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Abstract 

Deformable biological structures are typically modeled with 

the finite element method, but we have designed a much 

simpler impulse-based method called the "tethered particle 

system" (TPS). The TPS involves the use of discrete-event 

simulation to track the positions of a large number of 

particles. Two of these particles approaching to each other 

may collide and rebound off. The difference is that, 

provided they are "tethered", two separating particles may 

also collide and retract inwards. This constrains the 

distances between pairs of particles, allowing various 

deformable structures to be represented. In this article, we 

present the application of the TPS method to the simulation 

of different biological structures found in nerve cells: actin 

filaments, cell membranes and synapsin protein that bind 

with actin, mitochondria, and water particles which 

influence the motion of other structures. This includes 

advanced visualization methods. 

 

1. INTRODUCTION 

The simulation of deformable structures is used for a wide 

range of applications in the biomedical field, including the 

study of physiology, the analysis of joint replacements, and 

the planning of surgeries. Though the finite element method 

is likely the most popular method for such applications, the 

recently-developed tethered particle system (TPS) is a 

relatively simple alternative [1].  

 In [2], the TPS was used to model interactions between 

vesicles and synapsin protein in a presynaptic terminal, the 

compartment located and the end of a nerve cell where a 

signal is transmitted to an adjacent nerve cell. As seen in 

Figure 1, a presynaptic terminal contains a reserve pool of 

synaptic vesicles connected by synapsins. Synapsin is a 

neuron-specific phosphoprotein that binds to small synaptic 

vesicles and actin filaments in a phosphorylation-dependent 

pattern. Microscopic models have demonstrated that 

synapsin inhibits neurotransmitter release either by forming 

a cage around synaptic vesicles or by anchoring them to the 

F-actin cytoskeleton of the nerve terminal. The goal of the 

work presented in [2] was to build a detailed model of this 

nerve terminal, based on the TPS method, with the goal of 

predicting the number of synaptic vesicles released from the 

reserve pool as a function of time under the influence of 

action potentials at differing frequencies.  

  

 
Figure 1.  Diagram of a presynaptic terminal 

 

 This type of simulation has the potential to help 

biologists understand the role of different biological entities. 

For example, they can be used to investigate the theory 

suggested in [4]: that synapsin regulates the transmission of 

signals by binding with neurotransmitter-containing 

vesicles. The idea is that, due to the synapsin, a cluster of 

vesicles is maintained near a region of the membrane known 

as the active zone. However, it is also believed that 

filaments known as actin may play a similar role. Actin bind 

with both synapsin and the cell membrane. It is also 

important to account for the presence of larger structures 

such as mitochondria, and smaller entities like water 

particles. 

 While a description of the TPS can be found in [1], here 

we demonstrate how the method can be used to model 
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various specific deformable biological structures. The 

structures presented can all be found in nerve cells.  

 Section 2 presents related work. After providing a brief 

overview of the TPS method in Section 3, we explain how it 

was used to model these other structures found in nerve 

cells. Section 4 introduces a model of a helical protein 

representing actin, and demonstrates how it can be tethered 

to a cell membrane. Section 5 describes an enhanced actin 

model, and simulates the binding of multiple filaments. 

Finally, Section 6 applies the TPS to mitochondria and 

water particles, large and small entities which impede the 

motion of other objects. The implementation of the 

simulations is described in Section 7. 

 

2. RELATED WORK 

Our interest in particle-based simulation methods, where 

individual particles are tracked. This is in contrast to 

population-based methods like the Gillespie Algorithm [5], 

where concentrations are tracked instead of particles.   

 GridCell is an example of a particle-based simulator 

that operates on cellular lattice [6]. Each cell in a 3D cubic 

lattice contains at most one particle. At fixed time intervals, 

each particle may move randomly to one of its 26 

neighboring cells, or undergo a reaction that causes itself 

and possibly a neighboring particle to be replaced with one 

or two new particles. One of GridCell‟s strengths is its 

inherent ability to simulate molecular crowding in a 

computationally efficient manner. Molecular crowding 

occurs when the density of particles in a particular region 

impedes particle motion and reactivity. 

 GridCell‟s most obvious weakness is its discretization 

of space. Other particle-based simulators have been 

developed for continuous-space models, with particle 

positions described by continuous coordinates. In the MCell 

program [7], particles move randomly in any direction 

through 3D space. When a particle encounters a surface, a 

cell membrane for instance, a reaction may occur. 

 In [8], the MCell program was used to simulate the 

reaction and diffusion of chemicals around vesicles docked 

on a presynaptic membrane. This simulation involved a 

continuous-space model in which vesicle positions were 

based on measurements of an actual presynaptic terminal. 

The vesicles could not move, however, and other entities 

such as synapsin, actin, and mitochronia were not modeled. 

 

3. TETHERED PARTICLE SYSTEM 

The simplicity of the TPS contributes significantly to its 

appeal. A TPS model consists of a large number of moving 

particles. Two types of collisions occur between pairs of 

particles: blocking collisions and tethering collisions. 

 A blocking collision is the more familiar type. It occurs 

when two approaching particles reach an inner limiting 

distance Δu_blocking, as illustrated in Figure 2, and causes 

the particles to rebound outwards.  

 

 
Figure 2.  A blocking collision.   

  

 When a blocking collision occurs, the two particles 

involved may become tethered to one another. If two 

separating tethered particles reach an outer limiting distance 

Δu_tethering, and if the particles remain tethered, then a 

tethering collision causes the particles to retract. The 

unraveling cord in Figure 3 illustrates this effect, but is not 

explicitly modeled by the TPS. 

 

 
Figure 3.  A tethering collision.  

  

 Although the particles are shown as circles or spheres 

in illustrations throughout the paper, only the blocking and 

tethering distances are explicitly defined in a TPS model. 

Particles need not be given radii. By constraining the 

distances between particles with suitably chosen Δublocking 

and Δutethering parameters, various deformable structures 

may be represented. 

 

4. MODELING AND SIMULATION OF ACTIN 

FILAMENTS NEAR VESICLE CLUSTERS 

This model consists on actin protein inside the membrane. 

The actin is a globular protein that form helical filaments (or 

microfilaments). It has the shape of two helices bound to 

each other. 



 To simplify the model, we first built a „snake-like‟ 

structure composed of blocks of triangles, which are adapted 

to make appear the helices. In each block of the „snake‟, 

there is a triangle of 3 particles or spheres.  

 

 
Figure 4.  View of one block of the „snake‟ 

  

 From the first block to the second, we invert the 

triangle of block 1 and translate it to the position of the 

block 2 by keeping the same gravity center. We do that 

every time we go from a block to the next. This gives us an 

horizontal „snake‟ with different blocks. The yellow 

triangles in Figure 5 are inverted comparing to red triangles. 

  

 
Figure 5.  Picture showing levels of the triangles 

sequence modeling the actin filament 

 

 Our „snake‟ is composed of blocks of triangles, and we 

give a different color to each particle in the same block.  

 Going from one level to other, we rotate colors, so as 

we can have three helical shapes as shown in Figure 6.   

 

 
Figure 6.  Helical 3-color shape of the Actin 

  

 By making the blue particles transparent we end having 

the simplified shape of actin presented in Figure 7. 

 

 
Figure 7.  Helical 2-color shape of the Actin 

   

 In order to avoid that the actin particles go in different 

ways during the motion of the filament. we make the 

particles tethered and we define for them their blocking and 

tethering distances. For that we used the TPS (Tethered 

Particle System) principal that determine the rules of 

collision between particles. 

 Each particles in „the level n‟ is tethered to the other 

particles of the same level. It‟s also tethered to two near 

particles from the level n-1 and to two near particles from 

the level n+1.  

 

 
Figure 8.  Definition of the tethered particles 

  

 In this schema, for example Particle 3 is tethered to 

particles 4and 5 of the same level. It‟s tethered particles to 0 

and 2 of the first level and particles 6 and 8 of the 3
rd

 level. 

 5 is tethered to the particles 1,2,3,4,7 and 8 

 4 is tethered to the particles 0,1,3,5,6 and 7 

 The blocking distance between every two tethered 

particles is: 2*particle_radius – epsilon 

 The tethering distance between every two tethered 

particles is: 2*particle_radius + epsilon 

 Epsilon is a very small value, that helps to have a small 

difference between the blocking and tethering distance . 

Consequently, all the particles of the actin stay near to each 

other when the actin filament moves. 

 Distance between each two particles is 2 times the 

particle radius to have this compact shape of the filament. 



 To set up the motion of the Actin particles inside the 

membrane, we use random impulses that give every particle 

a random trajectory. We already have all the particles 

tethered to each other, which give to the whole actin 

filament a random motion. 

 These are the parameters we used to subject actin 

filaments to random motion: 

 

 
Figure 9.  Parameters of the random impulse on the 

actin particles 

  

 Each particle is given a random impulse in a random 

direction at randomized time intervals with an average time 

interval of tau_RI_A.  The k_RI_A and v_RI_A parameters 

define a gamma distribution from which the magnitude of 

the impulse is randomly generated. 

 To put the filament of actin inside the membrane M, we 

define the following parameters: 

 the blocking distance between each sphere of the 

actin and the big sphere of the membrane M is 0. 

The actin can move in the center of the membrane 

without any difficulties. 

 the tethering distance between each actin particle 

and the membrane M is r_M – r_A ( r_M  : radius 

of the membrane M , r_A: radius of a sphere of the 

actin). The spheres of the actin can‟t go outside the 

membrane. 

 But there is an exception: 

 Actin filament have generally an end that stay tethered 

to the bottom of the membrane. For this reason and in order 

to simplify the code and the execution of the simulation, we 

use an actin filament whose particles have the same species 

except the particles of the triangle in one end of the actin. 

These particles need to be different because it will have the 

property to stick to the membrane. 

 For that goal we tether the block in the end of the actin 

to the bottom of the membrane using TPS. The particles of 

this blocks will have with the membrane the following 

parameters: 

 blocking distance = r_M – r_B – epsilon 

 tethering distance = r_M – r_B + epsilon 

 Here,  r_M  is the radius of the membrane M, r_B is the 

radius of of the particles of the end of the actin stuck to the 

membrane M, and epsilon is a very small value. 

 As a result, the end of the actin will stay stuck to the 

perimeter of the membrane M from the inside and will not 

go far from the perimeter. 

 
Figure 10.  Particles of the bottom of the actin tethered 

to the plasma of the membrane 

  

 As additional information, the actin does not move in 

the whole perimeter. It stays in the bottom part of the 

membrane. For this we will use the transparent sphere Z that 

helps before to  determine the zone of the docking sites. The 

intersection between the sphere Z and the membrane M 

represent the limits where our actin can go. We know that 

the particles of the end of the actin are tethered to the 

membrane M, now they will be tethered to the sphere Z too, 

respecting these parameters: 

 blocking distance = 0 

 tethering distance = r_Z – r_B 

 Here r_Z is the radius of the transparent sphere Z, and 

r_B is the radius of of the particles of the end of the actin 

stuck to the membrane M. 

 The actin is stuck from its end to the membrane M and 

could not leave the zone delimited by the sphere Z. 

Consequently, the actin will move only in the zone shown 

on green in Figure 11. 

 

 
Figure 11.  The zone of motion for the actin (green) 

  



The results of the simulation are illustrated in Figure 12. 

 

 
 

 
Figure 12.  Views of the simulation of the Actin filament 

inside the membrane 

 
5. SIMULATION OF MULTIPLE ACTIN 

FILAMENTS BOUND BY SYNAPSIN 

 

In this new model, we focused on the shape of the helix 

actin filaments; we had to make a real structure with two 

helix actin filaments turning one around the other.  

Consequently, we used the same idea of blocks constituted 

by three particles forming a triangle but in this model, we 

had in each triangle three types of particles: “A”, “B” and 

“C”. The three particles are spheres with the same radius but 

with different visualization codes: 

 We made the particle “B” invisible (we add the 

opacity = 0). 

 We changed the color of the particle “C” into 

white. 

 The particle “A” remained red. 

 The vector of tethered particles still have the same 

concept in the first project, as shown below: 

 

 

 
Figure 13.  Original positions of the “B” particles 

  

 However, what we changed to have the new shape of 

helix was that the particles “B” would move from one 

position to the right with every block, and every two block 

the particle “B” would move from one position to the left. It 

goes like two positions to the right then back one position to 

the left (Figure 14). 

 

 
Figure 14.  Modeling the positions of the “B” particles 

  

 In addition, to make the helix move one around the 

other we added another particle “D”. We gave “D” a 

velocity to make it move until it hits the helix. On the 

instant of hitting the particle “D” will transfer some of its 

energy to the helix and that will make the helix move 

(Figure 15). The helix will still moving after the hitting seen 

that all particles have "Delta_u_blocking" and 

"Delta_u_tethering. For this reason, we adjusted those two 

parameters: 



 The minimum value of the "Delta_u_blocking" 

between particles A-A, A-B, A-C, A-D, B-B, B-C, 

C-C, C-D, D-D is:       

 

  "Delta_u_blocking"= 2*Radius - epsilon_A,  

 

 The maximum value of the "Delta_u_tethering" 

between particles A-A, A-B, A-C, A-D, B-B, B-C, 

C-C, C-D, D-D is: 

 

"Delta_u_tethering"= 2*Radius + epsilon_A.  

 

 The only exception is between particles B-D: 

 The "Delta_u_blocking": is 0.0  

 And The "Delta_u_tethering" is infty (infinity). 

 Consequently, the particle “D” can cross through the 

particle “B” (invisible) till it bits the particles “A” or “C”.  

  

 

 
 

 
 

 
Figure 15.  An object (dark “D” particle) impacts an 

actin filament (red “A” particles + white “C” particles) 

  

 The epsilon A is a parameter where we can change its 

value. In fact, for each time we make it smaller, we can have 

the shape of the helix straighter when the particle “D” hits 

the helix and the particles “A”, “B”, “C” turns one around 

the other.  

 To model the multiple helix-shaped actin filaments, we 

joined two helix actin filaments by a synapsin (Figure 16). 

This model was put into the membrane and we modeled 

actin-synapsin bonds during the simulation. Here we 

changed the dimensions of the actin particles and made the 

radius equal to 2.5 nm.  

 A synapsin is formed by two spheres with a radius of 

5.0 nm each one, tethered together forming one particle. The 

two actin filaments are tethered to the synapsin; one tethered 

to the first sphere of the synapsin and the other one to the 

second sphere of the synapsin.  

 In addition, we added random impulses to make the 

structures move randomly that will make it more natural. 

Finally, to add it into the membrane, we made a big sphere 

transparent so we could see the interactions between the 

particles, where we inserted my two actin filaments 

connected by a synapsin. 

 

 
Figure 16.  Actin filaments bound by synapsin 

  

 We also inserted fifty synapsin moving randomly in the 

membrane (Figure 17). (We had two different values of 

parameters for the random impulse: one for the structure and 

one specially for the fifty synapsin). When the synapsin hits 

the one of the two actin filaments they should bound on the 

actin. 

 Parameters are selected as follows: 

 "Delta_u_tethering" between the membrane and 

any sort of particles should be equal to: radius of 

the membrane – radius of the particle: R_M - R_P 

(P can be particle A,B, C or D). 

 "Delta_u_blocking" should be equal zero. 



 "Delta_u_blocking" between any particle and the 

synapsin should be equal to: radius of the synapsin 

radius of the particle : R_S - R_P,  

 "Delta_u_tethering between any particle and the 

synapsin should be equal to: radius of the synapsin 

+ radius of the particle: R_S + R_P (except 

between the synapsin and the particle B (invisible)  

 "Delta_u_blocking"=0.0 

 "Delta_u_tethering": infty. 

 

 
Figure 17.  Actin filaments inside a membrane 

 
6. SIMULATION OF MITOCHONDRIA AND 

WATER PARTICLES 

 

For the simulation of the Mitochondrion, we have tried first 

to model it using the TPS model by creating what we have 

called a block of protein tethered together. At the initial 

state, we can have the picture below. 

 

 
Figure 18.  Initial model of the mitochondrion  

 

 The concepts used are vector of position, velocity and 

tethering. By giving to the first vesicle of that picture a 

positive velocity and to the last vesicle of the same picture a 

negative velocity, we can obtain a frame like this one. 

 

 
Figure 19.  The deformed structure 

 

 After having such a picture, what we have decided to 

do was to reduce the length to make it seem real when 

putting it inside the membrane. So we have decided to take 

only the first three blocks tethered together. The results will 

be shown after the description of the membrane and water 

particle inside the membrane. 

 In computer graphics, a variety of techniques have been 

proposed to model liquids and deformable objects at 

interactive rates. As important as the plausible animation of 

these substances is the fast and stable modeling of their 

interaction. 

 The idea here was to fill the presynaptic terminal 

already existing with water and simulate the behavior of the 

deformable biological structures inside the cell in presence 

of water. 

 To model the solid-fluid interaction we use virtual 

boundary particles. They are placed randomly inside the 

presynaptic terminal allowing the computation of smooth 

interactions that yield stable simulations. 

 For the implementation of the water particles inside the 

presynaptic terminal already existing, the following steps 

have been followed: 

1. Give the properties of water particle such as radius, 

random impulse, the color, the mass, and the shape. 

2. Specify the relation between the water particles 

with other structures inside the presynaptic 

terminal such as tethering distance, blocking 

distance the rebound , the retract.  

3. Add those characteristics inside the code at the 

right place in order to keep the structure of the 

existing code. 

4. Take in consideration the computer characteristics 

while defining the number of water particles 

because to run this simulation it takes long time. 

5. Remember that all particles should be tethered to 

the membrane in order to keep them within the 

compartment. 



 After all these steps have been followed, the simulation 

can be launched and stopped before some time to see if the 

results are satisfying or not. If not we can modify some 

parameters. We have to make sure before leaving the 

simulation running for long periods of time that the preview 

result was satisfying in order to avoid the lost of time. 

 The snapshot below shows the mitochondrion 

surrounded by water particles in a presynaptic terminal. 

 

  
Figure 20.  Simulation of a Mitochondrion and water 

particles in a presynaptic terminal  

 
7. IMPLEMENTATION 

We implemented all code in the Python programming 

language. Typically interpreted, Python is known more for 

its aesthetic syntax and convenient data structures than for 

its performance. The language satisfied our need, however, 

to develop a proof of concept.  

 Figure 21 shows the Python code used to specify a 

single level of an actin filament, modeled with three 

particles arranged in an equilateral triangle. 

 

 
Figure 21.  Sample Python code 

 

8. CONCLUSION 

We have demonstrated how TPS can be used to model 

various deformable biological structures. The techniques 

used to model actin filaments could be applied to other 

relatively long and narrow biological entities, whereas the 

basic arrangement of particles adopted for the 

mitochondrion model could be used for other relatively 

round biological objects. A set of inert particles, like the 

water particles presented in this paper, could be used to 

represent a variety of different small objects that impede the 

motion of other structures. Future work includes refining 

various model parameters, improving the performance of 

the simulation code, and integrating all the structures 

modeled in this paper into a single realistic model of a 

presynaptic terminal.  
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