
CD++Modeler: a graphical toolkit to develop DEVS models
Chiril Chidisiuc Gabriel A. Wainer

Carleton University
1125 Colonel By. Ottawa, ON. K1S 5B6. Canada.

1-613-520-2600
gwainer@sce.carleton.ca

ABSTRACT
Modeling and simulation tools have been used for
helping in the early stages of hardware/software
systems design. The DEVS formalism is a technique that
enables hierarchical description of discrete event
models that can be used for this task. CD++Modeler is
an application that permits defining DEVS models
graphically. We present the design and main features of
the application.

1. INTRODUCTION
In recent years, Real-Time embedded applications have
grown tremendously, both in the number of existing
systems and in the complexity of the tasks they execute.
Current advances in computing technology have made it
possible to automate tasks at a level of complexity
unknown previously. The continuing trend in growth and
increased complexity complicates the development of
Real-Time software, where concerns for functionality,
predictability and reliability must be addressed. Current
methods for Real-Time software construction are either
hard to scale up for large systems, or require a difficult
testing effort with no guarantee for a bug free software
product. Modeling and Simulation (M&S) techniques and
tools for analyzing testing scenarios have proven to be able
to provide product s that are of better quality and have a
reduced lifecycle cost, due to improved testability and
maintainability. Despite the net gains, most project
managers are reluctant to use the techniques because they
require extra initial resources in the construction of
simulation models that will not be part of the delivered
application. Similarly, in the early stage of the design of
embedded systems, software and hardware are designed
independently. The software development team is waiting
for the hardware prototypes to be available; however, the
hardware development team is waiting for the software
environment for hardware prototype verification and
testing. An M&S-based design approach allows the user to
test the functionality of the hardware in a very early stage.
This is economically efficient, and shortens the product
development cycle and time-to-market period.

We have built an Eclipse-based platform called
CD++Builder to enable the development of real-time
applications using a model-based approach. The toolkit is
based on a mathematical theory called DEVS (Discrete
Event System Specifications), an increasingly accepted
framework for understanding and supporting the activities
of M&S [1]. The models, created in CD++Builder, can be
programmed in C++ language and incorporated in one of

the modules. Alternatively, models can be created
graphically, using CD++Modeler – a stand-alone
application, included in CD++Builder toolkit. DEVS
theory provides an abstract, yet quite intuitive way of
modeling, which is independent of any underlying runtime
system, hardware, and middleware. CD++ [2] is an engine
that enables users to define and execute DEVS models.
CD++Modeler provides an alternative method to create
DEVS models without the need to use programming
languages. In this paper we show how the CD++Modeler
was designed, and its relationship to CD++Builder toolkit.

2. BACKGROUND

The DEVS formalism for modeling and simulation [1]
provides a framework for the construction of hierarchical
models in a modular fashion, allowing model reuse,
reducing development and testing time. The hierarchical
and discrete event nature of DEVS makes it a good choice
to achieve an efficient product development test. DEVS
are timed models, which also enables us to define timing
properties for the models under development. Each DEVS
model can be built as a behavioral (atomic) or a structural
(coupled) model. A DEVS atomic model is described as:

M = <X, S, Y, δδδδint, δδδδext, λλλλ, D >

In the absence of external events, the model will remain
in state s∈S during ta(s). Transitions that occur due to the
expiration of ta(s) are called internal transitions. When an
internal transition takes place, the system outputs the
value λ(s) ∈ Y, and changes to the state defined by δint(s).
Upon reception of an external event, δext(s, e, x) is
activated using the input value x∈X, the current state s
and the time elapsed since the last transition e. Coupled
models are defined as:

CM = < X, Y, D, {Mi}, {Ii}, {Zij} , select >

They consist of a set of basic models (Mi, atomic or
coupled) connected through their interfaces. Component
identifications are stored into an index (D). A translation
function (Zij) is defined by using an index of influencees
created for each model (Ii). The function defines which
outputs of model Mi are connected to inputs in model Mj.

CD++ [2] implements DEVS theory. The toolkit has been
built as a set of independent software pieces, each of them
independent of the operating environment chosen. The
defined models are built as a class hierarchy, and each of

them is related with a simulation entity that is activated
whenever the model needs to be executed. New models
can be incorporated into this class hierarchy by writing
DEVS models in C++, overloading the basic methods
representing DEVS specifications: external transitions,
internal transitions and output functions. CD++ employs a
virtual time simulation approach, which allows skipping
periods of inactivity. A real-time engine enables
simulation advancing based on the wall-clock.

3. CD++MODELER

CD++Modeler is part of the CD++ toolkit, created for
designing and executing DEVS models using a graphical
notation. The main components of the model and their
relationships are shown in Figure 1. CD++Modeler
provides the tools to animate the results of model
simulation, and the user can create advanced models
using a built-in specification tool.

Figure 1. Design of CD++Modeler.

4. CD++MODELER DESIGN OVERVIEW

The Graphical User Interface (GUI) of CD++Modeler is
shown in Figure 2. Some basic functions include the
creation of atomic and coupled models, retrieving the
parent class of the coupled model, run external commands,
simulate the model and animate the simulation results.
The application also includes a simple text editor.

When CD++Modeler is launched, method main() of
MainDEVS class is called, to create an instance of
MainDEVS type. The MainDEVS inherited layout and
behavior of class JApplet of javax.swing package.
Extending the JApplet, allowed the MainDEVS class
to support the JFC/Swing component architecture [3].

Figure 2. CD++Modeler window

Figure 3. MainDEVS class diagram

MainDEVS instantiates the MainFrame class, which
is responsible for CD++Modeler frame GUI.
MainFrame class extends the JFrame class. The role

of MainFrame is to collect and assemble the
components, which later appear in the CD++Modeler
window. Some of the main components include menu
bar, button bar, model editor panel, model components
panel, and the status bar. The menu bar appears at the
top of the CD++Modeler window. The menus, menu
items, and menu bar itself are created in MainFrame
class using objects of JMenu and JMEnuItem type of
the javax.swing package. When a menu item is selected,
the corresponding action is performed. To make
connection between a menu item and an action, each
menu item is associated with a class that implements
ActionListener interface. The relationships between
menu, menu items, and classes responsible for menu item
actions are shown in Table 1.

Menu Menu Item Action class Description of action
File

New NewActionListener Creates new project
(atomic or coupled,)

Open OpenActionListener Opens project
Save saveActionListener Saves project
Save As saveAsActionListener Saves project with

user-specified name
Close CloseActionListener Closes current project and

prompts to save, if needed
Export FileExportActionListen

er
Exports model with new
extension

Save and Export FileExportActionListen
er
saveActionListener

Performs two operations:
1. Save (see save)
2. Export (see export)

Import FileImportActionListen
er

(works only for coupled
models)

Image Repository
Directory

ImageRepositoryActionL
istener

Sets image source

Exit actionListener

Closes the project and
terminates CD++Modeler

Edit

Undo N/A
Redo N/A
Copy N/A
Paste N/A
Delete toolbarDeleteActionLis

tener
Removes selected object in
model editor panel

Execute

Local CDD LocalCDDActionEventHan
dler

Simulate coupled model on
local machine

Remote CDD RemoteCDDActionEventHa
ndler

Simulate coupled model on
remote machine

Drawlog DrawlogActionEventHand

ler
draws the evolution of a
cellular model

Text Editor textEditorActionListen Allows user to edit models

er in text mode
Animate

Cell-DEVS
animation

cellAnimateActionListe
ner

visualize the simulation
results of atomic
Cell-DEVS models

AtomicAnimate atomicAnimateActionLis
tener

visualize the simulation
results of atomic-DEVS
models

CoupledAnimate coupledAnimateActionLi
stener

visualize the simulation
results of coupled-DEVS
model

Table 1. CD++Modeler menu structure

The menu “Edit”, of CD++Modeler toolkit, provides
basic editing tools, which include: undo and redo the
changes, copy, paste, and delete elements of the model.
Menu “Execute” provides tools to simulate the model,
draw simulation results and edit files, associated with the
model, in text form. To establish the connection between
buttons and objects of the text editor dialog window with
their corresponding actions, external classes, which
implement ActionListener interface, were created.

Figure 4. Defining Coupled Models.

The “Animate” menu allows client to animate the results
of model simulation. However, unlike the Drawlog, all
types of models (Cell-DEVS, Atomic, and Coupled) can
be processed for animation. When model is simulated, the
results are recorded to a file with “log” extension. The
information stored in the “log” file is used to animate the
results.

To select the type of model for animation, the client must
choose one of the following menu items of the “Animate”
menu: “Cell-DEVS animation” (cell-DEVS model),
“AtomicAnimate” (atomic model), or “CoupledAnimate”
(coupled model). Upon selection of one of the three menu
items, a corresponding dialog window appears on the
screen.

In order to link the menu items with their corresponding
actions, inner classes
cellAnimateActionListener,
atomicAnimateActionListener, and
coupledAnimateActionListener were created
within MainFrame class. All three inner classes
implemented ActionListener interface. To design
the GUI of Cell-DEVS animation, layout and behavior of
CellAnimateIf interface was used. The concrete
implementation of CellAnimateIf methods was done
in CellAnimate class. The CellAnimate class,
which extended class JFrame class of javax.swing
package, additionally was able to define the GUI for a
pop-up window that appears, when Cell-DEVS animation
is in use.

Using similar design of Cell-DEVS animation mechanism,
the animation feature for atomic and coupled models was
created. In summary, the MainFrame’s inner classes,
atomicAnimateActionListener and
coupledAnimateActionListener, implemented
the ActionListener interface and defined the
behavior of CD++Modeler in case of selecting
AtomicAnimate or CoupledAnimate menu items
respectively. Once any of the two inner classes are
instantiated, their actionPerformed() methods are
called. Unlike the Cell-DEVS animation, a dialog window,
prompting the client to input details about the model,
appears on the screen in case of atomic and coupled
models. The window, containing tools to animate either
atomic or coupled model, follows the dialog window after
the details about the model were provided.

Figure 5. Classes that implement ActionListener interface for components of TextEditFrame class

Figure 6. Cell-DEVS animate GUI

Class AtomicAnimateDialog defines the GUI of the
atomic dialog box, whereas the GUI for the coupled
dialog box was constructed in class
CoupledAnimateDialog, both of which inherited the
behavior of class OkCancelJDialog.

Figure 7. Atomic and Coupled animate dialog window
relationship

Once model details were entered at the prompt of the
dialog box, the animation window (specific to atomic and
coupled models) appears on the screen. Class
AtomicAnimate, responsible for the GUI of atomic
animate window, or class CoupledAnimate,
responsible for GUI of coupled animate window, is
instantiated, depending if the atomic or coupled model
were selected. Classes CoupledAnimate and
AtomicAnimate provide the concrete implementation
of CoupledAnimateIf and AtomicAnimateIf
interfaces respectively.

Figure 8. Coupled Animate class diagram

To increase the efficiency and simplify usage of
CD++Modeler, the tools that are accessed the most often
were placed in the button bar, located in the main window
of CD++Modeler.

Figure 9. CD++Modeler button bar (see Table 2 for
further details)

To create the bar, containing tools and buttons of
CD++Modeler, JToolBar class of javax.swing package
was used due to its ability to present the tools, actions,
and controls in a user-friendly manner [4]. Instance of
JToolBar was added to CD++Modeler window using
BorderLayout layout manager. To perform actions,
each button of the toolbar is associated with a class that
implements the ActionListener interface. The
summary of classes that provide the ActionListener
interface to the components of CD++Modeler toolbar is
given in Table 2. Action classes, listed in Table 2, are
inner classes of MainFrame class, except for the
getAtomicGraphEditor() method, which returns
an instance of the external class, called
AtomicModelEditor class.

Index Emblem Button Action class Description
1 New NewActionListener new project

2 Open File OpenActionListener open project

3 Save File saveActionListener save current activity

4 Help HelpActionListener opens the help dialog

5

Internal Link getAtomicGraphEditor():
AtomicModelEditor

Places internal link between units of a
model

6
External Link getAtomicGraphEditor():

AtomicModelEditor
Places external link between units of model

7 Show Link
Expression

getAtomicGraphEditor():
AtomicModelEditor

Shows expression in text form beside all
links (internal external), when checked

8 Show Link
Actions

getAtomicGraphEditor():
AtomicModelEditor

Shows action in text form beside all links
(internal external), when checked

9 Show Link
Ports

getCoupledModelEditor()
:CoupledModelEditor

Shows ports in text form beside all links
(internal external), when checked

10 Add new
Atomic
Model Unit

AddAtomicUnitActionList
ener

Adds atomic unit to a coupled model

11 Add new
Coupled
Model Unit

AddCoupledUnitActionLis
tener

Adds a coupled unit to a coupled model

12
Close
Exploded
Unit

ExitActionListener Close exploded unit (only for coupled
model)

13 Local
Simulator

LocalSimulatorActionLis
tener

simulates the model (only coupled model)

14 Editor EditorActionListener provides a simple text editor application

Table 2. CD++Modeler toolbar

Figure 10. Action classes of CD++Modeler toolbar.

Five components, included in the toolbar, share the same
functionalities as some menu items, to provide an
alternative way to access widely used features of
CD++Modeler: buttons “New”, “Open File”, “Save File”,
“Local Simulator”, and “Editor” with menu items “New”,
“Open”, “Save”, “Local CDD”, and “Text Editor”
respectively. Buttons, listed above, perform the same
actions as their menu counterparts. To explore further
about design details of actions, performed by these
buttons, see the design description of the corresponding
menu item in section 4.2 of this document. Buttons, that
do not have a menu counterpart are: “Help”, “Internal
Link”, “External Link”, “Show Link Expression”, “Show
Link Actions”, “Show Link Ports”, “Add new Atomic
Model Unit”, “Add new Coupled Model Unit”, and
“Close Exploded Unit” (refer to Table 2).

MainFrame’s inner class HelpActionListener
dictates the response of “Help” button. Method
actionPerformed() of HelpActionListener
invokes showHelp() method of MainFrame class,
which instantiates HelpInfo and HelpLoader classes.
Class HelpLoader creates the GUI's help window. To
create the default layout for “Help” feature of
CD++Modeler, class HelpLoader used HelpSet
class from javax.help package. HelpSet object
represents a collection of information about content,
structure, and layout of the “Help” content: HelpSet file,
table of contents (TOC), index, topic files, and Map file
[5]. To represent the HelpSet object visually, a
HelpBroker object was used.

To create a pop-up window that offers client to open the

CD++Modeler manual, class HelpInfo extended
JFrame class of javax.swing package. Manual can be
opened in either format: “doc”, “html”, or both. Each
format of the manual is opened in native system
application, responsible for that format (e.g. “*.html”
opens in internet browser), which was made possible by
running Windows command line “cmd /c start +
[file_path]”.

Figure 11. CD++Modeler Help window

Button “Internal Link” (see Table 2) is used to edit DEVS
models in CD++Modeler: it allows client to link
components of an atomic DEVS model by connecting
their internal ports. Class AtomicModelEditor
provides the ActionListener interface to “Internal
Link” button. The attributes of the internal link are used,
when drawn in the model editor panel of the
CD++Modeler. To link external ports, the “External
Link” button is used (see Table 2). The button uses
AtomicModelEditor class, which provides the
ActionListener interface. To create the GUI of the
“Internal Link” and “External Link” buttons,
JToggleButton class of javax.swing package was
used. The JToggleButton class provides the behavior
of a two-state button and is a superclass to
JRadioButton and JCheckBox classes. Since only
one type of link can be created at a time in CD++Modeler,
the two-state button, provided by JToggleButton
class, was used.

A set of properties is associated with each link in
CD++Modeler. To show or hide the properties in the
Model Editor Panel of CD++Modeler main window,
checkboxes “Show Link Expression”, “Show Link

Actions”, and “Show Link Ports” were placed in the
toolbar near the “Internal Link” and “External Link”
buttons. Checkboxes “Show Link Expression” and “Show
Link Actions” are attributes of Atomic model only,
therefore, it was designed such that AtomicModelEditor
provided implementation of ActionListener interface for
these two checkboxes. Checkbox “Show Link Ports”
appears in coupled models only, thus, making it
reasonable to make CoupledModelEditor implement
ActionListener interface for this checkbox. To get default
layout and properties, all three checkboxes extended
“JCheckBox” class of javax.swing package and were
instantiated in MainFrame class.

Figure 12. Composite design diagram of toolbar
checkboxes

Since coupled model by definition is a system of atomic
and coupled DEVS models, it requires more editing than
atomic model. To improve the efficiency of editing a
coupled model, buttons “Add new Atomic Model Unit”
and “Add new Coupled Model Unit” were added to
CD++Modeler toolbar, as described in Table 2. The
buttons are enabled only when tab “Coupled” of Model
Editor Window is selected. Both buttons were created
using default layout and behavior of java library class
JButton (javax.swing package) and are instantiated in
MainFrame class. Inner classes
AddAtomicUnitActionListener and
AddCoupledUnitActionListener provide
implementation of ActionListener interface for
“Add new Atomic Model Unit” and “Add new Coupled
Model Unit” buttons respectively. Class
CoupledModelEditor adds both atomic and coupled
units to the model.

Figure 13. Adding atomic/coupled unit to coupled
model

To edit units of a coupled model, the units can be opened
(“exploded”) in a modified CD++Modeler window,
where only either atomic or coupled models can be edited,
i.e. Model Editor Window contains either atomic or
coupled tab, depending on the type of model that was
exploded.

Figure 14. Exploded atomic unit

To return to the original CD++Modeler, once the
“exploded” unit was edited, button “Close Exploded Unit”
is used. This button was created in MainFrame class and
used class JButton of javax.swing package to define its

default layout and behavior. Inner class
ExitActionListener of MainFrame class
implements ActionListener interface for “Close
Exploded Unit” button. The response is identical to the
response of menu item “Exit” of “File” menu (see Section
4.2.1).

The workspace of CD++Modeler was designed using
split pane layout. The split pane is a pane, which can be
split into sections either vertically or horizontally. To
create a split pane, class JSplitPane of javax.swing
package was used. The Split Pane was then partitioned
horizontally into two major sections (Section 1 and
Section 2) that were placed horizontally one beside
another using a vertical divider. The split pane was
inserted in CD++Modeler frame using java layout
manager BorderLayout of java.awt package.

Figure 15. Split pane - component of CD++Modeler

The Model Editor Panel is a component of the
CD++Modeler split pane (labeled as “Section 2” in the
figure). To create GUI for Model Editor Panel, instance of
JTabbedPane class (javax.swing package) was added
to right-most section of CD++Modeler split pane. The
class JTabbedPane provided tabbed layout of the
Model Editor panel. Upon instantiation of the
JTabbedPane object, two tabs were added “Atomic”
and “Coupled”. Tab “Atomic” was designed to provide a
graphical model editor for atomic DEVS model, whereas
“Coupled” provided graphical model editor for coupled
DEVS model. Both “Atomic” and “Coupled” tabs placed
an instance of JScrollPane (javax.swing package) in
its content to provide the area for a graphical model editor.
The actual graphical editors were provided by
AtomicModelEditor and CoupledModelEditor
classes. The atomic graphical model editor was placed in
scroll pane of “Atomic” tab, while graphical editor for
coupled models was placed in scroll pane of “Coupled”

tab.

Figure 16. Class components of Model Editor Panel

Upon selection of one of the tabs, the other tab becomes
invisible, which was made possible by using
ActionListener interface implemented by inner class
TabbedPaneChangedListener of MainFrame
class.

To start editing a model, the user must select the
appropriate tab and choose menu item “New” of File
menu or button “New” in the toolbar. As the result, an
editable model is instantiated and is associated with
model editor of the selected tab. For example, when tab
“Atomic” is selected, class EditableAtomicEditor
is instantiated and associated with
AtomicModelEditor. The relationship of classes that
contribute to model editor design is shown following.

Figure 17, Design of model editor panel

CD++Modeler provided Model Components Panel to
view, access, and use components of a model (labeled as
“Section 1” in the figure). The components panel, which
was created using JPanel class of javax.swing package,
is located in left-most partition of CD++Modeler Split
pane. The objects, included in the components panel are
categorized by their functionality. To categorize objects,
the components panel was split into sections, using
default layout and functionalities of JSplitPane class
of javax.swing package. Instance of class JScrollPane
was added to each partition of the pane. The contents of
the Components Panel were added to the scroll panes
directly.

The GUI of components panel is different for Atomic and
Coupled models, since contents of the two differ.

Upon starting the CD++Modeler, by default, tab
“Atomic” of model editor panel is selected and its
corresponding components panel is shown. To create GUI
for components panel of atomic model, a split pane,
divided vertically in two blocks (top and bottom), was
added to the panel. Instance of JScrollPane class was
added to each block of the split pane. Instance of
AtomicUnitsTree class was added to the scroll pane
of the top partition of split pane and instance of
DescriptableDataPanel class was added to the
scroll pane of bottom portion of split pane. As the result,
panel, shown in the following figure, was created.

Figure 18. Component panel design

The relationship of classes that contributed to the design
of atomic components panel is shown following. To create
components panel for coupled model, different GUI is
created. Similarly to atomic components panel, instance
of JPanel class of javax.swing package was inserted in
left-most partition of CD++Modeler split pane (labeled as
“Section 1” in the figure). To create the GUI, an instance
of vertically split JSplitPane, with another instance of
JSplitPane in its top partition, was added to the panel.

Figure 19. Classes incorporated in components panel

Such layout provided three sections of the panel, available
for further development. An instance of JScrollPane
class was added to each of the partitions. Class
CoupledClassesTree provided view for scroll pane
in the top section, CoupledUnitsTree in the middle,
and DescriptableDataPanel in the bottom section
respectively.

Figure 20. Coupled model components panel structure

The Status bar was designed to display description of
current activities within CD++Modeler environment. To
create status bar for CD++Modeler, an instance of
JLabel class was created in class MainFrame. Using
BorderLayout layout manger, the label was added to
the south region of CD++Modeler frame, defined by
class MainFrame. To display messages in the status bar,

method setText() of JLabel class was used to set
the text of label.

Figure 21. Design of coupled components panel

5. CONCLUSION
We presented the design of CD++Modeler, where DEVS
models can be graphically built and edited. The
CD++Modeler combines CD++Builder functionalities to
create and simulate the models with unique features of its
own, such as animation of the model simulation results.
The CD++Builder plug-in requires installation of Eclipse
platform, Cygwin, and Java Runtime Environment (JRE)
5.0 in order to properly operate, whereas CD++Modeler
requires only JRE 5.0 to be available on the machine and
can be run as a stand-alone application. Therefore,
CD++Modeler provides a versatile and simple way to
create, edit, and simulate DEVS models, as well as
animate simulation results. The graphical nature of
CD++Modeler environment permits users with various
levels of experience in programming to develop DEVS
models. In the future, CD++Modeler will be further
developed in the area of finishing the existing and
introducing new components, hence, increasing the
efficiency of the application.

REFERENCES
[1] “Theory of Modeling and Simulation”. B. Zeigler, H.

Praehofer, T. G. Kim. 2nd Edition. Academic Press.
2000.

[2] "CD++: a toolkit to define discrete-event models". G.
Wainer. In Software, Practice and Experience. Wiley.
Vol. 32, No.3. November 2002. pp. 1261-1306

[3] Sun Microsystems, Inc., “Class JApplet”, [Online
document] 2004, [2006 Sep. 15], Available at HTTP:
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/J
Applet.html

[4] Sun Microsystems, Inc., “Class JToolBar”, [Online
document] 2004, [2006 Sep. 17], Available at HTTP:
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/J
ToolBar.html

[5] Sun Microsystems, Inc., “Class JToolBar”, [Online
document] 2004, [2006 Sep. 17], Available at HTTP:
http://supportweb.cs.bham.ac.uk/docs/java/stdex/java
help/api/javax/help/HelpSet.html

