
Dynamic Structure DEVS: Improving the Real-Time Embedded Systems
 Simulation and Design

Hui Shang Gabriel A. Wainer

Department of System and Computer Engineering, Carleton University
1125 Colonel By Drive. Ottawa ON. K1S 5B6, Canada

{shanghui, gwainer} @ sce.carleton.ca

Keywords: DEVS, Dynamic Structure DEVS,
Real-Time Systems, Real-Time Simulation,
Experimental Environment.

Abstract

We present an improved simulation engine that
combines dynamic structure DEVS with the real time
simulation engine used in eCD++, a DEVS-based
real-time experimental environment. The improved
simulation engine is implemented in an advanced
dynamic structure real-time experimental environment,
namely DS-eCD++ (Dynamic structure Embedded
CD++) to adjust the model structure automatically
according to the changes in the internal/external
environments. The existing abstract simulators, which
are simulation, coordinator and root coordinator, were
redefined to adapt to dynamic structure. In addition, a
new abstract simulator, revsimulator, was developed to
implement the structural change behaviours of Structure
Agent that executes the structural changes. We discuss
how the simulation engine works, and introduce the
implementation of DS-eCD++, including a case study.
With this dynamic structure function, DS-eCD++
exposes to more rigorous challenges in terms of
reliability and flexibility of Real-Time embedded system
and facilitates the design and development of real-time
embedded systems.

1. INTRODUCTION

DEVS (Discrete EVent System Specification) [1] is a
sound mechanism for Modeling and Simulation (M&S)
of discrete-event dynamic systems. This methodology
has recently gained popularity in real-time applications
due to the fact that it enables not only an interactive
simulation but also a smooth transformation from models
to executing code in real-time environments [2-5].
Applying hardware-in-the-loop [6] to develop an
intelligent device is a helpful attempt. MDA
(Model-driven Architecture) is a high level scheme to
support the transformations from simulation modeling to
design of real-time systems. Based on the MDA
technology, eCD++ (embedded CD++), integrating the
real-time simulation engine, provides a real-time
DEVS-based experimental environment, permitting
developing hybrid hardware and software systems [6-7].
However, eCD++ cannot provide effective support to the
real-time embedded systems residing in changing

environments due to the absence of dynamic structure.
Dynamic structure is a feasible solution to fitting the
varied environments or recovering from errors
automatically. Flexibility and reliability, therefore, could
be reached by adjusting the structures of models
dynamically.

Flexible Dynamic Structure DEVS algorithm
(FDSDE) [8] defines a set of new message-passing
algorithms to support dynamic structure. Here we present
an improved simulation engine that combines dynamic
structure DEVS with the real time simulation engine to
adapt to not only the dynamic structure real-time
simulations but also the real-time embedded system
development. The software with the improved simulation
engine is called DS-eCD++. The conception of Structure
Component is introduced to represent the coupled models
which are subject to structural changes. Each Structure
Component is furnished with a Structure Agent to
implement the structural changes. An abstract simulator,
revsimulator, is defined to process the messages for
Structure Agents. DS-eCD++ is able to run dynamic
structure real time simulations. Moreover, DS-eCD++
takes advantages of the major functionalities in eCD++,
such as GGAD notation, the flattened coordinator
technique and the transition mechanism. DS-eCD++ can
act as a powerful platform to undergo real-time
embedded systems development with dynamic structure.

The structure of the paper is organized as follows:
the second section depicts the background; the third
section describes the FDSDE algorithm; the fourth
section explains the algorithm implementations; the fifth
section discusses the case studies.

2. BACKGROUND

DEVS is a formal specification M&S framework [1].
In DEVS, a basic component, which is called atomic, is
specified as a black box with a state and a duration for
that state. DEVS has well-defined concepts for coupling
of components and hierarchical, modular model
composition, which permits defining composite models,
called coupled.

DEVS allows defining abstract simulation
algorithms that are independent from the model
definitions and model behaviours. Simulators progress
through the simulation by exchanging messages
according to the described message-passing mechanisms.

P-DEVS (Parallel DEVS) [9] is an extension to the

original DEVS formalism that permits dealing with
simultaneous events in an effective fashion. The
semantics of the P-DEVS definition introduces inputs in
bags (multi sets that can receive multiple events before
starting processing them), and a confluent transition
function, which handles the collision behavior when an
external event arrives at the same time of its internal
transition. Therefore, all imminent components can be
activated in parallel.

RT-DEVS [4] allows DEVS models to interact with
their surrounding environments (i.e., software
components, hardware components or human operators),
in real time. Thus, RT-DEVS presents a better adaptation
to real-time environment. It also permits developing
real-time embedded systems using hardware-in-the-loop
technology. The RT-DEVS formalism replaces virtual
time advance in the DEVS formalism with real- time
advance. The time advance function is no longer a fixed
value. Instead, a time interval is defined. The RT-DEVS
simulator checks a specified time advance of a
RT-DEVS model against a real time clock.

The DEVS simulation provides a good framework
for Real-Time systems development, because its
mathematical foundation, the well-defined concepts of
coupling of components, hierarchical, modular model
construction, support for discrete event approximation
of continuous systems and an object-oriented substrate
supporting repository reuse is well tailored for real-time
systems development. Nevertheless, we need to address
the dynamic adaptation to dynamic changes in the
environment.

Dynamic structure systems focus on the possibility
to dynamically change the model structure according to
the real requirements, which is useful for real time
systems (in which sometimes it is impossible to interfere
with the running of the system manually, and
self-adaptation is needed) In this way, the system is
more feasible to fit the internal/external environments.
Dynamic Structure DEVS allows addressing some of
these issues. Based on DEVS theory, Dynamic Structure
DEVS is a simulation paradigm supporting structural
changes to full extent, ranging from simple
model/connection addition/deletion to the exchange of
models between networks of models [10]. DSDE [11-12]
(Dynamic Structure Discrete Event System
Specification) is an extension of DEVS formalism in
dynamic structure. Two model groups, basic models and
network models, are defined in terms of models’
structure. The basic models are atomic structure units
which cannot be split. Network models are the
components consisting of multiple basic structure
models and interconnections. A network executive is a
modified basic model to execute structural changes in
the network models. In a network model, network
executive is the only component to conduct structural
changes, which enables executing the structural

transitions sequentially without any conflicts. DSDE is
the theoretical basis of the FDSDE algorithms.

We have defined FDSDE and implemented it based
on the CD++ toolkit [13], an object-oriented software
implementation of the DEVS simulation mechanism.
Atomic models are defined using a state-based approach
(encoded in C++ or an interpreted graphical notation);
while coupled models contain model’s composition and
interconnection information of those models. A
Simulator is in charge of executing the behaviour of
atomic models while a Coordinator copes with the
messages in coupled models. The simulation evolves
through message-passing, using six kinds of messages: I
(Initialization), * (Internal), X (Inputs), Y (Output), @
(Collect) and D (Done).

eCD++ [14] is a version of the CD++ software
family that has been adapted for real time and embedded
system applications. The software is modularized as a
group of components that have well-defined behaviors
and have independent functionalities. Four major
components are included: Main Simulator, DEVS
Modeling Subsystem, Simulation Subsystem and
Messaging Subsystem. It is based on the P-DEVS
formalism, which provides the modeling principles to
characterize the structural and behavior aspects of
real-time embedded systems. Moreover, RT-DEVS
enables eCD++ to simulate the hybrid software and
hardware systems. Finally, eCD++ supports smooth
transformations from simulation models to real
components of the systems. The flattened coordinator in
eCD++ provides an alternative simulation fashion by
eliminating the coordinators in the processor hierarchy
and exchanging messages directly between the flattened
coordinator and the simulators. The GGAD interpreter
(Generic Graphical advanced environment for DEVS
modeling and simulation) in eCD++ enables to specify
atomic models graphically. It is an easier way for the
non-expert users to build atomic models intuitively.

3. FLEXIBLE DYNAMIC STRUCTURE DEVS
ALGORITHM

FDSDE [8] defines four kinds of abstract simulators
in which a group of receiving functions specify the
message-passing paradigms for the DEVS models. The
root coordinator, coordinator and simulator were
redefined to accommodate to structural change processes.
In FDSDE, a Structure Agent is defined to specify the
structural change behaviours in a Structure Component.
Therefore, our new abstract simulator (named
RevSimulator) generates the structural change
behaviours of Structure Agents. The flattened
coordinator is also redefined to adapt to the dynamic
structure.

To do so, the FDSDE algorithm defines three new
message types to carry the messages related to structural
changes, i.e. * (sc) (structural change message), D (sc)

(structural change request) and St (start message).
The detailed definition of FDSDE, presented in [8],

defines how the simulation evolves. A message-passing
scenario presents the message flow among the simulation
processors in Fig. 3. The model structure change of C1
and the corresponding processor hierarchy change are
shown in Figure 1 and Figure 2. In Figure 3, RC denotes
the Root Coordinator; S1, S2 and S3 are three simulators
in charge of message processing of the three atomic
models A1, A2 and A3. C indicates the parent
coordinator of the three simulators handling the messages
of the coupled model C1. Initially, the coupled model C1
contains two atomic models A1 and A2, which are
associated with S1 and S2 respectively. Another atomic
model A3 which is associated with S3 is added to the
coupled model. RS is a revsimulator of a Structure Agent,
which implements the structural changes for the coupled
model C1. The message flow is presented using an event
precedence graph, where a vertex denotes a message, and
a directed edge represents an action of sending a message.
The message type with a time stamp is marked beside the

edge. The simulation stages of the structural change
process are indicated at the bottom of Fig.3.

Figure 1. The model structure change of C1

Figure 2. The processor hierarchy change

Figure 3. A Message-Passing Scenario

Initially, I1, I2 and I3 initialize C1, S1 and S2.

Correspondingly, D4, D5 and D6 are answered. For
simplicity, we skip the regular simulation cycles in this
scenario. It the simulation cycle Ti, RC sends *i+1 to C1
and then C1 sends *i+2 to S1 because S1 is the only model
that needs to be synchronized in this cycle. Assume that
S1 raises a structural change request, the Di+3 (sc) is sent
back to C1 and C1 passes the structural change request to

RC using Di+4 (sc). Instead of issuing an @ message to
enter the collect phase, RC issues a structural change
message *i+5 (sc) to C1 and C1 delivers it to RS1 (the
processor of the associated structure agent) through *i+6
(sc). The message Di+7 is answered by RS1 after the
structural change finishes. Suppose a new atomic model
A3, with its corresponding simulator S3, needs to be
added to the simulation. First, C1 initializes S3 using Sti+8.

Then, S3 answers C1 with Di+9. Next, C1 determines the
minimum tN and sends it to RC by Di+10, notifying the
completion of the structural change process. After this
structural change process, S3 joins the simulation. The
simulation advances and RC sends @i+11 to collect
outputs in the simulation cycle Ti+1. Suppose S1 is the
receiver of the collect message @i+12. It returns an output
message (Yi+13) and the done message (Di+14) to C1. Since
S2 and S3 are the influencers of S1, C1 converts the
output message (Yi+13) into the proper input messages and
routed them to S2 (Xi+15) and S3 (Xi+16) respectively. S1,
S2 and S3 are all cached into the synchronization set of
C1. C1 sends Di+17 to RC, marking the end of the collect
phase in the cycle Ti+1. In the transition phase of Ti+1, the
internal messages are dispatched to each model (A1, A2
and A3) and trigger the transition functions (*i+18, *i+19,
*i+20, *i +21). Accordingly, tNs are returned to RC with the
done messages (Di+22, Di+23, Di+24, Di +25). Then, RC sends
a collect message (@i+26) to start the next simulation
cycle Ti+2.

4. ALGORITHM IMPLEMENTATION

DS-eCD++ takes advantages of the four software
components: the Main Simulator, the DEVS modeling
Subsystem, the Simulation Subsystem and the Messaging
Subsystem. However, substantial modifications have
been made to fit the new features. These modifications
are characterized as follows:

a) Main Simulator takes charge of separating the model

definition into two groups: the active components
that participate in simulation and the structure
components. It loads the active components,
including coupled models, atomic models and
structure agents, into the simulation system. In a
simulation using a flattened coordinator, Main
Simulator takes charge of storing the initial model
compositions and the couplings used in simulation.

b) Model Hierarchy Tree is composed of atomic
models, coupled models and structure agents. It is
updated by Structure Agents. In Simulation
Subsystem, the receive function in each abstract
simulator class are redefined to implement the
message-passing algorithms in FDSDE.
RevSimulator is an abstract simulator class
processing messages for structure agents.
Simulators/coordinators Hierarchy Tree in
DS-eCD++ includes Root, Coordinator, Simulator
and RevSimulator. FlatDEVSCoordinator is
redefined to implement the flattened coordinator in
the simulation with a flattened processor structure.
The five abstract simulators constitute the improved
simulation engine in DS-eCD++, supporting
dynamic structural changes in real-time simulation.

c) The messages related to structural changes lead to

the expansions of some messaging classes in
Messaging Subsystem. InternalMessage class and
DoneMessage class are reused to carry the structural
change messages and the structural change requests
by appending a non-zero value in each of these
messages. A new message class StartMessage is
created for the St message.

 4.1. Structure Agent and the Simulation Processor

Two classes, RevAtomic and RevSimulator, are
created to specify the model behaviours of Structure
Agents and to realize the message-passing algorithm
defined in the abstract simulator RevSimulator
respectively.

RevAtomic specifies the structural change
behaviours of Structure Agents. A group of structural
change operations are encapsulated in the RevAtomic
class, including the structural change operations and the
supplement operations:

 Structural change operations:
~DiffModel()
~DiffLink()
~Getmodelset()
~Getlinkset()
~Getportset()
~AddModel()/~FullAddModel()
~DelModel()/~FullDelModel()
~AddLink()
~DelLink()
~AddInputPort() / ~AddOutputPort()
~DelInoutPort() / ~DelOutputPort()

 Supplementary operations:
~FindModel()
~FindInputPorts() / ~FindOutputPort()

Structural change operations provide necessary

manipulations to the component properties (models, links
and ports). The Get actions retrieve the specified
component properties. The Diff actions aim to calculate
(identify) the differences between the component
properties to be changed and those to be added. The
Add/Del and FullAdd/FullDel actions realize adding /
removing of the component properties. The operations
can be performed in two ways: full operations and simple
operations. Full operations add or remove the atomic
model objects, the associated simulator objects and their
model references. Simple operations only add /remove
the model references of the atomic models to/from the
corresponding Structure Component, while keep the
model objects and the associated simulator objects. The
full operations are suitable for new atomic models that
will be added to or removed from simulation system
permanently. For the models that are temporarily
removed in simulation and may be reused later, the
simple operations can be applied. The two types of
structural change operations provide operational

flexibilities for modellers to keep balance between
minimum memory usage and fast loading time.
Supplementary operations are used to locate the
component elements. These structural change operations
can be called by concrete structure agents to define real
structural change behaviours.

The behaviours of Structure Agents are represented
by InitFunction, which is used to initialize the Structure
Agents and InternalFunction which processes the
structural changes. A model of a structure agent can be
created by the modeller by including a new class derived
from RevAtomic class. The model behaviours are defined
in the InitFunction and InternalFunction.

RevSimulator, a class of simulation processor,
executes the message-passing algorithm to generate the
behaviours of structure agents. An instance of a processor
of a Structure Agent is created from the class
RevSimulator. The processor is in charge of the message
processing of the corresponding Structure Agent by
invoking the InitFunction to initialize the model when an
initial message is received, and triggering the
InternalFunction to process the structural changes
according to the expected structural change variables
when a structural change message is received.

4.2. New Relationships

Dynamic structure changes produce new
relationships among the models and the simulation
processors. Three kinds of interconnections are
highlighted:
1. The structural change conditions are rooted in the

atomic model behaviors (the model transition
functions built by modelers). When any of the
external/internal/confluent transition function of an
atomic model is invoked, the structural change
conditions are examined. Once the structural
change conditions are satisfied, the atomic model
will raise a structural change request to its
associated simulator. A structural change request is
sent out. The atomic model assigns the expected
structural change command through
strucChange(int &) which calls the homonymous
method in the simulator associated with the atomic
model and updates the data member struc in the
simulator. struc_rec,an other data member in
the simulator, holds a copy of struc. When
comparing struc_rec with strucChange() which
retrieves the value of struc in the simulator, we
can identify the difference. This difference can be
regarded as a structural change request from the
atomic model. Also the simulator can raise a
structural change request with this value from
strucChange() and sends it to the upper level
coordinator.

2. The consistency of the model structure between a

Structure Component and the associated Structure
Agent. The structural changes implemented by the
Structure Agent cause the changes of the model
composition and the couplings. The model
composition and the couplings should be updated
accordingly in the Structure Component. A pair of
methods AddModel() and DelModel() are invoked
by the Structure Agent to update the model
composition. The couplings in the Structure
Component are updated through modifying the
influences list of the corresponding ports.

3. The processor of a Structure Component keeps track
of the structural changes and adjusts its simulating
behaviours. The two lists in the Structure
Component store the model compositions before
and after the structural changes respectively. The
processor invokes a pair of methods getnewmodels()
and getremmodels(). getnewmodels() retrieves the
new models which are initialized before the new
simulation cycle starts, and getremmodels() gets the
removed models which are deleted from the
synchronization set.

5. CASE STUDY

In this section we will introduce the simulation of
Dynamic Structure Automated Manufacturing System
(DSAMS). This real-time application is composed of the
dedicated stations that perform assembling and painting
tasks on different products in a manufacturing plant. a
conveyor belt is included to transport the products
to/from those workstations. The DSAMS uses four
components: a Conveyor, the Engine Assembly (ES)
workstation, the Painter workstation and the Controller
Unit, depicted in Figure 4. The Controller Unit is an
atomic model used to control the actions of the Conveyor
according to external inputs (which schedule the
manufacturing of a given product). The Conveyor is a
coupled model consisting of an Engine (to move the belt)
and a Sensor (to detect the current position in order to
decide when we need to stop the belt). It transports the
products being manufactured to the other units, as
indicated by Controller Unit. The Engine Assembly
workstation (ES) is an atomic model, modeling a
dedicated workstation standing beside the Conveyor to
take assembling tasks. The second dedicated workstation
- Painting workstation (PS) - is a coupled model
containing a Painter (which paints the products) and two
models of painting arms: Chrome and Color.

Initially, a product is supposed to be placed on the
conveyor belt besides ES, waiting for the instructions
from Controller Unit. All the external events influencing
the system are received by Controller Unit through two
input ports: btn1A, indicating that the product will be
processed in ES, or btn2A, telling that the product will be
processed in PS. Controller Unit receives these events
and determines where to dispatch each piece by

activating the engine of the conveyor belt (active_A and
direction_eng_A). Besides, Controller Unit receives
inputs about the position status of the moving products
from Sensor. (s1A and s2A), and sends them out through
the output ports sta_disp_A and dirn_disp_A. The value
of sta_disp_A represents the workstation at which a
product has arrived (i.e., ES = 11 and PS = 21), while the
value of dirn_disp_A implies the moving directions of
these pieces (0: stopped, 1: moving forward and 2:
moving backward). In addition, Controller Unit receives
the signals indicating the completion of the tasks in ES
(through st1_A) or PS (through st2_A). Two LED output
ports, led1 and led2, are associated with the two
workstations ES and PS respectively to indicate the
position status of the moving products. For example, if a

piece needs to be dispatched to ES, its corresponding
LED, led1, turns on (value = 1), and when the product
reaches, it turns off (value = 0). Engine receives
instructions from Controller Unit via active_A that
determines the workstation and direction_eng_A that
designates the moving direction. The output port s1a_eng
tells Sensor the current station an engine reached. Engine
activates ES via es_in and receives the ending signal via
es_out. The ports ps_in and ps_out are used to transfer
start and end messages between Engine and PS. Painter
initiates the chrome arm and color arm via chrome_in and
color_in. The preparation done messages are returned
from Chrome and Color through chrome_out and
color_out.

Figure 4. Scheme of Dynamic Structure Automated Manufacturing System

In this DSAMS system, the following two possible
changes are considered:
1) Variation of the duties between ES and ES1. ES and

ES1 do the same duties but have different
performances. ES has shorter working time than
ES1. As shown in Table 1, ES takes 1 second to
finish an assembling task while ES1 needs 1 second
and 50ms to finish the same kind of task. For
simulation purpose, we suppose that ES and ES1
work for 10 seconds then the duty shift occurs.

 Switch of painting modes. Some products need painting
both color and chrome (painting mode = 1) while
other require painting either color (painting mode =
2) or chrome (painting mode = 3). The painting
mode is determined by the external events, in which
the event values represent the painting mode.
Table 1 shows the timing parameters used in the

AMS for each of them.

Table 1. Timing parameters in AMS
Models Variables Durations Descriptions

Time2Start 00:00:00:005 Start a product
Time2Stop 00:00:00:005 Stop a product Engine

movingTime 00:00:00:005 Move a product
between stations

ES workingTime 00:00:01:000 Working time
ES1 workingTime 00:00:01:050) Working time

workingTime1 00:00:02:020 Paint both color
and chrome

workingTime2 00:00:01:000 Paint color Painter

workingTime3 00:00:02:000 Paint chrome

Color preparationTime 00:00:00:010 Prepare the color
arm

Chrome preparationTime 00:00:00:020 Prepare the
chrome arm

5.2. Experimental Results

This experiment aims to verify the dynamic
structure of the simulation environment. The atomic
models of the AMS were defined in C++, and the

compositions and the couplings are specified in the
coupled models. Two Structure Components are
identified, PS and TOP. PSEXEC is a Structure Agent
executing the structural changes on behalf of PS
according to the indicated painting modes. TOPEXEC is
another Structure Agent taking charge of the duty shifts
between ES1 and ES on behalf of TOP. The model
definitions of DSAMS with the structure agents are
displayed in Figure 5.

[top]
components : conveyorA dsecu@DSECU es@ES ps
components : topexec#TOPEXEC
SComm : structop1
in : …
out : …
Link : …
[topupdate1]
components : conveyorA dsecu@DSECU
components : es1@ES1 ps
SComm : structop2
…
[conveyorA]
…
[ps]
components : painter@Painter color@Color
components : chrome@Chrome psexec#PSEXEC
SComm : struc1
…
[psUpdate1]
components : color@Color painter@Painter
SComm : struc2
…
[psUpdate2]
components : chrome@Chrome painter@Painter
SComm : struc3
…
Figure 5. Model definitions of DSAMS

Figure 6. GGAD graphical equivalent definition of
Sensor

[Sensor]
in: s1A_eng
out: sen1A sen2A
var : cur_value last_value
state: idle position1 position2
initial: idle
ext: idle position1 equal(s1A_eng, 1)?1

{cur_value = s1A_eng;}
ext: idle position2 equal(s1A_eng, 2)?1
{cur_value = s1A_eng;}
int: position1 idle sen1A!1 {last_value =
cur_value;}
int: position2 idle sen2A!1 {last_value =
cur_value;}
idle: infinite
position1: 0:0:0:0
position2: 0:0:0:0

Figure 7. GGAD Definition of Sensor

Figure 6 and Figure 7 display GGAD definitions of
Sensor, which is used to replace the Sensor defined with
C++. It was found that the Sensor defined in the two
ways behaved exactly the same and had the same
simulation results. Since the GGAD notation can build
equivalent atomic models with less effort than C++
definition, it is useful for non-expert modellers.

The simulation runs in a real-time mode. The
external events in Table 2 were scheduled and sent to the
Controller Unit. The first event in the table arrived at
time 00:00:01:500 from the input port btn1A, which
means the product would be transported to ES (or ES1).
The associated output port of this event is st1_A and the
output time should be no later than 00:00:03:500. The
other events scheduled for ES (or ES1) are the fourth at
time 00:00:12: 500, the sixth at time 00:00:19:985 and
the seventh at time 00:00:25:000. The events scheduled
for PS are the second at 00:00:10:500, the third at
00:00:10:500 and the fifth at 00:00:15:000. Among the
events scheduled for PS, the values of the events shown
in the last column designate the painting modes.

Table 2. The Table of the External Events

Event time Deadline Input
port

Output
port Value

00:00:01:500 00:00:03:500 btn1A st1_A 1
00:00:04:500 00:00:08:500 btn2A st2_A 1
00:00:10:500 00:00:13:500 btn2A st2_A 2
00:00:12:500 00:00:14:500 btn1A st1_A 1
00:00:15:000 00:00:17:500 btn2A st2_A 3
00:00:19:985 00:00:23:000 btn1A st1_A 1
00:00:25:000 00:00:27:500 btn1A st1_A 1

The simulation ran in real time mode. Four

dynamic structure changes were identified during the
simulation:
1. At 00:00:10:000, the scheduled work duration of ES

was expired and a duty shift between ES and ES1
occurred.

2. At 00:00:10:505 (supposing 5ms was used to
activate the engine), PS switched its painting mode
from 1 to 2. The Chrome model was removed, while
the models of Painter and Color were maintained in
PS.

3. At 00:00:15:015 (supposing the engine took 15ms
to be activated and moved to PS), PS switched its

painting mode from 2 to 3. The Color model was
replaced with the Chrome model.

4. At 00:00:20:000, ES was shifted by ES1. It was
noticed that the input event reached ES1 at time
00:00:20:000. Simultaneously, the scheduled
internal state of ES1 expired. Therefore, the
confluent function of ES1 was invoked at
00:00:20:000. In the confluent function of ES1, the
external transition function has a higher priority
over the internal transition function. Accordingly, at
time 00:00:20:000, ES1 executed the assembling
task first, and then the duty shift happened.

Out

PS1
PSEXEC

Painter

Color Chrome

In Out

PS2
PSEXEC

Painter

Color

In

PS3
PSEXEC

Painter

Chrome

In Out

Figure 8. Structural Changes in PS

Figure 8 exhibits the structural changes in PS.

Initially, PS was in painting mode 1 (structural state is
PS1), which included both the color arm and the chrome
arm. At 00:00:10:505, the painting mode switched to 2
(structural state is PS2), which included the color arm.
PSEXEC executed the structural changes by deleting the
links (out@Chrome inchrome@Painter &
outchrome@Painter in@Chrome) and the Chrome
model. The painting mode shifted to 3 (structural state is
PS3) at 00:00:15:015. The links (out@Color,
incolor@Painter and outcolor@Color, in@Color) were
deleted, and the Color model was removed from the PS
as well. The links (out@Chrome, inchrome@Painter
outchrome@Painter, and in@Chrome) and the Chrome
model were reused.

The structural changes in PS were triggered by the
external transition function in the Painter model when
the Painter model received a painting mode different
from the previous one. Figure 9 shows how the structural
change requests are raised from the external transition
function in the Painter model. When the Painter model
receives an external event, the value of the event
specifies the painting mode. If this value is different
from the previous value, the Painter model uses
strucChange(paintingmode) to raise a structural change
request.

Model &Painter::externalFunction (const
ExternalMessage &msg) {
 if(msg.port() == inA){
 if (msg.port() == inA) side = 1;

 paintingmode =(int)msg.value();
 if(paintingmode != scomm)
 {
 nextChange(Time::Zero);
 strucChange(paintingmode);
 scomm = paintingmode;
 }
 else{
…
}

return *this;
}
Figure 9. The Structural Change Requests Raised from
the External Transition Function in the Painter model

To some extent, the switch of painting modes in PS

can also be realized in traditional static-structured
simulation. However, the Painter model has to handle a
more complex painting mode selecting mechanism. Also,
extra memory is consumed because all possible models
have to be loaded into simulation system. The
complicated processing mechanism and uneconomical
memory usage are not feasible in real-time embedded
environment. Dynamic structure provides an elegant
substitution by adjusting model structure automatically.
The unused models can be deleted; therefore, the extra
memory can be released immediately to maintain an
economical memory usage. In addition, simpler model
structure also leads to the simpler painting mode
selecting mechanism which causes less running time.
Moreover, dynamic structure is the only solution in
some conditions. For instance, the structural changes in
TOP are unavoidable to carry out duty shifts between ES
and ES1.

CU Conveyor

PS1 ES

TO
PE

X
E

In
Out

Painter

Color Chrome

PSE
X

E
C

TOP1

CU Conveyor

PS2 ES1

TO
PE

X
E

In
Out

Painter PSE
X

E
C

TOP2

Color Chrome

Figure 10. Structural Changes of the TOP model.

Figure 10 presents the structural changes in TOP.
TOPEXEC executed the structural changes on behalf of
TOP. ES and ES1 switched every 10 minutes. At
00:00:10:000, ES (structural state is TOP1) was replaced
by ES1(structural state is TOP2). The links (out@ES
es_in@Conveyor & es_out@Conveyor, in@ES) and the
model ES were replaced by the links (out@ES1
es_in@Conveyor & es_out@Conveyor, in@ES1) and
the model ES1. As scheduled, the duty shift from ES1 to
ES would occur at 00:00:20:000. The real duty shift
occurred at 00:00:21:500 for the confluent function gave
higher priority to the external function of ES1.
Consequently, the structural change, which happened in
the internal function of ES1, has been delayed.

The structural changes in TOP are triggered in the
internal transition function of ES or ES1. As scheduled,
ES (ES1) will experience duty shifts every 10 seconds.
Figure 11 presents how the structural change requests
are raised from the internal transition function in ES1.
Every time when ES1 finishes assembling task (readyA
= 1), the scheduled working time is checked. The
structural change request is raised if the message time is
equal or greater than the scheduled working time
(duetime). Otherwise, the remaining working time is
calculated (duetime – msg.time()). If the internal
transition function is fired due to the expiration of the
scheduled working time, the structural change request is
raised immediately.

Model &Es1::internalFunction (const
InternalMessage &msg) {
 if (readyA){
 readyA = 0;
 if(msg.time() >= duetime)
 {
 backup = 4;
 strucChange(backup);
 }
 else if(msg.time() < duetime)
 {
 Time elapse = duetime - msg.time();
 holdIn(active, elapse);
 }
 }
 else if(struc == 0){
 backup = 4;
 strucChange(backup);
 struc = 1;
 }
 else if (struc == 1)
 {
 passivate();
 }
 return *this ;
}
Figure 11. The Structural Change Requests Raised from
the Internal Transition Function in ES (ES1)

The simulation results are listed in Table 3. The first
column shows the wall-clock value (the time elapsed

since the beginning of the simulation execution) at
which the outputs have been sent out. The second
column is the expected deadlines. The results and the
output ports are displayed in the third and the fourth
column. The fifth column presents the values output
from the output ports. According to the external event
time and the timing parameters shown in the table 1 and
the table 2, we have verified that the results reflect the
external events correctly and meet the expected
deadlines.

Table 3. Real Time Simulation Results
Output time Deadline Result Out V
00:00:02:510 00:00:03:500 Succeed St1_A 1
00:00:06:560 00:00:08:500 Succeed St2_A 1
00:00:11:520 00:00:13:500 Succeed St2_A 1
00:00:14:030 00:00:14:500 Succeed St1_A 1
00:00:17:040 00:00:17:500 Succeed St2_A 1
00:00:21:510 00:00:23:000 Succeed St1_A 1
00:00:26:020 00:00:27:000 Succeed St1_A 1

A different test applied the flattened coordinator

technique to the dynamic structure simulation of
DSAMS. The flattened coordinator helps to improve the
simulation performance by flattening the model
hierarchy and reducing the number of messages
delivered among the models dramatically. The flattened
coordinator in DSAMS enables the atomic models to
exchange messages with the FLATTOP directly.
FTOPEXEC is the solo Structure Agent taking charge of
the structural changes on behalf of FLATTOP.

Flattened Coordinator

Root

CU ColorSensor FTOPEXEC Painter Engine ES Chrome
Figure 12. Simulation Hierarchy with a Flat Coordinator

Figure 12 exhibits the processor hierarchy using the

flat coordinator. The coordinators of the structure
components PS and TOP are replaced with the flat
coordinator. The FLATTOP exchanges the messages
directly with the atomic models, while FTOPEXEC
executes the structural changes on behalf of FLATTOP.
The simulation with the flat coordinator produces the
same simulation results as those of Experiment 1, but
played a higher simulating performance. The total
messages exchanged among the processors in
Experiment 1 are 1,104; while the total messages
delivered in Experiment 2 are 703. The comparison of
the numbers of messages between the two experiments
is shown in Figure 13.

1 12

185

262

302

434

27

134

72
102 113

156

3 4

0

50

100

150

200

250

300

350

400

450
N

um
be

r o
f M

es
sa

ge
s

I * D Y X @ St
Message Types

Simulation w ith the Flat Coordinator Simulation w ith the Hierarchical Simulators/Coordinators

Figure 13. Comparison of the Number of Messages
between Experiment 1 and 2

6. CONCLUSIONS

DS-eCD++ offers an advanced simulation engine
by integrating dynamic structure DEVS and the
real-time simulation engine seamlessly. The simulation
engine supports varied dynamic structure change forms
[15] and the real-time simulation. DS-eCD++ expanded
the major software components of eCD++ and advanced
adaptability to the real-time environment. The case
studies demonstrated that DS-eCD++ supports real time
simulations with various forms of dynamic structural
changes. Also, it fits the GGAD notation and the flat
coordinator technique.

In DS-eCD++, the real time running mode permits
the execution of hybrid hardware and software
simulation. This advanced real-time experimental
environment provides a platform for real-time
embedded systems development based on M&S for
testing and development. Besides the seamless
transformation from the simulation stage to the design
stage of real-time systems, the dynamic structure allows
defining the dynamic nature of real time applications
more accurately.

REFERENCES

[1] Zeigler, B.P.; T.G. Kim; and H. Praehofer. 2000.
Theory of Modeling and Simulation: Integrating
Discrete Event and Continuous Complex Dynamic
Systems. Academic Press.
[2] Cho, S., and T.G. Kim. 2001. “Real Time
Simulation Framework for RT-DEVS Models”.
Transactions of the Society for Computer Simulation
International.Vol. 18, No. 4, 203 – 215.
[3] Cho, Y. K.; B.P. Zeigler; H. J. Cho; H. S.
Sarjoughian, and S. Sen. 2000. “Design Considerations
for Distributed Real-Time DEVS”. AIS 2000. Tucson,
USA.

[4] Hong, J.S.; H. Song; T.G. Kim, and K.H. Park.
1997. “A Real-time Discrete Event System
Specification Formalism for Seamless Real-time
Software Development”. Discrete Event Dynamic
systems: Theory and Applications. Vol. 7, No. 4,
355-375.
[5] Kim, T.G.; S.M. Cho, and W.B. Lee. 2001. “DEVS
Framework for Systems Development”. In Discrete
Event Modeling & Simulation: Enabling Future
Technologies. Springer-Verlag. New York.
[6] Glinsky, E., and G. Wainer. 2004. “Modeling and
Simulation of Systems with Hardware-in-the-loop”. In
the Proceedings of the 2004 Winter Simulation
Conference. Washington DC, USA.
[7] Glinsky, E., and G. Wainer. 2004. “Model-Based
Development of Embedded Systems with RT-CD++”.
In the Proceedings of the WIP session, IEEE Real-Time
and Embedded Technology and Applications
Symposium. Toronto, Canada.
[8] Shang, H., and G. Wainer. 2007. “Flexible Dynamic
Structure DEVS Algorithm towards Real-Time
Systems”. Proceedings of Summer Computer
Simulation Conference. San Diego. CA. USA.
[9] Chow, A.C., and B.P. Zeigler. 1994. “Revised
DEVS: A Parallel, Hierarchical, Modular Modeling
Formalism”. In the Proceedings of the SCS Winter
Simulation Conference. IEEE Computer Society Press,
Los Alamitos, CA. USA.
[10] Barros, F.J. 1995. “Dynamic Structure Discrete
Event System Specifications: A New Formalism for
Dynamic Structure Modeling and Simulation”. In the
Proceedings of the 1995 Winter Simulation Conference,
pp.781-785. Arlington, USA.
[11] Barros, F.J. 1997. “Modelling Formalisms for
Dynamic Structure Systems”. ACM Transactions on
Modeling and Computer Simulation, Vol. 7, No. 4, pp.
501-515.
[12] Barros, F.J. 1998. “Abstract Simulators for the
DSDE Formalism”. In the Proceedings of the 1998
Winter Simulation Conference. Washington DC, USA.
[13] Wainer, G. 2002. “CD++: a toolkit to define
discrete-event models”. In Software, Practice and
Experience. Wiley. Vol. 32, No.3, 1261-130.
[14] Yu, Y.H., and G. Wainer. 2007. “eCD++: an
engine for executing DEVS models in embedded
platforms”. In the Proceedings of Summer Computer
Simulation Conference. San Diego. CA. USA.
[15] Hu, X.L., B.P. Zeigler, and S. Mittal. 2005.
“Variable Structure in DEVS Component-Based
Modeling and Simulation”. Simulation, Vol. 81, Issue 2,
91-102.

	1. INTRODUCTION
	2. BACKGROUND
	3. FLEXIBLE DYNAMIC STRUCTURE DEVS ALGORITHM
	4. ALGORITHM IMPLEMENTATION
	 4.1. Structure Agent and the Simulation Processor
	4.2. New Relationships

	5. CASE STUDY
	5.2. Experimental Results

	6. CONCLUSIONS
	REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

