
Applying the TPS method to Modeling and Simulation of Biological Systems

Sanaa Lissari

1
, Nada Farran

1
, Hamel Yigang

1
, Rhys Goldstein

2
, Gabriel Wainer

3

1
Polytech Marseille –

Department de Genie Industriel

Domaine Universitaire de St Jérôme,

13397 Marseille Cedex 20

France

2
Autodesk Research

210 King St. Toronto, ON

Canada

rhys.goldstein@autodesk.com

3
Systems and Computer Engineering

Carleton University

1125 Colonel By Dr. Ottawa, ON,

Canada

gwainer@sce.carleton.ca

Keywords: modeling and simulation, deformable biological

structures, presynaptic nerve terminal, actin, mitochondria

Abstract

Deformable biological structures are typically modeled with

the finite element method, but we have designed a much

simpler impulse-based method called the "tethered particle

system" (TPS). The TPS involves the use of discrete-event

simulation to track the positions of a large number of

particles. Two of these particles approaching to each other

may collide and rebound off. The difference is that,

provided they are "tethered", two separating particles may

also collide and retract inwards. This constrains the

distances between pairs of particles, allowing various

deformable structures to be represented. In this article, we

present the application of the TPS method to the simulation

of different biological structures found in nerve cells: actin

filaments, cell membranes and synapsin protein that bind

with actin, mitochondria, and water particles which

influence the motion of other structures. This includes

advanced visualization methods.

1. INTRODUCTION

The simulation of deformable structures is used for a wide

range of applications in the biomedical field, including the

study of physiology, the analysis of joint replacements, and

the planning of surgeries. Though the finite element method

is likely the most popular method for such applications, the

recently-developed tethered particle system (TPS) is a

relatively simple alternative [1].

 In [2], the TPS was used to model interactions between

vesicles and synapsin protein in a presynaptic terminal, the

compartment located and the end of a nerve cell where a

signal is transmitted to an adjacent nerve cell. As seen in

Figure 1, a presynaptic terminal contains a reserve pool of

synaptic vesicles connected by synapsins. Synapsin is a

neuron-specific phosphoprotein that binds to small synaptic

vesicles and actin filaments in a phosphorylation-dependent

pattern. Microscopic models have demonstrated that

synapsin inhibits neurotransmitter release either by forming

a cage around synaptic vesicles or by anchoring them to the

F-actin cytoskeleton of the nerve terminal. The goal of the

work presented in [2] was to build a detailed model of this

nerve terminal, based on the TPS method, with the goal of

predicting the number of synaptic vesicles released from the

reserve pool as a function of time under the influence of

action potentials at differing frequencies.

Figure 1. Diagram of a presynaptic terminal

 This type of simulation has the potential to help

biologists understand the role of different biological entities.

For example, they can be used to investigate the theory

suggested in [4]: that synapsin regulates the transmission of

signals by binding with neurotransmitter-containing

vesicles. The idea is that, due to the synapsin, a cluster of

vesicles is maintained near a region of the membrane known

as the active zone. However, it is also believed that

filaments known as actin may play a similar role. Actin bind

with both synapsin and the cell membrane. It is also

important to account for the presence of larger structures

such as mitochondria, and smaller entities like water

particles.

 While a description of the TPS can be found in [1], here

we demonstrate how the method can be used to model

mailto:sjafer@sce.carleton.ca
mailto:sjafer@sce.carleton.ca

various specific deformable biological structures. The

structures presented can all be found in nerve cells.

 Section 2 presents related work. After providing a brief

overview of the TPS method in Section 3, we explain how it

was used to model these other structures found in nerve

cells. Section 4 introduces a model of a helical protein

representing actin, and demonstrates how it can be tethered

to a cell membrane. Section 5 describes an enhanced actin

model, and simulates the binding of multiple filaments.

Finally, Section 6 applies the TPS to mitochondria and

water particles, large and small entities which impede the

motion of other objects. The implementation of the

simulations is described in Section 7.

2. RELATED WORK

Our interest in particle-based simulation methods, where

individual particles are tracked. This is in contrast to

population-based methods like the Gillespie Algorithm [5],

where concentrations are tracked instead of particles.

 GridCell is an example of a particle-based simulator

that operates on cellular lattice [6]. Each cell in a 3D cubic

lattice contains at most one particle. At fixed time intervals,

each particle may move randomly to one of its 26

neighboring cells, or undergo a reaction that causes itself

and possibly a neighboring particle to be replaced with one

or two new particles. One of GridCell‟s strengths is its

inherent ability to simulate molecular crowding in a

computationally efficient manner. Molecular crowding

occurs when the density of particles in a particular region

impedes particle motion and reactivity.

 GridCell‟s most obvious weakness is its discretization

of space. Other particle-based simulators have been

developed for continuous-space models, with particle

positions described by continuous coordinates. In the MCell

program [7], particles move randomly in any direction

through 3D space. When a particle encounters a surface, a

cell membrane for instance, a reaction may occur.

 In [8], the MCell program was used to simulate the

reaction and diffusion of chemicals around vesicles docked

on a presynaptic membrane. This simulation involved a

continuous-space model in which vesicle positions were

based on measurements of an actual presynaptic terminal.

The vesicles could not move, however, and other entities

such as synapsin, actin, and mitochronia were not modeled.

3. TETHERED PARTICLE SYSTEM

The simplicity of the TPS contributes significantly to its

appeal. A TPS model consists of a large number of moving

particles. Two types of collisions occur between pairs of

particles: blocking collisions and tethering collisions.

 A blocking collision is the more familiar type. It occurs

when two approaching particles reach an inner limiting

distance Δu_blocking, as illustrated in Figure 2, and causes

the particles to rebound outwards.

Figure 2. A blocking collision.

 When a blocking collision occurs, the two particles

involved may become tethered to one another. If two

separating tethered particles reach an outer limiting distance

Δu_tethering, and if the particles remain tethered, then a

tethering collision causes the particles to retract. The

unraveling cord in Figure 3 illustrates this effect, but is not

explicitly modeled by the TPS.

Figure 3. A tethering collision.

 Although the particles are shown as circles or spheres

in illustrations throughout the paper, only the blocking and

tethering distances are explicitly defined in a TPS model.

Particles need not be given radii. By constraining the

distances between particles with suitably chosen Δublocking

and Δutethering parameters, various deformable structures

may be represented.

4. MODELING AND SIMULATION OF ACTIN

FILAMENTS NEAR VESICLE CLUSTERS

This model consists on actin protein inside the membrane.

The actin is a globular protein that form helical filaments (or

microfilaments). It has the shape of two helices bound to

each other.

 To simplify the model, we first built a „snake-like‟

structure composed of blocks of triangles, which are adapted

to make appear the helices. In each block of the „snake‟,

there is a triangle of 3 particles or spheres.

Figure 4. View of one block of the „snake‟

 From the first block to the second, we invert the

triangle of block 1 and translate it to the position of the

block 2 by keeping the same gravity center. We do that

every time we go from a block to the next. This gives us an

horizontal „snake‟ with different blocks. The yellow

triangles in Figure 5 are inverted comparing to red triangles.

Figure 5. Picture showing levels of the triangles

sequence modeling the actin filament

 Our „snake‟ is composed of blocks of triangles, and we

give a different color to each particle in the same block.

 Going from one level to other, we rotate colors, so as

we can have three helical shapes as shown in Figure 6.

Figure 6. Helical 3-color shape of the Actin

 By making the blue particles transparent we end having

the simplified shape of actin presented in Figure 7.

Figure 7. Helical 2-color shape of the Actin

 In order to avoid that the actin particles go in different

ways during the motion of the filament. we make the

particles tethered and we define for them their blocking and

tethering distances. For that we used the TPS (Tethered

Particle System) principal that determine the rules of

collision between particles.

 Each particles in „the level n‟ is tethered to the other

particles of the same level. It‟s also tethered to two near

particles from the level n-1 and to two near particles from

the level n+1.

Figure 8. Definition of the tethered particles

 In this schema, for example Particle 3 is tethered to

particles 4and 5 of the same level. It‟s tethered particles to 0

and 2 of the first level and particles 6 and 8 of the 3
rd

 level.

 5 is tethered to the particles 1,2,3,4,7 and 8

 4 is tethered to the particles 0,1,3,5,6 and 7

 The blocking distance between every two tethered

particles is: 2*particle_radius – epsilon

 The tethering distance between every two tethered

particles is: 2*particle_radius + epsilon

 Epsilon is a very small value, that helps to have a small

difference between the blocking and tethering distance .

Consequently, all the particles of the actin stay near to each

other when the actin filament moves.

 Distance between each two particles is 2 times the

particle radius to have this compact shape of the filament.

 To set up the motion of the Actin particles inside the

membrane, we use random impulses that give every particle

a random trajectory. We already have all the particles

tethered to each other, which give to the whole actin

filament a random motion.

 These are the parameters we used to subject actin

filaments to random motion:

Figure 9. Parameters of the random impulse on the

actin particles

 Each particle is given a random impulse in a random

direction at randomized time intervals with an average time

interval of tau_RI_A. The k_RI_A and v_RI_A parameters

define a gamma distribution from which the magnitude of

the impulse is randomly generated.

 To put the filament of actin inside the membrane M, we

define the following parameters:

 the blocking distance between each sphere of the

actin and the big sphere of the membrane M is 0.

The actin can move in the center of the membrane

without any difficulties.

 the tethering distance between each actin particle

and the membrane M is r_M – r_A (r_M : radius

of the membrane M , r_A: radius of a sphere of the

actin). The spheres of the actin can‟t go outside the

membrane.

 But there is an exception:

 Actin filament have generally an end that stay tethered

to the bottom of the membrane. For this reason and in order

to simplify the code and the execution of the simulation, we

use an actin filament whose particles have the same species

except the particles of the triangle in one end of the actin.

These particles need to be different because it will have the

property to stick to the membrane.

 For that goal we tether the block in the end of the actin

to the bottom of the membrane using TPS. The particles of

this blocks will have with the membrane the following

parameters:

 blocking distance = r_M – r_B – epsilon

 tethering distance = r_M – r_B + epsilon

 Here, r_M is the radius of the membrane M, r_B is the

radius of of the particles of the end of the actin stuck to the

membrane M, and epsilon is a very small value.

 As a result, the end of the actin will stay stuck to the

perimeter of the membrane M from the inside and will not

go far from the perimeter.

Figure 10. Particles of the bottom of the actin tethered

to the plasma of the membrane

 As additional information, the actin does not move in

the whole perimeter. It stays in the bottom part of the

membrane. For this we will use the transparent sphere Z that

helps before to determine the zone of the docking sites. The

intersection between the sphere Z and the membrane M

represent the limits where our actin can go. We know that

the particles of the end of the actin are tethered to the

membrane M, now they will be tethered to the sphere Z too,

respecting these parameters:

 blocking distance = 0

 tethering distance = r_Z – r_B

 Here r_Z is the radius of the transparent sphere Z, and

r_B is the radius of of the particles of the end of the actin

stuck to the membrane M.

 The actin is stuck from its end to the membrane M and

could not leave the zone delimited by the sphere Z.

Consequently, the actin will move only in the zone shown

on green in Figure 11.

Figure 11. The zone of motion for the actin (green)

The results of the simulation are illustrated in Figure 12.

Figure 12. Views of the simulation of the Actin filament

inside the membrane

5. SIMULATION OF MULTIPLE ACTIN

FILAMENTS BOUND BY SYNAPSIN

In this new model, we focused on the shape of the helix

actin filaments; we had to make a real structure with two

helix actin filaments turning one around the other.

Consequently, we used the same idea of blocks constituted

by three particles forming a triangle but in this model, we

had in each triangle three types of particles: “A”, “B” and

“C”. The three particles are spheres with the same radius but

with different visualization codes:

 We made the particle “B” invisible (we add the

opacity = 0).

 We changed the color of the particle “C” into

white.

 The particle “A” remained red.

 The vector of tethered particles still have the same

concept in the first project, as shown below:

Figure 13. Original positions of the “B” particles

 However, what we changed to have the new shape of

helix was that the particles “B” would move from one

position to the right with every block, and every two block

the particle “B” would move from one position to the left. It

goes like two positions to the right then back one position to

the left (Figure 14).

Figure 14. Modeling the positions of the “B” particles

 In addition, to make the helix move one around the

other we added another particle “D”. We gave “D” a

velocity to make it move until it hits the helix. On the

instant of hitting the particle “D” will transfer some of its

energy to the helix and that will make the helix move

(Figure 15). The helix will still moving after the hitting seen

that all particles have "Delta_u_blocking" and

"Delta_u_tethering. For this reason, we adjusted those two

parameters:

 The minimum value of the "Delta_u_blocking"

between particles A-A, A-B, A-C, A-D, B-B, B-C,

C-C, C-D, D-D is:

 "Delta_u_blocking"= 2*Radius - epsilon_A,

 The maximum value of the "Delta_u_tethering"

between particles A-A, A-B, A-C, A-D, B-B, B-C,

C-C, C-D, D-D is:

"Delta_u_tethering"= 2*Radius + epsilon_A.

 The only exception is between particles B-D:

 The "Delta_u_blocking": is 0.0

 And The "Delta_u_tethering" is infty (infinity).

 Consequently, the particle “D” can cross through the

particle “B” (invisible) till it bits the particles “A” or “C”.

Figure 15. An object (dark “D” particle) impacts an

actin filament (red “A” particles + white “C” particles)

 The epsilon A is a parameter where we can change its

value. In fact, for each time we make it smaller, we can have

the shape of the helix straighter when the particle “D” hits

the helix and the particles “A”, “B”, “C” turns one around

the other.

 To model the multiple helix-shaped actin filaments, we

joined two helix actin filaments by a synapsin (Figure 16).

This model was put into the membrane and we modeled

actin-synapsin bonds during the simulation. Here we

changed the dimensions of the actin particles and made the

radius equal to 2.5 nm.

 A synapsin is formed by two spheres with a radius of

5.0 nm each one, tethered together forming one particle. The

two actin filaments are tethered to the synapsin; one tethered

to the first sphere of the synapsin and the other one to the

second sphere of the synapsin.

 In addition, we added random impulses to make the

structures move randomly that will make it more natural.

Finally, to add it into the membrane, we made a big sphere

transparent so we could see the interactions between the

particles, where we inserted my two actin filaments

connected by a synapsin.

Figure 16. Actin filaments bound by synapsin

 We also inserted fifty synapsin moving randomly in the

membrane (Figure 17). (We had two different values of

parameters for the random impulse: one for the structure and

one specially for the fifty synapsin). When the synapsin hits

the one of the two actin filaments they should bound on the

actin.

 Parameters are selected as follows:

 "Delta_u_tethering" between the membrane and

any sort of particles should be equal to: radius of

the membrane – radius of the particle: R_M - R_P

(P can be particle A,B, C or D).

 "Delta_u_blocking" should be equal zero.

 "Delta_u_blocking" between any particle and the

synapsin should be equal to: radius of the synapsin

radius of the particle : R_S - R_P,

 "Delta_u_tethering between any particle and the

synapsin should be equal to: radius of the synapsin

+ radius of the particle: R_S + R_P (except

between the synapsin and the particle B (invisible)

 "Delta_u_blocking"=0.0

 "Delta_u_tethering": infty.

Figure 17. Actin filaments inside a membrane

6. SIMULATION OF MITOCHONDRIA AND

WATER PARTICLES

For the simulation of the Mitochondrion, we have tried first

to model it using the TPS model by creating what we have

called a block of protein tethered together. At the initial

state, we can have the picture below.

Figure 18. Initial model of the mitochondrion

 The concepts used are vector of position, velocity and

tethering. By giving to the first vesicle of that picture a

positive velocity and to the last vesicle of the same picture a

negative velocity, we can obtain a frame like this one.

Figure 19. The deformed structure

 After having such a picture, what we have decided to

do was to reduce the length to make it seem real when

putting it inside the membrane. So we have decided to take

only the first three blocks tethered together. The results will

be shown after the description of the membrane and water

particle inside the membrane.

 In computer graphics, a variety of techniques have been

proposed to model liquids and deformable objects at

interactive rates. As important as the plausible animation of

these substances is the fast and stable modeling of their

interaction.

 The idea here was to fill the presynaptic terminal

already existing with water and simulate the behavior of the

deformable biological structures inside the cell in presence

of water.

 To model the solid-fluid interaction we use virtual

boundary particles. They are placed randomly inside the

presynaptic terminal allowing the computation of smooth

interactions that yield stable simulations.

 For the implementation of the water particles inside the

presynaptic terminal already existing, the following steps

have been followed:

1. Give the properties of water particle such as radius,

random impulse, the color, the mass, and the shape.

2. Specify the relation between the water particles

with other structures inside the presynaptic

terminal such as tethering distance, blocking

distance the rebound , the retract.

3. Add those characteristics inside the code at the

right place in order to keep the structure of the

existing code.

4. Take in consideration the computer characteristics

while defining the number of water particles

because to run this simulation it takes long time.

5. Remember that all particles should be tethered to

the membrane in order to keep them within the

compartment.

 After all these steps have been followed, the simulation

can be launched and stopped before some time to see if the

results are satisfying or not. If not we can modify some

parameters. We have to make sure before leaving the

simulation running for long periods of time that the preview

result was satisfying in order to avoid the lost of time.

 The snapshot below shows the mitochondrion

surrounded by water particles in a presynaptic terminal.

Figure 20. Simulation of a Mitochondrion and water

particles in a presynaptic terminal

7. IMPLEMENTATION

We implemented all code in the Python programming

language. Typically interpreted, Python is known more for

its aesthetic syntax and convenient data structures than for

its performance. The language satisfied our need, however,

to develop a proof of concept.

 Figure 21 shows the Python code used to specify a

single level of an actin filament, modeled with three

particles arranged in an equilateral triangle.

Figure 21. Sample Python code

8. CONCLUSION

We have demonstrated how TPS can be used to model

various deformable biological structures. The techniques

used to model actin filaments could be applied to other

relatively long and narrow biological entities, whereas the

basic arrangement of particles adopted for the

mitochondrion model could be used for other relatively

round biological objects. A set of inert particles, like the

water particles presented in this paper, could be used to

represent a variety of different small objects that impede the

motion of other structures. Future work includes refining

various model parameters, improving the performance of

the simulation code, and integrating all the structures

modeled in this paper into a single realistic model of a

presynaptic terminal.

 REFERENCES

1. Goldstein, R., G. Wainer. 2009, “Simulation of

Deformable Biological Structures with a Tethered

Particle System Model.” In Proceedings of the 32
nd

Canadian Medical and Biological Engineering

Conference, CMBEC (Calgary, AB, Canada).

2. Goldstein, R., G. Wainer. 2009, “Simulation of a

Presynaptic Nerve Terminal with a Tethered Particle

System Model.” In Proceedings of the 31
st
 Annual

International Conference of the IEEE Engineering in

Medicine and Biology Society, EMBC (Minneapolis,

MN, USA).

3. Benfenati, F., F. Valtorta, P. Greengard, 1991,

“Computer Modelling of Synapsin I Binding to

Synaptic Vesicles and F-actin: Implications for

Regulation of Neurotransmitter Release,” Proceedings

of the National Academy of Sciences, USA.; 88(2):

575–579.

4. De Camilli, P., 1995, Keeping synapses up to speed,

Nature, 375: 450–451.

5. Gillespie, D. T., 1977, “Exact Stochastic Simulation of

Coupled Chemical Reactions,” Journal of Physical

Chemistry, 81(25): 2340–2361.

6. Boulianne, L., S. Al Assaad, M. Dumontier, W. Gross,

2008, “Grid-Cell: a stochastic particle-based biological

system simulator,” BMC Systems Biology, 2(1): 66–74.

7. Stiles, J. R.; T. M. Bartol, 2001, “Monte Carlo Methods

for Simulating Realistic Synaptic Microphysiology

Using Mcell,” In Computational Neuroscience:

Realistic Modeling for Experimentalists (Edited by Erik

De Schutter; published by CRC Press), 87–127.

8. Coggan, J. S., T. M. Bartol, E. Esquenazi, J. R. Stiles,

S. Lamont, M. E. Martone, D. K. Berg, M. H. Ellisman,

T. J. Sejnowski, 2005, “Evidence for Ectopic

Neurotransmission at a Neuronal Synapse,” Science,

309(5733): 446–451.

