
ECD++ A DEVS based Real-Time Simulator for Embedded Systems

Mohammad Moallemi, J. Marcelo Gutierrez-Alcaraz , Gabriel Wainer
Dept. of Systems and Computer Engineering

Carleton University Centre of Visualization and Simulation (V-Sim)
 1125 Colonel By Dr. Ottawa, ON, Canada.

moallemi@sce.carleton.ca, marcelo@sce.carleton.ca, gwainer@sce.carleton.ca

Keywords: Embedded CD++ (ECD++), Real-Time,
Mindstorms , Robocart

Abstract
 In this paper we will present an M&S-driven
framework to develop embedded systems based on the
DEVS (Discrete Event systems Specification) formalism.
DEVS provides a formal foundation to M&S that proved to
be successful in different complex systems. This approach
combines the advantages of a simulation-based approach
with the rigor of a formal methodology. Another advantage
of using DEVS is that different existing techniques (Bond
Graphs, Cellular Automata, Partial Differential Equations,
Queuing models, etc.) have been successfully transformed
into DEVS models. CD++ is a software environment that
implements DEVS theory with extensions to support real-
time model execution in embedded systems. CD++ was
used as the base for our development, building on previous
research focused on real-time applications with hardware-
in-the-loop. Embedded CD++ (ECD++) has been developed
based on this tool to accomplish this aim. A small robocart
has been built and tested with ECD++. The robocart uses
sonar and touch sensor to detect obstacles on its way. At the
end, ECD++ program has been compiled for the target and
run using telnet connection on the board.

1. INTRODUCTION
 One particular use of modeling and simulations tools is
in the development of embedded systems, usually these
systems have time constraints in which case they are also
called Real-Time Systems. Real-Time Systems must
provide reliable outputs to external inputs within a time
limit. Depending on the strictness of the time limit, the
systems are usually separated in soft or hard real time
systems [1]. Another characteristic of embedded systems, is
that most of them are application specific, although with the
increase in computational power from microprocessors this
trend is somewhat changing; many of these systems also
have a low electrical power constraint because they are
deployed in environments where grid-electricity is not
commonly available or it is scarce, i.e. inside cars, space
ships or remote sensors and actuators.

 Many development methods and techniques exist for
the creation of embedded systems, with the common
denominator that most of them are based on hardware and
software that exceeds the computational power of the
intended system to be developed. The most common
developing system is given by a general-purpose computer,
a general-purpose operative system, the target software,
which often includes a simulator, and required hardware to
communicate with the embedded platform.
 For engineering in particular, Modeling and Simulation
(M&S) of embedded systems is of utmost importance. For
example, engineers and scientists make heavy use of
simulation tools when a process is difficult to replicate
(because of the cost involved, or if the environmental
conditions for the experiment are difficult to replicate or the
danger is too high) or when the simulation of a natural
process is many times faster than the real process. By using
different techniques for modeling, we can predict the
behavior of simple or complicated phenomena with, most of
the time, a high degree of certainty. For systems that interact
with real data, the preferred method for modeling is the use
of continuous differential equations. However, one layer
higher in the interaction between systems and the real world
we deal with a different nature of modeling and control
which is usually easy to model using discrete event
modeling methods.

2. BACKGROUND
 DEVS [2] is an increasingly accepted framework for
understanding and supporting the activities of modeling and
simulation. DEVS is a sound formal framework based on
generic dynamic systems, including well-defined coupling
of components, hierarchical, modular construction, support
for discrete event approximation of continuous systems and
support for repository reuse. DEVS theory provides a
rigorous methodology for representing models, and it does
present an abstract way of thinking about the world with
independence of the simulation mechanisms, underlying
hardware and middleware. A real system modeled with
DEVS is described as a composite of submodels, each of
them being behavioral (atomic) or structural (coupled).
A DEVS atomic model is formally defined by:
M = <X, Y, S, dint, dext, ?, ta>,

Where:
X = {(p,v) | p ∈ IPorts, v ∈ Xp}
 is the set of input ports and
values;
Y = {(p,v) | p ∈ OPorts, v ∈ Yp}
 is the set of output ports and
values;
S is the set of sequential states;
dint: S → S is the internal state transition
function;
dext: Q × X →S is the external state transition
function, where:
Q = {(s,e) | s ∈ S, 0 < ∈ < ta(s)} is the total state set, e is
the time elapsed since the last state transition;
?: S →Y is the output function;
ta: S → R+

0, ∞ is the time advance function.
 The semantics for this definition is given as follows. At
any time, a DEVS coupled model is in a state s ∈ S. In the
absence of external events, the model will stay in this state
for the duration specified by ta(s). When the elapsed time e
= ta(s), the state duration expires and the atomic model will
send the output λ (s) and performs an internal transition to a
new state specified by δint(s). Transitions that occur due to
the expiration of ta(s) are called internal transitions.
However, state transition can also happen due to arrival of
an external event which will place the model into a new
state specified by δext(s,e,x); where s is the current state, e
is the elapsed time, and x is the input value. The time
advance function ta(s) can take any real value from 0 to ∞.
A state with ta(s) value of zero is called transient state, and
on the other hand, if ta(s) is equal to ∞ the state is said to be
passive, in which the system will remain in this state until
receiving an external event.
 A DEVS coupled model is composed of several atomic
or coupled submodels, which is formally defined by:
CM = <X, Y, D, {Md | d∈D}, EIC, EOC, IC, Select>,
Where:
X = {(p,v) | p ∈ IPorts, v ∈ Xp} is the set of input ports
and values;
Y = {(p,v) | p ∈ OPorts, v ∈ Yp} is the set of output ports
and values;
D is the set of the component names, and the following
requirements are imposed on the components, which must
also be DEVS models:
For each d ∈ D, Md = (Xd, Yd, Sd, dint, dext, ?, ta) is a
DEVS with
Xd = {(p,v) | p ∈IPortsd, v∈Xp},
 and Yd = {(p,v) | p ∈ OPortsd, v ∈ Yp}.
The component couplings are subject to the following
requirements:
External input coupling (EIC) connects external inputs to
component inputs,

EIC⊆ {((N, ipN), (d, ipd)) | ipNe IPorts, d∈D,
ipd∈IPortsd};
External output coupling (EOC) connects component
outputs to external outputs,
EOC⊆ {((d, opd), (N, opN)) | opN∈ OPorts, d∈D,
opd∈OPortsd};
Internal coupling (IC) connects component outputs to
component inputs,
IC⊆{((a, opa), (b, ipb)) | a, b∈D,opa∈OPortsa,
ipb∈IPortsb};
Select: 2D - {} ? D is the tie-breaking function for
imminent components.
 Due to the closure property, a coupled model is
regarded as a new DEVS model. This property clarifies that
the overall behavior of a coupled model is equivalent to a
basic atomic model, and therefore allows hierarchical model
construction.
 CD++ [3], [4] is a modeling tool that was defined using
the DEVS and Cell-DEVS specifications. The toolkit
includes facilities to build DEVS and Cell-DEVS models.
DEVS Atomic models can be programmed and incorporated
onto a class hierarchy programmed in C++. Coupled models
can be defined using a built-in specification language. Cell-
DEVS models are built following the formal specifications
for DEVS mo dels (informally presented in the previous
section), and a built-in language is provided to describe
them. CD++ makes use of the independence between
modeling and simulation provided by DEVS, and different
simulation engines have been defined for the platform.
 CD++ is built as a class hierarchy of models related
with simulation processing entities. DEVS Atomic models
can be programmed and incorporated onto the Model basic
class hierarchy using C++. Once an atomic model is
defined, it can be combined with others into a
multicomponent model using a specification language
specially defined with this purpose.

3. EMBEDDED CD++
 As mentioned before, CD++ is a software environment
that implements DEVS theory. In this work we added an
extension to support real-t ime model execution in embedded
systems[5]. CD++ was used as the base for our
development, building on previous research focused on real-
time applications with hardware-in-the-loop. A robocart
development technique, based on the creation of
Experimental Frameworks showed success. We will discuss
how to use this framework to incrementally develop
embedded applications, and to seamlessly integrate
simulation models with hardware components. Our
approach does not impose any order in the deployment of
the actual hardware components, providing flexibility to the
overall process. The use of DEVS improves reliability (in
terms of logical correctness and timing), enables model

reuse, and permits reducing development and testing times
for the overall process. Consequently, the development
cycle is shortened, its cost reduced, and quality and
reliability of the final product is improved.
 ECD++ is derived from the stand alone CD++. The
difference between them is in time advance function. In
CD++ time advance is not counted from a real time clock.
As the events happen time advances in the simulation, thus
simulation ends sooner than what is stated in the program.
however in embedded CD++ time advance function gets its
time value from the clock of the CPU, hence events are
generated exactly the time that are specified in the event file
or the time they happen. The other difference between
embedded and stand alone CD++ is real event handling of
embedded CD++. Since embedded CD++ is designed for
specific embedded use and works with external target or
hardware, it must handle external events that come from the
external target. Hence there is an option for the programmer
to use event file or use real time events that are coming from
the sensors on the target.
 Besides, four new features have been added to CD++ to
support embedded functions.

3.1. Compile2Target
 It allows the compilation of the software with the cross-
compiler, with a similar methodology as the one used for the
Standalone version, with some modifications to adapt the
automated process to the ECD++ tool.

3.2. Download2Target
 A new feature inside the plug-in that allows the
downloading of the binary file to the Target platform by
establishing a Network File System (NFS) mounted
between Host and Target. Whenever NFS ‘mount’ is set up
the Host downloads up to three files: the ECD++ simulation
binary, the model file and the external event file if any or
both are selected, when the copying of the files is finalized
the NFS folder is ‘unmounted’.

3.3. Run Simulation on Target
 It allows the execution of the simulation remotely from
the Host machine, with user selectable parameters,
redirecting the display output of the Target machine to a
non-interactive Console window in Eclipse.

3.4. Telnet2 Target
 The last feature offers a way to establish a remote
connection with the Target, which can be used to execute
the simulation, to debug such simulation remotely by using
standard Linux remote debugging tools or for maintenance
purposes, i.e. to configure network parameters on the
Target.

4. ROBOCART TEST
Lego Mindstorms NXT[6][6] is a programmable

robotics kit released by Lego[7] in late July 2006. The main
component in the kit is a brick-shaped computer called the
NXT brick. It can take input from up to four sensors and
control up to three motors, via RJ12 cables, very similar to
but incompatible with RJ11 phone cords. Power is supplied
by 6 AA (1.5 V each) batteries in the consumer version of
the kit and by a Li-Ion rechargeable battery and charger in
the educational version.
 The kit includes three identical servo motors that have
built-in reduction gear assemblies and can sense their
rotations within one degree of accuracy. The kit also
includes four sensors, each with a different capability. The
touch sensor, the light sensor, the sound sensor, the
ultrasonic sensor can measure distances and detect
movement.
 NXT++[8] is a C++ open source library that provides
functions to control the sensors and motor via a USB or
Bluetooth connection from a computer. It is available for
Linux and Windows environment.
 In this project a DEVS model has been defined for a
robotcart. ECD++ has been installed on a Linux system
(Fedora Core 3). NXT++ has been downloaded and installed
and necessary code for integration with ECD++ has been
added. An external board has been provided and Linux
(Redhat 9) been installed on it. A Telnet connection has
been established between the board and the computer.
ECD++ codes have been compiled on the computer and
then the executable simulation file, the model file and the
event files were copied to the Target board. The simulation
executable file was then run remotely through Telnet
connection. Connection between the robocart and the board
was via USB port .

4.1. DEVS Model
 Formal specifications of this model are as follows:
Spin Motor = <X, Y, S, ta, δint, δext, λ>
X: USB port external events: these are the changes in the
state of four inputs that are decided on the sensor values:
Spin_Motor_Clockwise, Spin_Motor_CounterClockwise,
Turn_Left, and Turn _Right
Y: output port: is the USB port.
S: system states: Spin_Motor_Clockwise,
Spin_Motor_Counter_Clockwise, Stop_Motor, Turn_Left
and Turn_Right.
ta: time advance function: handled externally from the
simulator.
δint: internal transition function: resume the forward
movement of the robocart.
δext: external transition function: checks for changes on
either one of the control bits.
λ: output function: write the action to output console.

4.2. ECD++ Implementation
 This model has been programmed by ECD++. The
ultrasonic sensor takes continuous distance measurement
every 500 milliseconds from the obstacle in the front. The
touch sensor sends a true value whenever it is pressed. In
these two cases an external event is generated with the value
of the distance to the obstacle or the value 1000 for touch
sensor, when it is pressed. Based on the desired distance
appropriate action is decided in the external transition
function. At first the state of the robotcart is set to
"Spin_Motor_Clockwise" which moves the robocart
forward. Every time an external input is generated the value
of the input is tested. If the value (distance) is less than
18cm, the state of the robotcart is changed to either
"Turn_Left" or "Turn_Right" (alternatively) for a specific
time which is calculated with the speed of the turn to
accomplish a 90 degrees turn. After this time robocart goes
to passive state. While the turn time is finished internal
transition function is called. In the internal transition
function the forward movement is resumed by changing the
state of the robocart to "Spin_Motor_Clockwise". The touch
sensor is located under the ultrasonic sensor and close to the
floor, thus detects low height obstacles that block the
movement of the robocart. If the value of the external input
is 1000, it shows that touch sensor is pressed. In this case
the state of the robocart is changed to
"Spin_Motor_Counter_Clockwise" for the preparation time.
In this time the robocart moves backward to avoid the
obstacle. At the end when simulation ends, the state of the
robocart is changed to "Stop_Motor". Figure 1 shows a
photo of the robocart.

Figure 1- Robocart image

4.3. Test Results
 After implementation, robocart has been tested with
different obstacles with different height and degree of bias
from the robocart. The test showed that obstacles that are

not perp endicular to the ultrasonic sensor could not been
detected properly. This problem can be overcome by using
more than one ultrasonic sensor (e.g. three ultrasonic
sensors). Short obstacles have been detected by touch sensor
very well, but robocart got trapp ed in the corners which the
walls are not perpendicular to the ultrasonic sensor and the
touch sensor was not able to touch the corner. At the end a
small maze has been provided and the robocart been tested
in the maze, that it could find its way out of the maze.

5. CONCLUSIONS
 In this paper, a DEVS based real-time simulator for
embedded systems has been proposed. DEVS provides am
M&S foundation that guarantees the validity of our
simulation. CD++ simulator which is a stand alone
simulator based on DEVS theory has been introduced and
after that the modifications and new features that our work
presented to CD++ have been proposed. At the end
implementation of a robocart project using DEVS model
and ECD++ toolkit has been proposed. DEVS model
specifications of the robocart have been presented and the
implementation of the model in ECD++ has been discussed.
A small maze has been provided and the robocart being
tested. The robocart was able to pass the maze without
colliding to the walls . The result showed that ECD++ can be
used in real time control systems . The model has been
implemented in a way that can be extended to have more
and different type of sensors or motors .

References
[1] Liu, Jane W.S. "Real-time Systems". Prentice Hall.

Upper Saddle River, NJ. 2000.
[2] Zeigler, B.; Kim, T.; Praehofer, H. "Theory of Modeling

and Simulation: Integrating Discrete Event and
Continuous Complex Dynamic Systems". Academic
Press. 2000.

[3] WAINER G., "CD++: a toolkit to define discrete-event
models ". Software, Practice and Experience. Vol. 32,
No.3. pp. 1261-1306. November 2002.

[4] 56. Wainer, G. et al. "CD++ A tool for DEVS and
Cell-DEVS Modeling and Simulation. User's Guide".
Draft. August 2004.

[5] J. Marcelo Gutierrez-Alcaraz , " New Benchmarking
and Embedded Extensions for CD++", M.A.Sc thesis
submitted to Department of Systems and Computer
Engineering, Carleton University, Ottawa, Ontario,
Canada.

[6] Lego Mindstorms definition at wikipedia.
http://en.wikipedia.org/wiki/Mindstorms_NXT .

[7] Lego Mindstorms NXT Kit. Website available at
http://mindstorms.lego.com.

[8] NXT++ main page available at
http://nxtpp.sourceforge.net/index.php.

