Flattened Conservative Parallel Simulator for DEVSand CELL-DEVS

Shafagh Jafer, Gabriel Wainer
{gafer,gwainer}@sce.carleton.ca
Dept. of Systems and Computer Engineering
Carleton University Centre of Visualization and Smulation (V-Sm),
1125 Colone By Dr. Ottawa, ON, Canada.

community which is interested in developing reddist
scenarios in distributed environments.

Among the existing modeling and simulation
techniques, DEVS (Discrete Event System
Specification) formalism [5] provides a discreteept/

Abstract

Synchronization as the key to paralld and
distributed computing requires a robust mechanism to
handle communication among concurrent processes.

In this paper we propose a flattened parallel simulator
for DEVS and Cell-DEVS based on the classical null-
message and lookahead based synchronization
mechanism. We first present how flattening the

approach which allows construction of hierarchical
models in a modular manner. In this work, our main
focus is on discrete-event M&S approach and DEVS
formalism which has been proven to be a universal

formalism to represent DEDS (Discrete Event Dynamic
Systems).

The Timed Cell-DEVS formalism [6] is an
extension to the traditional Cellular Automata wwhic
makes use of DEVS by defining every cell to repnése
an atomic DEVS model and coupling them together to
form a complete cell space representing a coupled
DEVS model. Parallel Cell-DEVS formalism extends
the standard formalisms of Cell-DEVS to allow a
higher degree of parallelism in parallel and disttéd
environments. CD++ [7] is a modeling toolkit that
implements the DEVS and Cell-DEVS theories by
applying the original formalisms.

In this work we propose the implementation of the

lassical conservative synchronization mechanism in

ARPED kernel [8] to support parallel and distribait
simulation of DEVS and Cell-DEVS.

architecture reduces communication overheads among
participating nodes. Then we propose our blocking
mechanism used to suspend the logical processes. After
that we present our lookahead computation and null-
message mechanism used to avoid causality errors as
well as deadlock. Our conservative mechanism is
implemented in WARPED kernel and can be used by
any DEVS and Cell-DEVS parallel simulators who
wish to adapt a conservative synchronization
approach.

1. Introduction

Parallel and distributed simulation (PADS)
techniques were proposed to resolve the issues o
complex models simulation. Not only the shortage of
resources, but also the long execution times briough
the idea of Parallel discrete event simulation (BPE
studies. Fujimoto [1] classifies three major reshar
categories in the area of parallel and distributed
simulation. The first research group is the high The first parallel version of CD++ [9] was based on
performance computing community which started in @ central synchronizer approach exploiting the
late 1970's and 1980’s aiming at reducing execution Parallelism inherent to the DEVS formalism. Under
time by using multiple processors. This community that scheme, a single root coordinator acts alaag|
developed the world wide known fundamental ideas by Scheduler for every node participating in the
proposing two Synchronization a|gorithms: Chandy_ simulation. Based on this structure, all event$ wlite
Misra-Bryant [2, 3] and Time Warp [4]. The second same timestamp are scheduled to be processed
group is the Defense Community’ which main|y fosuse Simultaneously on the available nodes. The simulato

on facilitating interoperability and software reuse introduced two different types of coordinators; teas
Finally, the third group is the gaming and Internet and slave to reduce inter-process communicatioe. Th

simulation is carried out by DEVS processors which

3. PreviousWorks

are of two types: simulator and coordinator. The
simulator represents an atomic DEVS model, whege th
coordinator is paired with a coupled model. Asiadgrf
these two types of coordinators, a special cootdina
namely, root coordinator was introduced. The root
resided above the topmost coordinator. It was
responsible for driving the simulation and advagcin
the virtual simulation time. It was also responrsifdr
handling external events that arrive from
environment.

At the beginning of the simulation, one logical
process (LP) would reside on each machine (physical

the

process). Then, each LP would host one or more DEVS

processors. Thus, not all of a coordinator’s cleidr
would necessarily sit on the same LP. A coordinator
would communicate with its child processors through
intra-process messaging if they reside on the date
and through inter-process messaging if they were
sitting on remote LPs. Figure 1 represents theasten
The Parallel CD++ runs the abstract simulator
described in [9]. The DEVS processor (root
coordinator, simulator, slave coordinator or master
coordinator) were the simulation objects that rarhe
available LPs. The simulator and master and slave
coordinator were designed in such a way that upon

intra-process msg
«----p inter-process msg

MasterCoordir

LF

SlaveCoordir

Figure 1. Hierarchical architecture of the first
parallel CD++ simulator

4. Proposed Approach

The first issue that must be considered for
implementing the proposed conservative simulatéo is

receiving any messages, any other message that ge@Odlfy the hierarchical architecture of the simafan

sent in response had the same timestamp. This weas d
to the fact that, the root coordinator was the only

[9] to a flattened one. Using a flat simulation
mechanism rather than the traditional hierarchocsd

DEVS processor that advanced time by sending a neweduces the overhead in communication by reducing

message with the time of the next imminent model or
external event. In the scope of this abstract ksitoy a
message was only considered a straggler if its
timestamp t was less than the local virtual timgT)

of the receiving LP. An LP was allowed to receive
multiple messages with a timestamp equal to its LVT
The only constraint that needed to be placed wais th

the number of exchange messages (especially inter-
process message) to minimum. This is achieved by
simplifying the underlying simulator structure, \ehi
keeping the same model definition and preservirg th
separation between model and simulator [10].
Researchers have shown that flat simulators owtparf
hierarchical ones significantly [10, 11, 12]. Thagve

two or more events sent from a source object S to aa|SO showed that aI-though the hierarchical sirmoulat

destination object D shall preserve the same argeri
upon arrival to D. Due to the existence of rootnigei
the central synchronizer, this parallel simulatould
never produce a straggler message thus
synchronization mechanism at the LP level was used
since the synchronization was provided by the
application itself.

Thus, as described above, the parallel CD++ predent
in [9] did not implement any of the two practical

presented in [9] tried to reduce the communication
overhead by introducing two specialized DEVS
coordinators, but in some cases the communication

nooverhead was still significantly high. The flattene

architecture that will be presented here is degifiem

[10] which was the first attempt to re-design the

parallel CD++ simulator to adopt a flattened stioet

4.1. Flattened Architecturefor the Proposed
Conservative Simulator

synchronization mechanisms namely, conservative and

optimistic. This was the motivation for us to prspo
the first conservative parallel and distributed idator
for Cell-DEVS by extending the WARPED kernel [8]
to support such synchronization algorithm. In tlestn
section we will describe the details of the propbse
conservative simulator.

To achieve our goals, the whole abstract simuiator
redesigned to reflect the two major modifications;
the departure from centralized root-based simukatar
conservative-based simulator, and flattening the
structure of the simulator. As a result, a new Rara
DEVS simulator is implemented which deals with the

communication overhead dilemma by using a flattened DEVS models, done messages handle synchronization

structure rather than the old hierarchical approdtie by carrying the model timing information. The

new flattened architecture would be as presented insimulation is executed in a message-driven manner.

Figure2. Each type of PCD++ processor, defines its own vecei
As shown in the flattened architecture diagram, one functionality for each type of messages.

LP is created on each machine encapsulating the DEV

processors. Only one Root is created on machine 04,3, |ayered architecture

(LPO) which interacts with other NCs using inter-

process messaging (for remote NC) and intra-processrigure 3 illustrates the layered architecture of th
messaging (for local NC). The Root coordinatornis i proposed conservative CD++ simulator, where each

charge of starting the simulation and performir@ I/ |ayer only depends on the layers below it.
operations among simulation system and the

surrounding environment. Only one NC is created on

Mode

each machine and acts as the local central cosrtrafi ‘ Conservative Simulator
its hosting LP. The NC is the parent coordinatorHG ‘ WARPED Kernel ‘
and routes remote messages received from the Root o ‘ MPI ‘

from other remote NCs to the FC. The Simulators are
the child processors of the local FC which repretden ‘
atomic components of DEVS and Cell-DEVS models. Figure 3. Layered architecture of the proposed
When a Simulator needs to communicate with a remote conservative CD++ simulator
Simulator residing on another LP, it sends the agss In order to implement the classical conservative
to its FC, then the message is forwarded to the Ncalgorithm for the proposed simulator, we have ubed
above it. Once the message is at the NC, it wither ~ WARPED kernel [13, 8] which is a public domain
be routed to the destination NC. There is no direct Simulation kernel originally developed at the Umsity
communication among Simulators; all messages mustof Cincinnati. WARPED provides an implementation of
be forwarded to the parent FC. This is why the §C i Jefferson’s original Time Warp algorithm [4]. The
known as the local central controller of its hogtirP. WARPED kernel is an attempt to make a freely available
Time Warp simulation kernel that is easily ported,
simple to modify and extend, and readily attached t
— Intre-process message new applications. For the purpose of our reseaseh,
LRt have only used the services provided WYRPED to
== | facilitate the distribution of the simulation ext¢ives
v on the nodes. We have not used the functionatitias
implement the Time Warp algorithm such as state
e saving and rollback mechanism. Since our purpote is
build a conservative simulator, we have only used
‘ ‘ _ ‘ WARPED as the middleware that supports creation of
model objects (simulation objects) as entities Whic

Operating System ‘

‘ Simulator 1 ‘ ‘SimulalolZ

‘ Simulator3 ‘ ‘ latol 4 H i

Figure 2. Flattened ar chitecture for the proposed exchange messages (time-stamped events) with each
conservative simulator other and respond to events by applying them t the
internal stats. Thus, the kernel was used to peovid
4.2. Message definition functionalities for sending and receiving events by

simulation objects. The kernel also provides a #mp
The processors exchange two categories of definition of time (which can be redefined by trser)
messages: content messages and control messages. Thnd functions to perform consistent 1/O operations.

first category includes the external message (x)tha Our implementation of the conservative mechanism
output message (y), and the second category ineluderesides on thavarRPED kernel layer and is separated
the initialization message (1), the collect messg@?, from the core simulator code. Therefore it can be

the internal message (*), and the done messagel(D). viewed as new extension WARPED kernel which can
describe these messages, external and output reessagbe used by other researches who would like to use
are used to exchange simulation data between thewarRPED kernel as a conservative synchronization

models, initialization messages start the simutatio middleware for their DEVS-based simulator.
collect and internal messages trigger the outpdtthe

state transition functions respectively in the atom

5. Design of the Conservative CD++ responsible for a single queue for all the simafati
Simulator objects on an LP. Each simulation cycle starts by

removing the first element of the inputQ and preces

Conservative synchronization approaches were the't byd_thef[destln?tl_on ds!mlgat?n O4b]]e-Ct. The [ijVE
first synchronization algorithms proposed in théela coordinators explained in Section 4.1 are respigsi

1970s by R. E. Bryant [2], K. M. Chandy and J. Misr for delivering the message to the correspondinglloc

[14]. This synchronization technique which is known simulation object based on thiestination_id field of

the Chandy-Misra-Bryant (CMB) algorithm, disallows thbg mtput e.(\j/.ent' on thengther Sand, when a St'mmat'th
any occurrence of causality errors. In conservative OPI€Ct restding on an LF Sends a message to another
schemes, if a LP has an unprocessed event withremote object on a different LP, the communication

timestampt and it is guaranteed that no event with manager is responsible for delivering this mesdage

earlier timestamp can be received, then the préibabi placing it into thg inputQ of dgs.tination LP. Thibole

that causality error may happen is zero. When the L process of Seﬁd'”g _and recewing time stamped SV?“t
has a list of unprocessed events from all other iLPs almonlg tthe sm(;ulanon l.ObJeCtS ngeds dto i)e hSIUd'ed
can safely process the event with lowest timestampc 0sely lo avoid causa ity errors In orcer to nave
because the future events will for sure have Iargerre“able conservative par_aIIeI sw_nulator._One Intpo .
timestamps. As long as there are unprocessed eventEaCt that must be considered is that in consereativ

from all other LPs, then this cycle can be repeated mechanism each LP has its own local virtual clock
synchronization i,s guaranteed. However, if this (LVT) and thus if the synchronization is performed

condition is not met, then there is a risk of deakl p_oorly,_there Is 90"’.‘9 to pe causality_ error and th
Technique to resolve this deadlock is to find the simulation rgsults will be incorrect. Since in DEVS
model’s lookahead, which provides the smallest time there are different messages exghanged among local
stamp of the new events that a process can schigdule a_nd reT“Ote processing _ent|t|es (|_.e. coordlnatcmd_; a
the future. Null messages are responsible to cauty simulation objects) It IS Very important to first
the lookahead information among LPs. This way each understand how these different types of messages ar

LP, based on the lookahead information that itivese s_ent b?Ck an_d forth and if they only affect '00?'
from all other LPs can derive a lower bound on the S|mula}t|on objects or remote ones. These messaging
time stamp (LBTS) of the events that it will receiv paradigms are described in details next.

future. As a result, the LP would know which evient))

safe to process. An example of a safe lookaheageval 2-2- Messaging paradigms

is the timestamp of the first unprocessed everthén) o)
input queue. The main drawback of the conservative AS Was discussed earlier, in DEVS there are five

synchronization approach is the time-wasting flow o different types of messages exchanged among
null messages which degrade the simulation simulator, flat coordinator, node coordinator (N&hyd

performance significantly. root coordinator (incase of LPO). Figure 4 illustsa
In the following sections we will describe the NowW these messages are propagated during the
design details for our conservative simulator. execution. As you can see in Figure 4, the only

message that could arrive from remote LPs is the
external (q) message. The rest of the messagéscaite

to each LP and thus could not cause causality eabr
other LPs. When a simulator (simulation object) tsan
to send a message to another remote object, tt firs
sends an output (y) message to its flat coordinatua
then the flat coordinator translates this messagant
external (q) message and sends it upward to it® nod
coordinator. Once the node coordinator receives thi
message, since it knows about which simulationaibje
guns on which LP, it forwards that g message toLfhe

of the destination simulation object through its
communication manager.

5.1. Scheduling mechanism

As we mentioned in the previous section, we use the
WARPED kernel as the middleware which provides
basic mechanism for handling scheduling at each LP.
Every LP has a single Lowest Time Stamp First
(LTSF) scheduler and a single input queue whicll$ol
all the input messages for all the local simulation
objects (local simulators). This single inputQ is
therefore, the unprocessed events queue for each L
Aside from input events that arrive from other laPsl
the environment, the inputQ also holds those events
that are sent from a local simulation object tothao
local object. This queuing mechanism provides an
easy-to-handle messaging strategy which is only

L int@ " ¢

simulator i simulator i
LPC

Figure 4. M essage exchange in conservative CD++
simulator
Next we will present our implementation of the
conservative algorithm in WARPED kernel.

LPr

5.3. New extension to WARPED

We have implemented the null-message based
conservative algorithm in WARPED in such a way that
the simulator does not know about the synchrorimati
algorithm that is used in the WARPED layer below it
This separation enables switching between different
synchronization mechanisms without the need to
change the simulator code. The two major
modifications which took place in the Time Warp
kernel of WARPED will be presented next.

5.3.1. LP locking mechanism

We mentioned that there is a single LTSF scheduler
residing on each LP which schedules the top most
element of the inputQ to be executed next. However,
this should only happen if the LP has received a

message from all other LPs so that no message with

earlier timestamp will be received at the LP later
time. The way we have implemented this is based on

will be blocked waiting for other LPs to send thgir
message. This mechanism is implemented as following

while (IsimulationDone){
if (inputQ->top.type =='q'{
gotMsgfromLP(inputQ->type.sourceLP);
if (receivedMsgfromAll == true)
excecute(q);
blockThisLP();

else

}

}
Figure 5. LP locking mechanism for the
conservative CD++ simulator

5.3.1. Lookahead and null-message mechanism

When a simulation object on an LP sends and
output message (translated to q message by the node
coordinator) to a remote simulation object, thistes
that there is no way that the remote LP will reeeiwn
earlier message from the sender LP later in tinmeisT
even if only one simulation object is the targeth# g
message, this is enough for the receiver LP to be
assured that it will not receive causality causing
messages from that particular LP. Therefore, when a
LP sends a q message to one or more LPs, it should
also send a synthetic copy of that message tcesteof
LPs who are not the destination of this q messags.
is done by sending a negative g message that Hudds
lookahead value of the sender LP. The lookaheageval
will assure receiver LPs that they will not receasmy
message from the source LP for the duration stayed
the lookahead value. The lookahead value for amsLP
basically the minimum time among all output message
that will be sent by its local simulators (simubeti
objects) minus the current local virtual time oé thP.

The lookahead computation algorithm and the null-
message sending mechanism are presented below.

waitForAllDoneMsgs()
lookaheac = minOutPutMsgTime (outputMsgs) - currentLVT

Figure 6. L ookahead computation for the
conservative CD++ simulator

the messaging paradigm of DEVS which was presented

in Section 5.2 which demonstrated that the only

message an LP can receive from other LPs is the
external (q) message. Therefore, at every execution

cycle, when the top most element of the inputQ ¢ a
message, the LP can process this event if andifoily
has already received a q message from every other L
These g messages could either be real g messatles wi
meaningful data and positive sign, or they could be
synthetic g messages with negative sign and no rea
data (i.e. null-messages) which are sent only ler t
purpose of synchronization. Thus, if it happens tha

LP does not yet have a g message from all otheritPs

If (msgToSend type == ‘q)
for (allLPs who are not targeted by q msg){
sendNullMsg(lookahead)

,
Il

,

J

Figure 7. Null-message sending mechanism for the
conservative CD++ simulator
The lookahead computation is done by the flat
coordinator which is the parent coordinator ofladal
kimulators on that LP. However, detecting the reedi
sending the null-messages are performed at the
WARPED layer. As mentioned earlier, this is to keep

the simulator core separated from the synchromimati [8] Martin, D. E.; McBrayer, T. J.; RadhakrishnaR,;
mechanism applied at the WARPED kernel layer. Wilsey, P. A. "WARPED - A Time Warp Parallel Distee
Event Simulator". Available at:
. http://www.ececs.uc.edu/~paw/warped/doc/index.html
8. Conclusions 1999. [Accessed April, 2009].
[9] Troccoli, A.; Wainer, G. "CD++, a tool for sirfating
We tackled the problem of executing DEVS and Parallel DEVS and Parallel Cell-DEVS models". Téeni
Cell-DEVS models in parallel and distributed Reporta. Departamento de Computacion. Facultad de
environments based on the proposed conservativeCiencias Exactas y Naturales. Universidad de Buénres.
WARPED synchronization kernel. The hierarchical A'-gentina.2001.

architecture of the simulator was replaced with a [10] Glinsky, E. "New Techniques for Parallel Sirmion of
p DEVS and Cell-DEVS Models in CD++". M. A. Sc. Thesi

flattened one to reduce communication overhead cqeton University. Canada. 2004.
among the nodes. We showed how the flat architectur [11] Kim, K.; Kang, W. "CORBA-based, Multi-threaded

simplifies messaging paradigms among remote LPs bybDistributed Simulation of Hierarchical DEVS Modelrans-
enabling each LP to talk to other LPs directly with forming Model Structure into a Non-hierarchical One
the need to use a central synchronizer residingRh International Conference on Computational Scienue ks
We then introduced our extension to the WARPED Applications (ICCSA). Assisi, Italy. 2004.

kernel which enables the kernel to support a [12] Liu, Q. "Distributed Optimistic Simulation @EVS and

conservative synchronization mechanism based on the-¢!"DEVS Models with PCD++". M. A. Sc. Thesis. @ion

. - qJniversity. Canada. 2006.
classical null-message and lookahead algorithms. Ou [13] Radhakrishnan, R.; Martin, D. E.; Chetlur, Rao, D.

proposed synchronization mechanism was kept at they . wiisey, P.A. "An Object-Oriented Time Warp Sitation
WARPED layer to provide a conservative protocottha Kernel". Proceedings of the International Symposiom

is not tied up to the simulator core and thus esmbl Computing in Object-Oriented Parallel Environments
easily switching among different synchronization (ISCOPE'98). Vol. LNCS 1505, pp. 13-23. Springeri¥g.
algorithms without modifying the simulator code. At 1998.

the end’ we proved hOW our proposed a|gor|thm a/0|d [14] Chandy, K. M, Misra J. "Distributed simulatinA case

causality errors and deadlock by presenting a sampl study in design and verification of distributed gmnams".
execution scenario. IEEE Transactions on Software Engineering. pp.48B-4

1978.

10. References

[1] Fujimoto, R.M. "Parallel and Distributed Simtitan
Systems." Proceedings of the Winter Computer Sitila
Conference. Phoenix, AZ. USA. 2001.

[2] Bryant, R. E. "Simulation of packet communicati
architecture computer systems". Massachusettstutestdf
Technology. Cambridge, MA. USA. 1977.

[3] Chandy, K.; Misra, J. "Distributed SimulatioA& Case
Study in Design and Verification of Distributed-Brams."
IEEE Transactions on Software Engineering, pp. 44D-
1979.

[4] Jefferson, D. "Virtual Time". ACM Transactionsn
Programming Languages and Systems. 7(3):405-48%.19
[5] Zeigler, B. "Theory of modeling and simulationFirst
Edition. Wiley. 1976.

[6] Wainer, G.; Giambiasi, N. "Specification, moiel and
simulation of timed Cell-DEVS spaces". Technicap&e n.:
98-007. Departamento de Computacion. Facultad eedzis
Exactas y Naturales. Universidad de Buenos Aires. A
gentina. 1998.

[7] Wainer, G.; Christen G.; Dobniewski, A. "Defirg
models with the CD++ toolkit". Proceedings of ther&@pean
Simulation Symposium. Marseille, France. SCS Phblis
2001.

