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Abstract 
 

In recent years, Web Services technologies have 
been successfully used for simplifying interoperability 
while providing scalability and flexibility in multiple 
applications, including distributed simulation software. 
The RESTful-CD++ simulation Server provides Web 
Services according to the REST principles by exposing 
services as URIs and consumed via HTTP messages. 
Therefore, the server becomes a service part of the 
Web that can be easily mashed-up with other applica-
tions and simulation software. In contrast, RPC-style 
SOAP-based Web Services use the Web as a transmis-
sion medium by exposing few URIs and many RPCs. 
RESTful-CD++ is (to our best knowledge) the only 
existing RESTful system in this area. Further, this dis-
tributed simulation package provides pioneering dis-
tributed simulation services using the Web architectur-
al style. We present an overview of the principles, de-
sign and implementation of the RESTful-CD++ HTTP 
server and DCD++ simulation. We show that REST 
fulfills WS objectives with a much better and easier 
style than the SOAP-based systems.  
 
1. Introduction 

 
In recent years, Web Services (WS) technologies 

have been successfully used for simplifying interope-
rability while providing scalability and flexibility in 
multiple applications, including distributed simulation 
software. WS is to provide interoperability (i.e. inter-
facing remote heterogeneous applications), thus, these 
services can be combined and exposed in a bundle 
(called mash-ups). SOAP-based WS are provided as 
Remote Procedure calls (RPC) on top of the Web 
(HTTP). Instead, the Representational State Transfer 
(REST) style provides is an architectural style whose 
principles are easy to understand and design. REST 
was coined in chapter five of  [3] to reveal the prin-
ciples behind the Web architecture. REST WS are 
promising because of their lightweight and simplicity 
comparing to SOAP-based WS. 

The Discrete Event System Specification (DEVS) 
[11] formalism has been extensively used to study dis-

crete event systems. The CD++ [9] is modeling and 
simulation toolkit executes DEVS and Cell-DEVS 
models following the definition of the DEVS abstract 
simulator where it separates modeling from simulation. 
We have created a distributed simulator based on WS 
HTTP servers (called RESTful-CD++) strictly follow-
ing the REST principles and style [3] (inheriting all of 
the Web architecture benefits).  

RESTful-CD++ is a URI-oriented HTTP server that 
spreads exposed services over a number of resources. 
We designed the server URIs similar to regular Web 
sites, making services easy to understand and to use by 
clients. Each resource is manipulated via a few stan-
dardized HTTP methods. This resource-oriented ap-
proach takes the object-oriented style to the extreme 
since every object is only allowed to expose services 
via a few set of methods (making the server design and 
implementation extensible, scalable and modifiable). 

The RESTful-CD++ server is literally a part of the 
Web great mash-up, hence simplifying interoperability 
with other Web applications. The server can con-
sume/provide services from/to any application on the 
Web by interfacing with any application that can un-
derstand HTTP messages. Further, the server can still 
consume services from SOAP-based WS (in this case, 
the server acts like a SOAP client). Further, the REST-
ful-CD++ server can be deployed as standalone or as a 
Servlet within an HTTP container. 

RESTful-CD++ acts as a container which can be ex-
tended to provide different services easily and quickly 
(hence it is straightforward to extend uniform resources 
structure). For example, the server currently provides 
the services of Distributed CD++. However, more ser-
vices can be added without affecting other supported 
services (or even clients that already own resources on 
the server). This is similar to when a Web site changes 
some of its resources. Further, programming at the 
HTTP level revealed many performance issues (that 
are hidden when many RPCs spread over the code) 
such as transmitting simulation messages simulta-
neously in the distributed environment. 

 
2. Background and Motivation 
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Discrete Event System Specification (DEVS) [11] is 
M&S specification aims to study discrete event sys-
tems. The formalism expresses a model as a number of 
connected behavioral (atomic) and structural (coupled) 
components. These components are connected together 
through external ports, and events are exchanged 
among models via those ports. The models change 
their state only upon the occurrence of an event. The 
basic building component of DEVS models is the 
atomic DEVS model, formally defined as: 

M = < X, Y, S, δint, δext, δcon, λ, ta > 
At any given time, the model is in some state s∈S, 

and it stays in this state for the period specified by the 
time advance function ta(s). When the lifetime expires, 
the model activates the output function λ and can gen-
erate an output value y∈Y. It then changes its state as 
indicated by the internal transition function δint. The 
model changes its state as defined by the external tran-
sition function δext if it receives one or more external 
events x∈X before the expiration of ta(s). The conflu-
ent transition function δcon is used to resolve collisions 
of external events with internal transitions. A DEVS 
coupled model is formally defined as: 

N = < X, Y, D, {Md | d ∈ D}, EIC, EOC, IC > 
The model is composed by a number of components 

Md interconnected. The external input coupling EIC 
specifies the connections between external and com-
ponent inputs, while the external output coupling EOC 
describes the connections between component and ex-
ternal outputs. The connections between the compo-
nents themselves are defined by the internal coupling 
IC. 

CD++ [9] is a modeling and simulation toolkit that 
offers a varied simulation engines to execute DEVS 
and Cell-DEVS models on different platforms (e.g. 
parallel, distributed and real-time). For each DEVS 
atomic model, users need to implement the various 
DEVS functions in C++. On the other hand, for DEVS 
coupled models and Cell-DEVS models, users can 
specify the model in a model configuration file using a 
built-in specification language. CD++ has been suc-
cessfully providing distributed simulation using the 
SOAP-based WS [9], which paved the way toward 
interfacing CD++ with other applications for providing 
a mashup approach (by combining services from mul-
tiple sources). This can lead to higher degree of reuse 
and reduced time to set up and run experiments, and 
making sharing among remote users more effective. 
For example, the DEVS community is in the progress 
of interfacing various DEVS-based simulation tools 
(e.g. CD++) using Web-service technology towards a 
DEVS standard interoperability protocol [1]. We be-
lieve (as showed here) that WS can achieve its objec-
tives using the resource-oriented REST principles with 

more simplicity, flexibility and scalability than the 
RPC-style SOAP-based WS (as proven by the millions 
who use the World-Wide-Web – WWW - everyday).  

The current generation of WS has been successfully 
used to perform distributed simulation [7] [8] [9]. It 
exchanges data with SOAP messages wrapped within 
HTTP messages (this is done by the SOAP engine [10] 
and the HTTP server layers). WSDL [2] is used to de-
scribe exposed services; enabling clients to build ser-
vices as stubs to be compiled with their programs. On 
the other hand, SOAP applies RPC on top of HTTP. 
Once an RPC is invoked, the SOAP engine converts it 
into a SOAP message and wraps it as a HTTP request 
sent via the HTTP server. Exposed RPCs (usually 
called services) have heterogeneous interfaces, and 
programmers need to learn each procedure purpose 
along with each single parameter. WSDL only converts 
those RPCs into programming stubs, but does not teach 
programmers how to use them, making difficult com-
posing and mashing-up services, and constraining 
reuse. The RPC-style is suitable for closed communi-
ties that can coordinate changes among each other to 
avoid breaking each other’s software. 

Instead, the WWW has been extremely successful 
in providing an outsized, scalable and interoperable 
mash-up system that is simple and easy to understand. 
What make the Web successful in doing so? (1) It is 
message-oriented and uses open standards. All changes 
are done to message contents (e.g. HTML, HTTP mes-
sages). Thus, if you follow message-format standards, 
you will be able to communicate with anyone on the 
Web. (2) Open Standard Protocols. For instance, HTTP 
is the Web protocol; hence, if you need to interface 
with anyone in the Web, follow the HTTP standards. 
(3) The Web employs a standardized global addressing 
scheme. For example, every “resource” in the Web is 
named with a unique URI. Resources are read (e.g. via 
a Web-browser) by sending HTTP request messages to 
that resource’s URI (i.e. using the GET method). In 
response, the server returns an HTTP response mes-
sage with the resource data to the client (e.g. as HTML, 
XML, etc.). Updating HTTP methods (e.g. POST) 
work the same way, but by transferring data from the 
client side to a resource on the server. REST [3] de-
rives its principles from the Web. To name few of the 
REST principles: (1) it is stateless (message-oriented). 
Every request should have all of the necessary infor-
mation to be processed. (2) It uses a uniform interface 
(usually HTTP methods [4]). (3) Every “thing” is ex-
posed as a “resource” (and named with URIs). (4) Re-
presentation (resources state) captures a resource data, 
which is transferable to other resources.  

REST principles are suitable for open communities 
that allowed RESTful applications to decouple clients 
from servers where each side can progress indepen-
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dently from the other. The Web principles have been 
proven in simplifying interoperability while still pro-
viding scalability, flexibility and client simplicity. 
These principles have inspired us to provide WS at the 
HTTP layer (to be part of the Web mash-up) rather 
than using the Web as a transmission medium as in the 
case of the RPC-style SOAP-based WS. REST simpli-
fies the client side, which is one of the strongest advan-
tages of the Web. 

REST has been successfully used by numerous 
vendors, including Yahoo 
(http://developer.yahoo.com/), Flicker 
(http://www.flickr.com/services/ap/), and Amazon S3 
(http://s3.amazonaws.com ). To the best of our know-
ledge, there are no REST-based simulators (or even 
distributed programming software in general). Most 
distributed simulation systems have been provided 
using SOAP-based WS and other approaches (see [9] 
for the complete list). This motivated us to build a 
REST-based simulator for CD++, providing distributed 
simulation at the Web layer, avoiding the heavyweight 
RPC-style mechanism.  

 
3. RESTful-CD++ Server Design 

 
RESTful-CD++ is a URI-oriented architecture 

where all services are divided into URIs and manipu-
lated via HTTP uniform interface methods. Figure 1 
shows the server URI template [6] used to construct 
every possible URI. URI Templates [6] are URIs with 
variables (placed between braces ‘{}’). Variables are 
substituted with appropriate values to get the actual 
URI instances at runtime, which simplifies both clients 
and servers. Clients can easily know what part of the 
URI is under their control. Servers can easily verify all 
the possible paths that clients can use to manipulate 
exposed resources. Each resource (Figure 1) includes a 
specification that defines the supported HTTP methods 
(and their responses), possible HTTP errors (e.g. code 
401 for not-found resource), incoming/outgoing repre-
sentations and media type. The root URI is split into 
three subordinate resources: (1) /admin is used for 
administrative services such as create/ delete/update 
accounts, general server configuration and retrieving 
server logs. For example, a PUT request to an absent 
URI (/admin/accounts/Bob) creates an account with 
name Bob. (2) /util is used for utilities that might be 
helpful for client programs. (3) /sim is used to struc-
ture simulation resources. It contains a number of 
workspaces, each of which may contain a number of 
supported services (i.e., the resource {userwork-
space} holds a workspace name that can contain a 
{servicetype} to define a service type). A simula-
tion service (e.g. DCD++) may contain a number of 

frameworks. Clients use frameworks to setup their si-
mulation (i.e., sending configuration files). For exam-
ple, /cdpp/sim/workspaces/Bob/DCDpp/FireModel is a 
framework that belongs to workspace Bob, service 
DCDpp and uses the framework FireModel. 

 
Figure 1: RESTful-CD++ URIs Template 

 
The framework resource supports four methods: (1) 

GET, which returns an XML or HTML document de-
scribing the framework configuration. (2) DELETE, to 
delete a framework. (3) PUT, to create/update a 
framework. (4) POS, to submit files used for CD++ 
simulation. The resource {framework}/simulation 
manages active simulations according to the following 
operations: (1) PUT creates (starts) the simulation. (2) 
DELETE aborts the simulation. (3) POST sends mes-
sages to an active simulation (e.g., DCD++ servers use 
it to exchange XML simulation messages). (4) GET 
reads values from a simulation in progress. The active 
simulation resource is automatically deleted upon nor-
mal completion. In addition, {framework}/results 
is created, enabling to retrieve simulation results. The 
server spawns a Java thread for each HTTP request, 
which is terminated upon generating HTTP response to 
the client. This allows many requests to be handled 
simultaneously, hence improving response time. The 
server also requires all incoming requests to be vali-
dated according to the HTTP Basic authentication [5]. 
However, authentication is not required (by default) for 
GET requests. 

 
4. RESTful Distributed CD++ Design 

 
Modeler clients creates their simulation resources 

on the main server (which is a RESTful-CD++ HTTP 
server that the modeler owns a user account on). The 
modeler then needs (for the first time) to create a simu-
lation framework on the main server and submit all 
necessary files to it. After that, the modeler can start a 
simulation via creating a {framework}/simulation re-
source. As a result, the main server (acting as client) 

/{accountname}

/accounts

Machine-URI/cdpp 

/workspaces

/{userworkspace}

/{servicetype}

/sim/admin
/log /util 

/ping 
/config

/{framework}

/debug /simulation/results
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creates the necessary resources on support servers and 
starts the simulation everywhere. 

Figure 2 shows example of a Distributed CD++ si-
mulation session among three servers. The three 
DCD++ simulation engines (written in C++) are 
plugged into the RESTful-CD++ HTTP server (written 
in Java), which they coordinate among each other to 
simulate a CD++ model by exchanging XML messages 
within HTTP envelopes. 

 
Figure 2: RESTful Distributed Simulation Example 

 

 
Figure 3: DCD++ Simulation Resource Example 

     
 Figure 3 shows a conceptual look of the main serv-

er during a single simulation session. The URI exam-
ple in Figure 3 is the address to manipulate the active 
simulation. The Simulation Manager component man-
ages a session for a DCD++ simulation engine. Upon 
receiving a DCD++ simulation message by the server 
Router: (1) a Java thread is spawned to handle the re-
ceived message, which represents the target URI. (2) 
The XML message is parsed and validated. (3) The 
message is forwarded to the proper simulation manag-
er. (4) An HTTP response is generated and the request 
thread is terminated. Simulation managers also act as 
clients when they transmit messages to remote simula-
tion URIs in the DCD++ grid. To improve perfor-
mance, they spawn a thread for each transmitted mes-
sage, allowing concurrent message transmission. This 
is because HTTP calls are synchronous; hence, the 
process is blocked until a response is received back. 
The simulation manager proxy (Figure 3) interfaces 
with the C++ models in CD++. All messages between 
the DCD++ simulation engine and its simulation man-
ager are exchanged using Linux queues. 

The simulation manager on the main server creates 
the necessary resources on all support servers. All par-

ticipants in the simulation conference must have a 
username and password on all other servers (similar to 
any other clients). Everybody in the conference is al-
lowed to POST a message while the main server (the 
resources owner) is the only one allowed to perform 
other HTTP methods, taking the advantage of the uni-
form interface. 

DCD++ uses Coordinator objects to simulate 
coupled models and Simulator objects to simulate 
atomic models. The simulation is divided into three 
phases: Initialization, Collection and Transition. Initia-
lization starts when the topmost coupled model rece-
ives an Initialization (I) message. Collection starts 
when the Root coordinator sends a collect message 
(@) to the top model in the hierarchy. In this phase, all 
output (Y) and external (X) messages are collected. 
Transition starts when the Root coordinator sends an 
internal (*) message to the top model. In this phase, all 
collected external and scheduled internal messages are 
executed. Each phase ends with a Done (D) message, 
which contains the calculated next imminent event 
time. 
 

 
Figure 4: Head/Proxy Local message routing 

 
A Head/Proxy algorithm (also used in our SOAP-

based DCD++ [9]) places proxy coordinators on re-
mote machines to handle children’s messages on behalf 
of the head coordinator. For example, the Proxy Coor-
dinator in Figure 4 routes the output message (4:Y) 
from Simulator 3 to Simulator 2  locally (6:X). Thus, 
the proxy makes local decisions (on behalf of the Head 
Coordinator) to avoid unnecessary remote message 
transmission, improving performance.  

On the other hand, the algorithm still transmits all 
remote messages. For example, suppose that Simulator 
3 in Figure 5 is transmitting a message for Simulator 1. 
The proxy sends it to the Head Coordinator as (5:X) 
followed by the Done message (8:D) to mark the end 
of the proxy collection phase. What if the Head rece-
ives the external message (5:X) after the Done message 
(8:D)? It will treat external (5:X) as part of the next 
collection phase, which leads to incorrect simulation. 
Further, assume the message (5:X) is sent (in reverse 
direction) from the Head to the proxy during the col-
lection phase. In this case, the simulation will deadlock 
if the internal message (*) from the Head (which starts 

User 

WWW (HTTP Messages) 

Server #1 

DCD++ 

Server #2 Server #3 

DCD++ DCD++ 

Head 
Coordinator 

Simulator 1 Simulator 2 Simulator 3

Server 1 

6:X 4:Y 

Proxy 
Coordinator

1:@ 
2:@ 

3:@ 5:D 
7:D 

8:D 
Server 2 

Client 

/cdpp/sim/workspaces/Bob/DCDpp/FireModel/simulation

Simulation 
Manager 

DCD++ Engine 
JNI 

Message Monitor CPP Wrapper  Linux Queues 

Simulation Manag-
er Proxy 
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the next transition phase) is received by the proxy be-
fore that external message. The proxy coordinator will 
be waiting forever for an imaginary Done message (as 
acknowledgment to the internal message) from its 
children. 

 
Figure 5: Head/Proxy Remote message routing 

 
These scenarios are possible in RESTful-CD++ be-

cause all remote messages are transmitted concurrent-
ly, (i.e. each lives in a separate thread). We cannot 
guarantee that several messages transmitted in few 
milliseconds apart would reach their destination in 
their transmission order. The original Head/Proxy algo-
rithm works in SOAP-based DCD++ [9], because mes-
sages are transmitted using RPC-style via the SOAP-
engine. In this case, the SOAP engine converts the 
RPC into a SOAP sent in an HTTP envelope. Since 
HTTP requests are blocking, the simulation messages 
arrive in their transmission order. This is an example of 
how RPCs can deceive even experienced programmers 
by appearing innocent while they are still expensive 
blocking remote calls. Thus, a new Head/Proxy version 
was created. 

Simulation messages can be categorized into syn-
chronization messages (i.e. D, *, I and @), and content 
messages (Y, X). Synchronization messages are used 
to synchronize the start/end of simulation phases. 
Thus, they are exchanged at the boundary of simulation 
phases. For example, external message (5:X) must al-
ways arrive at the head coordinator before the Done 
message (8:D) (in Figure 5) to ensure causality and 
avoid deadlocks. The new head/proxy algorithm 
achieves this by sending all content messages with the 
first synchronized message heading to their destined 
processor. This solution not only ensures the correct 
message order arrival to a coordinator, but also reduces 
the number of remote messages between two coordina-
tors (in a simulation phase) to only one message. Fig-
ure 6 shows an example of two simulation messages 
bundled in one XML document, showing the XML 
flexibility to overcome issues when compared to RPCs 
in the SOAP-based WS. 

 
Figure 6: Simulation Messages Example 

 
The simulation message contains (at least) the fol-

lowing information: Message type, simulation time, 
source processor Id, destination port Id, content value, 
next change time, sender model Id, and destination 
Processor Id. DCD++ keeps unique IDs for each mod-
el, port and processor (i.e. coupled model coordinator 
or atomic model simulator) in the DCD++ grid. This is 
ensured by the way model files are parsed by each par-
ticipant DCD++ simulation engine. Therefore, it is 
necessary to resubmit model files to each server, if 
modeler changes any of them. 

 
5. RESTful-CD++: Implementation 

 
The RESTful-CD++ HTTP server consists of five 

Java packages (shown in Figure 7): Main, Data, Re-
sources, Utility and Simulation Admin (i.e. note that 
the DCD++ simulation engine shown in Figure 2 and 
Figure 3 implementation is not discussed here). The 
Main subsystem starts the server and initializes major 
components such as URIs Router, Database, logging, 
simulation managers’ administration and communica-
tion. Utility provides helper classes for all other sub-
systems such as XML parsing utilities, server logging, 
file-system services and HTML builder documents. 
Data holds and organizes the server database. The Da-
tabase is divided into sections for each user, hence, 
thread requests from different users do not need to 
block each other. Each user section is divided into user 
account and workspace. A workspace may contain any 
number of supported services (e.g. DCD++) where a 
service may contain any number of simulation frame-
works. 

Server 2 

Head 
Coordinator 

Simulator 1 Sim2 Simulator 3 

Server 1 

5:X 

4:Y 

Proxy 
Coordinator 

1:@ 
2:@ 

3:@ 6:D 
8:D 

9:D 

7:X 

<Messages> 
 <MessagesCount>2</MessagesCount> 
 <Message> 
   <MessageType>X</MessageType> 
   <Time>08:50:00:00</Time> 
   <SrcProcId>2</SrcProcId> 
   <PortId>5</PortId> 
   <Value>9.0</Value> 
   <SenderModelId>3</SenderModelId> 
   <DestProcId>1</DestProcId> 
 </Message> 
 <Message> 
   <MessageType>D</MessageType> 
   <Time>08:50:00:00</Time> 
   <SrcProcId>2</SrcProcId> 
   <NextChange>00:00:00:00</NextChange> 
   <SenderModelId>3</SenderModelId> 
   <Proxy>True</Proxy> 
   <DestProcId>1</DestProcId> 
 </Message> 
</Messages> 
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Figure 7: RESTful-CD++ Architecture Overview 

 

 
Figure 8: Resources-Subsystem Overview 

 
Figure 8 shows the Resources Subsystem, which 

handles client HTTP requests. There is a Java class to 
process each URI in the template of Figure 2. For ex-
ample, requests to .../{framework}/simulation are han-
dled by SimulationResource. Resource classes parse 
the variable parts of a URI to figure out the appropriate 
stored Java objects in the database. For example, a 
request to …/sim/workspaces/ Bob/DCDpp/FireModel 
is handled by FrameworkResource, which can deter-
mine that the request belongs to the framework Fire-
Model of service DCDpp, owned by workspace Bob. 
After that, the appropriate operation (based on the 
HTTP method in the request) is invoked. Each Java 
class in Figure 8 (at most) contains the following oper-
ations: represent, storeRepresentation, accept Repre-
sentation and removeRepresentations (to handle HTTP 
methods GET, PUT, POST and DELETE respective-
ly). 
    The SimulationAdmin classes (shown in Figure 9) 
manage active simulation sessions. The SimulationMa-
nager class performs all necessary operations to start, 
stop, control and monitor a simulation engine.  

 
Figure 9: SimulationAdmin -Subsystem Overview 
    
 DCDppSimulationManager is extended from Simula-
tionManager class to handle DCD++ simulation man-
agement in geographically distributed locations. Simu-
lationManagersAdmin administrates all simulation 
managers in the server. The SimulationManagerProxy 
class operations are used by Simulation managers to 
manipulate their correspondent CD++ simulation en-
gines (written in C++). DCDppGridWatchdog imple-
ments the watchdog thread, which periodically checks 
on the health of simulation resources in the DCD++ 
grid. MessageDispatcher is used (by DCD++ simula-
tion managers) to send a simulation message (as a sep-
arate thread) to remote simulation resources (URIs) in 
the DCD++ grid. MessageDispatcher is actually an 
HTTP client with the purpose to send single message 
and reports the transmission status to the subject simu-
lation manager. 
 
6. Client Example 

The DCD++ simulation can be performed with the 
following four steps (Step #1 and #2 are only needed 
once):  

Step #1: Creating a DCD++ framework via apply-
ing the PUT method to the URI (for instance, 
…/cdpp/sim/ workspaces/Bob/DCDpp/MyModel). 
The server then creates the framework MyModel. 
Workspace Bob and service DCDpp are created, if they 
do not already exist. Further, the modeler needs to con-
figure the DCD++ grid (upon creation or in a separate 
update request). For example, the following XML con-
figuration document places two atomic models on two 
DCD++ servers: 

<DCDpp> 
 <Servers> 
   <Server IP="10.0.40.8" PORT="8080"> 
     <MODEL>Producer</MODEL></Server> 
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   <Server IP="10.0.40.9" PORT="8282"> 
     <MODEL>Consumer</MODEL></Server> 

    </Servers> 
  </DCDpp> 

Step #2: Submitting the required CD++ model files 
via applying POST method to the framework URI. The 
easiest way is to submit all of the CD++ files in a 
zipped directory to URI 
…/DCDpp/MyModel?zdir=files (where files is the 
name of the directory when extracted). 

Step #3: Start the simulation by applying PUT me-
thod to create URI …/DCDpp/MyModel/simulation. 
The client program can check the simulation status (via 
GET) to URI …/MyModel?sim=status. 

Step #4: Once the simulation is completed, one can 
retrieve the results by applying the GET method to 
URI …/MyModel/results.  
 
7. Performance 

 
This section provides two sets of experiments. The 

first set aims on studying the REST system under pres-
sure since many users are expected to use the system 
services simultaneously. The second set presents com-
parison results against the SOAP-based DCD++ [9] 
system. 

Clients in the first set of experiments sent their re-
quests simultaneously to the server from the same 
room as of the server. They also resend their requests 
to the server using the Internet across the city. The 
response time is measured, by clients, from the time a 
request is sent until the response is received back. Fig-
ure 10 shows the response time (averaged over 50 dif-
ferent runs) for both LAN and Internet clients. It also 
shows the difference between LAN and Internet re-
sponse times, which indicates the same behavior re-
gardless of the number of clients. This is because mes-
sages round-trip delay across the Internet is the major 
contribution in the difference, which is independent of 
our executed tests. The results also show that the server 
reacts to the number of requests at the beginning, but it 
holds its ground when the pressure increases (i.e. the 
jumps in response time get smaller when clients more 
than 100). 

The second set of experiments compares distributed 
simulation using the presented REST-based WS 
DCD++ here against the SOAP-based WS DCD++ [9]. 
The next set of experiments used three CD++ models 
in the simulation: a Fire model (30x30 Cell-DEVS) 
used to simulate fire behavior in forests, a ship evacua-
tion model (49x27 Cell-DEVS) used to simulate hu-
man behavior in case of ship evacuation and a Barber-
shop model (standard DEVS model) simulates barber-
shop customer service. The models were split evenly 
between two machines connected to the same Ethernet; 

hence remote simulation messages round trip time de-
lay is measured to be around 4 ms.  
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Figure 10: Concurrent Clients Response Time 
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Figure 11: Total Exchanged Remote Simulation Messages 

 
Figure 11 shows the total exchanged messages be-

tween the two machines to synchronize the distributed 
simulation. The shown difference is because the 
REST-system bundles remote messages in one XML 
message to reduce number of remote messages as pre-
viously discussed here. This improvement offered itself 
because of exchanging simulation messages in XML 
documents rather than parameters in a procedure. In 
this case, the degree of improvement depends on the 
studied model. On the other hand, models execution 
times (i.e. averaged over 25 different runs) still very 
close to each other on the Ethernet as shown in Figure 
12. This is because using the Ethernet almost cancels 
the gain that is obtained from reducing the number of 
exchanged messages because of the trivial delay time 
of messages. 
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Figure 12: Models Execution Times over the Ethernet 

 
The results in Figure 13 aim on studying concurren-

cy on both systems, since these systems are usually 
used by different modelers at the same time. It starts by 
simulating one evacuation model, then two of them 
simultaneously, etc. Results (i.e. execution time aver-
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aged over 25 different runs) are almost the same for 
both systems. However, the REST systems start show-
ing slightly better performance after four concurrent 
models. 
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Figure 13: Execution Time of Concurrent Ship Models 

 
The results presented here show that REST-style 

can be used to provide distributed simulation as in the 
case of SOAP-based WS. Further, the REST pro-
gramming model is much easier to introduce tech-
niques to improve performance. The comparison re-
sults here only use both systems to study software im-
plementations, which can be influenced by many fac-
tors such as using third-party software and general 
software design. On the other hand, interoperability is 
the major benefit of WS and is usually put ahead of 
performance. We believe that interoperability is pro-
vided with much flexibility and simplicity by the 
REST-style comparing to the SOAP-based style as it 
has previously been shown here. Particularly the un-
derlying communication in the both systems is the 
same. The SOAP-WS invokes RPCs by sending XML 
SOAP messages in HTTP messages whereas REST-
WS directly works with HTTP messages themselves. 

 
8. Conclusions 

 
The RESTful-CD++ HTTP server provides WS us-

ing the Web principles (as defined by the REST-style). 
The server strictly follows the REST style and the Web 
principles in order to capitalize on the Web benefits 
such as scalability, interoperability and simplicity. In 
contrast, the SOAP-based WS use RPC-style by expos-
ing few ports (i.e. single URI per port) and many oper-
ations (i.e. services). RPCs glues server and client pro-
grams together which prevent them from evolving in-
dependently.  

The RESTful-CD++ server supports distributed 
CD++ (DCD++) simulation. DCD++ servers coordi-
nate among each other via XML messages according to 
the head/proxy algorithm new version (which bundles 
remote messages together). 

Being part of the Web mash-up, designing with the 
Web principles (e.g. resources with uniform interface 
and message-oriented open standards), the heavy-

weight of the SOAP-WS, and having the Web global 
addressing scheme have inspired us to develop the 
RESTful-CD++ server. Furthermore, the server is still 
able to consume services from the SOAP-based WS. 
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