CD++Modeler: a graphical toolkit to develop DEVS models

Chiril Chidisiuc

Gabriel A. Wainer

Carleton University
1125 Colonel By. Ottawa, ON. K1S 5B6. Canada.
1-613-520-2600

gwainer@sce.carleton.ca

ABSTRACT

Modeling and simulation tools have been used for
helping in the early stages of hardware/software
systems design. The DEVSformalismisa technique that
enables hierarchical description of discrete event
models that can be used for this task. CD++Modeler is
an application that permits defining DEVS models
graphically. We present the design and main features of
the application.

1. INTRODUCTION

In recent years, Real-Time embedded application® ha
grown tremendously, both in the number of existing
systems and in the complexity of the tasks theyuebee
Current advances in computing technology have nitade
possible to automate tasks at a level of complexity
unknown previously. The continuing trend in grovatind
increased complexity complicates the development of
Real-Time software, where concerns for functiogalit
predictability and reliability must be addressedirrént
methods for Real-Time software construction aréegit
hard to scale up for large systems, or requireffeculi
testing effort with no guarantee for a bug freetwsafe
product. Modeling and Simulation (M&S) techniquesia
tools for analyzing testing scenarios have proedretable

to provide product s that are of better quality dade a
reduced lifecycle cost, due to improved testabibtyd
maintainability. Despite the net gains, most prbjec
managers are reluctant to use the techniques hetaew
require extra initial resources in the constructiofi
simulation models that will not be part of the detied
application. Similarly, in the early stage of thesijn of
embedded systems, software and hardware are ddsigne
independently. The software development team isivepi
for the hardware prototypes to be available; howete
hardware development team is waiting for the safwa
environment for hardware prototype verification and
testing. An M&S-based design approach allows thes tes
test the functionality of the hardware in a veryl\eatage.
This is economically efficient, and shortens theduorct
development cycle and time-to-market period.

We have built an Eclipse-based platform called
CD++Builder to enable the development of real-time
applications using a model-based approach. Thé&itasl
based on a mathematical theory called DEVS (Discret
Event System Specifications), an increasingly atszkp
framework for understanding and supporting theviies

of M&S [1]. The models, created in CD++Builder, daa
programmed in C++ language and incorporated inane

the modules. Alternatively, models can be created
graphically, using CD++Modeler — a stand-alone
application, included in CD++Builder toolkit. DEVS
theory provides an abstract, yet quite intuitiveywat
modeling, which is independent of any underlyingtime
system, hardware, and middleware. CD++ [2] is agiren
that enables users to define and execute DEVS miodel
CD++Modeder provides an alternative method to create
DEVS models without the need to use programming
languages. In this paper we show how @@+ +Modeler
was designed, and its relationship to CD++Buildetkit.

2. BACKGROUND

The DEVS formalism for modeling and simulation [1]
provides a framework for the construction of hiehécal
models in a modular fashion, allowing model reuse,
reducing development and testing time. The hiefeath
and discrete event nature of DEVS makes it a gboite

to achieve an efficient product development tedtVB
are timed models, which also enables us to defimiag
properties for the models under development. EdEX®
model can be built as a behavioral (atomic) oracstral
(coupled) model. A DEVS atomic model is describsd a

M = <Xa Sy Ya 6int! 68)([,}\! D >

In the absence of external events, the model withain

in statesd]S duringta(s). Transitions that occur due to the
expiration ofta(s) are called internal transitions. When an
internal transition takes place, the system outpbts
value A(s) O Y, and changes to the state defineddhys).
Upon reception of an external evendy(s, e X) is
activated using the input valuélX, the current stats
and the time elapsed since the last transidio@oupled
models are defined as:

CM =<X,Y, D, {M},{li},{Z;}, select >

They consist of a set of basic modeli,(atomic or
coupled) connected through their interfaces. Corapbn
identifications are stored into an inde®)(A translation
function (ij) is defined by using an index of influencees
created for each modeli), The function defines which
outputs of modeMi are connected to inputs in modidj.

CD++ [2] implements DEVS theory. The toolkit hashe
built as a set of independent software pieces, eatltem
independent of the operating environment chosere Th
defined models are built as a class hierarchy,eauth of

them is related with a simulation entity that igiated

whenever the model needs to be executed. New models

can be incorporated into this class hierarchy biinvg
DEVS models in C++, overloading the basic methods
representing DEVS specifications: external traosdi
internal transitions and output functions. CD++ éoyp a
virtual time simulation approach, which allows gkipgy
periods of inactivity. A real-time engine enables
simulation advancing based on the wall-clock.

3. CD++MODELER

CD++Modeer is part of the CD++ toolkit, created for
designing and executing DEVS models using a grapbhic
notation. The main components of the model andr thei
relationships are shown in Figure TD++Modeler
provides the tools to animate the results of model
simulation, and the user can create advanced models
using a built-in specification tool.

Package Owversiew model)
== interface == == interface == == interface == == interface ==
Selectable Descriptable Identifiable PortContainer
LN L L& V.. A&KALK PNy
o | - [[1
ik | : PRI : Vo : i
N R : - | ;) | - T g
o ETE | | P F | s | -
x v | : wow B0 s - i 2 Action
- il | 3 o 1
R i i i - [! 2 2o |
Expression e R . A | Jugr el ;
- N ~ . . o, T -~ 1
S .l s - ¢ 1 e g 1| -
. - " ’ dli \ ot
i | - - % i - e
. -~ 4 I 1 -
[- ~] | 5 . i Variable
| | 3 ‘-4"\-\ L 1 n Bl '
[L . o [L} - {
1 | La - ot i e e
[‘e 1 ot ' § g 3
£ n
ort] | 1 o fink] - urit . fmodel
= T - 1 T = ol
Function B : B ~ =
AbsiractPort AbstractLink AbsiractUnit AbsiractModel

Created with Poseidon for UM L Community Edition. Mot for Commercial Use,

Figure 1. Design of CD++M odeler.

4. CD++MODELER DESIGN OVERVIEW

The Graphical User Interface (GUI) 6@D++Modeler is
shown in Figure 2. Some basic functions include the
creation of atomic and coupled models, retrievihg t
parent class of the coupled model, run externalncants,
simulate the model and animate the simulation tesul
The application also includes a simple text editor.

When CD++Modder is launched, methodwei n() of
Mai nDEVS class is called, to create an instance of
Mai nDEVS type. TheMai nDEVS inherited layout and
behavior of classJAppl et of javax.swing package.
Extending theJAppl et , allowed theMai nDEVS class

to support the JFC/Swing component architecture [3]

Menu bar
Button bar

< CD++ Modeler

File Edit Execute Animate Help
= e & L Ll
=[] Root Node | | atamic | coupled

oo States

- ® Links

Lo Ports

L Vars
"
irofllator Starts

Status bar I

Model components Model Editor Panel

Figure 2. CD++Modeer window

Japplet

i

MainDEVS

~packF ram e boolean = falzs

+triaihl aros Stringl T void

== cregte ==+ MainDEvE(MainDEVS

Figure 3. MainDEV S class diagram

Mai nDEVS instantiates thé/hi nFr ane class, which
for CD++Modeler

is responsible

frame

of Mai nFrame is to collect and assemble the
components, which later appear in ©B++Modeler
window. Some of the main components include menu
bar, button bar, model editor panel, model compten
panel, and the status bar. The menu bar appeéns at
top of theCD++Modeer window. The menus, menu
items, and menu bar itself are createdMai nFr ane
class using objects afMenu and JMENhul t emtype of

the javax.swing package. When a menu item is salect
the corresponding action is performed. To make
connection between a menu item and an action, each
menu item is associated with a class that implesent

Act i onLi st ener interface. The relationships between

GUL.

Mai nFr ane class extends thEr ane class. The role

menu, menu items, and classes responsible for ibemu
actions are shown in Table 1.

Menu Menu Item Action class Description of action
File New NewAct i onLi st ener Creates new project
(atomic or coupled,)
Lie Open OpenActi onlLi st ener Opens project
g::: Save saveAct i onLi st ener Saves project
Save hs Save As saveAsActi onLi st ener Saves project with
ose user-specified name
E:ﬁ::nmwt Close Cl oseActi onli st ener Closes current project and
Inport prompts to save, if needed
Image Repository Drectory | EXPOI Fil eExportActionListen | Exports model with new
Exit er extension
Save and Export | Fi | eExport ActionLi sten | Performs two operations:
er R 1. Save (see save)
saveAct i onLi st ener
2. Export (see export)
Import FilelmportActionListen | (works only for coupled
er models)
Image Repository | mageReposi toryActionL | Sets image source
Directory | stener
Exit actionListener Closes the project and
terminates CD++Modeler
Edit Undo N/A
Redo N/A
Undo Copy N/A
Reda Paste N/A
Copy Delete tool bar Del et eActionLis | Removes selected object|in
Paste tener model editor panel
Delete
Execute Local CDD Local CDDAct i onEvent Han | Simulate coupled model gn
dier local machine
Local 0D Remote CDD Renot eCDDAct i onEvent Ha | Simulate coupled model gn
Remoate CDD ndl er remote machine
Drawlog Drawlog Draw ogAct i onEvent Hand | draws the evolution of a
Text Editor | er cellular model
Text Editor text Edi tor ActionListen | Allows user to edit models

er

in text mode

st ener

Animate Cell-DEVS cel | Ani mat eActionListe | visualize the simulation
animation ner results of atomid
Cell-DEYS animation Cell-DEVS models
AtamicAnimate AtomicAnimate | atomni cAni mat eActionLis | visualize the simulation
Coupledanimate tener results of atomic-DEVS$
models
CoupledAnimate | coupl edAni mat eActionLi | visualize the simulation

U7

results of coupled-DEVS
model

Table 1. CD++Modeler menu structure

The menu “Edit”, of CD++Modeler toolkit, provides
basic editing tools, which include: undo and retie t
changes, copy, paste, and delete elements of tleImo
Menu “Execute” provides tools to simulate the model
draw simulation results and edit files, associatéti the
model, in text form. To establish the connectiotween
buttons and objects of the text editor dialog windasith
their corresponding actions, external classes, hvhic
implement ActionListener interface, were created.

£ CD++ Modeler
File Edit Execute Animate Help

=] Coupled Modsl
&1 Ports
.
e OUE Qub
(=] Models
& Atomic
ot Coupled

Atomic | Coupled

Load balaydsaweaosseve

serverl@server

= | Coupled Modsl

o mcomadtiodel | alancer @8l
&L ks ﬁ
=] dbserver

ok

e 2@5e ver -
In:in
® Outroutl T ﬁ
e QU outz
® Out: out3 gengrator@Gensr gr
= servert ﬁ ver3@s:
pe Iniin g
® Outidb
In:dane
e Oub ot
] server. 2
® In:in
& Out: db
In: done
® Outout
] server: 3
#® In:in
Outidb
o Iz done
& Out:out
=] balancer
e Iniin
& Out:outl
@ Ouboutz
e Oub out
5) generator
[T
£ Links
] Port:

fppened losbalancer, e

Figure 4. Defining Coupled M odels.

The “Animate” menu allows client to animate theules
of model simulation. However, unlike the Drawlodl a
types of models (Cell-DEVS, Atomic, and Coupledih ca
be processed for animation. When model is simu)abed
results are recorded to a file with “log” extensidrhe
information stored in the “log” file is used to armate the
results.

To select the type of model for animation, therdlimust
choose one of the following menu items of the “Aatef
menu: “Cell-DEVS animation” (cell-DEVS model),
“AtomicAnimate” (atomic model), or “CoupledAnimate”
(coupled model). Upon selection of one of the thremu
items, a corresponding dialog window appears on the
screen.

In order to link the menu items with their corresgimg
actions, inner classes
cel | Ani mat eAct i onLi st ener,

at om cAni mat eAct i onLi st ener, and
coupl edAni mat eActi onLi st ener were created
within Mai nFrame class. All three inner classes
implementedAct i onLi st ener interface. To design
the GUI of Cell-DEVS animation, layout and behavidr
Cel | Ani mat el f interface was used. The concrete
implementation ofCel | Ani mat el f methods was done
in Cel | Ani mat e class. TheCel | Ani mat e class,
which extended class JFrame class of javax.swing
package, additionally was able to define the GUl do
pop-up window that appears, when Cell-DEVS aninmatio
is in use.

Using similar design of Cell-DEVS animation meclsan;j

the animation feature for atomic and coupled models
created. In summary, thbhi nFrane’s inner classes,

at om cAni mat eAct i onLi st ener and
coupl edAni mat eActi onlLi st ener, implemented
the ActionLi stener interface and defined the
behavior of CD++Modeler in case of selecting

At om cAni mat e or Coupl edAni mat e menu items
respectively. Once any of the two inner classes are
instantiated, theiact i onPer f or med() methods are
called. Unlike the Cell-DEVS animation, a dialogndiow,
prompting the client to input details about the lpd
appears on the screen in case of atomic and coupled
models. The window, containing tools to animaténegit
atomic or coupled model, follows the dialog windafter

the details about the model were provided.

B Atomic Animate

Eweightadbalancer_v :

BRI

VYalues |

=
out3 l):_9 l P = E2.0
Seale |00 EX
rescale
aut? l /:l‘\.l /':—":' l
Scale |00 209

[rescale]

0.0

.0 T T LEHE S

) =
autl)I p=

Scale |00 |.a000m

rescale

O3

UlEHE) uHE g Tt 00:01:24

.0 oo

9.30

OO 2T TorTooT

TIOTOOT=RY TOTIoTSE T o0

2.0
A 00 UEHERHIL S oooTIE LR

< g €5z

LEHLE) EHY LEH IS oo ~

Figure5. Classes that implement ActionListener interface for components of TextEditFrame class

Cell-DEVS animation

Wodfy Palette

Shaw 20.0nly

Avrailable Selected

=] u

[[]show values [] Show Names

oo | (]
i

Time | 00:00:00:150 |

|
Figure 6. Cell-DEV S animate GUI

ClassAt om cAni mat eDi al og defines the GUI of the
atomic dialog box, whereas the GUI for the coupled
dialog box was constructed in class
Coupl edAni nat eDi al og, both of which inherited the
behavior of clas&kCancel JDi al og.

OkCanc elJDialog

[

AtonmicAnimatelialog| |[CoupledAnimateDialog

Figure 7. Atomic and Coupled animate dialog window
relationship

Once model details were entered at the prompt ef th
dialog box, the animation window (specific to atorand
coupled models) appears on the screen. Class
At omi cAni mat e, responsible for the GUI of atomic
animate window, or class Coupl edAni nat e,
responsible for GUI of coupled animate window, is
instantiated, depending if the atomic or coupleddeto
were selected. ClassesCoupl edAni mate and

At om cAni mat e provide the concrete implementation
of Coupl edAni matelf and At oni cAni nat el f
interfaces respectively.

== interface ==
CoupledAnimatelf

StateController

- contraller

- controller

- CAnvaz

- animate

CoupledAninate

-coupled Canvas

LogParser

-parsar

CoupledCanvas

L

Conplad I dei

Figure 8. Coupled Animate class diagram

To increase the efficiency and simplify usage of
CD++Modeder, the tools that are accessed the most often
were placed in the button bar, located in the mairdow

PEES - =L NN FAS
] I 1 | I 1
1 2 3 4 5 (] 78 9 10 11 12 13 14

Figure 9. CD++Modeler button bar (see Table 2 for
further details)

To create the bar, containing tools and buttons of
CD++Modeler, JTool Bar class of javax.swing package
was used due to its ability to present the tootsions,
and controls in a user-friendly manner [4]. Ins&raf
JTool Bar was added t&CD++Modeler window using
Bor der Layout layout manager. To perform actions,
each button of the toolbar is associated with ascthat
implements the Acti onLi st ener interface. The
summary of classes that provide thet i onLi st ener
interface to the components 6D++Modéder toolbar is
given in Table 2. Action classes, listed in Tableage
inner classes ofMai nFrane class, except for the
get At om cGraphEdi t or () method, which returns
an instance of the external class, called
At omi cMbdel Edi t or class.

of CD++Modeler.
Index | Emblem| Button Action class Description

1 N New NewAct i onLi st ener new project

2 = Open File OpenAct i onLi st ener open project

3 B Save File saveAct i onLi st ener save current activity

4 B Help Hel pActi onLi st ener opens the help dialog

5 - + Internal Link | get At omi ¢GraphEditor(): | Places internal link between units of|a

At om cMbdel Edi t or model
6) External Link | get At om cGraphEdi tor (): | Places external link between units of model
At om cMbdel Edi t or

7 Show Link | get At om cGraphEditor(): | Shows expression in text form beside |all
Expression At onmi cMbdel Edi t or links (internal external), when checked

8 Show Link | get At om cGraphEditor(): | Shows action in text form beside all links
Actions At om cMbdel Edi t or (internal external), when checked

9 Show Link | get Coupl edModel Edi t or () | Shows ports in text form beside all links
Ports : Coupl edMbdel Edi t or (internal external), when checked

10 ﬂ Add new | AddAt omi cUni t Act i onLi st | Adds atomic unit to a coupled model
Atomic ener
Model Unit

11 |ii Add new | AddCoupl edUni t Acti onLi s | Adds a coupled unit to a coupled model
Coupled t ener
Model Unit

12 F Close Exi t Acti onLi st ener Close exploded unit (only for coupled
Exploded model)
Unit

13 ¥ 4 Local Local Si mul at or Acti onLi s | simulates the model (only coupled model
Smulator t ener

14 & Editor Edi t or Acti onLi st ener provides a simple text editor application

Table 2. CD++Modeler toolbar

AddAtomicUnitActionListener MNewActionListener

AddCoupledUnitActionListener LocalSimulatorActionListener

ExitActionListener MainFrame AtomicModelEditor
5 =
OpenActionListener HelpActionListener
saveActionListener EditorActionListener

Figure 10. Action classes of CD++M odeler toolbar.

Five components, included in the toolbar, sharestirae
functionalities as some menu items, to provide an
alternative way to access widely used features of
CD++Modeler: buttons “New”, “Open File”, “Save File”,
“Local Simulator”, and “Editor” with menu items “Né,
“Open”, “Save”, “Local CDD”, and “Text Editor”
respectively. Buttons, listed above, perform thenesa
actions as their menu counterparts. To explorehéurt
about design details of actions, performed by these
buttons, see the design description of the corredipg
menu item in section 4.2 of this document. Buttdhsf

do not have a menu counterpart are: “Help”, “Ingrn
Link”, “External Link”, “Show Link Expression”, “Saw
Link Actions”, “Show Link Ports”, “Add new Atomic
Model Unit”, “Add new Coupled Model Unit", and
“Close Exploded Unit” (refer to Table 2).

Mai nFrane’s inner class Hel pActi onLi st ener
dictates the response of “Help” button. Method
actionPerformed() of Hel pActi onLi stener
invokes showHel p() method of Mai nFrane class,
which instantiatesiel pl nf o andHel pLoader classes.
ClassHel pLoader creates the GUI's help window. To

create the default layout for “Help” feature of
CD++Modeder, class Hel pLoader used Hel pSet
class from javax.help packageHel pSet object

represents a collection of information about coften
structure, and layout of the “Help” contehel pSet file,
table of contents (TOC), index, topic files, andpg\Vde
[5]. To represent theHel pSet object visually, a
Hel pBr oker object was used.

To create a pop-up window that offers client to ropiee

CD++Modeler manual, classHel pl nfo extended
JFranme class of javax.swing package. Manual can be
opened in either format: “doc”, “html”, or both. &a
format of the manual is opened in native system
application, responsible for that format (e.g. tit?
opens in internet browser), which was made posdijgle
running Windows command linectrd /c start +
[file_path]”.

& Ayuda del Proyecto GUI

€ > &5
4
(])
“asr CD++
=4 SPANISH
Introduccidn MODELER
= Acoplados
to Distribucion
4 Agregar Unidades
-~ Agregar Unidades Modelo Atomico
4 Agregar Unidades Modelo Acoplado
; - Agregar Unidades Puerto About
—#% Explosion de Unidades
o Importando Madelos
& About
"4 EMGLISH
3 In::;‘ijcucmn Designed and
------ # Distribution Developed by

=4 Adding Units
o Adding States
L4 Adding Ports
= Coupled
L Distribution
4 Adding Units
- # Adding Atomic Model Units
- Adding Coupled Madel Units
- Adding Port Units
i Explosion of Units
o Importing Models
«

-# Helpinfo

Juan Ignacio Cidre

jicidre@de uba.ar

Figure 11. CD++Modeler Help window

Button “Internal Link” (see Table 2) is used toteddEVS
models in CD++Modeler: it allows client to link
components of an atomic DEVS model by connecting
their internal ports. ClassAt oni cMbdel Edit or
provides theAct i onLi st ener interface to “Internal
Link” button. The attributes of the internal linkeaused,
when drawn in the model editor panel of the
CD++Modder. To link external ports, the “External
Link” button is used (see Table 2). The button uses
At om cMbdel Edi t or class, which provides the
Act i onLi st ener interface. To create the GUI of the
“Internal Link” and “External Link” buttons,
JToggl eButton class of javax.swing package was
used. ThelToggl eBut t on class provides the behavior
of a two-state button and is a superclass to
JRadi oBut t on and JCheckBox classes. Since only
one type of link can be created at a tim€b++Modeler,

the two-state button, providedy JToggl eButton
class, was used.

A set of properties is associated with each link in
CD++Modeler. To show or hide the properties in the
Model Editor Panel ofCD++Modder main window,

checkboxes “Show Link Expression”, “Show Link

Actions”, and “Show Link Ports” were placed in the
toolbar near the “Internal Link” and “External Lihk
buttons. Checkboxes “Show Link Expression” and ‘8ho
Link Actions” are attributes of Atomic model only,
therefore, it was designed such that AtomicModedtidi
provided implementation of ActionListener interfafter
these two checkboxes. Checkbox “Show Link Ports”
appears in coupled models only, thus, making it
reasonable to make CoupledModelEditor implement
ActionListener interface for this checkbox. To gefault
layout and properties, all three checkboxes extnde
“JCheckBox” class of javax.swing package and were
instantiated irvai nFr anme class.

CoupledModelEditor toolbarShowPorts - JCheckBox
T 9 _‘
!_ _| MainFrame
-
|
|
sl | 4 toolbarShowhctions @ JCheckBox

AtomicModelEditor |_ |

1

| |toodbarShowExpressions : JCheckBox
I9 -
Figure 12. Composite design diagram of toolbar
checkboxes

Since coupled model by definition is a system oirat
and coupled DEVS models, it requires more edithrent
atomic model. To improve the efficiency of editireg
coupled model, buttons “Add new Atomic Model Unit”
and “Add new Coupled Model Unit” were added to
CD++Modeler toolbar, as described in Table 2. The
buttons are enabled only when tab “Coupled” of Mode
Editor Window is selected. Both buttons were create
using default layout and behavior of java libratpss
JBuUt t on (javax.swing package) and are instantiated in

Mai nFr anme class. Inner classes
AddAt omi cUni t Acti onLi stener and
AddCoupl edUni t Acti onLi st ener provide

implementation of Acti onLi st ener interface for
“Add new Atomic Model Unit” and “Add new Coupled
Model Unit” buttons respectively. Class
Coupl edMbdel Edi t or adds both atomic and coupled
units to the model.

MainFrame

L

CoupledModelEditor

N —

EditableAtomicModel | |EditableCoupledModel

= =
AtomicModel | |CoupledModel

=

AbstractModel

AtomicUnit CoupledUnit

AbstractUnit

—Dq—

Figure 13. Adding atomic/coupled unit to coupled
model

To edit units of a coupled model, the units caropened
(“exploded”) in a modified CD++Modder window,
where only either atomic or coupled models candieé,

i.e. Model Editor Window contains either atomic or
coupled tab, depending on the type of model that wa
exploded.

£ CD++ Modeler
File Edit Execute Animate Help
DNeEd--)—ryHH- HHE K5

=] Root MNode
ol States

Akamic

Simulator Starts

Figure 14. Exploded atomic unit

To return to the originalCD++Modeler, once the
“exploded” unit was edited, buttorCl'ose Exploded Unit”

is used. This button was createcMmi nFr amre class and
used clasgBut t on of javax.swing package to define its

behavior. Inner class
Exi t ActionLi stener of MinFrane class
implements Act i onLi st ener interface for Close
Exploded Unit” button. The response is identical to the
response of menu item “Exit” of “File” menu (seecen
4.2.1).

default layout and

The workspace ofCD++Modder was designed using
split pane layout. The split pane is a pane, witiah be
split into sections either vertically or horizoryal To
create a split pane, clagspl i t Pane of javax.swing
package was used. The Split Pane was then paetition
horizontally into two major sections (Section 1 and
Section 2) that were placed horizontally one beside
another using a vertical divider. The split paneswa
inserted in CD++Modeler frame using java layout
manageBor der Layout of java.awt package.

EER

£ (D++ Modeler

File Edit Execute Anmate Help
DEES --2—uw HHE » 25
=] Rt Hde

| akoic | zougled|

Section 2

fSimulator Starts

Divider Split Pane
Figure 15. Split pane - component of CD++M odeler

The Model Editor Panel is a component of the
CD++Modeler split pane (labeled as “Section 2" in the
figure). To create GUI for Model Editor Panel, mste of
JTabbedPane class (javax.swing package) was added
to right-most section o€D++Modeler split pane. The
class JTabbedPane provided tabbed layout of the
Model Editor panel. Upon instantiation of the
JTabbedPane object, two tabs were added “Atomic”
and “Coupled”. Tab “Atomic” was designed to provide
graphical model editor for atomic DEVS model, wlzere
“Coupled” provided graphical model editor for coegbl
DEVS model. Both “Atomic” and “Coupled” tabs placed
an instance o9 Scr ol | Pane (javax.swing package) in
its content to provide the area for a graphical ehedlitor.
The actual graphical editors were provided by
At omi cMbdel Edi t or and Coupl edModel Edi t or
classes. The atomic graphical model editor waseplaa
scroll pane of “Atomic” tab, while graphical editdor
coupled models was placed in scroll pane of “Cadiple

tab.

AtomicModelEditor ITabbedPane
JSch.IPanE

Atorgic | Coupled *

W
"Model Editor Panel”
Figure 16. Class components of Model Editor Panel

Upon selection of one of the tabs, the other tatbies
invisible, which was made possible by using
Act i onLi st ener interface implemented by inner class
TabbedPaneChangedLi st ener of Mai nFrane
class.

To start editing a model, the user must select the
appropriate tab and choose menu item “New” of File
menu or button “New” in the toolbar. As the resulh
editable model is instantiated and is associateth wi
model editor of the selected tab. For example, wiaén
“Atomic” is selected, clas&di t abl eAt omi cEdi t or

is instantiated and associated with
At omi cMbdel Edi t or. The relationship of classes that
contribute to model editor design is shown follogin

MainFrame

L

JEplitPane

J

JTabbedPane

J

JScrollPane
[
[)
AtomicModelEditor CoupledModel Editor
EditableAtomicModel EditableCoupledMadel

Figure 17, Design of model editor panel

CD++Modeler provided Model Components Panel to
view, access, and use components of a model (dzale
“Section 1” in the figure). The components panehjck
was created usingPanel class of javax.swing package,
is located in left-most partition oED++Modeler Split
pane. The objects, included in the components paireel
categorized by their functionality. To categorizaieats,

the components panel was split into sections, using
default layout and functionalities dfSpl i t Pane class

of javax.swing package. Instance of clasger ol | Pane

was added to each partition of the pane. The ctsiah
the Components Panel were added to the scroll panes
directly.

The GUI of components panel is different for Atoraid
Coupled models, since contents of the two differ.

Upon starting the CD++Modeler, by default, tab
“Atomic” of model editor panel is selected and its
corresponding components panel is shown. To cfablie

for components panel of atomic model, a split pane,
divided vertically in two blocks (top and bottomyas
added to the panel. InstanceJ@8cr ol | Pane class was
added to each block of the split pane. Instance of
At om cUni t sTr ee class was added to the scroll pane
of the top partition of split pane and instance of
Descri pt abl eDat aPanel class was added to the
scroll pane of bottom portion of split pane. As tlesult,
panel, shown in the following figure, was created.

AtomicUnitsTree

't
=[] Roat Nu:u:le* S
L # Stakes

-4 Links

{— J5plitPane

"Divider" J15crollPane

Hart [D: in A
Puart [nfOut: In
Fart Type: Integer

DescriptableDataPanel

i
JPanel

Figure 18. Component panel design

The relationship of classes that contributed todbsign

of atomic components panel is shown following. Teate
components panel for coupled model, different GYI i
created. Similarly to atomic components panel,ainsg¢

of JPanel class of javax.swing package was inserted in
left-most partition ofCD++Modeler split pane (labeled as
“Section 1" in the figure). To create the GUI, austance

of vertically splitJSpl i t Pane, with another instance of
JSpl i t Pane in its top partition, was added to the panel.

MainFrame

L
JPanel

L

JsplitPane

L

JscrollPane

N

AtomicUnitsTree DescriptableDataPanel

Figure 19. Classesincor porated in components panel

Such layout provided three sections of the pawalilable

for further development. An instance &8cr ol | Pane
class was added to each of the partitions. Class
Coupl edd assesTr ee provided view for scroll pane

in the top sectionCoupl edUni t sTr ee in the middle,
andDescr i pt abl eDat aPanel in the bottom section
respectively.

- Coupled Model ~
—_| Ports = CoupledClassesTree
Clm out e—]SCI‘\O“PaIIE
—_| Models
15plite i Akormic
plitPane < @ Coupled w
=[] Coupled Model S
et Units J5plitPane
:I :;Inkts (CoupledUnitsTree
= arts
Lm &—JScrollPane
Port ID: PortO e
Fort InfCut: In F—Des«criptableDataPanel
Fort Twype: Integer
vﬁ—]ﬂcrollPane

L J

R
JPanel
Figure 20. Coupled model components panel structure

The Status bar was designed to display description
current activities withinCD++Modeler environment. To
create status bar fo€CD++Modeer, an instance of
JLabel class was created in clabki nFr ane. Using
Bor der Layout layout manger, the label was added to
the south region ofCD++Modeler frame, defined by
classMai nFr ame. To display messages in the status bar,

methodset Text () of JLabel class was used to set
the text of label.

CoupledClassesTree
CoupledUnitsTree
J5crollPane
'

1
S DescriptableDataPanel
JscrollPane
t
|

Figure 21. Design of coupled components panel

5. CONCLUSION

We presented the design ©D++Modeler, where DEVS
models can be graphically built and edited. The
CD++Modder combines CD++Builder functionalities to
create and simulate the models with unique featofr@s
own, such as animation of the model simulation Itesu
The CD++Builder plug-in requires installation oflipse
platform, Cygwin, and Java Runtime Environment JJRE
5.0 in order to properly operate, wherd&zi3++Modeler
requires only JRE 5.0 to be available on the marhimd
can be run as a stand-alone application. Therefore,
CD++Modeler provides a versatile and simple way to
create, edit, and simulate DEVS models, as well as
animate simulation results. The graphical nature of
CD++Modder environment permits users with various
levels of experience in programming to develop DEVS
models. In the futureCD++Modeer will be further
developed in the area of finishing the existing and
introducing new components, hence, increasing the
efficiency of the application.

REFERENCES

[1] “Theory of Modeling and Simulation”. B. Zeigler, H.
Praehofer, T. G. Kim." Edition. Academic Press.
2000.

[2] "CD++: atoolkit to define discrete-event modelS'.
Wainer. In Software, Practice and Experience. Wiley
Vol. 32, No.3. November 2002. pp. 1261-1306

[3] Sun Microsystems, Inc., “Class JApplet”, [Online
document] 2004, [2006 Sep. 15], Available at HTTP:
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing
Applet.html

[4] Sun Microsystems, Inc., “Class JToolBar”, [Online
document] 2004, [2006 Sep. 17], Available at HTTP:
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing
ToolBar.html

[5] Sun Microsystems, Inc., “Class JToolBar”, [Online
document] 2004, [2006 Sep. 17], Available at HTTP:
http://supportweb.cs.bham.ac.uk/docs/java/stdex/jav
help/api/javax/help/HelpSet.html

