
Simulation of Three Dimensional Elevator System Using Cell-DEVS Formalism

Mohammad Moallemi, Ali Arya, Gabriel Wainer
Dept. of Systems and Computer Engineering,

Carleton University, Ottawa, Canada.
{moallemi, gwainer}@sce.carleton.ca, arya@carleton.ca

Keywords: Cellular Automata, Cell-DEVS, Three
Dimensional Elevator System.

Abstract
 Complex physical systems have been studied for many
years using different approaches. Skyscraper building
heights are restricted by the design limitations of their
elevator systems. Long cable elevator systems will cause
stretch because of their own weight. A newer technology is
electromagnetic elevators that are able to travel in three
dimensions and have no limitation on their height. M&S
(Modeling and Simulation) methodologies and tools provide
means for cost-effective validity analysis for designing
complex physical and mechanical systems. Cell-DEVS is a
formal methodology for cell-divided models based on
DEVS (Discrete Event System Specifications) formalism. In
this work, a cellular simulation model is used to model a
three dimensional elevator system in a tall building with
huge occupied area. The model defines appropriate rules for
cells to control the elevators moving in different directions,
while applying certain regulations to their movement to
avoid collisions. Path finding and collision avoidance
strategies are used to simulate an applicable system. We
present the elevator model specifications, simulation design
and discuss different simulation scenarios.

1. INTRODUCTION AND MOTIVATION
 Complex physical systems have been studied for many
years using different approaches. In most cases, partial
differential equations have been used to solve these kinds of
problems. Analytical solutions for these problems are not
practical in real life. Nevertheless, the appearance of
computers allowed solving the problem from different point
of view. Even in these days, differential equations are
implemented in digital computers to solve physical and
mechanical problems. Unfortunately, the complexity of
certain problems is such that no solution can be found. In
these cases, the use of computer simulation allowed viewing
more complex problems in a different way, providing
solutions to specific problems. Defining model for the
system under study provides a framework for formal
representation of the system and enables us to program the
model using computer. Modeling and Simulation (M&S)
methodologies and tools have provided means for cost-

effective representation and validity analysis of different
physical systems. M&S-based testing is a popular
technique, which is widely used for these systems, since the
lack of practical analytical solution encourages simulation-
based solution. Among existing M&S techniques, cellular
automata is a popular cell-based simulation approach, which
is a discrete model, composed of a network of cells in
which; each cell has a finite number of states [1]. Time is
also discrete. The state of each of the cells in time t is a
function of states of its predefined neighbor cells in time t-1.
Cellular automata can be used in cellular simulation of
physical systems in which each cell represents an entity, and
events are represented as sequences of state changes of the
cells.
 Cell-DEVS theory introduced a novel mechanism for
computation, based on asynchronous cellular models with
explicit timing constructions [2], [3]. The technique has
been used to develop a wide variety of models in different
fields, ranging from environmental sciences, traffic, biology
and physical systems. Cell-DEVS is based on DEVS which
provides a framework for construction of hierarchical
models in a modular fashion, and makes it ideal for
describing naturally hierarchical systems [4]. Likewise, its
discrete-event nature improves the execution performance
of the models, due to the asynchronous nature of the events
occurring in the cell.
 Cell-DEVS cellular simulation technique has been used
in this work to simulate complex three dimensional elevator
systems for tall buildings. We use cellular technique to
represent the building structure, elevator tunnels and
elevator cars. Appropriate rules are defined to control the
movement of the elevators in the tunnels, while making it
possible to have higher number of elevators compared to the
number of tunnels available. Simulation provides a visual
representation of the system, taking into account different
collision avoidance and path finding solutions. The result of
the simulation helps engineers to study the system in a
simulated model, with less cost and time resources.

2. BACKGROUND
 Cell-DEVS methodology has extended the DEVS
formalism, allowing the implementation of cellular models
with timing delays. A Cell-DEVS model is a lattice of cells

holding state variables and a computing apparatus, which is
in charge of updating the cell state according to a local rule.
This is done using the present cell state and those of a finite
set of nearby cells (called its neighborhood). Cell-DEVS
improves execution performance of cellular models by using
a discrete-event approach. It also enhances the cell’s timing
definition by making it more expressive. Each cell is
defined as a DEVS atomic model, and it can be later
integrated to a coupled model representing the cell space.
Cell-DEVS atomic models are informally defined as shown
in Figure 1.

Figure 1- Description of a Cell-DEVS atomic model

 Each cell uses N inputs to compute its next state. These
inputs, which are received through the model's interface,
activate a local computing function (ττττ). A delay (d) can be
associated with each cell. The state (s) changes can be
transmitted to other models, but only after the consumption
of this delay.
 Once the cell behavior is defined, a coupled Cell-DEVS
can be created by putting together a number of cells
interconnected by a neighborhood relationship. A Cell-
DEVS coupled model is informally presented as shown in
Figure 2.

Figure 2- Description of a Cell-DEVS coupled model

Cell-DEVS coupled models represent the cell space as
follows:
GCC = < Xlist, Ylist, I, X, Y, n, {t1,...,tn}, N, C, B, Z, select >
where
Xlist: is the input coupling list;
Ylist: is the output coupling list;
I : represents the definition of the model’s interface;
X: is the set of external input events;
Y: is the set of external output events;
n: is the dimension of the cell space;

{t 1,...,tn}: is the number of cells in each dimension;
N: is the neighborhood set;
C : is the cell space;
B : is the set of border cells;
Z: is the translation function; and
select: is the tie-breaking function for simultaneous events.
 A coupled model is composed of an array of atomic
cells (C) with given size and dimensions where each cell is
connected through standard DEVS input/output ports to the
cells defined in the neighborhood (N). Since the cell space
is finite, the borders of the cells are either connected to a
different neighborhood than the rest of the space, or they are
“wrapped” (i.e. B = {∅}) in which they are connected to
those in the opposite one using the inverse neighborhood
relationship. However, border cells have a different
behavior due to their particular locations, which result in a
non-uniform neighborhood. The Z function defines the
internal and external coupling of cells in the model. It
translates the outputs of the ith output port in cell Ca into
values for the ith input port in cell Cb. Select function has
similar functionality as in basic DEVS models, which is the
tie-breaking function for the imminent components.
 CD++ [5], [6] is an M&S tool that was defined using the
DEVS and Cell-DEVS specifications. The toolkit includes
facilities to build DEVS and Cell-DEVS models. CD++ is
built as a class hierarchy of models related with simulation
processing entities. DEVS Atomic models can be
programmed and incorporated onto a class hierarchy
programmed in C++. Coupled models can be defined using
a built-in specification language. Cell-DEVS models are
built following the formal specifications for DEVS models
(informally presented in this section), and a built-in
language is provided to describe them. CD++ makes use of
the independence between modeling and simulation
provided by DEVS, and different simulation engines have
been defined for the platform. Once an atomic model is
defined, it can be combined with others into a multi-
component model using a specification language specially
defined with this purpose. CD++ also includes an interpreter
for Cell-DEVS models. The language is based on the formal
specifications of Cell-DEVS. The model specification
includes the definition of the size and dimension of the cell
space, the shape of the neighborhood and borders. The cell’s
local computing function is defined using a set of rules with
the form POSTCONDITION DELAY
{PRECONDITION}. These indicate that when the
PRECONDITION is satisfied, the state of the cell will
change to the designated POSTCONDITION, whose
computed value will be transmitted to other components
after consuming the DELAY. If the precondition is false, the
next rule in the list is evaluated until a rule is satisfied or
there are no more rules.

3. PROBLEM DEFINITION
 Currently, building heights are restricted by the design
limitations of their elevators. Elevator cables can reach a
maximum length of 500 yards before they stretch too much
under their own weight. A solution to this problem has been
suggested for the Millennium Tower, a massive, half-mile
high skyscraper. The solution [7] involves an
electromagnetic elevator that operates not only in the
traditional vertical dimension, but also in a horizontal
dimension. This would be implemented by using horizontal
transfer shafts that allow the elevator cars to move from side
to side, allowing multiple cars to be stacked in a single shaft
to allow for more efficient traffic routing.
 Figure 3 shows an example model in which a 100-floor
high skyscraper with 30 blocks in length and 30 blocks in
width is shown. Four vertical elevator tunnels are located at
each corner of the building and three horizontal tunnels
connect the four vertical ones, one in the first floor, one in
the 50th floor and one in 100th floor. To simplify the
elevator car movements in these tunnels, they must move in
regulated pathways. Two vertical tunnels are only accepting
upward moving cars and two others downward moving cars.
Elevator cars are only allowed to move in the right direction
(as mentioned in the figure) in horizontal tunnels.

100

30

30

20

20

Figure 3- A 3D view of the elevator system in a 100-floor

skyscraper

 The two vertical tunnels on each side of the building
have 20 blocks distance from each other. On each

intersection, the elevator cars are forced to obey the
traditional traffic rule (the elevator on the right must go first
and the left one must yield). The three dimensional elevator
system permits efficient use of tunnels, by having more
elevator cars than number of vertical tunnels. The other
advantage of this approach is access to both corners of a
huge building. People can get in and get off at both corners
of the building and travel horizontally besides vertically.
The other advantage of horizontal tunnel is in emergency
situations when elevators can be programmed to move to the
horizontal tunnels (which are safer places) and evacuate
people.

4. PROPOSED MODEL
 To model the above mentioned example using Cell-
DEVS formalism, different sketches can be found. A simple
trivial model can have 30 planes of 30 by 100 cells to
represent the actual size of the building, including tunnels
and elevators. However, this approach consumes huge
amount of memory on any system as the size of the cell
space contains 90000 cells. Most of the cells that represent
the walls are actually useless during the simulation. An
efficient way of abstractly implementing the design is to
only simulate the four planes that contain the tunnels on
each side of the building. Hence, we unfold the sides of the
building and make it a two dimensional cell space with four
tunnels with wrapped neighbors on both sides. The four
sides that contain the tunnels are unfolded and connected to
each other, making a two dimensional cell space of 80 by
100 cells with four vertical tunnels and three horizontal
tunnels. The number of cells drops to 8000.
 Figure 4 illustrates the final cell space after unfolding.
The three horizontal tunnels are connected to each other
from both sides. The movement direction is signed on each
tunnel. This simplified design saves memory space and
eliminates unnecessary computation. In Cell-DEVS the
origin of the cell space is the top left cell of the plane (0,0)
and as we go down the first component (y) increases and as
we move laterally to the right the second component (x)
increases. There are 12 intersection cells with the following
coordinates: (0,0), (0,20), (0,40), (0,60), (50,0), (50,20),
(50,40), (50,60), (99,0), (99,20), (99,40) and (99,60) which
are shown in the figure.

Figure 4- unfolded view of the cell space

 Intersection cells must take care of collisions and
organize the traffic based on the previously mentioned order
to avoid possible collisions between elevator cars. Figure 3
illustrates a collision scenario in an intersection of a
downward tunnel and a horizontal tunnel, where a
downward going elevator is going to enter the intersection
simultaneously with a right going cell from the horizontal
tunnel. In this scenario the right moving elevator goes first
because it is on the right side of the downward going
elevator.

Figure 5- A collision scenario in an intersection cell

 In our model, each elevator starts from a random
coordinate and travels towards a random destination in the
tunnels. As soon as it arrives at the destination cell, it
chooses another random destination and moves towards the
new destination. Elevators follow the closest path to get to
destinations.
 To organize the behaviors that govern the conceptual
model, several rules must be defined to apply to each active
cell in the simulation space. The rules must be consistent
and cover all the cells that participate in the simulation. The
rules are categorized in four groups: upward intersection
rules, downward intersection rules, next destination
calculation rules and direct movement rules.

1) Upward intersection rules manage movement of the
elevators at the intersection between upward tunnels
and lateral tunnels. These rules manage collision
avoidance and also decide the next direction of an
elevator car in order to get closer to the destination.

2) Downward intersection rules are applied to the
intersection cell between downward moving tunnels
and horizontal tunnels. They perform the same tasks as
the upward intersection rules do.

3) Next destination calculation rules are used when an
elevator has reached its destination. These rules decide
a random location in the building as the next destination
for that elevator.

4) Direct movement rules manage the horizontal and
vertical movements of the elevators in the tunnels.

 To implement the above rules, each cell must be able to
watch its above, bellow, left, right, bottom right and bottom
left corners. Therefore, we used Moore neighborhood
definition. Figure 6 illustrates the neighborhood definition
for elevator model.

Figure 6- Moore neighbourhood for elevator model

 Formal specification of a Cell-DEVS model for the the
proposed elevator model is given by:
M=<I, X, Y, Xlist, Ylist, n, N, {n1,n2}, C, B, Z, select>
Where:
I= <PX,Py>, with PX={∅}, Py={∅};
X=Y= {0, 20, 51, 52, 53, 61, 62, 63, …};
Xlist=∅
Ylist=∅
n=9
N={(-1,-1)(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1)}
{n1, n2 }= {100,80}
C={Cij / i ∈[1,100], j∈[1,80]}
B= {∅} wrapped;
Z:

Pij Y1 → Pi,j-1 X1

Pij Y2 → Pi+1,j X2
Pij Y3 → Pi,j+1 X3

Pij Y4 → Pi-1,j X4

Pij Y5 → Pij X5

Pi,j+1 Y1 → Pij X1

Pi-1,j Y2 → Pij X2

Pi,j-1 Y3 → Pij X3

Pi+1,j Y4 → Pij X4
Pij Y5 → Pij X5

select ={(-1,-1), (-1,0), (-1,1), (0,-1), (0,0), (0,1), (1,-1),
(1,0), (1,1)}
A mapping between numerical cell values and different
physical representations has been defined as follows:
0: represents a wall cell.

20: represents an empty (tunnel) cell.
51, 61, 71, …: represent upward going elevator cell.
52, 62, 72, …: represent downward going elevator cell.
53, 63, 73, …: represent right going elevator cell.
An example elevator cell with value 51 is an upward
elevator cell, as soon as it changes direction to right, its
value changes to 53, and if it moves down its value become
52. The most significant digit is the id of the elevator and
the least significant digit indicates its direction. Digits after
decimal point are used to store elevator destination. The first
two digits indicate the X component and the other two
indicate Y component. For example an elevator cell with
value 72.2440, is going downward, towards destination
located at (24, 40) in the cell space.

4.1. CD++ Implementation
 As discussed earlier CD++ is an M&S tool which
implements DEVS and Cell-DEVS formalisms. We used
CD++ to implement three-dimensional elevator model.
CD++ provides an eclipse based GUI to define Cell-DEVS
atomic and coupled model and corresponding rules to
govern cell state changes. We declare the four categories of
rules that have been mentioned earlier.
 Figure 7 shows the upward moving intersection rules
category, implemented in CD++ GUI. The first rule checks
whether an upward moving elevator cell is going to enter
the intersection, and its destination is bellow the current

row, therefore it enters the intersection but its direction
changes to moving right, in order to direct it to the lateral
tunnel. The second rule applies to an upward intersection
cell where an upward moving cell is entering but its
destination is above the current row and it is either in the
same upward tunnel or in the next (downward moving)
tunnel. Therefore, the elevator enters the intersection and
continues upward. If the destination is in the next column, it
is directed downward in the next intersection. If the
destination has a lateral distance of 40 cells or more and its
above the current location, the elevator is guided to the
lateral tunnel, to be redirected in the next upward
intersection (shown in the third rule). Rule five and six
forward all the incoming traffic to the right direction
because they apply to the top intersection cells. The other
three rules apply to right moving elevator cells entering an
upward elevator cell. Similar path finding strategy with the
upward moving elevators is used for right moving elevators.
The rules applying to elevators with precedence in an
intersection are placed prior the rules associated with the
lower priority elevator, (in this case, upward moving cells
are handled prior to right moving cells as the former has
precedence over the latter in an upward intersection) since
the first rule that applies to an intersection will be executed.
Hence the higher priority cell will first enter the
intersection.

Figure 7- Upward moving rules in CD++

 Similar rules have been defined for downward
intersection cells. In CD++ each cell has a value at each step
which gets propagated to other cells in its neighbourhood at
each step. As soon as an elevator cell reaches the cell before
its destination, the destination cell is informed of this
achievement and a destination calculation rule applies to

that cell and replaces its destination by another random
destination. Figure 8 shows the next destination calculation
rules in CD++ GUI. Three rules are provided for three
directions which modify the fractional part of the cell value
representing the destination.

Figure 8- Next destination calculation rules

 Two groups of rules have been defined for direct
movement inside the tunnels each of them deal with the
three direction movements. First group applies to the
elevator cells at each step, when they find an empty cell for
the next move, they become empty cells. The second group
applies to the empty cells which are going to become

elevator cells in the next step, they receive the elevator
value and own this value. For each movement direction
(upward, downward, right) a separate rule is defined in each
group. Figure 9 shows direct movement rules in CD++
GUI.

Figure 9- Direct movement rules

4.2. Simulation Results
 To run the model on CD++, a value file has been
provided which initializes the cell values. We construct the
proposed structure presented in Figure 4, by setting the wall,
tunnel and elevator cell values. The model is designed
generically allowing any number of elevator cars to be
introduced to the model. CD++ modeller [8] is a toolkit
accompanied by CD++ which provides two dimensional
representation of the cell space, by tracing the logfile of the
simulation. It is capable of associating different colors to
different cell values. Figure 10 represents a snapshot of the
graphical representation made by CD++ Modeller toolkit.
The dark gray cells represent walls, white cells represent
tunnels and color cells located in the tunnels are elevator
cells. The red square specifies a downward intersection
where two elevators are trying to enter (discussed in Figure
11).

Figure 10- Snapshot of CD++ graphical representation of

3D elevator model

Figure 11 shows a collision scenario in a downward
intersection, where two elevator cells, one from above
(green cell) and one from left (brown cell) are trying to enter
the intersection. The corresponding logfile of CD++ is
shown under each step (zero values indicating wall cells are
not printed in the logfile). Based on the traffic rules
discussed before, the right going cell has precedence over
the other one. The value of the left cell is 113 and its
destination is (99, 70) (indicated by the digits after decimal
point). The intersection cell routs the cell towards the target
which in this case is routed to the lateral tunnel. Therefore
the cell value does not change and it continues its path. The
downward moving cell’s value is 62 and its destination is
(35, 40). It enters the intersection after the left cell, and
because its destination is on the right of the intersection it is
routed to the lateral tunnel. Hence its value changes to 63,
indicating right direction movement.

Step 1 Step 2

Step 3 Step 4

Figure 11- Collision detection scenario in CD++ modeller

Figure 12 shows two pieces of the logfile in which the
elevator cell with value 121 and destination (68, 0) is
moving upward in the first column (Y=0, the first tunnel on
the left). The numbers on the left show the row labels. As
soon as the elevator cell reaches row 68 which is its
destination, it randomly picks another destination and heads
toward this new destination.

Figure 12- Destination achievement scenario

Varieties of simulation scenarios have been tested with
different number of elevator cells in different initial
locations. The model was able to run the simulation
correctly and rout the cells to their destinations. Two videos
of the simulation results with 10 and 20 elevators are
available in [9] and [10].

5. CONCLUSIONS
 Massive skyscrapers need more advanced elevator
systems because of restrictions of the traditional cable
elevator systems. The new elevator systems operate using
electromagnetic technology and are able to travel in three
dimensions. A cellular simulation model based on this
technology using Cell-DEVS methodology has been
presented in this paper, to verify the performance and
efficiency of this system. Collision avoidance and path
finding strategies have been used to safely route elevators in
the tunnels. Cell-DEVS formal specifications of the model
have been presented followed by the details of
implementation in CD++ simulation software.
 The simulation proved the effectiveness and efficiency
of the three dimensional elevator system as it accommodates
higher number of elevators in the tunnels and provides
lateral movement as well as vertical movement. These
systems can be used with intelligent path finding
algorithms, reducing transfer time in huge buildings.

Reference
[1] Wolfram, S. "Theory and applications of cellular

automata". Vol. 1. Advances Series on Complex
Systems. World Scientific. Singapore. 1986.

[2] The Use of Cellular Automata in the Classroom, Lilly,
H.A.; Supercomputing, 1995. Proceedings of the
IEEE/ACM SC95 Conference.

[3] Wainer, G.; Giambiasi, N. "Timed Cell-DEVS:
modeling and simulation of cell spaces ". In "Discrete
Event Modeling & Simulation: Enabling Future
Technologies", Springer-Verlag. 2001.

[4] ZEIGLER, B.; KIM, T.; PRAEHOFER, H. "Theory of
Modeling and Simulation". Academic Press. 2000.

[5] WAINER G., “CD++: a toolkit to define discrete-event
models”. Software, Practice and Experience. Vol. 32,
No.3. pp. 1261-1306. November 2002.

[6] Wainer, G. et al. "CD++ A tool for DEVS and Cell-
DEVS Modeling and Simulation. User's Guide". Draft.
August 2004.

[7] Mark Hayden, Chris Stasiuk, Tim Tober “2
Dimensional Elevator Controller” project website,
available at:
http://www.ee.ualberta.ca/~elliott/ee552/projects/1998_
w/elevator_controller/.

[8] Chiril Chidisiuc, Gabriel A. Wainer "CD++Modeler: a
graphical viewer for DEVS models" Poster, Poster
Papers Workshop. SpringSim 2008. Ottawa, ON. –
2008.

[9] Simulation results video with 10 elevators available at:
http://www.youtube.com/watch?v=32eGuPtWotI.

[10] Simulation results video with 20 elevators available
at: http://www.youtube.com/watch?v=d0Tb0Am5UrY.

