
a street) connected by crossings. These constructions define a static view
of the model, representing a standard city map. According to the kind of
construction used, an implicit dynamic behavior is associated. The dynamic
will depend on how the traffic is injected. This is done by an experimental
framework used to generate traffic and to analyze traffic metrics. Different
decorations can be added, including railways, traffic signs, parking sections,
traffic lights, etc.
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FIGURE 1
Informal definition of a Cell-DEVS model.

Figure 2 shows a part of a city section in detail, labeling the segments
and crossings. We will use this example in the following sections to show
how a construction is translated into DEVS models.

The different components in Figure 2 can be defined in ATLAS as follows:
Segments = { rA, rB, rC, rD1, rD2, rE, rF, rG1, rG2, rH1, rH2, rI1,

rI2 }, where:

rA=[(0,0), (0,130), 1, 40, 0, 1] rF=[(0,300), (100,300), 1, 40,
0, 1]

rB=[(0,130), (0,200), 1, 40, 0, 1] rG1=[(100,0),(100,200),4,60,0, 1]
rC=[(0,200), (0,300), 1,40, 0, 1] rG2=[(100,0),(100,200),4,60,0, 0]
rD1=[(0,130),(100,200),2,60,0, 1] rH1=[(100,200),(100,300),2,60,0,1]

FIGURE 2
Specification of the segments and crossings in the city section.
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rD2=[(0,130),(100,200),2, 60, rH2=[(100,200),(100,300),2,60,0,0]
0, 0]
rE=[(0,200), (100,200), 1, 40, rI1=[(100,200),(200,280),2,60,0,1]
0, 0] rI2=[(100,200),(200,280), 2, 60,

0, 0]

Crossings = { c1, c2, c3, c4, c5, c6 }, where c1 = ((0,0); 20),
c2 = ((0,130); 30), c3 =((0,200); 20), c4 = ((0,300); 30),
c5 = ((100,0); 30), c6 = ((100,200); 30)
Railnets = { (Station1, Rail1) }, where Rail1 = { (rI1, 90, 1),
(rI2, 10, 1), ... }

TLCrossings = { c2, c5, c6 } TrafficSigns = { (rA, school,20),
(rC, stop, 95), (rE, PedXing, 95) }

Pothole = { (rA, 0, 10) } TruckSegments = { rD1, rD2,
rG1, rG2, rH1, rH2, rI1, rI2 }

TruckXings = {c2, c6, ... } Parking = {(rG1,1 )}
InputSegments = { rH1, rI1 } OutputSegments = { rH2, rI2 }

The specification considers the plane starting in the crossing c1. The
segment rA is a one-way/one-lane segment. Its maximum speed is 40 km
/h, and it is a straight line. Segments rB and rC are continuations of this
segment. Segment rD is a two-way segment (therefore, rD1 and rD2 are
defined). The maximum speed allowed is 60 km /h. Segment rI is the
continuation of this segment. Finally, rG is a two-way segment with 4
lanes in each way. The maximum speed is also 60 km /h. As we can see,
trucks are allowed in segments rD, rI, rG and rH (both ways). The crossing
specifications show the position and maximum speed allowed for each of
them. The railway construction shows that a crossing level intersects the
segment rI. Segment rI1 is cut 10 m from the crossing, and rI2, 90 m from
the next crossing. Finally, we show the definition of a pothole, several
traffic signs, and a parking lane.

3.1 Segments
Each street in the city is represented as a sequence of segments that
represent the section between two corners. Every lane in a given segment
has the same direction (one way segments) and a maximum speed (two-way
streets are built using one segment on each direction, informally presented
in Figure 3). Segments are specified by:

Segments = {(p1, p2, n,max, a, dir )/p1, p2 ∈ City ∧ n,max ∈
< ∧ a, dir ∈ {0, 1}}.

Here, p1 and p2 represent the boundaries of each segment, which belong
to City = { (x,y) / x, y ∈ < }. Then, n defines the number of lanes in the
segment, and max is used to define the maximum speed allowed in the
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FIGURE 3
Specification of a segment.

segment. The a parameter defines the shape of the segment. Here, a = 0 is
used when the segment is a straight, and a = 1 when the segment is curve.
Finally, dir represents the vehicle direction (dir = 1 means that vehicles
move towards p2, otherwise they go to p1).

Each segment is defined as a bidimensional Cell-DEVS. The behavior
defined for each cell is different according to the number of lanes, because
in each case we must define different border conditions. The most simple
mapping allows us to define a one lane segment s = (p1, p2, 1, a, dir, max)
as a one-dimensional Cell-DEVS with transport delays, showed in Figure 4.

Each cell is defined as:

S1 =< I, X, S, Y, N , δint , δext , delay, d, τ, λ, D >

I = <Px, Py >, Px = { (X1, binary), (X2, binary), (X3, binary) };
Py = { (Y1, binary), (Y2, binary), (Y3, binary) }.
X = Y = {0, 1}; N = { (0,-1), (0,0), (0,1) };

S =
{

1 if there is a vehicle in the cell;
0 otherwise.

delay = transport; d = speed(max);
λ, δint and δext behave as defined in the Cell-DEVS formalism with transport
delays.
τ : S x N → S is defined as follows:

τ (N) N

1 (0,-1) = 1 and (0,0) = 0
0 (0,0) = 1 and (0,1) = 0
(0,0) TRUE /*Otherwise: state unchanged */

Here, the transport delays are used to model the time used by a vehicle
to leave a cell and get into the next one. It depends on the present speed of
the vehicle, and uses function related with the car speed and the maximum

FIGURE 4
One lane segment.
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speed allowed in the segment. The local computation defines the movement
of a vehicle. The first rule represents a vehicle arriving to an empty cell from
the previous one. The second rule represents the car abandoning the present
cell towards the front. Otherwise, the cell preserves the present value.

The coupled model corresponding with the segment is defined as:

C S1(k,max) =< Xlist , Ylist , I, X, Y, n, {t1, ..., tn}, η, N ,C, B, Z >

Ylist = Xlist = { (0,0), (0,k-1) }
I = <Px, Py >, where Px= {<Xη+1(0,0), binary>, <Xη+1(0,k-1), binary>},
Py= {<Yη+1(0,0), binary>, <Yη+1(0,k-1), binary>}.

These ports will be noted follows (with i=0):

Port Name

Xη+1(i,0) x-c-vehicle
Xη+1(i,k-1) x-c-space
Yη+1(i,0) y-c-space
Yη+1(i,k-1) y-c-vehicle

X = Y = { 0, 1 }; n = 1 ; t1= k ; η= 3,
N = {(0, -1), (0,0), (0,1)}; B = {(0,0), (0,k-1) }; and
Z is built using the basic definitions of the Cell-DEVS formalism

The parameters k and max are used to build this coupled model. The
maximum speed is used as a parameter for the random number generation,
and the k parameter is obtained computing the segment length.

To do this, k = segment len(s: Segments) computes the distance between
boundaries, and divides it by the cell size. If s= ((x1,y1), (x2,y2), n, a, dir,
max) is a segment, then,

If (a = 0) then ` = |
√
|x1− x2|2 + |y1− y2|2|; /* Line length in a

Cartesian plane */
else ` = (2π (|

√
|x1− x2|2 + |y1− y2|2|)/2))/2 ; /* Circle perimeter */

return k = d`/cell sizee
The length of each cell in km is defined by the function cell size. We

have the length of a car plus the standard distance between them defined
in (Wagner et al. 1997, Nagel et al. 1998). This distance is 7.5 m for each
cell. For instance, if we consider the specification of rA, we have:

k =
⌈√
|x1− x2|2 + |y1− y2|2

/
cell si ze

⌉
=
⌈√

0+ 1302
/

7.5

⌉
= 18

The cells (0,0) and (0, k-1) compose the external interface of the model,
because they must interchange information with the crossings, as depicted
in Figure 5. Hence, the behavior of the cell (0,0) is redefined:
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FIGURE 5
Neighborhood/coupling for the cell (0,0).

η = 2; N = { (0,0), (0,1) }

The function τ for this cell is the same than that defined earlier, with
the first rule changed by:

τ (N) N

1 portvalue(x-c-vehicle) = 1 and (0,0) = 0

The function portvalue returns the present value of a given port. Whenever
the port x-c-vehicle is 1, there is a vehicle wanting to leave the crossing.
Therefore, this rule represents the departure of a car from the crossing to
the segment. The cell (0,k-1) is coupled with the first cell of the crossing,
as showed in Figure 6. Then, its behavior and neighborhood were redefined

η = 2; N = { (0,-1), (0,0) }

The function τ have redefined the second rule, now specified by:

FIGURE 6
Neighborhood/coupling for the cell (0,k-1).

FIGURE 7
A Two lane segment.
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τ (N) N

0 (0,0) = 1 and portvalue(x-c-space) = 0
send(1, y-c-vehicle)

Delay = inertial.
The function send defines the new state of the selected external ports.

The port x-c-space tells if there is space in the input cell of the crossing.
Whenever this cell and the previous one in the crossing are empty, a car
can advance. In this way, we represent that cars in the crossing have
higher priority than those trying cross. We use an inertial delay is used, to
represent that a car can get into the crossing only if there is a free space
for a while. If a fast car arrives to the input cell before the delay, the
crossing car must remain waiting.

When streets with two lanes are defined, we translate the segment s
= (p1, p2, 2, a, dir, max) into a two-dimensional Cell-DEVS with the
following structure:

Each row of this space acts as a border of the model. Vehicles in the
first row can change to the right, and those in the second row can move
to the left. Therefore, each row must be specified separately. The atomic
cells in the first row will be defined using the one-lane cells as a base.
The main changes include the interface (I), neighborhood (N) and behavior
(τ ), now defined as:

I = < η, Px, Py >, where η = 6; N = { (0,0), (0,1), (-1,0), (-1,1), (0,-1),
(-1,-1) };

The function τ for these cells is defined as in the one lane model,
adding the following rules to model the lane changes:

τ (N) N

1 (0,0) = 0 and (0,-1) = 0 and (-1,-1) = 1 and (-1,0) = 1
0 (0,0) = 1 and (-1,1) = 0 and (-1,0) = 0

These rules of lane change consider that a vehicle tries first to move
straight, and it has priority to use the position in front of it. The first rule
here represents a vehicle arriving in diagonal. To define the priority access,
the diagonal movement checks if there is no car waiting to us the cell in
diagonal. If that is not the case, it can advance.

The main difference in the definition for the lane 1 is in the neighborhood
definition and the local computing function, whose definition is symmetric
to the previous:
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N = { (0,0), (0,1), (1,0), (1,1), (0,-1), (1,-1) };

The function τ for these cells extends those of the one lane model
as follows:

τ (N) N

1 (0,0) = 0 and (0,-1) = 0 and (1,-1) = 1 and (1,0) = 1
0 ( (0,0) = 1 and (1,1) = 0 and (1,0) = 0 )

These rules also define the lane changes, considering priority movements
for the cars advancing in a straight line.

The coupled model corresponding to the segment is defined by:

T C2(k,max) =< Xlist , Ylist , I, X, Y, n, {t1, ..., tn}, η, N ,C, B, Z >

Ylist = Xlist = { (0,0), (1,0), (0,k-1), (1,k-1) }
I = <Px, Py >, where Px= {<Xη+1(0,0), binary>, <Xη+1(1,0), binary>,

<Xη+1(0,k-1), binary>, <Xη+1(1,k-1), binary>}

Py = {< Yη+1(0, 0), binary >,< Yη+1(1, 0), binary >,

< Yη+1(0, k-1), binary >,< Yη+1(1, k-1), binary >}

These ports will be named as in the previous section, but considering that
0 ≤ i ≤ 1.

X = Y = { 0, 1 }; n = 2; t1= 2; t2= k ; η= 6; N { (0,0), (0,1), (1,0), (1,1),
(0,-1), (1,-1) }; B = { (0, k-1), (1, k-1), (0,0), (1,0) }; and Z is built using
the definition given by the definition given in the Cell-DEVS formalism.

The interface of this model is composed by the cells of the first and
last columns, used to interchange information with each of the crossings.
The external ports and the rules for the crossings are extensions of those
defined for the one lane model. The output cells of the crossing will behave
according to the segment to which they are coupled. The output cells
allowing cars or trucks are defined following:

τ (N) N

1 (0,0) = 0 and (0,-1) = 1 and [ x-s-room = 1 or
IsTruck(x-s-room) or (x-s-room = 0 and

random < pout) ] send(0,y-s-vehicle)
/* Arrival of a car that will stay in the crossing */

(0,-1) (0,0) = 0 and Truck(0,-1) and [x-s-room = 1 or
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IsTruck(x-s-room) or (x-s-room = 0 and
random < pout) ] send(0,y-s-vehicle)

/* Arrival of a truck staying in the crossing */
0 (0,0) = 0 and (0,-1) = 1 and x-s-room = 0 and

random ≥ pout send(1,y-s-vehicle)
/* Arrival of a car that will leave the crossing */

0 (0,0) = 0 and Truck(0,-1) and x-s-room = 0 and
random ≥ pout send((0,-1), y-s-vehicle)

/* Arrival of a truck that will leave crossing */
0 (0,0) = 1 and (0,1) = 0

send(0,y-s-vehicle)
0 Truck(0,0) and (0,1) = 0

send(0,y-s-vehicle)
(0,0) TRUE send(0,y-s-vehicle)

/* Otherwise, the present state is kept */

Here, pout is a constant that represents the probability of vehicle leaving
the crossing. A vehicle can leave the crossing if there is enough space in the
segment and a random value is higher than pout . A truck passing through
cells connected to segments not allowing trucks will keep advancing. The
behavior for these cells is defined by:

τ (N) N

1 (0,0) = 0 and (0,-1) = 1 and (x-s-room = 1 or
(x-s-room = 0 and random < pout) ) send(0,y-s-vehicle)

/* Arrival of a car that will stay in the crossing */
(0,-1) (0,0) = 0 and Truck(0,-1) send(0,y-s-vehicle)

/* Arrival of a truck that will stay in the crossing */
0 (0,0) = 0 and (0,-1) = 1 and x-s-room = 0

and random ≥ pout send(1,y-s-vehicle)
/* Arrival of a car that will leave the crossing */

0 (0,0) = 1 and (0,1) = 0 send(0,y-s-vehicle)
0 Truck(0,0) and (0,1) = 0 send(0,y-s-vehicle)

(0,0) TRUE send(0,y-s-vehicle)
/* Otherwise, the present state is kept */

These rules represent that, when there is space in the segment and a
random value is greater than pout , the cars can leave the crossing. When a
truck arrives to these cells, it just advances to the next cell if it is empty.
A truck cannot it leave the crossing through these cells.

The local computing function of the input cells is defined by:
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τ (N) N

1 (0,0) = 0 and (0,-1) = 1 send(1, y-s-room)
1 (0,0)=0 and x-s-vehicle = 1 and

(0,-1)=0 send(1, y-s-room)
(0,-1) (0,0) = 0 and Truck(0,-1) ; send(1, y-s-room)

x-s-vehicle (0,0) = 0 and IsTruck(x-s-vehicle)
and (0,-1)=0 send(1, y-s-room)

0 (0,0) = 1 and (0,1) = 0 and (0,-1)
= 0 send(0, y-s-room)

/* No vehicle with priority is in the crossing */
0 Truck(0,0) and (0,1) = 0 and (0,-1)

= 0 send(0, y-s-room)
/* No vehicle with priority is in the crossing */

0 (0,0) = 1 and (0,1) = 0 and ( (0,-1) = 1
or Truck(0,-1) ) send(1, y-s-room)

/* No vehicle with priority is in the crossing */
0 Truck(0,0) and (0,1) = 0 and ( (0,-1) = 1

or Truck(0,-1) ) send(1, y-s-room)
/* No vehicle with priority is in the crossing */

(0,0) TRUE /* Otherwise, keep the previous state */

The ports should be updated explicitly, because the new state for each
of the cells is not transmitted. In the third and fourth rules, the new state
represents the presence of a truck. Then, if the coupled segment is binary,
it will not accept trucks. Therefore, a value of 1, representing that the cell
is busy is sent to the segment. The segment will wait the cell to be empty,
which will be done by sending a 0 value through the output port. In this
way, if there is a vehicle with priority in the crossing, the cell sends a 1. In
this way, a new arriving vehicle knows that it must stop before the crossing.

The constructions here presented also include rules to translate segments
with three to five lanes (or more). They are built as an extension to the
behavior presented in this section (Davidson and Wainer, 1999).

3.2 Segments with trucks
The constructions presented in the previous section were extended to
allow the representation of trucks. Two different constructions are available
according to the kind of traffic allowed in the street. The standard models
are used in streets where heavy traffic is not allowed. Otherwise, the models
presented in these sections are applied. A segment including trucks is
defined by:
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T ruckSegments = {(p1, p2, n, a, dir,max)/p1, p2 ∈ City ∧ n,

max ∈ N ∧ a, dir ∈ {0, 1}}
With the parameters defined as for standard segments. Each

TruckSegment will be translated into a Cell-DEVS with transport delays.
The TruckSegment cell atomic model is defined as:

TSij =< I, X,S, Y,N, δint, δext, delay, d, τ, λ,D >

X = Y = N; delay = transport; d = truck sp(max);
S:

s =




1 if there is a car in the cell;
0 if the cell is empty; and
k = rmod10 ∧ r ∈ [2, 5] if here is a truck.

D, λ, δint and δext are defined by the Cell-DEVS formalism to achieve
the transport delay behavior.
τ will be discussed later;
N = {(3,0), (2,-5), (2,-4), (2,-3), (2,-2), (2,-1), (2,0), (2,1), (1,-5), (1,-4),

(1,-3), (1,-2), (1,-1), (1,0), (1,1), (1,2), (0,-5), (0,-4), (0,-3), (0,-2), (0,-1),
(0,0), (0,1), (0,2), (-1,-5), (-1,-4), (-1,-3), (-1,-2), (-1,-1), (-1,0), (-1,1),
(-1,2), (-2,-5), (-2,-4), (-2,-3), (-2,-2), (-2,-1), (-2,0), (-2,1) }

A truck is defined by { s / s ∈ N ∧ s > 1 ∧ r = s mod 10 ∧ r ∈ [2, 5]}.
Each s represents an identifier for a truck with length r . The length is
used to define the space needed to change between lanes. Each truck has
a unique identifier (the s parameter) that can be used to recognize it.
Truck sp() is a function returning a delay representing the current speed.
The value returned depends on the maximum speed allowed in the street.
The cell’s neighborhood is depicted in Figure 8.

The cell’s behavior defined by the τ function is divided in two groups.
The first one is related with the truck’s movement, and the second is
related with car’s advance. When a truck moves, several cells should change
together. The first cell is in charge to choose the next movement, checking

FIGURE 8
Cell’s Neighborhood.
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if there is space to move all the truck. The remaining cells will follow
the first one. There are three valid movements. The first one movement
consists in advancing one cell in the same lane. If there is no space, it tries
to move to the right (reflecting that the trucks should use the right lanes).
Otherwise, it tries to go to the left, as showed in Figure 9 (Davidson and
Wainer, 2000b).

Any vehicle advancing straight will have a higher priority than those
coming from the other lanes. Therefore, to make a straight movement we
only need to check if there is a place in the previous cell. When a truck
tries to move to the right, the head verifies if the right lanes are free, that
is, ∀ k ∈ [0, remainder((i,j),10)] ⇒ (i-1,j-k) = 0. These trucks will have a
higher priority than the cars trying to make the same movements. Instead,
when moving to the left, the trucks should check that no other vehicles
are trying to occupy those cells. Two lanes must be checked because other
trucks or cars in the second lane trying to move have higher priority to do
it. To avoid collisions with trucks, car movements defined in the section 5.1
were extended. When a car tries to move to the left, it checks that enough
room is available ((1,0) = 0 and (1,1) = 0) and no trucks are trying to
move to the same cell. A car arrives to the origin cell from the right only
if the car is not able to move forward ((-1,0) != 0), there is enough space
to move ((0,-1) = 0 and (0,0) = 0), and a truck is not trying to get to
the same position. When a car moves to the right, we check that there is
enough space. In addition, no other vehicle must be trying to reach same
position. Finally, a car can arrive from the left. We must check there is no
space to advance, the car cannot stay in its own lane, and it cannot move
to the left. Besides, it checks if there is a truck moving to the origin cell.

As the segments contain trucks or cars, a policy ruling the movement of
both must be defined. Any vehicle advancing straight will have a higher
priority than the ones coming from the other lanes. Therefore, to make
a straight movement we only need to check if there is a place in the
previous cell. A truck trying to move to the right must check if there is
enough room to do it. These trucks will have a higher priority than the
cars trying to make the same movements. Instead, when moving to the
left, the trucks should check that no vehicles are trying to occupy those

FIGURE 9
Truck movements. (a) Straight; (b) Change to the right lane; (c) Change to the left.
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cells. The neighborhood defined earlier allows to check these movements
by using the following rules:

τ (N) N

(0,-1) (0,0) = 0 and Truck(0,-1) and IsHead(0,-1)
(0,-1) (0,0) = 0 and Truck(0,-1) and (0,1) = (0,-1)

Here, we represent the arrival of a truck to the origin cell from the cell
in the back. Truck(i,j) is a macro used to verify that the position contains a
part of a truck, that is, Truck(i,j) ≡ remainder((i,j),10) ∈ [2,5]. IsHead(i,j)
is a macro that checks if the position (i,j) is the head of the truck. To do
so, it verifies that the previous positions do not include part of the same
truck. The following rules represent a truck leaving the cell. In the first
case, the truck leaves the cell using a straight movement. In the second
one, the truck moves to the right.

τ (N) N

0 Truck(0,0) and (0,1) = 0 and IsHead(0,0)
0 Truck(0,0) and (0,1) = 0 and (0,2) = (0,0)

In the next case, the head and the rest of the truck are also
distinguished. Only the head checks if there is enough space to move
(Free Right Truck(0,0)), and the rest just follow it.

τ (N) N

0 Truck(0,0) and Free Right Truck(0,0) and IsHead(0,0)
0 Truck(0,0) and (-1,1) = (0,0)

Here, Free Right Truck(i,j) verifies if the right lane of the cell (i,j) is
free, that is, Free Right Truck(i,j) ≡ ∀ k ∈ [0, remainder((i,j),10)] ⇒
(i-1,j-k) = 0. The following rule represents a truck arriving to the origin
cell from the left. The head should check that the chosen movement is to
the right ((1,1) != 0), and there is space to do it (Free Right Truck(1,0)).

τ (N) N

(1,0) (0,0) = 0 and Truck(1,0) and (1,1) != 0 and IsHead(1,0)
and Free Right Truck(1,0)

(1,0) (0,0) = 0 and Truck(1,0) and (0,1) = (1,0)

A truck leaving the origin cell and moving to the left is represented
following. The truck’s head checks if there is enough room to move to the
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left (2LeftLanesFree(0,0)). Two lanes are necessary because other trucks
or cars trying to move have higher priority to do it.

τ (N) N

0 Truck(0,0) and 2LeftLanesFree(0,0) and IsHead(0,0)
0 Truck(0,0) and (1,1) = (0,0)

Following, we represent a truck arriving to the origin cell from the right.
If it is the truck’s head, the movement should be checked by seeing that the
truck cannot advance ((1,1) != 0) or turn right (!(Free Right Truck(-1,0))). It
also should have enough room to do the movement (2LeftLanesFree(-1,0)).

τ (N) N

(-1,0) (0,0)=0 and Truck(-1,0) and (-1,1)!=0 and IsHead(-1,0)
and !(Free Right Truck(-1,0)) and 2LeftLanesFree(-1,0)

(-1,0) (0,0) = 0 and Truck(-1,0) and (0,1) = (-1,0)

The car movements also must be defined. The first rule following
represents the arrival of a car to the cell. The second one represents a car
abandoning a cell, and moving forward. In these cases, the delay function
is d = speed(max), where speed returns a delay proportional to the car
speed depending on the speed limit.

τ (N) N

1 (0,0) = 0 and (0,-1) = 1
0 (0,0) = 1 and (0,1) = 0

The next rule represents a car leaving a cell to the left. It checks that
enough room is available ((1,0) = 0 and (1,1) = 0) and no trucks with
higher priority are trying to move to the same cell (!(Truck(2,1))).

τ (N) N

0 (0,0) = 1 and (1,0) = 0 and (1,1) = 0 and !(Truck(2,1))

The following rule represents a car arriving to the origin cell from the
right. The car should not be able to move forward ((-1,0) != 0), it should
have enough space to move ((0,-1) = 0 and (0,0) = 0), and a truck should
not be able to arrive to the same position (!(Truck(1,0))).
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τ (N) N

1 (0,0) = and (-1,-1)=1 and (-1,0) !=0 and (0,-1) =0
and !(Truck(1,0))

When a car moves to the right, we must check that enough space to
move is available. In addition, no trucks (with higher priority) or cars must
be trying to reach same position ((-2,0) = 0 or (-2,1) = 0).

τ (N) N

0 (0,0) = 1 and (-1,0) = 0 and (-1,1) = 0 and !(Truck(0,1))
and ((-2,0) = 0 or (-2,1) = 0)

Finally, a car can arrive from the left. We must check there is no space
to advance, the car cannot stay in its own lane, and it cannot move to the
left. Besides, it checks if there is a truck moving to the origin cell.

τ (N) N

1 (0,0)=0 and (1,-1)=1 and (1,0)!=0 and !(Truck(1,0))
and (0,-1)=0 and ((2,-1)!= 0 or (2,0) != 0 or Truck(3,0))

After defining the individual behavior of each cell in the model, a
Cell-DEVS coupled model should be built for the segment. In this case,
the coupled model is defined by:

SLT (k,max, #s) =< Xlist, Ylist, I, X, Y, n, {t1, ..., tn}, η, N ,C, B, Z >

Xlist = Ylist = { (i,0) / i ∈ [0, #s] } U { (i,k-1) / i ∈ [0, #s] }
I = <Px, Py >, with Px= {<Xη+1(i,0), N> / i ∈ [0, #s]} U {<Xη+1(i,k-1),

N> / i ∈ [0, #s]} and Py= {<Yη+1(i,0), N> / i ∈ [0, #s]} U
{<Yη+1(i,k-1), N> / i ∈ [0, #s]}.

X = Y = N; n = 2; t1 = #s; t2 = k; C = { Cij / i ∈ [0, #s-1] ∧ j ∈ [0, k-1] };
B = { (i,j) / ∈ [0, #s-1] ∧ j ∈ [0, 5] } U { (i,j) / i ∈ [0, #s-1] ∧ j ∈ [k-2,

k-1] }; and
Z is built by following the definition for Cell-DEVS models.

Here, SLT(k, max, #s) represents a segment of #s lanes of length k each
with speed level max. Variable k is computed using Cells-Nr(t), a function
that takes the length of the segment and the size of each cell.

The following input/output ports names are used in the following
rule definitions:
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Name Comment

x-c-vehicle A vehicle leaves a crossing to a segment.
x-c-room There is enough room in the crossing so

a vehicle can advance from the segment.
y-c-room There is enough room in the segment so

a vehicle can leave the crossing.
y-c-vehicle A vehicle in the segment is trying to cross.

The border cells of the coupled model are connected with the crossings,
therefore, their behavior is different from the rest of the cell space. The
column 0 will be devoted to receive trucks from the crossing. The trucks
in a crossing are represented using only one cell. Hence, when they return
to a segment their full length must be reconstructed. This rule represents a
car arriving to the origin cell from the crossing:

τ (N) N

1 (0,0) = 0 and x-c-vehicle = 1

The following rule represents the arrival of a truck from the crossing:

τ (N) N

x-c-vehicle (0,0) = 0 and IsTruck(x-c-vehicle)

The following rules will represent that the truck size expands when it
leaves the crossing:

τ (N) N

0 Truck(0,0) and (0,1) = 0 and
CompleteTruck(0,0) send(0,y-c-room)

0 Truck(0,0) and (0,1) = 0 and !CompleteTruck(0,0)
and !IsHead TC1(0,0)) send((0,0),y-c-room)

(0,1) (0,0) = 0 and Truck(0,1) and
!CompleteTruck(0,1) send((0,1),y-c-room)

0 Truck(0,0) and (0,1) = 0 and
IsHead TC1(0,0) send((0,0),y-c-room)

Here, IsTruck(k) verifies that a value passed as parameter represents a
truck, that is, IsTruck(k) ≡ remainder(k,10) ∈ [2,5]. CompleteTruck(i,j) is
used to see if the truck has been generated completely.

The first rule represents that the truck has been generated completely.
Consequently, the crossing should know that it is ready to receive another
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vehicle. This is done sending a 0 value to the crossing. The second rule
represents that part of the truck advanced to the following cell, but the
truck is still being reconstructed. Therefore, the cell in the crossing is
busy. The third rule represents the generation of a new part of the truck in
the origin cell. The last rule is equivalent to the second, but considering
that the origin cell contains the truck’s head. Therefore, its output must be
delayed (in the other rules, 0 delays are used).

The following rules specify the size reduction of a truck arriving to a
crossing:

τ (N) N

(0,-1) (0,0)=0 and Truck(0,-1) and CompleteTruck(0,-1)
send(0,y-c-vehicle)

0 Truck(0,0) and x-c-room = 0 send((0,0),y-c-vehicle)
0 (0,0)=0 and Truck(0,-1) and !CompleteTruck(0,-1)

send(0,y-c-vehicle)

The first rule represents the arrival of a truck to a crossing when there
is enough room to cross. The value representing the truck’s number is
transmitted only if the cell contains the head of the truck. The second rule
represents a truck arrived to the crossing. The third rule represents the
input of the remaining parts of the truck. Finally, the following rules are
related with the interchange of cars. The next one is in charge of sending
a car to the crossing:

τ (N) N

0 (0,0) = 1 and x-c-room = 0 send(1,y-c-vehicle)

Here, SLT(k, max, #s) represents a segment of #s lanes of length k
each with speed level max. Variable k is computed using the function
segment len defined earlier. Here, if we consider the example presented in
section 2, we can define, SLTrG1(20, 60, 4) as:

Ylist rG1 = Xlist rG1 = { (i,0) / i ∈ [0, 4] } U { (i,19) / i ∈ [0, 4] };
I rG1 =<Px, Py >, with Px= {<Xη+1(i,0), N> / i ∈ [0, 4]} U {<Xη+1(i,19),

N> / i ∈ [0, 4]} and Py= {<Yη+1(i,0), N> / i ∈ [0, 4]} U
{<Yη+1(i,19), N> / i ∈ [0, 4]}.

X rG1 = YrG1 = N; n rG1 = 2; t1 rG1= 4; t2 rG1= 20; C rG1 = { TSij / i ∈ [0,
4-1] ∧ j ∈ [0, 19] };

B rG1 = { (i,j) / ∈ [0, 3] ∧ j ∈ [0, 5] } U { (i,j) / i ∈ [0, 3] ∧ j ∈ [18, 19] }.

The border cells of the coupled model are connected with the crossings,
therefore, their behavior is different from the rest of the cell space. The
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column 0 will be devoted to receive trucks from the crossing, represented
using only one cell. Hence, when they return to a segment their full length
must be reconstructed. If a truck has been regenerated completely, the
crossing should know that it is ready to receive another vehicle. This is
done sending a 0 value to the crossing. On the opposite side, a truck size
must be reduced when it arrives to a crossing. A truck enters a crossing
only when there is enough room to cross. The value representing the truck
number is transmitted only if the cell contains the head of the truck. The
remaining parts of the truck are discarded.

3.3 Crossings
Crossings are formally specified as:

Crossings = {(c,max)/c ∈ City ∧ max ∈ N ∧ ∃s, s ′ ∈ Segments ∧ s

= (p1, p2, n, a, dir,max) ∧ s ′ = (p1′, p2′, n′, a′, dir ′,max ′) ∧ s 6= s ′ ∧
(p1 = c ∨ p2 = c) ∧ (p1′ = c ∨ p2′ = c)}

with the different parameters defined as for the segments constructions.
Crossings are represented as a ring of cells in which vehicles move up

to deciding to get through another path. This approach was used previously
in (Chopard et al. 1995, Chopard et al. 1996, Chopard et al. 1997). A car
in the intersection has higher priority to obtain a position into the ring than
the cars out of the crossing. In the crossing, the cars advance continuously
in order to avoid deadlocks. Each crossing should have at least one input
and one output cell. In this way, the vehicles getting into a crossing from
a given segment will always have one available output, as depicted in
Figure 10.

Atomic cells are based on the one lane model of section 3. Besides, as
each cell is connected with a segment influencing its behavior, different
functions must be provided. Here, τ : S x N −→ S will execute different
rules for input or output cells. Output cells behavior is defined by:

FIGURE 10
A Crossing.
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τ (N) N

1 (0,0) = 0 and (0,-1) = 1 and [portvalue(x-s-space) = 1 or
(portvalue(x-s-space) = 0 and random < pout) ] send(0,
y-s-vehicle) /* A car kept into the crossing arrives */

0 (0,0) = 0 and (0,-1) = 1 and portvalue(x-s-space) = 0
and random ≥ pout send(1, y-s-vehicle)

/* A car abandoning the crossing arrives */
0 (0,0) = 1 and (0,1) = 0 send(0, y-s-vehicle)

/* A car abandons the present cell */
(0,0) TRUE send(0, y-s-vehicle)

/*Otherwise, the cell keeps the present state */

The first rule of this definition represents a car arriving to the cell being
considered. Here, random is a probability function that can be tuned to
define random routing. If the value returned by the function is higher
than the constant pout , the vehicle abandons the origin cell towards to
the corresponding segment. Therefore, a car remains in the crossing if
the output segment is busy (portvalue(x-s-space) = 1), or the random test
fails. In these cases, the output port y-s-vehicle (which corresponds to the
output segment) must be set to 0. Otherwise, the segment will detect the
car and will react as in a transfer. The second rule represents the arrival of
a vehicle from the previous cell that will abandon the crossing. The first
cell in the segment must be empty, and the random function should return
a value higher than the predefined constant. The third rule represents that
a vehicle abandons the present cell.

The behavior for input cells is defined by:

τ (N) N

1 (0,0) = 0 and [ (0,-1) = 1 or portvalue(x-s-vehicle) = 1 ]
send(1, y-s-space) /* Arrival of a new car */

0 (0,0) = 1 and (0,1) = 0 and (0,-1) = 0 send(0, y-s-space)
/* No cars with priority into the crossing */

0 (0,0) = 1 and (0,1) = 0 and (0,-1) = 1 send(1, y-s-space)
/* Cars with priority into the crossing */

(0,0) TRUE /* Otherwise, keep the previous state */

The input cells can receive vehicles from the previous cell in the crossing,
or from a segment coupled to it (using the port x-s-vehicle). The first rule
represents the arrival of a car to a cell. The origin must be empty, and a
vehicle is available. The port related with the segment must be updated to
tell that the cell is busy. The second and third rules represent that a car
abandons a cell when the front cell is free. If the back cell is empty, the
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output port x-s-space is updated with a 0 to tell the segment that there is
enough room to receive a vehicle. Otherwise, a 1 is sent to the segment to
tell that a car in the crossing is trying to use the cell, due that cars in the
crossing have higher priority to use them.

The coupled model corresponding to the crossings is defined by:

Crossing(k, I n, Out) =< Xlist , Ylist , I, X, Y, n, {t1, ..., tn}, η, N ,C, B, Z >

which defines a crossing of k cells, where the positions in the set In
are the crossing inputs, and Out their outputs. Here,

Ylist = Xlist = { (0,i) / 0 ≤ i < k}; X = Y = {0, 1};
I = <Px, Py >, with Px= {<Xη+1(0,i), binary> / 0 ≤ i < k }, Py=

{<Yη+1(0,i), binary> / 0 ≤ i < k }
n = 1, t1= k , N = { (0,-1), (0,0), (0,1) }, B = {∅}.
Z is built using the definition given in the Cell-DEVS formalism,

considering the present neighborhood.

The parameters (k, In, Out) are built checking the direction of the
segments connected to the crossing. The number of lanes of the crossing is
computed as: k =

∑
n

s∈S∧s=(c1,c2,n,a,dir )∧(c1=p∨c2=p)
. As we can see, we compute

the number of lanes in each segment connected to the crossing. Then, a
unique ordering for the input/output segments is defined so that the closer
segments are connected to neighboring cells. This ordering considers the
angle between the segment and the line defined by y = 0. The function

Ports I n Out[(c,maxc) : Crossings, T : Segments] : I n =
{(s, i)/s ∈ Segments, i ∈ N}, Out = {(s, i)/s ∈ Segments, i ∈ N},
receives a crossing, the set of segments connected to it, and returns the

input and output sets for the crossing. The position in which each segment
is coupled into the crossing the segments are ordered according with the
incidence angle respect to the line y = y1, with c = (x1,y1). The greater
the angle, the higher position into the crossing.

First, we obtain the segments in S such that any of its borders is
the crossing c:

S′ = {s/s ∈ S ∧ s = (c1, c2, n, a, dir,max) ∧ (c1 = c ∨ c2 = c)}
Then, we evaluate the incidence angle of these segments. The positions

of the crossing are assigned as increasing numbers, according with the
position used to be coupled. This information is stored in the set V ,
containing tuples (s, i ,α), which represent that the first lane of segment s
is connected with i cell of the crossing (c,maxc), where α is the incidence
angle of s.
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V = {((c1, c2, n, a, dir,max), i, α)/ [(c 6= c1 ∧ α = Angle(c, c1))

∨ (c 6= c2 ∧ α = Angle(c, c2))]} ,where

i =





∑
(c′1,c

′
2,n
′,a′,dir ′,max ′)∈S′∧Angle(c′1,c

′
2)<α

n′ i f (dir = 1⇒ c2 = c)

∧ (dir = 0⇒ c1 = c)∑
(c′1, c′2, n′, a′, dir ′,max ′) ∈
S′ ∧ Angle(c′1, c′2) ≤ α∧
(c′1, c′2, n′, a′, dir ′,max ′) 6=
(c1, c2, n, a, dir,max)

n′ i f (dir = 0⇒ c2 = c)

∧ (dir = 1⇒ c1 = c)

We consider that if two segments have the same incidence angle, the
segment going into c is connected first ([dir = 1⇒ c2 = c] ∧ [dir = 0⇒
c1 = c]). Then, we add the number of lanes in the segments whose angle is
smaller than α (if there is another segment with the same angle, it will be
after s). In the second case, as ( [ dir = 0⇒ c2 = c]∧ [dir = 1⇒ c1 = c]), s
has the opposite direction to c. Then, we add the number of lanes in the
segments with incidence angle smaller or equal to α (if there is another
segment with the same angle, it will be before s).

The incidence angle (α) of the segment defined by the points
(x1,y1), (x2,y2) respect to the line y = y1. We know that sin(α) = |y1-

y2|/|
√
|x1− x2|2 + |y1− y2|2|. Then: α = arcsin

(
|y1−y2|√

|x1−x2|2+|y1−y2|2

)
.

If [ (y1 > y2) ∨ (y1 = y2 ∧ x1 < x2) ] then α = α + π . We have to
consider that the segment defined by (x1,y1) and (x2,y2) will have a different
incidence angle in each of the extremes, as it is shown in Figure 11. To
obtain the angle regarding any of them, we must define it as the first
parameter in the Angle function.

Finally, the tuples in V are separated in those corresponding to input
segments and output segments. This is done by checking the direction of
the vehicles defined for each segment.

FIGURE 11
Incidence angles.
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I n = {(s, i)/(s, i, α) ∈ V ∧ s = (c1, c2, n, a, dir,max) ∧
[(c1 = c ∧ dir = 0) ∨ (c2 = c ∧ dir = 1)]}

Out = {(s, i)/(s, i, α) ∈ V ∧ s = (c1, c2, n, a, dir,max) ∧
[(c1 = c ∧ dir = 1) ∨ (c2 = c ∧ dir = 0)]}

When trucks are allowed in the crossing, the following construction
is used:

T ruck Xings = {(c,maxc)/maxc ∈ N ∧ ∃t, t ′ ∈
(T ruckSegments U Segments) ∧ t = (p1, p2, n, a, dir,max) ∧ t ′

= (p1′, p2′, n′, a′, dir ′,max ′) ∧ t 6= t ′ ∧
(p1 = c ∨ p2 = c) ∧ (p1′ = c ∨ p2′ = c)}

This set is defined as points in a bidimensional space, representing the
places where two or more segments are crossed. It is built using Segments
and TruckSegments sets. These crossings must recognize the segments
allowed to receive trucks. The standard binary crossings are used for car
crossings. Instead, if one of the s segments belongs to TruckSegments, the
crossing is defined as part of TruckXings.

Each crossing (c, maxc) ∈ TruckXings is defined as a one-dimensional
Cell-DEVS with transport delays:

C0 j =< I, X, S, Y, N , δint , δext , delay, d, τ, λ, D >

I = < η, Px, Py >, with η = 3; Px = { (X1, N), (X2, N), (X3, N) }; Py

= { (Y1, N), (Y2, N), (Y3, N) }; X = Y = N;
S:

s =




1 if there is a car in the cell;
0 if the cell is empty;
k = r mod10 ∧ r ∈ [2, 5] if there is a truck.

N = { (0,-1), (0,0), (0,1) }; delay = transport; d = speed(maxc);
D, λ, δint and δext are defined by the Cell-DEVS formalism with

transport delays.

The function τ will be defined informally (a detailed explanation of
the formal specifications can be found in (Davidson and Wainer 2000b)).
The output cells of these crossing behave according to the segment to
which they are coupled. Depending if cars or trucks are allowed, different
approaches are used. As explained earlier, a vehicle can leave the crossing
if there is enough space in the segment where it is going and a random
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test is positive. A truck passing through cells connected to segments not
allowing trucks will keep moving. The output cells connected to segments
where trucks are not allowed use the rules defined earlier for cars. However,
if the vehicle is a truck, it cannot leave the crossing through these cells.

The local computing function of the input cells is similar, but it receives
integer values representing a truck identifier. If the coupled segment is
binary, it will not accept trucks. Therefore, a value of 1, representing that
the cell is busy is sent to the segment. The segment will wait the cell to be
empty, which will be done by sending a 0 value through the output port.
Otherwise, if there is a vehicle with priority in the crossing, the cell sends
a 1. In this way, a new arriving vehicle knows that it must stop before
the crossing.

The coupled model corresponding to the TruckXing (c, maxc) is defined by:

T ruck Xing(k, I n, I n Cars, Out, Out Cars, 1,maxc) =< Xlist , Ylist ,

I, X, Y, n, {t1, ..., tn}, η, N ,C, B, Z >

Ylist = Xlist = { (0,i) / i ∈ [0, k] }; X = Y = N; n = 1; t1= k; C = {TC0j/j ∈
[0, k-1] }; B = {∅};

I = <Px, Py >, with Px= {<Xη+1(0,i), binary> / i ∈ [0, k]}, Py=
{<Yη+1(0,i), binary> / i ∈ [0, k]}.

Z is built using the specification of Cell-DEVS.

This is a crossing of k cells, with a maximum speed of maxc. The
positions of In are the inputs to the crossing, and Out/Out cars are the
outputs. Here, Out cars represents the set of segment that cannot receive
trucks. These sets are obtained by computing

{I, O} = Ports I n Out((c,maxc), Segments U T ruckSegments)

The function Ports In Out takes the specification of the segments connected
to the crossing and their direction. The result of the {I, O} sets define
which cells are connected with each input/output segment. The procedure
to obtain these sets was explained earlier, and now we consider the type
of input/output cells using the segments to which they are connected.

Using these definitions, τ will be specified. A different behavior should
be provided for input and output cells. A crossing c = (p, maxc) influences
the segments s to which it is connected, that is,

Ic = {Ms/s ∈ (Segments U T ruckSegments) ∧ s

= (p1, p2, n, a, dir,max) ∧ (p1 = p or p2 = p)}
Therefore, a segment s influences to the two crossings in its border:

Is = {Mc1}U {Mc2}, i f s = (p1, p2, n, a, dir,max) ∧ (∃v1, v2 ∈ N : c1, c2

∈ (Crossings U T ruck Xings) ∧ c1 = (p1, v1) ∧ c2 = (p2, v2))
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These ports are coupled by defining the Z function. To define the cells
in the crossing and the segment that will be connected to the {I, O} sets
computed previously. As the coupling is done in the first (0) and last (k-1)
cells, for each (s,i) ∈ I, s = (p1, p2, n, a, dir, max) we must know the
number of cells in the segment. These values are obtained computing the
length of the segment (using p1 and p2) and dividing the result by the
size of each cell. In this case, Z is defined by:

Zsc : Yη+1(j, k-1)s → Xη+1(0,i+j)c, ∀ ( j ∈ N, j ∈ [0, n-1])
Zct : Yη+1(0,i+j)c → Xη+1(j, k-1)s, ∀ ( j ∈ N, j ∈ [0, n-1])

Instead, for each (s,i) ∈ O with s = (p1, p2, n, a, dir, max), Z is
defined by:

Zcs : Yη+1(0,j+i)c → Xη+1(n-1-j, 0)s, ∀ ( j ∈ N, j ∈ [0, n-1] )
Zsc : Yη+1(n-1-j, 0)s → Xη+1(0,j+i)c, ∀ ( j ∈ N, j ∈ [0, n-1] )

If we consider the crossing c6 presented in the example introduced in
Section 2, we can build TruckXingsc6(9, In, In Cars, Out, Out Cars, 1, 30)
as follows

Ylist c6 = Xlist c6 = { (0,i) / i ∈ [0, 9] };
Ic6 =<Px, Py >, with Px= {<Xη+1(0,i), binary> / i ∈ [0, 9]}, Py=

{<Yη+1(0,i), binary> / i ∈ [0, 9]}.
Xc6 = Yc6 = N; nc6 = 1; t1c6= 9; Cc6 = { TC0j / j ∈ [0, 9-1] }; Bc6 = {∅}.

The Ports-In-Out function returns:
In={G1, H1}; In-Cars={E1, D1, I1}; Out={G2,H2}; Out-Cars={D2,I2}
Once the behavior for crossings and segments is completed, the coupling

between them must be defined. A crossing c = (p, maxc) influences the
segments s to which it is connected, as follows:

Ic = {Ms/s ∈ (Segments U T ruckSegments) ∧ s =
(p1, p2, n, a, dir,max) ∧ (p1 = c or p2 = c)}

After, a segment should s influence to the two crossings in its borders as
follows:

Is = {Mc1}U {Mc2}, i f s = (p1, p2, n, a, dir,max) and (∃v1, v2 ∈ N : c1,

c2 ∈ (Crossings U T ruck Xings) ∧ c1 = (p1, v1) ∧ c2 = (p2, v2))

The interconnection is built using the {I, O} sets computed previously.
Using this information and length of the segment, we build the Z function,
defined by:

Zsc : Yη+1(j, k-1)s → Xη+1(0,i+j)c, ∀ ( j ∈ N, j ∈ [0, n-1])
Zcs : Yη+1(0,i+j)c → Xη+1(j, k-1)s, ∀ ( j ∈ N, j ∈ [0, n-1])
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Instead, for each (s, i) ∈ O with s = (p1, p2, n, a, dir,max), Z is
defined by:

Zcs : Yη+1(0,j+i)c → Xη+1(j, 0)s, ∀ ( j ∈ N, j ∈ [0, n-1] )
Zsc : Yη+1(j, 0)s → Xη+1(0,j+i)c, ∀ ( j ∈ N, j ∈ [0, n-1] )
Let us suppose that we want to analyze the connection between c6 and

the segment rG. Here,
Ic6 = { Ms/ s ∈ (Segments U TruckSegments) ∧ s = (p1, p2, n, a, dir,

max) ∧ (p1 = c6 or p2 = c6) } = {rI1, rH1, rD1, rG1}
IrG1 = {c5} U {c6};

Inputs: I = {1, 9, 13, 18}. Here, rG1 is related with i = 1 ∈ I, then,
ZrG1,c6 : Y4(j, 19)rG1 → X4(0,j+1)c6, ∀ ( j ∈ N, j ∈ [0, 3])
Zc6,rG1 : Y4(0,j+1)c6 → X4(j, 19)rG1, ∀ ( j ∈ N, j ∈ [0, 3])
Outputs: O = {5, 11, 15, 17, 20 }. Here, for rG2 is related with i =5 ∈

O, then,
Zc6,rG2 : Y4(0,j+5)c6 → X4(j, 0)rG1, ∀ ( j ∈N, j ∈ [0, 3] )
ZrG2,c6 : Y4(j, 0)rG1 → X4(0,j+5)c6, ∀ ( j ∈ N, j ∈ [0, 3] )

3.4 Traffic lights
In ATLAS, the crossing with traffic lights is defined using the
following construction:

T LCrossings = {c/c ∈ Crossings}.
Each element in this set is mapped into one DEVS, transmitting the

light color to the corresponding segment in the intersection. Another DEVS
is in charge of synchronizing all the lights in the corner. An upper level
Cell-DEVS can be built to coordinate all the controllers in a city section.

For every c ∈ TLCrossings, the DEVS model Sync(#tl) = < I, X, S, Y,
δint, δext, λ, D > is created. This controller defines the color of each traffic
light. The parameter #tl defines the number of traffic lights, depending on
the number of input segments:

Tin = {s/s ∈ Segments ∧ s = (c1, c2, n, a, dir,max)

∧ [(c1 = c ∧ dir = 0) ∨ (c2 = c ∧ dir = 1)]}
For each t ∈ Tin, a DEVS model representing the traffic light is built:

TL(#c) = < I, X, S, Y, δint, δext, λ, D >. This model informs its color to
an input segment. This is informally depicted in Figure 12 (specification
details of these models can be found in (Davidson and Wainer 1999)). For
every c ∈ TLCrossings, a DEVS model Sync(#tl) =<I, X, S, Y, δint, δext,
λ, D > is created. This is a high level controller defining the color of
each traffic light connected to the corner. The parameter #tl defines the
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FIGURE 12
Crossing with traffic lights.

number of traffic lights, depending on the number of input segments to
the crossing. This set is defined by:

Tin(c) = {s/s ∈ Segments ∧ s = (c1, c2, n, a, dir,max)

∧[(c1 = c ∧ dir = 0) ∨ (c2 = c ∧ dir = 1)]}

For instance, for the crossing c6, we build Tin(c6) = {rG1, rH2, rD1,
rI2}. Therefore, Sync(4) = <I, X, S, Y, δint, δext, λ, D>. For each
s ∈ Tin(c), we build a DEVS model representing the traffic light: TL(s) =
< I, X, S, Y, δint, δext, λ, D >. This model informs its color to an input
segment, and waits an order of the Sync model to change the light color.
Specification details of these DEVS models can be found in (Davidson and
Wainer 2000a).

Every input segment of the crossing should reflect the existence of the
traffic light. The basic rules for the segments were modified to represent
this behavior. The new model is defined by:

MR =< Xlist , Ylist , I, X, Y, n, {t1, t2}, η, N ,C, B, Z , select >

FIGURE 13
Level crossing definition.
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FIGURE 14
Segment with level crossing.

τ (N) N

1 (0,-1) = 1 and (0,0) = 0
0 (0,0) = 1 and portvalue(x-c-space) = 0 and

portvalue(x-light) = 0 send(1, y-c-car)
(0,0) TRUE /*Otherwise: state unchanged */

Specialized ports inform the color of the traffic light to the cells in the
segment. If its value is 1, it is red. Otherwise, it is green. These border
cells are defined by {(i, t2-1) / i ∈ [1,t1]}.

Delay: inertial. Duration: speed.
These rules represent that a vehicle can cross if there is space

(portvalue(x-c-space) = 0) and the traffic light is green (portvalue(x-light)
= 0). Then, a 1 value is sent to the crossing telling that the car is passing.
An inertial delay is used because a car can enter the crossing if there is a
free space and the light is green during the time specified. Otherwise, the
car must remain waiting.

Finally, ∀ c ∈ Crossings, we must define the cells’ coupling. Crossing(c,
k, In, Out) defines a crossing of k cells, where the set In defines are input
positions, and Out their outputs. The number of cells in the crossing (k)
is defined counting the number of input lanes. These ones depend on the
segments connected to it and their direction. We have defined a unique
ordering for the input segments, such that close roads are connected to
neighboring cells. This ordering is built using the incidence angle between
the segment and the line y = 0.

Once the In and Out sets are defined, every pair (s,j) ∈ In tells that the
segment s is connected to an input using the j-eth cell in the crossing. This
numbering of the segments is also used to establish the order to receive
the green lights.

The synchronizer influences the TL models corresponding to the input
segments for the crossing c. That is, Isync = {TLi / i ∈ [0, #(In)] }. In
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addition, every traffic light influences the behavior of the input segment,
according to the established order. That is, ITLi = { Ms / (s,j) ∈ In ∧ i =
#( {(s’,j’) ∈ In / j’ < j } )}.

Therefore, the coupling function is defined as

Zsync,TLi: (y-ligthi)sync → (x-lighti)TLi, ∀ i ∈ N, i∈[0,#(In)]
ZTli,s: (y-s-lighth)Tli → X η +2(h, k-1)s, ∀ ( h ∈ N, h ∈ [0, n-1] ) ∧ (s,j)

∈ In ∧ i = #( {(s’,j’) ∈ In / j’ < j } ). Here, n is the number of
lanes in s (n = t1 of the model Mt), and k is the number of cells
in every lane (k = t2 of the model Mt).

Finally, we must define the cell coupling ∀ c ∈ Crossings. Using the
procedures previously defined, the In and Out sets are defined. Every pair
(s, j) ∈ In tells that the s is an input segment connected to the j-eth cell
of the crossing. That is, ITLi = { Ms / (s,j) ∈ In ∧ i = #( {(s’,j’) ∈ In
/ j’ < j } )}. This ordering is also used by the synchronizer define the
order to receive the green lights. Isync = {TLi / i ∈ [0, #(In)] }. That
is, the synchronizer influences the TL models corresponding to the input
segments. Therefore, the translation function is defined by:

Zsync,TLi: (y-ligthi)sync → (x-lighti)TLi, ∀ i∈ N, i ∈[0,#(In)]
ZTli,s: (y-s-lighth)Tli → Xη + 2(h, k − 1)s, ∀ ( h ∈ N, h ∈ [0, n-1] ) ∧

(s,j) ∈ In ∧ i = #( {(s’,j’) ∈ In / j’ < j } ). Here, n is the number
of lanes in s (n = t1 of the model), and k is the number of cells in
every lane (k = t2 of the model).

For instance, if we analyze the crossing c6, we know that
Isync = {MTLi}, ∀i ∈ N, i ∈ [0, 3] (because we have 4 traffic lights controlled

by the synchronizer)
ITLi = { Ms / s ∈ Tin(c6)} = {rG1, rH2, rD1, rI2 }
Zsync,TLi: (y-ligthi)sync → (x-light)TLi, ∀ i ∈ N, i ∈[0,3]
ZTL1,G1: (y-s-lighth)TL1 → Xη+2(h, 19)G1, ∀ (h ∈ N, h ∈ [0, 3])
ZTL2,H2: (y-s-lighth)TL2 → Xη + 2(h, 13)H2,∀(h ∈ N, h ∈ [0, 1])
ZTL3,D1: (y-s-lighth)TL3 → Xη + 2(h, 14)D1,∀(h ∈ N, h ∈ [0, 1])
ZTL4,I2: (y-s-lighth)TL4 → Xη + 2(h, 9)I2, ∀(h ∈ N, h ∈ [0, 1])

Here, we show the connection among the four traffic lights and each
input segment for the crossing c6. The changes of wider segments are
extensions of those here presented. Detailed specification can be found in
(Davidson and Wainer 2000a).

3.5 Railways
We defined railways, which are built as a sequence of level crossings
overlapped with the segments. Each train is defined as a Cell-DEVS
following a predefined advance sequence through level crossings. The
railway network is defined by:
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Railnets = {Rail/Rail ∈ RailT rack}, where RailT rack =
{(s, δ, seq)/s ∈ Segments ∧ δ ∈ N ∧ seq ∈ N }

Every RailTrack ∈ Railnets represents a part of the rail network in a
given city section. The shape of the network is defined by the places where
level crossings are placed. Every tuple pn = (s, δ, seq) identifies the position
of the level crossing. First, the segment crossed (s); then, the distance
between the beginning of the section and the railway (δ), and finally, a
sequence number defining the position of the crossing in the railway. This
sequence starts in zero, and finishes in the number of tuples in the set.

For every element in Railnets, two models are defined. The first one is a
DEVS, representing a station from where the trains depart. The second is
a one-dimensional Cell-DEVS whose cells model all the level crossings.
The associated station is defined as a DEVS model. It represents the
train departure according to the railway’s timetable. It is connected with a
RailTrack model, defined as a one-dimensional Cell-DEVS with transport
delays. Every cell in the model is specified as:

CR(seq) =< I, X, S, Y, N , δint, δext, delay, d, τ, δ, D >

I =< Px,Py >; Px = {(X1, binary), (X2, binary)};
Py = {(Y1, binary), (Y2, binary)}.

X = Y = {0, 1}; N = {(0,−1), (0, 0)}; delay = transport; d = dtrain();

S =
{

1 if a train is passing;
0 otherwise.

λ, δint and δext are defined by Cell-DEVS;
τ is defined as:

τ (N) N

0 (0,0) = 1
1 (0,-1) = 1
(0,0) TRUE /* Otherwise it

preserves the present state */

The cell’s state represents the presence of a train that advances
independently of the cells in front of it. Therefore, the neighborhood
only includes the back cell. Transport delays define the train speed, using
dtrain(). This function computes the delay of the train between crossings,
depending on the distance between them. The train movement is defined
by three rules. The first one represents a train leaving the crossing. The
second one represents an empty crossing that is occupied by a train. The
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last one preserves the present state in every other case. A coupled model
of the railway is built using the following definition:

RT (k, Out) =< Xlist , Ylist , I, X, Y, n, {t1, ..., tn}, η, N ,C, B, Z >

Ylist = {(0,i) / i ∈ N ∧ i ∈ [0, k] }; Xlist = { (0,0) }.
I=<Px, Py >, with Px={<Xη+1(0,0), binary>}, Py={<Yη+j(0,i), binary>/

i ∈ N ∧ i ∈ [0, k] ∧ (i, #p) ∈ Out ∧ j ∈ [1, #p] }, where Out
= { (i, 2n) / i ∈ N ∧ i ∈ [0,k] ∧ ((c1, c2, n, a, dir, max), δ, i) ∈
RailTrack}.

X = Y = { 0,1 } ; n = 1; t1 = k; η = 2; N = { (0,-1), (0,0) }
C = { CRij / i = 0 ∧ j ∈ [0, k-1] }, with CRij defined earlier; B = { (0,0) };
Z is built using the definition given by Cell-DEVS.

This model represents a railway layout. Here, k represents the number
of level crossings, and it is obtained counting the elements of the set (k =
#RailTrack). The Out set contains the number of ports to be coupled to
the segments. It includes two output ports per road. One of them allows
to see if a train has arrived to the crossing. The other one informs that a
train is leaving. It is built as: Out = { (i, 2n) / i ∈ N ∧ i ∈ [0,k] ∧ ((c1,
c2, n, a, dir, max), δ, i) ∈ Railnets}.

The input coupling of this model is defined through the cell (0,0),
which is connected with a station. Then, the behavior of this border cell
is different. The following parameters are changed: η = 1; N = { (0,0) }

τ (N) N

0 (0,0) = 1
1 portvalue(x-s-train) = 1
(0,0) TRUE

The input port x-s-train is used to receive a new departure from the
station.

A segment crossed by a railway should reflect the existence of the
crossing. To define which cells in the road are affected, we compute
col = dδ/cell sizee, obtaining Cpn = { (i, col) / i ∈ [0,n-1] } ∪ { (i, col+1)
/ i ∈ [0,n-1] }, where n is the number of lanes in s. The Cell-DEVS model
of the segment s (Ms) is modified by changing the behavior of the cells in
the columns defined by Cpn. In these cells, a new output port will reflect
the existence or absence of a train.

The cells in { (i, col) / i ∈ [0,n-1] } must reflect a stop in the straight
movement when a train is crossing, as follows:

Delay: inertial; Delay length: dtrack().
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τ (N) N

0 (0,0) = 1 and (0,1) = 0 and portvalue(x-R-train) = 0
1 (0,-1) = 1 and (0,0) = 0
(0,0) TRUE /*Otherwise: state unchanged */

The port x-R-train informs that a train is passing through the level
crossing. If its state is 0, the rails are free. The delay function dtrack
depends on the expected time for a train in the crossing. The inertial delay
allows to define that the vehicles only advance into the crossing if it is
empty for that period. Otherwise, the previous state is preempted, and the
cars wait for the passing train.

The cells after the rails { (i, col+1) / i ∈ [0,n-1] }, are also affected
because we should verify that no trains are crossing the railways before
vehicles advance to them:

Delay: inertial; Delay length: dtrack

τ (N) N

0 (0,0) = 1 and (0,1) = 0
1 (0,-1) = 1 and (0,0) =0 and portvalue(x-R-train) = 0
(0,0) TRUE /*Otherwise: state unchanged */

Finally, we define the coupling between rails and segments. In this case,
for every R ∈ Railnets, a station and a TrainTrack models are built (ME
and MR). Every (s,δ, seq) ∈ R generates the following influences: IE =
{ MR }, IR = { Ms }. The coupling between the cellular models is defined
using the parameters col (earlier computed), and n (number of lanes of
the model Ms), resulting in:

ZE,R : y-R-trainE → Xη+1(0,0)R;
ZR,s: Yη+j(0,seq)R → Xη+3(j-1,col)s∀j ∈ N, j ∈ [1, n];
ZR,s: Yη+n+j(0,seq)R → Xη+3(j-1,col+1)s∀j∈ N, j ∈ [1, n].
In our example, when we consider the coupling between the railway

and the segment I 1, we have that col = [90/7.5] = 12, and n= 2, then
ZE,R : y-R-trainE → Xη+1(0,0)R ;
ZR,rI1: Yη+j(0,1)R → Xη+3(j-1,12)rI1∀j ∈ N, j ∈ [1, 2];
ZR,rI1: Yη+2+j(0,1)R → Xη+3(j-1,13)rI1∀j∈ N, j ∈ [1, 2].

3.6 Men at work
The men at work construction is translated as different models according
with the number of lanes, the size and position of the jobsite. Due
to these factors, different border conditions must be used in each case.
A Cell-DEVS is used to represent the working site. Different functions are
used to represent the cells in the rhombus and those before it. The cells



JCA-0011-WAINER Journal of Cellular Automata June 26, 2007 17:10

36 GABRIEL WAINER et al.

in the jobsite will always have a 0 value. The remaining cells behave as
standard segments.

As the other cars should avoid advancing into the jobsite, we must
group the cells before it according to the movements that are allowed. As
it is shown in the following figure, vehicles can move to the left diagonal
(LD), the right diagonal (RD), both (2D), or advance in a straight line.
Therefore, different rules have been defined for each case.

The presence of men at work produces that the vehicles cannot advance
in a road. These traffic obstructions are specified as:

Jobsi te = {(s, ni, δ, #n)/s ∈ Segments ∧ s = (c1, c2, n, a, dir,max)

∧ni ∈ [0, n − 1] ∧ δ ∈ N ∧ #n ∈ [1, n + 1− ni] ∧ #n ≡ 1 mod 2}
Every tuple o = (s, ni, δ, #n) defines the segment where the construction

is being done. It includes the first lane affected, the distance between the
center of the jobsite and the beginning of the section, and the number of
lanes occupied, as showed in Figure 15. These values are used to define a
rhombus over the segment where the vehicles cannot advance. The cars
arriving to the jobsite must deviate.

A group of different models has been defined, according with the number
of lanes, the size and position of the jobsite. Different border conditions
were defined in every case. The basic behavior for these models was defined
as a Cell-DEVS representing the working site. We use different behavior
for the cell in the rhombus and those before it. The first ones will always
have a 0 value. The other ones should avoid to advance into the jobsite,
as in Figure 16.

For instance, the cells whose movement to both diagonals is allowed
are defined by:

Ci j = < I, X, S, Y, N, δint , δext , delay, d, τ , λ, D >

I = < η, Px, Py >, with η = 9; X = Y = {0, 1}; N = { (0,0), (0,1),
(1,0), (1,1), (0,-1), (1,-1), (-1,1), (-1,-1), (-1,0) };

S:

s =
{

1 if there is a vehicle in the cell;
0 otherwise.

FIGURE 15
Segment with men at work.
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FIGURE 16
Jobsite cells.

delay = transport; d = speed(max);
λ, δint and δext are defined by Cell-DEVS;
τ is defined as:

τ (N) N

1 (0,-1)=1 and (0,0)=0 or (0,0)=0 and (0,-1)=0 and
(-1,-1)=1 and (-1,0)=1 or (0,0)=0 and (0,-1)=0 and
(1,-1)=1 and (1,0) = 1

0 (0,0) = 1 and (0,1) = 0 ) or (0,0) = 1 and
(1,1) = 0 and (1,0) = 0 or (0,0) = 0 and
(0,-1) = 0 and (-1,-1) = 1

(0,0) TRUE /*Otherwise: state unchanged */

As we can see, the first rule represents the arrival of a car. If the previous
cell is empty, the car is inserted in the present cell. Otherwise, we check
if the cell to the SW is busy, and the cell in front of it too. Then, we
check the case when the cell to the NW is busy and the cell in front of it
too. The second rule represents that a car abandons the cell with a straight
movement. If this in not possible, we check to see if the cell in front is in
the jobsite and the cell to the NE is free to move. If this does not occur,
the cell to the SE should be able to move.

3.7 Traffic signs
A construction to specify speed traffic signs was defined. This construction
is defined by:

T ra f f icSigns = {(s, t, δ)/s ∈ Segments ∧ δ ∈ N ∧ t ∈ {bump, depression,

school, pedestriancrossing, others}}
Each tuple identifies the segment, the kind of traffic sign, and the distance

up to it in the section, showed in Figure 17.
The cells where a traffic sign have influence increase the length of the

delay. In this way, a slower speed of the cars is represented.
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FIGURE 17
Definition of a traffic sign.

An extension of this construction allows us to define Potholes, whose
size is one cell, depicted in Figure 18. The behavior of this construction is
to produce a speed reduction of the vehicles passing through these cells.
They are defined by:

PotholeS = { (s, n1, δ) / s ∈ Segments ∧ s = (c1, c2, n, a, dir, max) ∧
n1 ∈ [0, n-1] ∧ δ ∈ N }

PotholeC = { c / c ∈ Crossings }
A segment with a traffic sign is as in the previous sections, but delay

is increased for those cells influenced by the signal. In this way, a slower
speed of the cars is represented. For instance, in the example introduced
on Section 2, (rA, school, 20) ∈ TrafficSigns and (rA, 0, 10) ∈ Potholes ,
the rules of segment rA are not changed, but the delay of the cells (0,2),
(0,3) and (0,10) of rA increases according to the phenomenon represented.

3.8 Parking
The following construction allows the definition of parking cars at the
border cells:

Parking = { (s, n1) / s ∈ Segments ∧ n1 ∈ {0,1} ∧ s = (c1, c2, n, a,
dir, max) ∧ n > 1 }

Every pair (s, n1) identifies the segment and the lane where car parking
is allowed. If n1 = 0, the cars park on the left lane. If n1 = 1, the right
lane is used (lane n-1). When a car arrives into a parking lane, it will stop
on that lane during a given amount of time, as showed in Figure 19. This
is modeled using a long transport delay (representing several minutes or
hours).

FIGURE 18
Definition of a Pothole.
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FIGURE 19
Parking segments.

Given a lane (s, n1) to be used for parking cars, and being Ms is the
model specified for the segment s, the lanes where cars are being parked
and their contiguous lanes are defined by:

Cpark = { (0, i) / 0 ≤ i ≤ t2-1 } if n1 = 0, or Cpark = { (t1-1, i) / 0
≤ i ≤ t2-1 } if n1 = 1;

Ccont1 = { (1, i) / 0 ≤ i ≤ t2-1 } if n1 = 0, or Ccont1 = { (t1-2, i) / 0
≤ i ≤ t2-1 } if n1 = 1; and

Ccont2 = { (2, i) / 0 ≤ i ≤ t2-1 } if n1 = 0, or Ccont2 = { (t1-3, i) / 0
≤ i ≤ t2-1 } if n1 = 1.

Here, {t1, t2} define the dimension of the cell space (rows, columns).
As previously explained, n1=0 means that parking on the left is allowed.
Instead, n1=1 means that parking should be done on the right. These cells
have a different behavior than those in the rest of the segment. The parking
cells (Cpark) do not allow that vehicles advance: they can only receive
cars from the first contiguous lane. Therefore, the rules modeling straight
movements were eliminated from these cells.

τ (N) N

1 (0,0) = 0 and (-1,-1) = 1 and (-1,0) = 1
1 (0,0) = 0 and (1,-1) = 1 and (1,0) = 1
1 (0,0) = 0 and (1,-1) = 1 and (1,0) = 1 and

((2,-1) = 1 or (2,0) = 1)

In this case, the transport delay used for the parked cars is a long delay
representing the time in which a car is normally parked. The remaining
rules for these cells do not change. The cells in the set Ccont1, will behave
different depending on the parameter n1. If n1 = 0, the cars are parked on
the lane 0, and the cells Ccont1 = { (1, i) / 0 ≤ i ≤ t2-1 } behave different
from the rest. In these cells, the rules checking if there is a moving car in
the left lanes have been eliminated. When the origin cell receives a car
from the parking, it does not check if it is advancing straight in its own
lane, because this movement is not allowed. Likewise, when the origin cell
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sends a car to the parking lane, it does not check if there is another car
behind the parking space.

τ (N) N

0 (0,0) = 1 and (1,1) = 0
1 (0,0) = 0 and (1,-1) = 1 and (0,-1) = 0

Otherwise, if n1 = 1 (that is, the cars park on the k-eth lane), the cells to
the left of the parking are defined by Ccont1 = { (t1-2, i) / 0 ≤ i ≤ t2-1 }.
The rules for these cells are modified symmetrically to the previous ones.

τ (N) N

0 (0,0) = 1 and (-1,1) = 0
1 (0,0) = 0 and (-1,-1) = 1 and (0,-1) = 0

Finally, the second lane contiguous to the parking should be changed.
Depending on the parameter n1, the cells to be changed are Ccont2 =
{ (2, i) / 0 ≤ i ≤ t2-1 } (if n1 = 0) or Ccont2 = { (t1-3, i) / 0 ≤ i ≤ t2-1
} (n1 = 1). Here, we avoid analyzing the lanes where cars are parked to
see if these cars are moving.

3.9 Experimental framework
The constructions defined in the previous sections are connected to an
experimental framework defined as a set of segments providing inputs and
outputs to the city section to be studied. They are defined as:

I nput Segments = {s/s = (p1, p2, n, a, dir,max) ∧ s ∈ Segments ∧
[(dir = 0 ∧ (∃v ∈ N : (p2, v) ∈ Crossings)) ∨ (dir = 1 ∧ (∃v ∈ N :

(p1, v) ∈ Crossings))]}

Output Segments = {s/s = (p1, p2, n, a, dir,max) ∧ s ∈ Segments ∧
[(dir = 0 ∧ (∃v ∈ N : (p1, v) ∈ Crossings)) ∨ (dir = 1 ∧ (∃v ∈ N :

(p2, v) ∈ Crossings))]}

For each s ∈ InputSegments, a DEVS model is defined. Its goal is to
generate vehicles that are inserted in the city section to be simulated, and
it can be tuned to reflect different traffic conditions. These models are
defined by:

Generator (#c) =< I, X, S, Y, δint , δext , λ, D >
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Instead, the segments s ∈ OutputSegments define a DEVS model devoted
to consume vehicles and compute statistics:

Output(#c) =< I, X, S, Y, δint, δext, λ, D >

In both cases, #c represents the number of lanes of the segment s to
which they are connected. In Figure 20 we present a sketch of the behavior
of these models.

4 VEHICLE ROUTING AND CONGESTION MONITORING

The original definitions used for ATLAS models were based on random
routing: every time a car arrives to a crossing, the following route is
chosen at random. This was expanded to include a way to define the
routing information for the vehicles. We have used an approach based in
Origin/Destination (O/D) matrixes. This tool provides information about
routes and transportation between different zones or regions. There are
several methods to estimate O/D matrixes. Using the definition of a region
(represented as a directed graph), the methods use the available information
(traffic flow, delays existing in each link of the graph). We will suppose

FIGURE 20
Definition of the DEVS models of the experimental framework.
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that an O/D matrix has been provided, and it will be used by the simulator
to make decisions related to vehicle routing (Dı́az et al. 2000).

There are several ways of implementing O/D matrixes, and we have
chosen an approach based on a road table. Each register in this table will
specify a road connecting a pair of origin/destinations, and the time a car
spend in that road. Different tables can be used according to different
parameters (for instance, date, time, type of vehicles). Therefore, the table
will have the following structure:

Time Vehicle type { ID Origin-node Destination-node {link1 link2 ...
linkn} Travel-time }

The structure of the O/D matrix and the function used to make the
routing decisions can be changed without affecting the simulation models.
In this way, both problems can be treated independently. In a first stage
the city shape is defined using ATLAS. Then, a directed graph can be
built based on the segment and crossing identifications. Using this graph,
an O/D matrix can be built. The simulation models devoted to represent
routing use a function that queries the O/D matrix and provides an answer.

Using this approach, we define a static route for each car, which will
not be changing during all of the simulation. Using the segment/crossing
definition, we can build a graph representing the structure of the city section
to be simulated. Using this base, we built an origin/destination matrix. For
each pair origin/destination in the matrix, we build a route using Dijkstra’s
algorithm for shortest paths in a graph. Using this information, we build a
complete acyclic route from an input crossing to an output crossing.

Every car is initialized with the route to be used. The original definitions
of ATLAS constructions were modified to allow this behavior. The first
modification includes a unique identification for each segment/crossing that
will be used with routing purposes. Besides the original port definition
(car and room, indicating that there is a car or space in the origin cell),
the coupled models defined for each segment/crossing include now a new
port devoted to transfer the routing path (path in the following figure).

The behavior for the border cells was changed accordingly, as showed
in Figure 21. This new behavior was also extended for models from 1 to
5 or more lanes (each of them must be defined in a different way due to
the definition of the border cells for each of the models). After changing
the segment definition, the crossing behavior was also modified. In this
case, the crossings will be in charge of routing using the O/D matrixes.
A crossing is defined as a Cell-DEVS coupled model

CrossingOD(k, In, Out, maxc) = < Xlist, Ylist, I, X, Y, n, {t1,...,tn}, η,
N, C, B, Z, select >

Ylist = Xlist = { (0,i) / 0 ≤ i < k}; I = <Px, Py >

Px = {<Xη+1(0,i), binary>, <Xη+2(0,i), binary>, <Xη+3(0,i), N >/ 0
≤ i < k }
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FIGURE 21
Coupling of the Border Cells.

Py= {<Yη+1(0,i), binary>, <Yη+2(0,i), binary>, <Yη+3(0,i), N > / 0
≤ i < k }

Each cell in the crossing is defined by:
C0 j (crossing-No) = < I, X, S, Y, N, δint , δext , delay, d, τ , δ, D >

I = < η, Px, Py >, η g= 3, Px = { (X1, Record), (X2, Record), (X3,
Record) }, Py = { (Y1, Record), (Y2, Record), (Y3, Record) }; X , Y ∈ N,

S = (Car, crossing, path, segment-no), where

Car =
{

1 there is a vehicle
0 otherwise.

crossing ∈ N: unique identifier of the crossing;

path =



{t1.t2. . .. . .tn}where ti ∈ N ∧ (∀i(∃r ∈ Segments/

segment − no(r) = ti))
0 otherwise.

Segment-no ∈ N: identifier of the segment to which the cell is connected
to.

N = { (0,-1), (0,0), (0,1) }; delay = transport; d = (speed(maxc))
The τ function is in charge of defining the car behavior in the cell,

according to the new routing scheme. Different behavior is defined for the
input and output cells, using the O/D matrixes.

We now show the definition of a simple example using the new definitions.
The example was implemented using the CD++ tool (Wainer, 2002), and it
is depicted in Figure 22. The model consists of 5 segments and 4 crossings,
and will describe the behavior of traffic using the routing scheme defined
previously. The path is specified by a real number with the following
format: d.ddddd where 1=< d <=9 is the identifier of a segment.

This city section is composed of 5 segments and 4 crossings interconnected.
Different cars arrive through the segment 1, and all of the cars will follow
the same path (segment2-segment5). The segment 2 includes a pothole
delaying the advance of cars. The definition of the congestion function
considered that a segment with 2 or more cars is congested. The goal of
this example is to show how the dynamic routing is achieved.
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FIGURE 22
Sample city section.

Figure 23 shows the simulation result in the segment 1. The first row
represents the state variable showing the presence of a car. The second line
represents the path to be followed by the car. The first car will take the
path 2-5, whereas the second will go through the path 3-4. This behavior
can be found in figure 7.

As we can see in Figure 24, the crossing shows if there is a car in
the cell (row 0), the path to be followed (row 1), the identification of the
crossing (row2) and the segments to which the crossing is connected to
(row 3). For instance, we see that the crossing contains a 2 in the cell (3,1),
meaning that the cell is connected to the segment number 2. The crossing
defines the cell used to route a car, and after done, the first element in the
route is deleted.

Traffic flow rate in a city section can influence the vehicle movement
and the decisions taken by the drivers. Most existing modeling approaches
based on cell spaces do not consider the information related to congestion,

FIGURE 23
Execution trace of Segment 1.
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FIGURE 24
Execution trace of the Crossing 1.

or provides mechanisms to reproduce vehicle routing. We have included
a construction to represent this behavior. The models use a function that
queries the O/D matrix and provides a route to be followed by a vehicle.
Then, a measure of traffic congestion can be used. Based on this information
and using the O/D matrixes, the cars can change their original routes.
A new DEVS model, devoted to monitor congestion, was added. Now,
every segment is provided with a controller to measure the number of cars.
This model is defined as:

M = < X, Y, S, δint , δext , λ, ta>
X ={< x-r-carIn, N>, < x-r-carOut, N>}; Y ={< y-r-weight, N>}
S = k ∈ N representing the number of cars in the segment under

consideration,

δext(){ when(x − r − car I n = 1)k = k + 1;
when(x − r − car Out = 1)k = k −−1;
passivate;

}
λ () { send k through the port y-r-weight }
Once the DEVS congestion controllers were defined, the border cells

of the Cell-DEVS representing the segments were changed to transmit
information about the cars arriving or leaving a segment. New input/output
ports were added to transmit this data to the coupled models corresponding
to the crossings, depicted in the figure 25:

The border cells must inform the number of cars entering and leaving
the segment to the DEVS congestion monitor. For instance, for one-lane
segments, this specification is now translated into a Cell-DEVS defined by:

C0(segment no) =< I, X, S, Y, N , δint , δext , delay, d, τ, λ, D >

I = < η, Px, Py >, with η g= 3; d = speed(max); N = { (0,-1), (0,0),
(0,1) }; delay = transport
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FIGURE 25
Coupling scheme of congestion controllers, crossings and segments.

X, Y ∈ N; S : {s, phase, σqueue, σ}, with s = (destination, path)

destination ∈ N =
{ 6= 0 if there is a vehicle in the cell

0 otherwise.

path =



{t1...tn} ti ∈ N ∧ (∀i(∃r ∈ Segments/

Segment no(r) = ti))
0 otherwise.

λ, δint y δext are defined by Cell-DEVS with transport delays.
τ : S x N → S. The behavior of the local computing function can be

roughly defined by:

τ (N) N

Dest = Dest(0,-1); Dest(0,-1) != 0 and Dest(0,0) = 0
Path = Path(0,-1)
Dest = 0; Path = 0 Dest(0,0) != 0 and Dest(0,1) = 0

In this case, the first rule represents a vehicle arriving to the cell,
coming from the previous cell. The second rule represents the advance
of the vehicle to the following cell. As we can see, the identifier of
the destination cell represents the vehicle, and the path of the vehicle is
transferred between cells.

After defining the behavior for the controller and the segments (with 1
to 5 lanes), a new coupled model for the crossings was created.

Then, the rules used for defining the crossing behavior were modified.
Now, every crossing will receive information from the congestion controller,
and, based on the availability of paths to arrive to the same destination
and the congestion information, a routing decision is taken. The models
now include the definition of routing mechanisms associated with each
cell, defined as:

C j (crossing no) =< I, X, S, Y, N , δint , δext , delay, d, τ, λ, ta >
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I = < η, Px, Py >, with η = 3, Px = { <x-t-destinat, Record>,
<x-c-congestion, Record>, <x-t-path, Record> }, Py = { <y-t-room,
Record>, <y-c-vehicle, Record>, <y-c-path, Record> }; X, Y ∈ N;

S: {s, phase, σqueue, σ}, with s = (destination, path, crossing no,
segment no), with
d !=0 if there is a vehicle (representing the destination crossing).

destination =
{

0 otherwise.

path =



{t1.t2...tn}, ti ∈ N ∧ (∀i(∃r ∈ Segments

/segment no(r) = ti))
0 otherwise.

crossing no ∈ N: crossing identifier;
segment no ∈ N: identifier of the segment to which the output cell of

the crossing is connected.
N = { (0,-1), (0,0), (0,1) }; delay = transport; d = speed(maxc); λ, δint

and δext are defined by Cell-DEVS with transport delays. ; τ : S x N → S.
The behavior of the local computing function can be defined by:

τ (N) N

Dest= Dest(0,-1); Dest(0,0)= 0 and
Path= Path(0,-1) Dest(0,-1) != 0
Crs no= crs no(0,0) Send(1, y-t-room)
Seg no= seg no(0,0)

Dest= (x-t-dest); Dest(0,0)=0 and
Path= (x-t-Path) Dest(0,-1)=0
Crs no= crs no(0,0) and (x-t-dest)!=0 and
Seg no= Seg no(0,0) (x-t-dest)!= crs no(0,0)

and !Congestion((x-c-congest,
next-seg(path(0,-1)),
seg no(0,0)))
Send(1, y-t-room)

Dest= (x-t-dest); Dest(0,0)=0 and
Seg no= Seg no(0,0) Dest(0,-1)=0 and
Path=New Path(Crs no(0,0), (x-t-dest)!=0 and
Dest(0,-1), (x-t-dest) != crs no(0,0)
Path(0,-1)); and Congestion((x-c-congest,
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Crs no= crs no(0,0) next-segment(path(0,-1),
seg no(0,0)))
Send(1, y-t-room)

Dest= 0; Path= 0 Dest(0,0)= 0 and
Crs no=crs no(0,0); Dest(0,-1)= 0 and (x-t-dest)
Seg no= Seg no(0,0) != 0 and (x-t-dest)=

crs no(0,0);
Send(0, y-t-room)

In this case, the first rule introduced represents the arrival of a vehicle to
a cell that was in the crossing and preserves the original path. The second
rule represents the input of a vehicle to the crossing that has not arrived to
the destination, conserving the original route. The following rule represents
the input of a vehicle that changes the path due to congestion in the area.
The fourth rule eliminates a vehicle that has arrived to the destination. The
crossing number uniquely defines the crossing where this cell is defined.
In this way, an O/D matrix can be used, and the crossing identified to
permit different paths to be taken. The cell state represents the existence of
a vehicle, the path to be followed, and the crossing identifier. Using this
information, every vehicle arriving to the crossing can be routed according
to the congestion information. When a vehicle arrives to a crossing, it will
be sent to the input cell, which will be in charge of deciding the vehicle
routing. The input cells will use the congestion information sent by the
congestion monitors, as presented in Figure 26.

Figure 27 presents the execution of the model introduced in Figure 22.
The segments were implemented as Cell-DEVS models using two state
variables. The first variable defines the vehicle destination (or 0 if the cell

FIGURE 26
Coupling scheme of output cells of segments, crossings, and congestion controllers.
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FIGURE 27
Execution results in Segment 1.

FIGURE 28
Execution results in Crossing 1.

is empty), and the second state variable include a definition of the path
to be followed by the vehicle. The following figure shows the execution
results for the segment 1:

In this example we see that in the simulated time 00:00:010, 00:00:040,
00:00:070 and 00:00:100 new cars have arrived to the cell (0,0). Every
vehicle will follow the route segment 2-segment 5. When the cars finish
traversing the segment, they will be routed to the crossing 1.
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This crossing construction implements the dynamic routing techniques
previously explained. The cell 0 of the crossing is an input cell, while the
remaining two are used for outputs. The following figure shows the values
of the different state variables used in each cell of the crossing. The state
variables showed in the lines 0 and 1 represent the vehicle information used
for the segments (destination and route). Line 2 represents the segments
to which the output cells are connected.

The first two cars arriving to the crossing (in 00:00:050 and 00:00:080)
keep the original path (segment 2-segment 5). As the cell 1 in the crossing
is connected to the segment 2, the vehicle is sent to the crossing through
this cell.

The last two cars arriving to the crossing (at 00:00:110 and 00:00:140)
must take a new path, because the congestion function for the segment 2
returns a value representing that the segment is congested. Therefore, the
cars ask to the O/D matrix for a new path, and the model returns the path
segment 3-segment 4. Then, they leave the crossing through the cell 2,
connected to the segment 3, following the rules defined in the previous
sections.

5 CONCLUSION

ATLAS is a traffic modeling language that permits defining city sections,
with a static view of including different components. This approach provides
an application-oriented specification language, which allows the definition
of complex traffic behavior using simple rules for a modeler. The models
are formally specified, avoiding a high number of errors in the application,
thus reducing the problem solving time.

The high level specification of the problem to be modeled reduces the
developing efforts, as the techniques presented permit to automatically
build the structure for coupled models, and to generate rules for atomic
models. In this way, changes in the system specification can be done in a
simple fashion, without spending time in coding or testing every proposed
solution to existing problems. In this way, a traffic analyzer can focus in
the problem solving task, avoiding implementation or low level details.

The constructions are mapped into DEVS and Cell-DEVS.
These translated models are formally specified, and its correctness
was proved, avoiding errors in their definition. Using this approach we
could obtain:

- Efficiency: by describing a high level specification of the problem to
be modeled, we have reduced the effort needed in developing the
application. The models execute using a discrete-event approach, which,
as showed in (Zeigler et al. 1997), (Wainer and Giambiasi 2002)
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and (Wainer 2006), provide higher precision and speedups than the
discrete time approaches. Likewise, the proposal automatically builds
the structure for coupled models, generates rules for atomic models. In
this way, changes in the system specification can be done in a simple
fashion, without spending time in coding or testing every proposed
solution to existing problems.

- Adaptation: new rules can be easily incorporated, as we showed with
different examples here (traffic lights, truck behavior, potholes, etc).

- Abstraction: the specifications were translated into executable models.
In this way, a traffic analyzer can focus in the problem solving task,
avoiding implementation or low level details.

We have built a compiler for the specification language (introduced in
(Wainer 2005)) based on these formal specifications. In addition, a graphical
user interface allows easy definition of the models (Wainer et al. 2004).
The GUI validates the static model based on information given by the map
and the constructions used. Finally, efficient execution of the models is
being considered by means of parallel execution of Cell-DEVS.
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