
EVENT BEHAVIOR OF DISCRETE EVENT SIMULATIONS IN CD++ Vs. NS-2

Shafagh Jafer, Gabriel Wainer
Dept. of Systems and Computer Engineering

Carleton University Centre of Visualization and
Simulation (V-Sim)

1125 Colonel By Dr. Ottawa, ON, Canada
{sjafer,gwainer}@sce.carleton.ca

Juan-Carlos Maureira Bravo, Olivier Dalle
Université de Nice Sophia Antipolis, CNRS, and

INRIA
06902 Sophia Antipolis Cedex, France

{Juan-Carlos.Maureira_Bravo,
Olivier.Dalle}@sophia.inria.fr

Keywords: DEVS, CD++, NS-2, FES, ELT.

Abstract
 The study of events behavior through real simulations
could contribute to develop or improve Future Event Set
(FES) data structures in order to achieve better performance
on large scale simulations. In this paper we have analyzed
FES data structures of two discrete event simulators: CD++
and NS-2. We have run variety of simulations on each
simulator to describe a real event behavior by observing
event timestamps, life times into the FES and firing time
(event execution time). The goal of this research is to
present new ideas on how the FES data structures could be
improved exploiting event behaviors.

1. INTRODUCTION
 The Future Event Set (FES) is an important component
of discrete-event simulations, as it handles the future events
to be executed (or fired) by the simulator core. A poor
implementation of this data structure could easily degrade
the overall performance of the simulator. Given that, to
contribute to the current evaluation framework, this paper
will attempt to explore event behavior by a CD++ simulator
instrumentation in order to present some empirical results
and, eventually, discuss about how events behavior can be
exploited in order to improve a FES data structure. On the
other hand, the results are compared to those obtained from
running similar experiments on NS-2.
The main part of this research was running simulations on
CD++ (DEVS and Cell-DEVS hierarchical simulator). This
was performed by running different DEVS models under
different circumstances and collecting the data which were
mainly associated with FES characteristics. Analyzing
DEVS simulator, CD++, is more complicated compared to
NS-2 because there is no centralized FES in CD++, so a
virtual FES has to be computed a posteriori. Another main
difference among CD++ and NS-2 is that the first one uses
“simulation time” as opposed to latter one which uses “real-
time”. This implies that, when for instance, when an event
has to stay in FES for two seconds, it does actually stay
there for exactly two seconds in NS-2, while in CD++ it
only stays in FES for a much shorter time, depending how

busy the simulator is. More details about the structure of
CD++ will be provided in the next section.
2. BACKGROUND
 The evaluation framework that was used to evaluate the
FES of NS-2 is the Hold model [1]. According to it, two
distributions must be chosen: the scheduling distribution (1)
and the future event set distribution (2). The first one is
related to the time where new events are enqueued into the
FES, and the second one is related to how long an event will
remain into the FES (living time). With these distributions,
several hold operations are performed: a new event is
created according (1), and it is scheduled to be fired
according (2). The process is repeated n times (n Hold
operations). When one of the already created and scheduled
event is fired, a new event is created and scheduled
according (1) and (2), completing the cycle. The
distributions mostly used to build a hold operation are the
uniform, triangular, reverse triangular and the camel
(combination of beta functions [2]).
 DEVS [3,4] is a formalism for modeling and simulation
of DEDS (Discrete Events Dynamic Systems) which
provides a framework for the definition of hierarchical
models in a modular way by decomposing the real system
into behavioral (atomic) and structural (coupled)
components. DEVS theory provides a rigorous methodology
for representing models, and it does present an abstract way
of thinking about the world with independence of the
simulation mechanisms and the underlying hardware and
middleware. A DEVS atomic model is formally defined by:
M = <X, Y, S, δint, δext, λ, ta>,
where
X = {(p,v) | p ∈ IPorts, v ∈ Xp} is the set of input
ports and values;
Y = {(p,v) | p ∈ OPorts, v ∈ Yp} is the set of output ports
and values;
S is the set of sequential states;
δint: S → S is the internal state transition function;
δext: Q × X →S is the external state transition function,
where
 Q = {(s,e) | s ∈ S, 0 < ∈ < ta(s)} is the total state set, e is
the time elapsed since the last state transition;
λ: S →Y is the output function;
ta: S → R+

0,∞ is the time advance function.

 The semantics for this definition is given as follows. At
any time, a DEVS coupled model is in a state s � S. In the
absence of external events, the model will stay in this state
for the duration specified by ta(s). When the elapsed time e,
is equal to ta(s), the state duration expires and the atomic
model will send the output λ (s) and performs an internal
transition to a new state specified by δint (s). Transitions that
occur due to the expiration of ta(s) are called internal
transitions. However, state transition can also happen due to
arrival of an external event which will place the model into
a new state specified by δext(s,e,x); where s is the current
state, e is the elapsed time, and x is the input value. The
time advance function ta(s) can take any real value from 0 to
∞. A state with ta(s) value of zero is called transient state,
and on the other hand, if ta(s) is equal to ∞ the state is said
to be passive, in which the system will remain in this state
until receiving an external event.
 Cell-DEVS extends DEVS formalism, allowing the
implementation of cellular models with timing delays. Two
types of timing delays can be used, namely transport and
inertial [5]. When transport delay is used, the future value is
added to queue sorted by output time, allowing the previous
values that were scheduled for output but have not yet been
sent to be kept. On the other hand, inertial delays allow a
preemptive policy at which any previous scheduled output
value will be deleted and the new value will be scheduled. A
Cell-DEVS atomic model is defined by [6]:

TDC = < X, Y, I, S, θ, N, d, δint, δext, τ, λ, D >
 CD++ [7] is a modeling tool that implements the DEVS
and Cell-DEVS theories by applying the original
formalisms. The toolkit includes facilities to build DEVS
and Cell-DEVS models. DEVS atomic models can be
programmed and incorporated into a class hierarchy
programmed in C++. Furthermore, coupled models can be
defined using a built-in specification language. Therefore,
coupled and Cell-DEVS models need not to be
programmed, rather the tool provides a specification
language that defines the model’s coupling, the initial
values, the external events, and the local transition rules for
Cell-DEVS models.

3. DEVS MODELS
 The experiments on CD++ were carried out by running
various DEVS models. In this paper two of the models
namely, Alternating Bit Protocol (ABP) [8], and Discrete
Event (DE) Controller [8] will be presented in details. The
following is a brief description for each model.
3.1. ABP Model
 ABP (Alternating Bit Protocol) is a communication
protocol to ensure reliable transmission through unreliable
network. The sender sends a packet and waits for an
acknowledgement. If the acknowledgement doesn't arrive
within a predefined time, the sender re-sends this packet
until it receives an expected acknowledgement and then

sends the next packet. In order to distinguish two
consecutive packets, the sender adds an additional bit on
each packet (called alternating bit because the sender uses 0
and 1 alternatively). A DEVS model called “ABP
Simulator” is created to simulate the behavior of the
Alternating Bit Protocol.
The ABP Simulator consists of 3 components: sender,
network and receiver. The network is decomposed further to
two subnets corresponding to the sending and receiving
channel respectively.

receiver

dataOut in1

outin2 ackIn out

inout

Network

 subnet1

 subnet2 packetSent

ackReceive

sender

ABP Simulator

Figure 1. Structure of ABP

3.2. DEController Model
 The DEController represents Discrete Event Multiple
Model Control of a Time Varying Plant. Conventional
adaptive control using a single identification model, is
efficient when the initial parameter estimation error is small,
and plant parameters are slowly varying over time. The use
of multiple models becomes appropriate, when either of
these conditions are not satisfied, such as in the case of a
subsystem failure or a change in the operating environment.
 Typically, a finite number of models are evaluated by
an index-of-performance, where, at any instant, the most
suitable model’s parameterized controller is applied to the
plant. This approach proves beneficial for maintaining
control of a plant when there is parameter jumps. Additional
discussion of multiple model control for continuous or
discrete time systems is provided in Reference [9].
 Multiple model control demands a union of high-level
decision making with mathematically complex algorithms.
Implementing such, using discrete-event math is where
much of this paper’s design is focused. Once the theory and
testing was performed, was an implementation in CD++
modeling language attempted.

4. EXPERIMENTS
 Every DEVS model created in CD++ consists of a C++
header file (name_of_atomic_model.h) and a source file
(name_of_atomic_model.cpp) per atomic model. Aside, for
every coupled model including the TOP most model, an MA
file is required. CD++ provides a virtually real-time –based
simulation environment which although is not real-time, but
it appears to be. This is the main difference between CD++
and real-time simulators such as NS-2. In NS-2 the

messaging and waiting times are based on real-time. For
instance, in CD++ when simulating a model, the run time
can be specified prior to the simulation, so if for example
we specify the simulation run time to be 1 hour, it turns out
to run for a couple of seconds and not 1 hour. However, the
messages will be presented in a manner that the simulation
actually took 1 hour. In contrast, NS-2 simulations run
exactly for a specified real-time. Therefore, in NS-2 the user
has to wait exactly for that amount of time in order for the
simulation to end and see the results. While in CD++ the
user waits for a virtual time although the simulation
virtually takes “real-time” long.

4.1. CD++ Simulations
Two sets of experiments were collected for each DEVS
model:

1. Using predefined holdIn duration,
2. Using random holdIn duration.

The predefined holdIn duration is the normal behavior of
each DEVS model, meaning that, before simulation begins,
each atomic model defines the amount of time it will spend
acting on an input (time spent in holdIn) as a predefined
time.
 The reason behind running simulations for both
predefined and random holdIn times is to avoid getting same
set of timing behavior. This is due to having predefined
processing time of atomic models on different inputs, which
in turn results in having same set of messages to get
repeated in a cyclic pattern which is not useful information.
Example of these patterns will be reflected in the following
section when the simulation results are discussed.
 As mentioned at the beginning of the paper, the results
of this research are analysed with respect to those achieved
from NS-2 simulator. Since NS-2 uses real time simulations,
we have implemented this feature in part of CD++ to find
out the exact wait time in holdIn (our virtual FES) in real-
time measures. This was performed by creating a Timer
class that uses system’s clock ticks and frequency to
compute the real time duration of holdIn function execution.
 By implementing this into our atomic models source
code, we get real-time –based durations spent by each
atomic model’s done messages (the time the atomic model
spent in holdIn function). As we pointed out in previous
sections, out holdIn function serves as a virtual Future Event
Set which defines the duration for which an atomic model
was acting on inputs or was passive and waiting for new
inputs.
 The real-time is computed as milliseconds and it is
inserted right before a call is made to holdIn() and right after
return from this call. Represents adding this computation to
our existing atomic model’s source code.

4.2. NS-2 Simulations
 For Ns-2 the simulations were carried on based on
the following methodology:
 In order to discover the distribution of event execution
time and life time into the FES, some tracing code were
introduced on the NS2 core simulation (scheduler mostly) in
order to collect information about the event on the FES. A
Calendar Queue was used as scheduler, in order to evaluate
big simulations in a reasonable time. The FES event length
were recorded in fixed intervals, the enqueues and dequeues
were counted, and also all the event living time into the FES
(overall process and by snapshots) were traced. With the
obtained data, using statistical methods, the empirical
distribution of the FES was built. With that, in addition with
the enqueue/dequeue patterns (scheduling distribution),
some interesting information about how the event behaves
along the simulation time flow can be concluded.
 The Test bed to collect information about event
behavior was around 100 simulations from different
sources, as published papers, NS-2 examples and
performance tests.

5. RESULTS
 In this section the results of simulations on both
simulators, CD++ and NS-2 are presented. The NS-2
simulations were carried by a research group from INRIA,
France.

5.1. NS-2 Simulation Results
 For each simulation, graphics were prepared to show
the empirical distribution of the Event Fire Time (EFT) and
the Event Life Time in the FES (ELT), considering all the
events on a single run [10]. Also, snapshots of the FES were
taken on regular intervals in order to explore, also, the
evolution of the EFT and the ELT on the time. Here are the
most representative graphics of each simulation (and
replicas). The following graphs represent sample simulation
results collected from NS-2 simulator under the described
test-bed.

Figure 2. NS-2 sample simulation result.

5.2. CD++ Simulation Results
 The simulations were carried out for each DEVS model
under two different scenarios:

1. Random and non real-time holdIn durations,
2. Random and real-time holdIn durations.

Then, all the results were combined under real-time, and
simulated time (non real-time) categories and the following
statistical results were extracted.

Avg. simulTime (s) Avg. realTime (ms)
8.3656 0.00189

 The above numbers represent the average simulation
time versus the average real time of all events life time that
were spent in holdIn (FES) among all DEVS models. The
total number of calls made to holdIn() was 1265. For each
case, the data were plotted on a histogram to better analyze
the distribution. Figure 3 and Figure 4. Correspond to these
scenarios.

Event Life Time (ELT) into the FES
(Real Time)

0

100

200

300

400

500

600

700

800

900

1000

0 0.001 0.002 0.003 0.004 0.005 0.007 0.009 0.01 0.011

Life time (ms)

Fr
eq

ue
nc

y

Figure 3. Real-time HoldIn durations

Event Life Time (ELT) into the FES
(Simulation Time)

0

50

100

150

200

250

300

350

0 1 2 3 4 5 8 10 15 20 30 50 100 200 210

Life time (s)

Fr
eq

ue
nc

y

Figure 4. Simulated-time HoldIn durations

6. CONCLUSION
 In this study, new interesting facts appears, as the event
clusterization around the same wait times in the FES. This
fact can be used to create new FES data structure that
exploits this behavior. However, more simulations and
experiments are needed to better judge the data. Also, the
results obtained form CD++ and NS-2 simulators studies
can be used to study the effect of hierarchical or flat
architecture on the simulator’s event handling behavior.

7. REFERENCES
[1] Chou C., Bruell, S., Jones D. " A Generalized Hold
Model". In Proceedings of the 1993 SCS Winter Simulation
Conference. Pages 756-761. 1993.
[2] A Jeff S. Steinman. "Discrete-event simulation and the
event horizon". Proceedings of the eighth workshop on
Parallel and distributed simulation. Pages 39-49. 1994.
[3] Zeigler, B. "Theory of modeling and simulation". First Edition.
Wiley. 1976.

[4] Zeigler, B.; Kim, T.; Praehofer, H. "Theory of Modeling
and Simulation: Integrating Discrete Event and Continuous
Complex Dynamic Systems". Academic Press. 2000.
[5] Giambiasi, N.; Miara, A. "SILOG: A practical tool for
digital logia circuit simulation". Proceedings of the 16thD.A.C.
San Diego. 1976.
[6] Wainer, G.; Giambiasi, N. "Timed Cell-DEVS: modeling and
simulation of cell spaces". Invited paper for the book Discrete
Event Modeling & Simulation: Enabling Future Technologies.
Springer-Verlag. 2001.

[7] Wainer, G. "CD++: a toolkit to develop DEVS models".
Software - Practice and Experience. Vol. 32, pp. 1261-1306.
2002.
[8] Cell Based Discrete Event Simulation website.
Available at:
http://www.sce.carleton.ca/faculty/wainer/wbgraf/.
[Accessed February, 2007].
[9] K. S. Narendra, O. A. Driollet, M. Feiler, and K. George,
"Adaptive control using multiple models, switching and tuning,"
Int. J. Adapt. Control Signal Process., vol. 17, 2003, pp. 87–102.
[10] Osa Wiki. Available at: http://osa.inria.fr/wiki/OsaPriv/ED-
Diffserv. [Accessed February, 2007].

