
Flattened Conservative Parallel Simulator for DEVS and CELL-DEVS

Shafagh Jafer, Gabriel Wainer
{sjafer,gwainer}@sce.carleton.ca

Dept. of Systems and Computer Engineering
Carleton University Centre of Visualization and Simulation (V-Sim),

1125 Colonel By Dr. Ottawa, ON, Canada.

Abstract

Synchronization as the key to parallel and
distributed computing requires a robust mechanism to
handle communication among concurrent processes.
In this paper we propose a flattened parallel simulator
for DEVS and Cell-DEVS based on the classical null-
message and lookahead based synchronization
mechanism. We first present how flattening the
architecture reduces communication overheads among
participating nodes. Then we propose our blocking
mechanism used to suspend the logical processes. After
that we present our lookahead computation and null-
message mechanism used to avoid causality errors as
well as deadlock. Our conservative mechanism is
implemented in WARPED kernel and can be used by
any DEVS and Cell-DEVS parallel simulators who
wish to adapt a conservative synchronization
approach.

1. Introduction

Parallel and distributed simulation (PADS)
techniques were proposed to resolve the issues of
complex models simulation. Not only the shortage of
resources, but also the long execution times brought up
the idea of Parallel discrete event simulation (PDES)
studies. Fujimoto [1] classifies three major research
categories in the area of parallel and distributed
simulation. The first research group is the high
performance computing community which started in
late 1970’s and 1980’s aiming at reducing execution
time by using multiple processors. This community
developed the world wide known fundamental ideas by
proposing two synchronization algorithms: Chandy-
Misra-Bryant [2, 3] and Time Warp [4]. The second
group is the Defense community, which mainly focuses
on facilitating interoperability and software reuse.
Finally, the third group is the gaming and Internet

community which is interested in developing realistic
scenarios in distributed environments.

Among the existing modeling and simulation
techniques, DEVS (Discrete Event System
Specification) formalism [5] provides a discrete-event
approach which allows construction of hierarchical
models in a modular manner. In this work, our main
focus is on discrete-event M&S approach and DEVS
formalism which has been proven to be a universal
formalism to represent DEDS (Discrete Event Dynamic
Systems).

The Timed Cell-DEVS formalism [6] is an
extension to the traditional Cellular Automata which
makes use of DEVS by defining every cell to represent
an atomic DEVS model and coupling them together to
form a complete cell space representing a coupled
DEVS model. Parallel Cell-DEVS formalism extends
the standard formalisms of Cell-DEVS to allow a
higher degree of parallelism in parallel and distributed
environments. CD++ [7] is a modeling toolkit that
implements the DEVS and Cell-DEVS theories by
applying the original formalisms.

In this work we propose the implementation of the
classical conservative synchronization mechanism in
WARPED kernel [8] to support parallel and distributed
simulation of DEVS and Cell-DEVS.

3. Previous Works

The first parallel version of CD++ [9] was based on
a central synchronizer approach exploiting the
parallelism inherent to the DEVS formalism. Under
that scheme, a single root coordinator acts as a global
scheduler for every node participating in the
simulation. Based on this structure, all events with the
same timestamp are scheduled to be processed
simultaneously on the available nodes. The simulator
introduced two different types of coordinators; master
and slave to reduce inter-process communication. The
simulation is carried out by DEVS processors which

are of two types: simulator and coordinator. The
simulator represents an atomic DEVS model, where the
coordinator is paired with a coupled model. Aside from
these two types of coordinators, a special coordinator
namely, root coordinator was introduced. The root
resided above the topmost coordinator. It was
responsible for driving the simulation and advancing
the virtual simulation time. It was also responsible for
handling external events that arrive from the
environment.

At the beginning of the simulation, one logical
process (LP) would reside on each machine (physical
process). Then, each LP would host one or more DEVS
processors. Thus, not all of a coordinator’s children
would necessarily sit on the same LP. A coordinator
would communicate with its child processors through
intra-process messaging if they reside on the same LP,
and through inter-process messaging if they were
sitting on remote LPs. Figure 1 represents the scenario.

The Parallel CD++ runs the abstract simulator
described in [9]. The DEVS processor (root
coordinator, simulator, slave coordinator or master
coordinator) were the simulation objects that ran on the
available LPs. The simulator and master and slave
coordinator were designed in such a way that upon
receiving any messages, any other message that gets
sent in response had the same timestamp. This was due
to the fact that, the root coordinator was the only
DEVS processor that advanced time by sending a new
message with the time of the next imminent model or
external event. In the scope of this abstract simulator, a
message was only considered a straggler if its
timestamp t was less than the local virtual time (LVT)
of the receiving LP. An LP was allowed to receive
multiple messages with a timestamp equal to its LVT.
The only constraint that needed to be placed was that
two or more events sent from a source object S to a
destination object D shall preserve the same ordering
upon arrival to D. Due to the existence of root being
the central synchronizer, this parallel simulator could
never produce a straggler message thus no
synchronization mechanism at the LP level was used
since the synchronization was provided by the
application itself.
Thus, as described above, the parallel CD++ presented
in [9] did not implement any of the two practical
synchronization mechanisms namely, conservative and
optimistic. This was the motivation for us to propose
the first conservative parallel and distributed simulator
for Cell-DEVS by extending the WARPED kernel [8]
to support such synchronization algorithm. In the next
section we will describe the details of the proposed
conservative simulator.

Figure 1. Hierarchical architecture of the first
parallel CD++ simulator

4. Proposed Approach

The first issue that must be considered for
implementing the proposed conservative simulator is to
modify the hierarchical architecture of the simulator in
[9] to a flattened one. Using a flat simulation
mechanism rather than the traditional hierarchical one
reduces the overhead in communication by reducing
the number of exchange messages (especially inter-
process message) to minimum. This is achieved by
simplifying the underlying simulator structure, while
keeping the same model definition and preserving the
separation between model and simulator [10].
Researchers have shown that flat simulators outperform
hierarchical ones significantly [10, 11, 12]. They have
also showed that al-though the hierarchical simulator
presented in [9] tried to reduce the communication
overhead by introducing two specialized DEVS
coordinators, but in some cases the communication
overhead was still significantly high. The flattened
architecture that will be presented here is depicted from
[10] which was the first attempt to re-design the
parallel CD++ simulator to adopt a flattened structure.
4.1. Flattened Architecture for the Proposed
 Conservative Simulator

To achieve our goals, the whole abstract simulator is

redesigned to reflect the two major modifications; i.e.
the departure from centralized root-based simulator to a
conservative-based simulator, and flattening the
structure of the simulator. As a result, a new Parallel
DEVS simulator is implemented which deals with the

communication overhead dilemma by using a flattened
structure rather than the old hierarchical approach. The
new flattened architecture would be as presented in
Figure2.

As shown in the flattened architecture diagram, one
LP is created on each machine encapsulating the DEVS
processors. Only one Root is created on machine 0
(LP0) which interacts with other NCs using inter-
process messaging (for remote NC) and intra-process
messaging (for local NC). The Root coordinator is in
charge of starting the simulation and performing I/O
operations among simulation system and the
surrounding environment. Only one NC is created on
each machine and acts as the local central controller on
its hosting LP. The NC is the parent coordinator for FC
and routes remote messages received from the Root or
from other remote NCs to the FC. The Simulators are
the child processors of the local FC which represent the
atomic components of DEVS and Cell-DEVS models.
When a Simulator needs to communicate with a remote
Simulator residing on another LP, it sends the message
to its FC, then the message is forwarded to the NC
above it. Once the message is at the NC, it will further
be routed to the destination NC. There is no direct
communication among Simulators; all messages must
be forwarded to the parent FC. This is why the FC is
known as the local central controller of its hosting LP.

Figure 2. Flattened architecture for the proposed
conservative simulator

4.2. Message definition

The processors exchange two categories of
messages: content messages and control messages. The
first category includes the external message (x) and the
output message (y), and the second category includes
the initialization message (I), the collect message (@),
the internal message (*), and the done message (D). To
describe these messages, external and output messages
are used to exchange simulation data between the
models, initialization messages start the simulation,
collect and internal messages trigger the output and the
state transition functions respectively in the atomic

DEVS models, done messages handle synchronization
by carrying the model timing information. The
simulation is executed in a message-driven manner.
Each type of PCD++ processor, defines its own receive
functionality for each type of messages.

4.3. Layered architecture

Figure 3 illustrates the layered architecture of the
proposed conservative CD++ simulator, where each
layer only depends on the layers below it.

Figure 3. Layered architecture of the proposed

conservative CD++ simulator
In order to implement the classical conservative

algorithm for the proposed simulator, we have used the
WARPED kernel [13, 8] which is a public domain
simulation kernel originally developed at the University
of Cincinnati. WARPED provides an implementation of
Jefferson’s original Time Warp algorithm [4]. The
WARPED kernel is an attempt to make a freely available
Time Warp simulation kernel that is easily ported,
simple to modify and extend, and readily attached to
new applications. For the purpose of our research, we
have only used the services provided by WARPED to
facilitate the distribution of the simulation executives
on the nodes. We have not used the functionalities that
implement the Time Warp algorithm such as state
saving and rollback mechanism. Since our purpose is to
build a conservative simulator, we have only used
WARPED as the middleware that supports creation of
model objects (simulation objects) as entities which
exchange messages (time-stamped events) with each
other and respond to events by applying them to their
internal stats. Thus, the kernel was used to provide
functionalities for sending and receiving events by
simulation objects. The kernel also provides a simple
definition of time (which can be redefined by the user)
and functions to perform consistent I/O operations.

Our implementation of the conservative mechanism
resides on the WARPED kernel layer and is separated
from the core simulator code. Therefore it can be
viewed as new extension to WARPED kernel which can
be used by other researches who would like to use
WARPED kernel as a conservative synchronization
middleware for their DEVS-based simulator.

5. Design of the Conservative CD++
Simulator

Conservative synchronization approaches were the

first synchronization algorithms proposed in the late
1970s by R. E. Bryant [2], K. M. Chandy and J. Misra
[14]. This synchronization technique which is known
the Chandy-Misra-Bryant (CMB) algorithm, disallows
any occurrence of causality errors. In conservative
schemes, if a LP has an unprocessed event with
timestamp t and it is guaranteed that no event with
earlier timestamp can be received, then the probability
that causality error may happen is zero. When the LP
has a list of unprocessed events from all other LPs it
can safely process the event with lowest timestamp
because the future events will for sure have larger
timestamps. As long as there are unprocessed events
from all other LPs, then this cycle can be repeated and
synchronization is guaranteed. However, if this
condition is not met, then there is a risk of deadlock.
Technique to resolve this deadlock is to find the
model’s lookahead, which provides the smallest time
stamp of the new events that a process can schedule in
the future. Null messages are responsible to carry out
the lookahead information among LPs. This way each
LP, based on the lookahead information that it receives
from all other LPs can derive a lower bound on the
time stamp (LBTS) of the events that it will receive in
future. As a result, the LP would know which event is
safe to process. An example of a safe lookahead value
is the timestamp of the first unprocessed event in the
input queue. The main drawback of the conservative
synchronization approach is the time-wasting flow of
null messages which degrade the simulation
performance significantly.

In the following sections we will describe the
design details for our conservative simulator.

5.1. Scheduling mechanism

As we mentioned in the previous section, we use the
WARPED kernel as the middleware which provides
basic mechanism for handling scheduling at each LP.
Every LP has a single Lowest Time Stamp First
(LTSF) scheduler and a single input queue which holds
all the input messages for all the local simulation
objects (local simulators). This single inputQ is
therefore, the unprocessed events queue for each LP.
Aside from input events that arrive from other LPs and
the environment, the inputQ also holds those events
that are sent from a local simulation object to another
local object. This queuing mechanism provides an
easy-to-handle messaging strategy which is only

responsible for a single queue for all the simulation
objects on an LP. Each simulation cycle starts by
removing the first element of the inputQ and processing
it by the destination simulation object. The DEVS
coordinators explained in Section 4.1 are responsible
for delivering the message to the corresponding local
simulation object based on the destination_id field of
the input event. On the other hand, when a simulation
object residing on an LP sends a message to another
remote object on a different LP, the communication
manager is responsible for delivering this message by
placing it into the inputQ of destination LP. This whole
process of sending and receiving time stamped events
among the simulation objects needs to be studied
closely to avoid causality errors in order to have a
reliable conservative parallel simulator. One important
fact that must be considered is that in conservative
mechanism each LP has its own local virtual clock
(LVT) and thus if the synchronization is performed
poorly, there is going to be causality error and the
simulation results will be incorrect. Since in DEVS
there are different messages exchanged among local
and remote processing entities (i.e. coordinators and
simulation objects) it is very important to first
understand how these different types of messages are
sent back and forth and if they only affect local
simulation objects or remote ones. These messaging
paradigms are described in details next.

5.2. Messaging paradigms

As was discussed earlier, in DEVS there are five
different types of messages exchanged among
simulator, flat coordinator, node coordinator (NC), and
root coordinator (incase of LP0). Figure 4 illustrates
how these messages are propagated during the
execution. As you can see in Figure 4, the only
message that could arrive from remote LPs is the
external (q) message. The rest of the messages are local
to each LP and thus could not cause causality errors at
other LPs. When a simulator (simulation object) wants
to send a message to another remote object, it first
sends an output (y) message to its flat coordinator, and
then the flat coordinator translates this message to an
external (q) message and sends it upward to its node
coordinator. Once the node coordinator receives this
message, since it knows about which simulation object
runs on which LP, it forwards that q message to the LP
of the destination simulation object through its
communication manager.

Figure 4. Message exchange in conservative CD++

simulator
Next we will present our implementation of the

conservative algorithm in WARPED kernel.

5.3. New extension to WARPED

We have implemented the null-message based
conservative algorithm in WARPED in such a way that
the simulator does not know about the synchronization
algorithm that is used in the WARPED layer below it.
This separation enables switching between different
synchronization mechanisms without the need to
change the simulator code. The two major
modifications which took place in the Time Warp
kernel of WARPED will be presented next.

5.3.1. LP locking mechanism

We mentioned that there is a single LTSF scheduler
residing on each LP which schedules the top most
element of the inputQ to be executed next. However,
this should only happen if the LP has received a
message from all other LPs so that no message with
earlier timestamp will be received at the LP later in
time. The way we have implemented this is based on
the messaging paradigm of DEVS which was presented
in Section 5.2 which demonstrated that the only
message an LP can receive from other LPs is the
external (q) message. Therefore, at every execution
cycle, when the top most element of the inputQ is a q
message, the LP can process this event if and only if it
has already received a q message from every other LP.
These q messages could either be real q messages with
meaningful data and positive sign, or they could be
synthetic q messages with negative sign and no real
data (i.e. null-messages) which are sent only for the
purpose of synchronization. Thus, if it happens that the
LP does not yet have a q message from all other LPs, it

will be blocked waiting for other LPs to send their q
message. This mechanism is implemented as following:

while (!simulationDone){

 if (inputQ->top.type == 'q'){

 gotMsgfromLP(inputQ->type.sourceLP);

 if (receivedMsgfromAll == true)

excecute(q);

 else blockThisLP();

 }

}
Figure 5. LP locking mechanism for the

conservative CD++ simulator

5.3.1. Lookahead and null-message mechanism

When a simulation object on an LP sends and

output message (translated to q message by the node
coordinator) to a remote simulation object, this states
that there is no way that the remote LP will receive an
earlier message from the sender LP later in time. Thus
even if only one simulation object is the target of the q
message, this is enough for the receiver LP to be
assured that it will not receive causality causing
messages from that particular LP. Therefore, when an
LP sends a q message to one or more LPs, it should
also send a synthetic copy of that message to the rest of
LPs who are not the destination of this q message. This
is done by sending a negative q message that holds the
lookahead value of the sender LP. The lookahead value
will assure receiver LPs that they will not receive any
message from the source LP for the duration stated by
the lookahead value. The lookahead value for an LP is
basically the minimum time among all output messages
that will be sent by its local simulators (simulation
objects) minus the current local virtual time of the LP.
The lookahead computation algorithm and the null-
message sending mechanism are presented below.

Figure 6. Lookahead computation for the
conservative CD++ simulator

Figure 7. Null-message sending mechanism for the

conservative CD++ simulator
The lookahead computation is done by the flat

coordinator which is the parent coordinator of all local
simulators on that LP. However, detecting the need and
sending the null-messages are performed at the
WARPED layer. As mentioned earlier, this is to keep

the simulator core separated from the synchronization
mechanism applied at the WARPED kernel layer.

8. Conclusions

We tackled the problem of executing DEVS and
Cell-DEVS models in parallel and distributed
environments based on the proposed conservative
WARPED synchronization kernel. The hierarchical
architecture of the simulator was replaced with a
flattened one to reduce communication overhead
among the nodes. We showed how the flat architecture
simplifies messaging paradigms among remote LPs by
enabling each LP to talk to other LPs directly without
the need to use a central synchronizer residing on LP0.
We then introduced our extension to the WARPED
kernel which enables the kernel to support a
conservative synchronization mechanism based on the
classical null-message and lookahead algorithms. Our
proposed synchronization mechanism was kept at the
WARPED layer to provide a conservative protocol that
is not tied up to the simulator core and thus enables
easily switching among different synchronization
algorithms without modifying the simulator code. At
the end, we proved how our proposed algorithm avoids
causality errors and deadlock by presenting a sample
execution scenario.

10. References

[1] Fujimoto, R.M. "Parallel and Distributed Simulation
Systems." Proceedings of the Winter Computer Simulation
Conference. Phoenix, AZ. USA. 2001.
[2] Bryant, R. E. "Simulation of packet communication
architecture computer systems". Massachusetts Institute of
Technology. Cambridge, MA. USA. 1977.
[3] Chandy, K.; Misra, J. "Distributed Simulation: A Case
Study in Design and Verification of Distributed-Programs."
IEEE Transactions on Software Engineering, pp. 440-452.
1979.
[4] Jefferson, D. "Virtual Time". ACM Transactions on
Programming Languages and Systems. 7(3):405-425. 1985.
[5] Zeigler, B. "Theory of modeling and simulation". First
Edition. Wiley. 1976.
[6] Wainer, G.; Giambiasi, N. "Specification, modeling and
simulation of timed Cell-DEVS spaces". Technical Report n.:
98-007. Departamento de Computación. Facultad de Ciencias
Exactas y Naturales. Universidad de Buenos Aires. Ar-
gentina. 1998.
[7] Wainer, G.; Christen G.; Dobniewski, A. "Defining
models with the CD++ toolkit". Proceedings of the European
Simulation Symposium. Marseille, France. SCS Publisher.
2001.

[8] Martin, D. E.; McBrayer, T. J.; Radhakrishnan, R.;
Wilsey, P. A. "WARPED - A Time Warp Parallel Discrete
Event Simulator". Available at:
 http://www.ececs.uc.edu/~paw/warped/doc/index.html.
1999. [Accessed April, 2009].
[9] Troccoli, A.; Wainer, G. "CD++, a tool for simulating
Parallel DEVS and Parallel Cell-DEVS models". Técnica
Reporta. Departamento de Computación. Facultad de
Ciencias Exactas y Naturales. Universidad de Buenos Aires.
Ar-gentina. 2001.
[10] Glinsky, E. "New Techniques for Parallel Simulation of
DEVS and Cell-DEVS Models in CD++". M. A. Sc. Thesis.
Carleton University. Canada. 2004.
[11] Kim, K.; Kang, W. "CORBA-based, Multi-threaded
Distributed Simulation of Hierarchical DEVS Models: Trans-
forming Model Structure into a Non-hierarchical One".
International Conference on Computational Science and Its
Applications (ICCSA). Assisi, Italy. 2004.
[12] Liu, Q. "Distributed Optimistic Simulation of DEVS and
Cell-DEVS Models with PCD++". M. A. Sc. Thesis. Carleton
University. Canada. 2006.
[13] Radhakrishnan, R.; Martin, D. E.; Chetlur, M.; Rao, D.
M.; Wilsey, P.A. "An Object-Oriented Time Warp Simulation
Kernel". Proceedings of the International Symposium on
Computing in Object-Oriented Parallel Environments
(ISCOPE'98). Vol. LNCS 1505, pp. 13-23. Springer-Verlag.
1998.
[14] Chandy, K. M.; Misra J. "Distributed simulation: A case
study in design and verification of distributed programs".
IEEE Transactions on Software Engineering. pp.440-452.
1978.

