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Abstract 
 

Synchronization as the key to parallel and 
distributed computing requires a robust mechanism to 
handle communication among concurrent processes. 
In this paper we propose a flattened parallel simulator 
for DEVS and Cell-DEVS based on the classical null-
message and lookahead based synchronization 
mechanism. We first present how flattening the 
architecture reduces communication overheads among 
participating nodes. Then we propose our blocking 
mechanism used to suspend the logical processes. After 
that we present our lookahead computation and null-
message mechanism used to avoid causality errors as 
well as deadlock. Our conservative mechanism is 
implemented in WARPED kernel and can be used by 
any DEVS and Cell-DEVS parallel simulators who 
wish to adapt a conservative synchronization 
approach. 
 
1. Introduction 
 

Parallel and distributed simulation (PADS) 
techniques were proposed to resolve the issues of 
complex models simulation. Not only the shortage of 
resources, but also the long execution times brought up 
the idea of Parallel discrete event simulation (PDES) 
studies. Fujimoto [1] classifies three major research 
categories in the area of parallel and distributed 
simulation. The first research group is the high 
performance computing community which started in 
late 1970’s and 1980’s aiming at reducing execution 
time by using multiple processors. This community 
developed the world wide known fundamental ideas by 
proposing two synchronization algorithms: Chandy-
Misra-Bryant [2, 3] and Time Warp [4]. The second 
group is the Defense community, which mainly focuses 
on facilitating interoperability and software reuse. 
Finally, the third group is the gaming and Internet 

community which is interested in developing realistic 
scenarios in distributed environments.  

Among the existing modeling and simulation 
techniques, DEVS (Discrete Event System 
Specification) formalism [5] provides a discrete-event 
approach which allows construction of hierarchical 
models in a modular manner. In this work, our main 
focus is on discrete-event M&S approach and DEVS 
formalism which has been proven to be a universal 
formalism to represent DEDS (Discrete Event Dynamic 
Systems).  

The Timed Cell-DEVS formalism [6] is an 
extension to the traditional Cellular Automata which 
makes use of DEVS by defining every cell to represent 
an atomic DEVS model and coupling them together to 
form a complete cell space representing a coupled 
DEVS model. Parallel Cell-DEVS formalism extends 
the standard formalisms of Cell-DEVS to allow a 
higher degree of parallelism in parallel and distributed 
environments. CD++ [7] is a modeling toolkit that 
implements the DEVS and Cell-DEVS theories by 
applying the original formalisms. 

In this work we propose the implementation of the 
classical conservative synchronization mechanism in 
WARPED kernel [8] to support parallel and distributed 
simulation of DEVS and Cell-DEVS. 

 

3. Previous Works 
 

The first parallel version of CD++ [9] was based on 
a central synchronizer approach exploiting the 
parallelism inherent to the DEVS formalism. Under 
that scheme, a single root coordinator acts as a global 
scheduler for every node participating in the 
simulation. Based on this structure, all events with the 
same timestamp are scheduled to be processed 
simultaneously on the available nodes. The simulator 
introduced two different types of coordinators; master 
and slave to reduce inter-process communication. The 
simulation is carried out by DEVS processors which 



are of two types: simulator and coordinator. The 
simulator represents an atomic DEVS model, where the 
coordinator is paired with a coupled model. Aside from 
these two types of coordinators, a special coordinator 
namely, root coordinator was introduced. The root 
resided above the topmost coordinator. It was 
responsible for driving the simulation and advancing 
the virtual simulation time. It was also responsible for 
handling external events that arrive from the 
environment.  

At the beginning of the simulation, one logical 
process (LP) would reside on each machine (physical 
process). Then, each LP would host one or more DEVS 
processors. Thus, not all of a coordinator’s children 
would necessarily sit on the same LP. A coordinator 
would communicate with its child processors through 
intra-process messaging if they reside on the same LP, 
and through inter-process messaging if they were 
sitting on remote LPs. Figure 1 represents the scenario. 

The Parallel CD++ runs the abstract simulator 
described in [9]. The DEVS processor (root 
coordinator, simulator, slave coordinator or master 
coordinator) were the simulation objects that ran on the 
available LPs. The simulator and master and slave 
coordinator were designed in such a way that upon 
receiving any messages, any other message that gets 
sent in response had the same timestamp. This was due 
to the fact that, the root coordinator was the only 
DEVS processor that advanced time by sending a new 
message with the time of the next imminent model or 
external event.  In the scope of this abstract simulator, a 
message was only considered a straggler if its 
timestamp t was less than the local virtual time (LVT) 
of the receiving LP. An LP was allowed to receive 
multiple messages with a timestamp equal to its LVT. 
The only constraint that needed to be placed was that 
two or more events sent from a source object S to a 
destination object D shall preserve the same ordering 
upon arrival to D. Due to the existence of root being 
the central synchronizer, this parallel simulator could 
never produce a straggler message thus no 
synchronization mechanism at the LP level was used 
since the synchronization was provided by the 
application itself. 
Thus, as described above, the parallel CD++ presented 
in [9] did not implement any of the two practical 
synchronization mechanisms namely, conservative and 
optimistic. This was the motivation for us to propose 
the first conservative parallel and distributed simulator 
for Cell-DEVS by extending the WARPED kernel [8] 
to support such synchronization algorithm. In the next 
section we will describe the details of the proposed 
conservative simulator. 

 

Figure 1. Hierarchical architecture of the first 
parallel CD++ simulator 

 
4. Proposed Approach 
 

The first issue that must be considered for 
implementing the proposed conservative simulator is to 
modify the hierarchical architecture of the simulator in 
[9] to a flattened one. Using a flat simulation 
mechanism rather than the traditional hierarchical one 
reduces the overhead in communication by reducing 
the number of exchange messages (especially inter-
process message) to minimum. This is achieved by 
simplifying the underlying simulator structure, while 
keeping the same model definition and preserving the 
separation between model and simulator [10]. 
Researchers have shown that flat simulators outperform 
hierarchical ones significantly [10, 11, 12]. They have 
also showed that al-though the hierarchical simulator 
presented in [9] tried to reduce the communication 
overhead by introducing two specialized DEVS 
coordinators, but in some cases the communication 
overhead was still significantly high. The flattened 
architecture that will be presented here is depicted from 
[10] which was the first attempt to re-design the 
parallel CD++ simulator to adopt a flattened structure. 
4.1. Flattened Architecture for the Proposed    
       Conservative Simulator 

 
To achieve our goals, the whole abstract simulator is 

redesigned to reflect the two major modifications; i.e. 
the departure from centralized root-based simulator to a 
conservative-based simulator, and flattening the 
structure of the simulator. As a result, a new Parallel 
DEVS simulator is implemented which deals with the 



communication overhead dilemma by using a flattened 
structure rather than the old hierarchical approach. The 
new flattened architecture would be as presented in 
Figure2. 

As shown in the flattened architecture diagram, one 
LP is created on each machine encapsulating the DEVS 
processors. Only one Root is created on machine 0 
(LP0) which interacts with other NCs using inter-
process messaging (for remote NC) and intra-process 
messaging (for local NC). The Root coordinator is in 
charge of starting the simulation and performing I/O 
operations among simulation system and the 
surrounding environment. Only one NC is created on 
each machine and acts as the local central controller on 
its hosting LP. The NC is the parent coordinator for FC 
and routes remote messages received from the Root or 
from other remote NCs to the FC. The Simulators are 
the child processors of the local FC which represent the 
atomic components of DEVS and Cell-DEVS models. 
When a Simulator needs to communicate with a remote 
Simulator residing on another LP, it sends the message 
to its FC, then the message is forwarded to the NC 
above it. Once the message is at the NC, it will further 
be routed to the destination NC. There is no direct 
communication among Simulators; all messages must 
be forwarded to the parent FC. This is why the FC is 
known as the local central controller of its hosting LP. 

 

Figure 2. Flattened architecture for the proposed 
conservative simulator 

 
4.2. Message definition    
 

The processors exchange two categories of 
messages: content messages and control messages. The 
first category includes the external message (x) and the 
output message (y), and the second category includes 
the initialization message (I), the collect message (@), 
the internal message (*), and the done message (D). To 
describe these messages, external and output messages 
are used to exchange simulation data between the 
models, initialization messages start the simulation, 
collect and internal messages trigger the output and the 
state transition functions respectively in the atomic 

DEVS models, done messages handle synchronization 
by carrying the model timing information. The 
simulation is executed in a message-driven manner. 
Each type of PCD++ processor, defines its own receive 
functionality for each type of messages. 
 
4.3. Layered architecture    
 
Figure 3 illustrates the layered architecture of the 
proposed conservative CD++ simulator, where each 
layer only depends on the layers below it.  

 
Figure 3. Layered architecture of the proposed 

conservative CD++ simulator 
In order to implement the classical conservative 

algorithm for the proposed simulator, we have used the 
WARPED kernel [13, 8] which is a public domain 
simulation kernel originally developed at the University 
of Cincinnati.  WARPED provides an implementation of 
Jefferson’s original Time Warp algorithm [4]. The 
WARPED kernel is an attempt to make a freely available 
Time Warp simulation kernel that is easily ported, 
simple to modify and extend, and readily attached to 
new applications. For the purpose of our research, we 
have only used the services provided by WARPED to 
facilitate the distribution of the simulation executives 
on the nodes. We have not used the functionalities that 
implement the Time Warp algorithm such as state 
saving and rollback mechanism. Since our purpose is to 
build a conservative simulator, we have only used 
WARPED as the middleware that supports creation of 
model objects (simulation objects) as entities which 
exchange messages (time-stamped events) with each 
other and respond to events by applying them to their 
internal stats. Thus, the kernel was used to provide 
functionalities for sending and receiving events by 
simulation objects. The kernel also provides a simple 
definition of time (which can be redefined by the user) 
and functions to perform consistent I/O operations.  

Our implementation of the conservative mechanism 
resides on the WARPED kernel layer and is separated 
from the core simulator code. Therefore it can be 
viewed as new extension to WARPED kernel which can 
be used by other researches who would like to use 
WARPED kernel as a conservative synchronization 
middleware for their DEVS-based simulator.   
 



5. Design of the Conservative CD++   
Simulator 

 
Conservative synchronization approaches were the 

first synchronization algorithms proposed in the late 
1970s by R. E. Bryant [2], K. M. Chandy and J. Misra 
[14]. This synchronization technique which is known 
the Chandy-Misra-Bryant (CMB) algorithm, disallows 
any occurrence of causality errors. In conservative 
schemes, if a LP has an unprocessed event with 
timestamp t and it is guaranteed that no event with 
earlier timestamp can be received, then the probability 
that causality error may happen is zero. When the LP 
has a list of unprocessed events from all other LPs it 
can safely process the event with lowest timestamp 
because the future events will for sure have larger 
timestamps. As long as there are unprocessed events 
from all other LPs, then this cycle can be repeated and 
synchronization is guaranteed. However, if this 
condition is not met, then there is a risk of deadlock. 
Technique to resolve this deadlock is to find the 
model’s lookahead, which provides the smallest time 
stamp of the new events that a process can schedule in 
the future. Null messages are responsible to carry out 
the lookahead information among LPs. This way each 
LP, based on the lookahead information that it receives 
from all other LPs can derive a lower bound on the 
time stamp (LBTS) of the events that it will receive in 
future. As a result, the LP would know which event is 
safe to process. An example of a safe lookahead value 
is the timestamp of the first unprocessed event in the 
input queue. The main drawback of the conservative 
synchronization approach is the time-wasting flow of 
null messages which degrade the simulation 
performance significantly. 

In the following sections we will describe the 
design details for our conservative simulator. 
 
5.1. Scheduling mechanism    
 

As we mentioned in the previous section, we use the 
WARPED kernel as the middleware which provides 
basic mechanism for handling scheduling at each LP. 
Every LP has a single Lowest Time Stamp First 
(LTSF) scheduler and a single input queue which holds 
all the input messages for all the local simulation 
objects (local simulators). This single inputQ is 
therefore, the unprocessed events queue for each LP. 
Aside from input events that arrive from other LPs and 
the environment, the inputQ also holds those events 
that are sent from a local simulation object to another 
local object. This queuing mechanism provides an 
easy-to-handle messaging strategy which is only 

responsible for a single queue for all the simulation 
objects on an LP. Each simulation cycle starts by 
removing the first element of the inputQ and processing 
it by the destination simulation object. The DEVS 
coordinators explained in Section 4.1 are responsible 
for delivering the message to the corresponding local 
simulation object based on the destination_id field of 
the input event. On the other hand, when a simulation 
object residing on an LP sends a message to another 
remote object on a different LP, the communication 
manager is responsible for delivering this message by 
placing it into the inputQ of destination LP. This whole 
process of sending and receiving time stamped events 
among the simulation objects needs to be studied 
closely to avoid causality errors in order to have a 
reliable conservative parallel simulator. One important 
fact that must be considered is that in conservative 
mechanism each LP has its own local virtual clock 
(LVT) and thus if the synchronization is performed 
poorly, there is going to be causality error and the 
simulation results will be incorrect. Since in DEVS 
there are different messages exchanged among local 
and remote processing entities (i.e. coordinators and 
simulation objects) it is very important to first 
understand how these different types of messages are 
sent back and forth and if they only affect local 
simulation objects or remote ones. These messaging 
paradigms are described in details next. 
 
5.2. Messaging paradigms    
 

As was discussed earlier, in DEVS there are five 
different types of messages exchanged among 
simulator, flat coordinator, node coordinator (NC), and 
root coordinator (incase of LP0). Figure 4 illustrates 
how these messages are propagated during the 
execution. As you can see in Figure 4, the only 
message that could arrive from remote LPs is the 
external (q) message. The rest of the messages are local 
to each LP and thus could not cause causality errors at 
other LPs. When a simulator (simulation object) wants 
to send a message to another remote object, it first 
sends an output (y) message to its flat coordinator, and 
then the flat coordinator translates this message to an 
external (q) message and sends it upward to its node 
coordinator. Once the node coordinator receives this 
message, since it knows about which simulation object 
runs on which LP, it forwards that q message to the LP 
of the destination simulation object through its 
communication manager. 

 



 
Figure 4. Message exchange in conservative CD++ 

simulator 
Next we will present our implementation of the 

conservative algorithm in WARPED kernel. 
 
5.3. New extension to WARPED    
 

We have implemented the null-message based 
conservative algorithm in WARPED in such a way that 
the simulator does not know about the synchronization 
algorithm that is used in the WARPED layer below it. 
This separation enables switching between different 
synchronization mechanisms without the need to 
change the simulator code. The two major 
modifications which took place in the Time Warp 
kernel of WARPED will be presented next. 
 
5.3.1. LP locking mechanism 
 

We mentioned that there is a single LTSF scheduler 
residing on each LP which schedules the top most 
element of the inputQ to be executed next. However, 
this should only happen if the LP has received a 
message from all other LPs so that no message with 
earlier timestamp will be received at the LP later in 
time. The way we have implemented this is based on 
the messaging paradigm of DEVS which was presented 
in Section 5.2 which demonstrated that the only 
message an LP can receive from other LPs is the 
external (q) message. Therefore, at every execution 
cycle, when the top most element of the inputQ is a q 
message, the LP can process this event if and only if it 
has already received a q message from every other LP. 
These q messages could either be real q messages with 
meaningful data and positive sign, or they could be 
synthetic q messages with negative sign and no real 
data (i.e. null-messages) which are sent only for the 
purpose of synchronization. Thus, if it happens that the 
LP does not yet have a q message from all other LPs, it 

will be blocked waiting for other LPs to send their q 
message. This mechanism is implemented as following: 

while (!simulationDone){

    if (inputQ->top.type == 'q'){

            gotMsgfromLP(inputQ->type.sourceLP);

 if (receivedMsgfromAll == true)

excecute(q);

 else blockThisLP();

    }

}  
Figure 5. LP locking mechanism for the 

conservative CD++ simulator 
 
5.3.1. Lookahead and null-message mechanism 

 
When a simulation object on an LP sends and 

output message (translated to q message by the node 
coordinator) to a remote simulation object, this states 
that there is no way that the remote LP will receive an 
earlier message from the sender LP later in time. Thus 
even if only one simulation object is the target of the q 
message, this is enough for the receiver LP to be 
assured that it will not receive causality causing 
messages from that particular LP. Therefore, when an 
LP sends a q message to one or more LPs, it should 
also send a synthetic copy of that message to the rest of 
LPs who are not the destination of this q message. This 
is done by sending a negative q message that holds the 
lookahead value of the sender LP. The lookahead value 
will assure receiver LPs that they will not receive any 
message from the source LP for the duration stated by 
the lookahead value. The lookahead value for an LP is 
basically the minimum time among all output messages 
that will be sent by its local simulators (simulation 
objects) minus the current local virtual time of the LP. 
The lookahead computation algorithm and the null-
message sending mechanism are presented below. 
 

Figure 6. Lookahead computation for the 
conservative CD++ simulator 

 

 
Figure 7. Null-message sending mechanism for the 

conservative CD++ simulator 
The lookahead computation is done by the flat 

coordinator which is the parent coordinator of all local 
simulators on that LP. However, detecting the need and 
sending the null-messages are performed at the 
WARPED layer. As mentioned earlier, this is to keep 



the simulator core separated from the synchronization 
mechanism applied at the WARPED kernel layer. 

 
8. Conclusions 
 

We tackled the problem of executing DEVS and 
Cell-DEVS models in parallel and distributed 
environments based on the proposed conservative 
WARPED synchronization kernel. The hierarchical 
architecture of the simulator was replaced with a 
flattened one to reduce communication overhead 
among the nodes. We showed how the flat architecture 
simplifies messaging paradigms among remote LPs by 
enabling each LP to talk to other LPs directly without 
the need to use a central synchronizer residing on LP0. 
We then introduced our extension to the WARPED 
kernel which enables the kernel to support a 
conservative synchronization mechanism based on the 
classical null-message and lookahead algorithms. Our 
proposed synchronization mechanism was kept at the 
WARPED layer to provide a conservative protocol that 
is not tied up to the simulator core and thus enables 
easily switching among different synchronization 
algorithms without modifying the simulator code. At 
the end, we proved how our proposed algorithm avoids 
causality errors and deadlock by presenting a sample 
execution scenario. 
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