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ABSTRACT 

Interoperating heterogeneous simulation models and tools is becoming a necessity in today’s cross-

enterprise collaboration market. Nevertheless, simulation models and engines have evolved apart in many 

directions, making their interoperability extremely complex. We present the RESTful Interoperability Si-

mulation Environment (RISE), which provides the means for interoperating simulation heterogeneous as-

sets. RISE uses Service-Oriented RESTful web-services, and it is based on three aspects: the framework 

architecture, the modeling level and the simulation synchronization level. RISE is independent of any si-

mulation engine, theory or an algorithm. However, it provides different rules for simulation domains with 

conservative or optimistic synchronization algorithms. Further, RISE does not require any implementa-

tion changes related to domain modeling or simulation methods. Furthermore, it hides domain internal 

specifics, giving freedom to define different internal implementation and algorithms. The presented work 

here is part of the on-going effort in the DEVS community to interoperate different DEVS-based simula-

tion assets. 

1 INTRODUCTION 

In today’s changing world, placing hardware or software assets around the world is becoming not enough 

reason for a user to be deprived of using them. For example, Universities are increasingly offering on-line 

programs via the Internet, allowing students to complete their education without being physically on 

campus (and all students are expected to receive the same level of education regardless of this). Sharing 

and reusing assets go beyond the education sector, or industry, and it is not only related to the fact that not 

every institution can afford purchasing the required hardware/software. For instance, conducting experi-

ments between different remote teams enlarge the circle of thinking for solving challenging problems 

(e.g. epidemics, defense, emergency etc.) quickly and efficiently. Interoperating these scattered assets is 

the main challenge. Making applications developed independently interact with each other is not trivial, 

since this interaction involves not only passing remote messages, but also synchronizing them (interpret-

ing messages and reacting to them correctly). Interoperating different companies’ assets translate into 

lower cost and increased return of investment (ROI), because interoperability translates into collaboration 

bridges among organizations. The ability to create and deploy new products rapidly at low cost is a com-

petitive advantage. Simulation assets also need to be interoperated, allowing collaboration in studying 

systems across organizations. 

Simulation interoperability requires specific simulation models to be executed on simulation engines 

according to a specific theory shared with different simulation teams. In general, modelers use the simula-

tion engines that they are familiar with, and can be experts within a simulation engine environment, but 

unable to use others. This partly explains the limited use of distributed simulation in industry, since ROI 

must always outweigh cost. Therefore, interoperability simulation standards must be easy to understand, 
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hide modeling specifics and hide simulation engines specifics such as theory and algorithms. These are 

necessary requirements because they translate into low cost with appealing ROI. In reality, a company, 

government office or research lab is not going to devote resources in order to interoperate heterogeneous 

models. On the other hand, avoiding the need to learn heterogeneous simulation environments, simulation 

algorithms, engine requirements, and modeling specifics is a true step toward low-cost simulation intero-

perability. 

The need for standardized simulation experiment framework, allowing synchronization among differ-

ent heterogeneous simulators is in a constant growing. The presented work here is part of the on-going ef-

fort in the DEVS community to interoperate different DEVS-based simulation assets. Indeed, DEVS im-

plementations use different synchronization protocols to achieve distributed simulation, which added 

more difficulty for developing practical standards that does not require major software design changes to 

existing systems (Wainer et al. 2010a; Wainer et al. 2010b). 

Based on these ideas, we propose here a plug-and-play simulation interoperability based on the Re-

presentational State Transfer (REST) Web-services style (Richardson et al. 2007). The method, named 

RESTful Interoperability Simulation Environment (RISE), provides a lightweight thin middleware based 

on RESTful Web-services. RISE allows heterogeneous simulation resources to interoperate at three le-

vels. (1) The interoperability framework architecture level provides the Application Programming Inter-

face (API) that allows modelers to create a simulation environment (including distributing simulations, 

starting simulation and retrieving results). (2) The model interoperability level provides XML rules for 

binding different models together (and defining domains as regions responsible of executing a simulation 

models connected with other domains’ heterogeneous models). (3) The simulation synchronization level 

provides high-level simulation algorithms and synchronization channels. 

We show how RISE allows interoperating heterogeneous simulation assets while hiding internal do-

main implementation using three URIs that can be named and constructed by clients. Existing systems do 

not to change their software implementations to support RISE. Further, RISE considers all of the neces-

sary issues to enable modelers to conduct complete simulation experiments from the point of setting up 

the environment until retrieving results. 

2 BACKGROUND 

RESTful Web-services (Richardson et al. 2007) provides interoperability by imitating the World Wide 

Web (WWW) style and principles . RESTful Web Services (Richardson et al. 2007) are gaining attention 

with the advent of Web 2.0  (O'Reilly 2005) and the concept of mashups (i.e. grouping of various services 

from different providers presented as a bundle). REST lightweight approach hides internal software im-

plementation (in “black boxes” called resources). Each resource exposes uniform channels (interfaces) 

and describes connectivity semantics between resources in form of messages (usually XML). In contrast, 

other approaches, such as CORBA or SOAP-based Web-services (Erl et al. 2008), expose functionalities 

in heterogeneous RPCs that often reflect internal implementation and describe semantics as procedure pa-

rameters (making difficult to interoperate existing simulation tools or to achieve plug-and-play distributed 

simulations. We detailed distributed simulation issues and future trends in (Wainer et al. 2010c). Plug-

and-play interoperability middleware is needed to advance distributed simulation in the industry sector as 

indicated by a number of surveys of experts from different backgrounds (Strassburger et al. 2008). Fur-

ther, REST enables simulations to mashup with Web 2.0 applications  (O'Reilly 2005), and linking any 

device attached to the Web at runtime.  

RESTful services are spread over a set of connected resources where each resource is named with a 

URI (similar to a website). Service consumers connect with those resources via universal standardized 

virtual uniform channels where semantic messages are applied to those resources. In our case, the chan-

nels are the HTTP methods showed in Figure 1: GET (to read a resource entirely or partially), PUT (to 

create a new resource or update existing data), POST (to append new data to a resource), and DELETE 

(to remove a resource). Resources use those channels to transfer their data (representation) among each 

other, hence transferring their representational state as specified by the name of the Representational State 
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Transfer (Richardson et al. 2007). RISE, formally known as RESTful-CD++ (Al-Zoubi et al. 2009a; Al-

Zoubi et al. 2009b), is a general middleware based on RESTful Web services. It provides a simulation en-

vironment independent of formalisms or tools. A simulation engine can be plugged into RISE regardless 

of its specifics (providing simulation service to modelers). For example, CD++ (Wainer 2009) has been 

plugged into the middleware to provide distributed simulation among different domains. 

 

 

Figure 1: Uniform Channels for RESTful Resources 

RISE API is expressed as URI templates that can be created at runtime. Variables in URI templates 

(written within braces {}) are assigned at runtime by clients before a request is sent to the server, enabling 

clients to name their URIs. For example, RISE defines the simulation framework URI template as: 

<…/{userworkspace}/{servicetype}/{framework}>, where {userworkspace} is a specific workspace. The 

workspace allows users to define their specific URI hierarchy while avoiding naming conflicts. The {ser-

vicetype} is the selected simulation service, allowing a client to use different services simultaneously. 

The {framework} is the simulation experiment framework; hence, a user may create multiple experiment 

frameworks that use the same simulation service. For instance, URI <…/Bob/DCDpp/MyModel> indi-

cates that the user workspace belongs to user Bob, and the servicetype is DCDpp, which selects the distri-

buted CD++ engine. The framework is named MyModel, which is the name of the simulation experiment. 

In this case, the modeler may select a different simulation engine (instead of DCDpp) or a different 

framework (instead of MyModel), because these variables are assigned at runtime according to the API 

URI template. Therefore, URI templates enable modelers to name their URIs without being in conflict 

with other users. RISE API is fully described in (Al-Zoubi et al. 2009a; Al-Zoubi et al. 2009b). 

3 RISE LAYER INTERFACE 

The main objective of RISE is to perform a simulation session between heterogeneous models that are on-

ly executable within a specific simulation environment. Model heterogeneity also exists in simulation en-

vironments based on the same formalism. Therefore, heterogeneous models need to be interoperated to 

form single distributed model so that a single simulation session (i.e. single experiment) can be con-

ducted. Modelers are responsible of setting up the simulation experiment and interconnecting those hete-

rogeneous models. The RISE layer places every simulation model in a separate domain where it can be 

simulated within a compatible environment. A Domain is a simulation environment capable of executing 

enclosed simulation models. Thus, domains can be viewed as models at the modeling interoperability lev-

el whereas viewed as simulation engines at the simulation-synchronization interoperability level. Typical-

ly, modelers are expected to collect the models needed, and choose a compatible simulation environment. 

Afterwards, each model needs to be placed in appropriate domain. Therefore, each domain contains and 

simulates a model that is specific to that domain and interconnected (via RISE) with other domains mod-

els. 
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Figure 2: RISE Layer and Model Domains Interface 

RISE requires three RESTful resources (URIs) for each domain so that other domains and modelers 

can use them to setup and conduct simulation, as shown in the RISE component in Figure 2. These re-

sources (URIs) are described as follows: (1) …/{framework}: represents an experiment framework in a 

domain (i.e. simulation environment). It is named by the modeler upon creation. The modeler uses this 

URI to submit all necessary information to execute simulation in that domain such as simulation model 

(e.g. scripts, source code files, etc.) and RISE XML configuration. This URI is the parent of the other two 

needed resources described next. (2) …/{framework}/simulation: represents active simulation in a do-

main. The modeler uses this URI to start/abort simulation, and to manipulate simulation during runtime. 

This URI is also used by simulation engines in domains to exchange simulation synchronization messag-

es. (3) …/{framework}/results: is automatically created by a domain upon completing the simulation suc-

cessfully, allowing to retrieve the simulation results.  

The above-described three URIs are the RISE API of each domain, as shown in Figure 2. Thus, a do-

main is plugged into RISE layer and is exposed to the outside world via those three URIs. In fact, those 

URIs are wrappers of RISE relevant information in a domain. The bottom domain block in Figure 2 

shows an internal look for the wrapped up functionalities: Simulation outputs (maintained results upon 

completion), Model related information and the simulation engine that is in charge of executing domain-

enclosed model. Simulation engines can be standalone (i.e. sequential simulation on one machine), paral-

lel/distributed (i.e. partitioned simulation over multiple processors regardless of the underlying technolo-

gy). 

Resources …/simulation and …/results cannot exist simultaneously. Further, each domain may ap-

pend the RISE API templates to any URI design of their choice (a resource URI is the full URI path). 

Modelers (clients’ software) should be aware of the domain URI templates (this design adds flexibility 

and simplicity at the server side: RISE does not require all servers to use exactly the same URI template, 

enabling different servers to organize and support other services beside RISE). To implement the API, 

each resource specification must be clearly defined in terms of supported HTTP channels, message for-

mat, and HTTP response codes upon success r failure. RISE strictly follows the Web standards such as 

HTTP, URI and XML. These specifications are discussed next (summarized in Table 1, Table 2, and Ta-

ble 3). Specific domains respond with standardized HTTP error codes for rejected requests, such as 404 

(Not Found), 403 (Forbidden), 401 (Unauthorized), 400 (Bad Request), 415 (Unsupported Media type), 

501 (Not Implemented) and 500 (Internal Server Error). 

Table 1 summarizes the framework resource operations. PUT is used to create/update a framework, 

but may also contain domain-specific configuration (an XML configuration document that contains the 

RISE models interconnections sent through this channel). POST is used to submit/update all/part of the 

model specific files. The XML configuration document (via PUT channel) usually describes these files. 

DELETE is used to remove a framework. GET is used to allow modelers to check on simulation status. 

The modeler request must contain query variable sim with value status, e.g. 

…/firemodel/simulation?sim=status. Query variables define the scope of the request, to avoid returning 

the entire resource representation and domain-specific information (domains may have other uses of this 

channel). This request is intended for modeler’s client to keep checking the simulation status periodically 

via the main domain. The main domain is selected by the modeler’s configuration, and the receiver should 
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respond with one of the following states: IDLE (simulation never run), INIT (simulation being initia-

lized), RUNNING, ABORTED (simulation stopped before successful completion), ERROR (simulation 

exited on error), DONE (simulation completed successfully) and STOPPING (simulation DONE, but 

there is still work to be done for the previous session). The XML message should be in the following 

format: <Simulation> <Status>DONE</Status></Simulation>. 

Table 2 outlines the active simulation resource. PUT is used to create the resource and start the simu-

lation. DELETE is used to stop the simulation and to remove the resource. POST is used to send XML 

synchronization messages to a domain. GET is used by other domains to check if the simulation is still 

running. In this case, a domain should respond with the following XML message <Simulation> ALIVE 

</Simulation> to indicate resource presence. The HTTP server responds with error 404 (Not found) to in-

dicate resource absence, allowing the sender domain to take the appropriate actions. GET is also used to 

return a domain Global Virtual Time (GVT) used for optimistic synchronization. Some HTTP servers re-

ject NULL messages through the PUT channel; in this case, a dummy message may be sent and ignored 

at the receiver domain. 

Table 3 outlines the simulation results, allowing retrieval of the domain simulation outputs. PUT and 

POST are disabled since this resource is created upon successful simulation completion. GET is used to 

retrieve results in a zipped folder, and DELETE is used to force results removal. 

 

Table 1: Resource “…/{framework}” Specifications 

Action Channel HTTP Success code Message 

Create framework PUT 201(Created) XML 

configure framework PUT 200 (OK) XML 

Submit models POST 200 (OK) Zipped File 

Remove framework DELETE 200 (OK) None 

Get Simulation Status GET 200 (OK) XML 

 

Table 2: Resource “…/{framework}/simulation” Specifications 

Action Channel HTTP Success code Message 

Start Simulation PUT 202 (Accepted) None 

Stop/Abort Simulation DELETE 200 (OK) None 

Send Simulation Message POST 202 (Accepted) XML  

Check Simulation or Get DGVT GET 200 (OK) XML  

 

Table 3: Resource “…/{framework}/results” Specifications 

Action Channel HTTP Success code Message 

Remove results DELETE 200 (OK) None 

Download results GET 200 (OK) Zipped file 

Disabled Channels PUT/POST 501 (Not Implemented) Not Applicable 

 

Figure 3 summarizes what we have described in this section. The client first sets up the required 

frameworks (1) by creating and configuring all domains (including XML configurations with domain 

specific definitions). Then, models are submitted to their appropriate domains (2). The client software 

contacts each domain individually rather than submitting everything through a single domain (which is 

the case of RESTful-CD++). However, the later approach would restrict all servers to have the same full 

URI path in order to support RISE API resources. This would complicate URI design template for those 

servers because they are expected to support other services beside RISE, which might find RISE URI 

template undesirable. 
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Figure 3: Setting up RISE Experiment across Domains 

Clients must authenticate to manipulate domain resources; synchronization messages also need to au-

thenticate during active simulation. To do so, each domain should have a user account in all of other do-

mains. However, creating user accounts is a domain-specific mechanism. To achieve higher security, 

HTTP can be replaced with HTTPS. On the other hand, we assume here that all received messages should 

be authenticated according to the HTTP Basic Authentication defined in RFC 2617 (Franks et al. 2007). 

This method does not add extra overhead, and it is supported by Web browsers and Web programming 

languages. In this method, the client combines and encodes user name and password into a single string 

with base 64 encoding. 

4 MODELING AND CONFIGURATIONS 

Modelers need to configure the frameworks they create by sending XML configuration documents via 

PUT channels to their URIs. The domains URIs are named by modelers according to the API URI tem-

plates described in Section III. Each simulation model needs to be placed in a simulation environment 

domain capable of executing that model. Consequently, RISE treats all models (domains) as black boxes 

with input and output ports. In other words, each model views other heterogeneous models as part of its 

environment. Specifically, modelers need to connect the appropriate input ports to the appropriate output 

ports, as shown in Figure 4. 

In Figure 4, Model-2 influences Model-1 via ports-2 and 3. Model-3 influences both Model-1 and 

Model-2 via Port -1. This implies that those models output ports can generate RISE external messages to 

their correspondent input ports during simulation, hence influence recipient models. Note that Model-3’s 

Port #1and #3, and Model-1’s Port-4 ports are not used by RISE. These ports can still be used by mod-

elers, for instance, to influence a model dynamically during active simulation. 

Figure 5 shows the XML configuration document for the example in Figure 4. This document needs 

to be submitted to each domain (typically constructed and submitted by client software). The RISE confi-

guration must be the enclosed element <RISE> body, shown in lines 4-30 of Figure 5 where domains are 

free to define their own specific configuration outside the <RISE> block. Line #3 shows RISE protocol 

version, and simulation type where “C” type stands for Conservative-based and “O” type for Optimistic-

based simulation (see Section I). Lines 4-32 define domains (models) configurations. Line #5 defines the 

Main domain URI. The Main domain is needed during active simulation, discussed in Section I. Lines 6-

31 define RISE ports interconnections. For example, Lines 7-12 define the connection from port #2 in 

URI <…/Domain-2> to port #1 in URI <…/Domain-1>. In this case, a RISE external message, during 

simulation, is generated and sent to URI <…/Domain-2>. To do so, RISE expects domains to create 

routing tables similar to the shown example in Table 4 upon receiving the RISE XML configuration doc-

ument. The upper two rows (of Table 4) show the routing table of Domain-2, whereas the lower two rows 

show the routing table of Domain-3, based on the shown configuration in Figure 5. Note that Domain-1 

does not have routing table because it does not influence any of the other domains. For example, Domain-

3 generates two external messages for each single output message appears on its Port #1: the first one is 

sent to URI <…/Domain-2> on Port #4, and the second one is sent to URI <…/Domain-1> on Port #3. 
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Figure 4: Models Interconnections across Domains 

 
1 <ConfigFramework> 

2 … 

3 <RISE Version=”1.0” Type=”C”> 

4  <Domains> 

5   <Main><URI>…/Domain-1</URI></Main> 

6    <Links> 

7     <Link> 

8   <From><Port>Port-2</Port> 

9              <URI>…/Domain-2</URI></From> 

10   <TO><Port>Port-1</Port> 

11           <URI>…/Domain-1</URI></TO> 

12  </Link> 

13  <Link> 

14   <From><Port>Port-3</Port> 

15            <URI>…/Domain-2</URI></From> 

16   <TO><Port>Port-2</Port> 

17            <URI>…/Domain-1</URI></TO> 

18  </Link> 

19  <Link> 

20   <From><Port>Port-1</Port> 

21             <URI>…/Domain-3</URI></From> 

22   <TO><Port>Port-4</Port> 

23             <URI>…/Domain-2</URI></TO> 

24  </Link> 

25  <Link> 

26   <From><Port>Port-1</Port> 

27             <URI>…/Domain-3</URI></From> 

28   <TO><Port>Port-3</Port> 

29             <URI>…/Domain-1</URI></TO> 

30   </Link> 

31    </Links> 

32   </Domains> 

33 </RISE> 

34 … 

35 </ConfigFramework> 

Figure 5: RISE Domain XML Configuration Document (see Figure 4) 

 

Table 4: Domains RISE Routing Tables for Figure 4 

Domain Source 

Port 

Destination Port Destination URI 

Domain-2 Routing Table Port-2 Port-1 …/Domain-1 

Port-3 Port-2 …/Domain-1 

Domain-3 Routing Table Port-1 Port-4 .../Domain-2 

Port-1 Port-3 …/Domain-1 

2974



Al-Zoubi and Wainer 

 

5 RISE SIMULATION SYNCHRONIZATION 

RISE domains could also be simulation engines, each of them responsible of simulating a single model 

regardless of their type (i.e. standalone, parallel or geographically distributed) or their applied algorithms. 

Simulations within a domain may apply optimistic-based or conservative-based algorithm approaches or 

define their own techniques to enhance performance within a domain. In fact, from RISE perspective, all 

of these issues are internal and domains specifics, hence hidden from the RISE layer. Modelers start a si-

mulation on the main domain, which, in turn, starts simulations on all other domains, as shown in Figure 

6. The main domain is previously selected by modelers’ configuration (Line #6 in Figure 5). 

 

 

Figure 6: Starting Simulation Example (see Figure 5) 

Upon accepting the request, domains are expected to respond with HTTP code 202 (Accepted, shown 

in Table 2). This avoids possible HTTP time-outs, particularly if the initialization phase requires a long 

time (for instance, if initialization in a domain involves many geographically distributed machines). Do-

mains should start their simulation initialization phase immediately; however, conservative domains are 

not allowed to execute any events with time-stamp larger than zero. Furthermore, domains must buffer 

any messages received from the RISE layer if those messages are received during initialization (until the 

initialization phase is complete). Conservative RISE requires all domains to transmit safe events (i.e. 

stamped with the current/future RISE simulation time) through RISE. On the other hand, optimistic RISE 

requires domains to send/handle any event stamped with or later than the Global Virtual time (GVT). 

5.1 Conservative-based Synchronization 

The idea is always to satisfy the local causality constraint (Fujimoto 2000) ensuring a safe timestamp-

ordered processing of simulation events within each domain. The common implementation of this con-

servative simulation cycle is to have a central time unit calculates the minimum global time in each par-

ticipant’s logical processor (LP). This is done by having each LP to send this information to the time unit, 

and to wait for the minimum time in which they can safely process their local events. In RISE, upon si-

mulation startup, the main domain starts on all support domains (as shown in Figure 6) and then creates a 

RISE Time Manager (RISE-TM) to deal with synchronization. RISE-TM is reached at the same URI of 

the main domain simulation, thus, it could be implemented in the central component of the main domain. 

Thus, the synchronization between the main domain and the RISE-TM is internal implementation specif-

ic. However, we separate them in our discussion here for clarity.  

RISE-TM executes a simulation cycle in the following steps, shown in Figure 7: (1) Execute all 

events in all domains at current RISE time. This starts a new simulation cycle with current or newly cal-

culated RISE time. RISE-TM starts with time zero, so this message must be buffered by a domain if the 

initialization phase is not completed yet. Once a domain completes execution all of its events with RISE 

time, it responds to the RISE-TM with one XML message containing all external messages generated for 

other domains stamped with RISE time (or larger), and its next time. The next time is the time of next 

event in a domain larger than RISE time. If no more events exist, this value is then set to “-1”, indicating 

infinity. (2) Once RISE-TM receives all replies from relevant domains, it calculates the next RISE time 

and starts a new simulation cycle. Further, the RISE-TM merges all generated external messages and 

passes them to all relevant domains at the beginning of a simulation cycle. Note that the new simulation 

cycle might be a continuation of current simulation cycle since external messages might be stamped with 

current RISE time. Note further, the RISE-TM stops simulation, if it calculates a new RISE time to be in-
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finity. Figure 8 shows an example of a domain response to RISE-TM. In this case, executing Domain-2 

events generated two external events for Domain-1 (see Figure 4). 
 

 

Figure 7: Conservative Simulation Cycle at Time t 

1 <RISE Version=”1.0”> 

2 <URI>…/Domain-2</URI> 

3  <XEvents> 

4    <MessagesCount>2</MessagesCount> 

5       <XEvent> 

6          <Time>00:00:01:000</Time> 

7          <Port>Port-1</Port> 

8          <Value>9</Value> 

9          <URI>…/Domain-1</URI>  

10       </XEvent> 

11       <XEvent> 

12          <Time>00:00:02:000</Time> 

13          <Port>Port-2</Port> 

14          <Value>10</Value> 

15          <URI>…/Domain-1</URI>  

16       </XEvent> 

17    <Time>00:00:01:000</Time> 

18  </XEvents> 

19  <Next>00:00:03:000</Next> 

20 </RISE> 

Figure 8: Domain to RISE-TM Simulation Messages 

Line 2 in Figure 8 indicates the URI of the source domain. Lines 3-18 enclose all of the RISE external 

messages generated. Line 4 specifies the count of enclosed messages. Lines 5-10 define the first external 

message. Line 6 specifies the execution time of this message, which must be at or later than RISE time 

(with format HH:MM:SS:MS). It is important to standardize the time format because numbers may inter-

preted differently by different models (e.g., 5 might mean five seconds in a domain and five nanoseconds 

in another). However, this XML document can easily be extended (with future RISE versions) to format 

times with less than milliseconds, if needed. Line 6 indicates that this external event must be executed at 1 

second of RISE time. Line 7 specifies the model destination port (see Table 4). Line 8 specifies the mes-

sage content. Message contents are real numbers, which is usually handled in programming similar to Ja-

va/C++ double type. Further, the XML document can easily be extended to handle other types in the fu-

ture, if needed. Line 9 indicates the destination domain (see Table 4). Lines 11-16 defines the second 

external event, but with different execution time, as indicated in Line 12. Line 17 specifies the minimum 

time of all enclosed external messages. RISE-TM must include this time when calculating next RISE 

time. Line 19 specifies the time of the next event of that domain. RISE-TM must include this time when 

calculating next RISE time. Further, it is recommended that RISE-TM does not include domains in the 

next simulation cycle if they have nothing to do. Note that this value must be set to “-1”, indicating infini-

ty, if there is no more events in that domain. This XML document guarantees that all of the domain 

events stamped with RISE time have executed. This guarantee must be ensured by the RISE-TM by en-

suring that the “next” event time (Line 19 in Figure 8) is larger than the current RISE time, since it is the 

time of the next event in a domain. Therefore, domains must only respond one time with this XML doc-

ument. 
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1 <RISE Version=”1.0”> 

2  <Time>00:00:01:000</Time> 

3  <XEvents> 

4    <MessagesCount>2</MessagesCount> 

5       <XEvent> 

6          <Time>00:00:01:000</Time> 

7          <Port>Port-1</Port> 

8          <Value>9</Value> 

9          <URI>…/Domain-1</URI>  

10       </XEvent> 

11       <XEvent> 

12          <Time>00:00:02:000</Time> 

13          <Port>Port-2</Port> 

14          <Value>10</Value> 

15          <URI>…/Domain-1</URI>  

16       </XEvent>    

17  </XEvents> 

18 </RISE> 

Figure 9: RISE-TM to Domain Start Cycle Message 

Line 2 in Figure 9 specifies the RISE time; every event with this time must be executed in this cycle. 

Lines 3-16 enclose all collected external messages from all domains. Therefore, domains must ignore oth-

er events. This is easily done via comparing its URI to events destination URIs (see Lines 9 and 15 in 

Figure 9). It is possible for a RISE-TM implementation to send only a domain message for that domain, 

but domain implementation should not assume this. Figure 10 shows a simulation example. RISE-TM 

starts requiring all domains to execute the events at time zero. Domain-1 responds with its next event 

time, in this case 2. Domain-2 responds with time 2 as its next event timestamp, and generates external 

message stamped with time 0, intended for Domain-1. RISE-TM calculates current time to be zero and 

starts a new simulation cycle. The second simulation cycle is a continuation of the previous one. Domain-

1 executes the external message X (0) and it schedules itself at time 2. In third cycle, RISE-TM advances 

time to 2, and requires Domain-1 and Domain-2 to execute the events at this time. Domain-1 schedules 

itself at time 6, while Domain-2 schedules itself at time 8 and generates external message X(7) intended 

for Domain-1. In the fourth cycle, the RISE-TM unit advances time to 6 and passes X(7) to it. Domain-1 

does not execute X(7), but inserts in its events queue until RISE time becomes 7. 

 

 

Figure 10: Conservative Simulation Cycles Example 

In the presented approach here, all external simulation messages are transmitted at no cost, since they 

are piggyback along with the synchronization messages that are required for the conservative-based do-

mains to know the global simulation time (i.e. called here RISE time) before executing local events safe-

ly. Thus, this enhances performance because external messages in distributed environment are expensive 

that take in range of milliseconds to seconds. Further, it ensures accurate RISE time calculation without 

having complex synchronization schemes, since all of the needed information is available for the RISE-

TM upon calculation new RISE time, without the worry about any possible transit messages in the net-

work or messages that about to be generated from a domain. Furthermore, the “next” time information re-

ceived from domains enables the RISE-TM to consider relevant domains in a simulation cycle, hence 

speeding up a cycle execution. The “next” time value serves as a dynamic “lookahead” value at the simu-
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lation level. Lookahead value is the time distance between two simulation processors, which ensures a 

processor to process events in that time distance safely without synchronization with its influencers. The 

lookahead value can also be defined at the application (model) level, but it is difficult to extract by mod-

elers in complex applications. However, it is worth to note that RISE can be extended to handle applica-

tion level configured lookahead values. In this case, domains become allowed to execute events within 

the window of current RISE time plus the lookahead time distance. 

The example in Figure 10 is different from the parallel DEVS implementation described in (Al-Zoubi 

et al. 2009b), in which a simulation cycle occurs in two phases (the first phase collects external messages 

and the second phase executes all internal and collected external messages). Both methods are functional-

ly the same, since collected external events are always executed after internal transitions. However, the 

method described in (Al-Zoubi et al. 2009b) is tied to DEVS theory and conservative simulation. On the 

other hand, the technique in Figure 10 uses simulation basics that are easier to adopt by different simula-

tion engines and algorithms. The basic mechanism of advancing a discrete-event simulation is to guaran-

tee that all events occur in correct chronological order; hence, all future events are kept in a list according 

to their timestamps. In this case, the simulation steps are summarized as follows (Banks et al. 2005). Step 

1: Remove imminent event from list. Step 2: Advance simulation clock to imminent event timestamp. 

Step 3: Execute imminent event. Step 4: Insert any generated events, if any, into the list according to their 

timestamps. These steps are what RISE does, since it views domains as simulation event lists. RISE 

equivalent steps are summarized as follows. Step 1: RISE-TM advances simulation clock, since imminent 

event(s) time is already known. Step 2: Remove imminent events from relevant lists and executes them. 

This step is performed in domains locally. Step 3: Insert any generated events, if any, into their appropri-

ate lists according to their timestamps. Domains insert events in their local lists while RISE-TM routes all 

exterior events to other domain lists. Of course, the event list in a RISE domain might be spread over 

multiple lists over multiple processors, but this information is hidden from the RISE layer. 

5.2 Optimistic-based Synchronization 

Conservative algorithms avoid violating local causality constraints while optimistic algorithms allow such 

violations to occur but provide techniques to undo any computation errors. Time-Warp (Fujimoto 2000) is 

the most well known optimistic algorithm, in which each LP maintains a Local Virtual time (LVT) and it 

advances “optimistically” without explicit synchronization. To fix errors detected, the LP must rollback to 

the event before the received straggler event. Part of undoing an event computation is to undo other 

events scheduled by this event on the other processors. Such messages are called anti-messages. Time 

Warp requires a great deal memory throughout the simulation execution. Therefore, an LP must guarantee 

that rollbacks will not occur before a certain virtual time. In this case, an LP must not receive a posi-

tive/negative message before a specific Global Virtual time (GVT). Releasing memory for information 

older than GVT is performed via a mechanism called fossil collection. From the RISE layer viewpoint, 

simulation is simpler than the conservative RISE, because the actual work is performed internally in each 

domain where the RISE layer only becomes a common protocol. Therefore, all domains become peers to 

each other, and communicate directly; hence, the RISE-TM unit is completely removed. Domains can ex-

change external events in groups or separately, using the format shown in previous section. RISE expects 

specific domains to keep track of all output messages through RISE layer to other domains. Thus, to undo 

a previously sent event, an anti-message must be sent, as follows by setting “Type” to “-“(negative sign), 

as follows: 

 
<XEvent Type=”-“> 

 <Time>00:00:01:000</Time> 

 <Port>Port-1</Port> 

 <Value>9</Value> 

 <URI>…/Domain-1</URI> 

</XEvent> 
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A Domain GVT (DGVT) is not enough to reclaim memory by fossil collection: a domain may still 

receive external events from other domains. Therefore, other DGVTs must be considered into RISE GVT 

calculations.  

6 CONCLUSIONS  

We presented here the RESTful Interoperability Simulation Environment (RISE) layer, which allows of 

interoperating heterogeneous simulation models and tools regardless of their underlying technology or al-

gorithms. RISE achieves this goal while hiding internal domains implementations behind only three URIs 

that can be named and constructed by clients. Thus, RISE does not require existing systems to change 

their software implementations. We showed that RISE approach provides modelers a simulation experi-

ment framework on how to set the experiment environment, including bridging different models, syn-

chronization simulation according to both conservative and optimistic algorithm techniques, and results 

retrieval. Thus, RISE presents the complete steps to conduct a simulation experiment.  
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