Simulation of Three Dimensional Elevator System Using Cell-DEV S For malism

Mohammad M oallemi, Ali Arya, Gabrid Wainer
Dept. of Systemsand Computer Engineering,
Carleton University, Ottawa, Canada.
{moallemi, gwainer}@sce.carleton.ca, arya@carleton.ca

Keywords: Cellular Automata, Cell-DEVS, Three
Dimensional Elevator System.

Abstract

effective representation and validity analysis dfedent
physical systems. M&S-based testing
technique, which is widely used for these systesimge the
lack of practical analytical solution encourageasidation-

Complex physical systems have been studied forymarbased solution. Among existing M&S techniques, utafl

years using different approaches. Skyscraper
heights are restricted by the design limitations tlogir
elevator systems. Long cable elevator systems aaillse
stretch because of their own weight. A newer tetdmpois
electromagnetic elevators that are able to tramethree
dimensions and have no limitation on their heigl&S
(Modeling and Simulation) methodologies and toatsvjzle
means for cost-effective validity analysis for dgsng
complex physical and mechanical systems. Cell-DE/&
formal methodology for cell-divided models based
DEVS (Discrete Event System Specifications) forsrali In
this work, a cellular simulation model is used todal a
three dimensional elevator system in a tall bugdimith
huge occupied area. The model defines appropuites for
cells to control the elevators moving in differelitections,
while applying certain regulations to their movemeo
avoid collisions. Path finding and collision avaida
strategies are used to simulate an applicable mystge
present the elevator model specifications, simutatesign
and discuss different simulation scenarios.

1. INTRODUCTION AND MOTIVATION

Complex physical systems have been studied foryman

years using different approaches. In most casesjalpa
differential equations have been used to solveethaxls of
problems. Analytical solutions for these problems aot
practical in real life. Nevertheless, the appeagaraf
computers allowed solving the problem from différpaint
of view. Even in these days, differential equaticar®e
implemented in digital computers to solve physieald
mechanical problems. Unfortunately, the complexitly
certain problems is such that no solution can hedo In
these cases, the use of computer simulation allaesdng

more complex problems in a different way, providing

solutions to specific problems. Defining model fibre

system under study provides a framework for forma

representation of the system and enables us tagrothe

model using computer. Modeling and Simulation (M&S)
methodologies and tools have provided means fot- cos

on

mgildi automata is a popular cell-based simulation apgroabich

is a discrete model, composed of a network of cills

which; each cell has a finite number of stgtHs Time is
also discrete. The state of each of the cellsrreti is a
function of states of its predefined neighbor cillimet-1.
Cellular automata can be used in cellular simutata
physical systems in which each cell representstityeand
events are represented as sequences of state shatpe
cells.

Cell-DEVS theory introduced a novel mechanism for
computation, based on asynchronous cellular modiéts
explicit timing constructiond2], [3]. The technique has
been used to develop a wide variety of models fierdint
fields, ranging from environmental sciences, taffiiology
and physical systems. Cell-DEVS is based on DEV&hvh
provides a framework for construction of hierarethic

models in a modular fashion, and makes it ideal for

describing naturally hierarchical systefd. Likewise, its
discrete-event nature improves the execution padioce
of the models, due to the asynchronous natureeoétents
occurring in the cell.

Cell-DEVS cellular simulation technique has besadi
In this work to simulate complex three dimensioglalvator
systems for tall buildings. We use cellular tecleigto
represent the building structure, elevator tunnetsd
elevator cars. Appropriate rules are defined totrobrihe
movement of the elevators in the tunnels, while inmglt
possible to have higher number of elevators conpiar¢he
number of tunnels available. Simulation providesisual
representation of the system, taking into accouffierént
collision avoidance and path finding solutions. Tasult of
the simulation helps engineers to study the sysitena
simulated model, with less cost and time resources.

g. BACKGROUND

Cell-DEVS methodology has extended the DEVS
formalism, allowing the implementation of cellularodels
with timing delays. A Cell-DEVS model is a lattioé cells

is a popular

holding state variables and a computing apparathih is {t,,...,t;}: is the number of cells in each dimension;

in charge of updating the cell state according kncal rule. N: is the neighborhood set;

This is done using the present cell state and thbsefinite C: is the cell space;

set of nearby cells (called its neighborhood). ©H#NVS B: is the set of border cells;

improves execution performance of cellular modglsising Z: is the translation function; and

a discrete-event approach. It also enhances thie tialing select: is the tie-breaking function for simultaneous reee
definition by making it more expressive. Each cll A coupled model is composed of an array of atomic
defined as a DEVS atomic model, and it can be latecells C) with given size and dimensions where each cell is
integrated to a coupled model representing the spice. connected through standard DEVS input/output porthe
Cell-DEVS atomic models are informally defined &swn cells defined in the neighborhool)(Since the cell space

in Figure 1. is finite, the borders of the cells are either @wmtad to a
different neighborhood than the rest of the spacé#hey are
oqueve [[[] =] “wrapped” (i.e.B = {0}) in which they are connected to
those in the opposite one using the inverse neitjicoal
B [N relationship. However, border cells have a differen
ENER behavior due to their particular locations, whiesult in a
N g non-uniform neighborhood. Th& function defines the
O O internal and external coupling of cells in the modé
translates the outputs of th® dutput port in cellC, into
Figure 1- Description of a Cell-DEVS atomic model values for the" input port in cellC,. Select function has

similar functionality as in basic DEVS models, whis the
~ Each cell uses N inputs to compute its next stttese tie-breaking function for the imminent components.
inputs, which are received through the model'sriate, CD++[5],[6] is an M&S tool that was defined using the
activate a local computing functiom)(A delay @) can be pgys and Cell-DEVS specifications. The toolkit indes
associated with each cell. The stag ¢hanges can be fagjjities to build DEVS and Cell-DEVS models. CD4s
transmitted to other models, but only after theszmnption it as a class hierarchy of models related withugation
of this delay. o , processing entites. DEVS Atomic models can be

Once the cell behavior is defined, a coupled O&WS ogrammed and incorporated onto a class hierarchy

can be created by put;ing together a _numper ofs Ce”programmed in C++. Coupled models can be definatyus
interconnected by a neighborhood relationship. Al-Ce 5 pyilt-in specification language. Cell-DEVS modeie

DEVS coupled model is informally presented as shawn it following the formal specifications for DEV@odels
Figure 2. . _ (informally presented in this section), and a binilt
Cell's eonnections language is provided to describe them. CD++ malkesadi
the independence between modeling and simulation
provided by DEVS, and different simulation engirres/e
been defined for the platform. Once an atomic mddel
defined, it can be combined with others into a mult
component model using a specification languageialhec
defined with this purpose. CD++ also includes darjpreter
o - for Cell-DEVS models. The language is based orfdheal
Mr(s)=s o|E|—»—» specifications of Cell-DEVS. The model specificatio
Cell definition includes the definition of the size and dimensiéthe cell

Figure 2- Description of a Cell-DEVS coupled model ~ SPace, the shape of the neighborhood and bordeescdll’s
local computing function is defined using a setuwés with

=
+3

DIREIS

@ C+I

Cell-DEVS coupled models represent the cell spase ghe form ~ POSTCONDITION DELAY
follows: {PRECONDITION}. These indicate that when the
GCC = <X, Vi 1, X, Y, 0, {to,...ta}, N, C, B, Z, select > PRECONDITION is satisfied, the state of the celllwi
where change to the designated POSTCONDITION, whose
Xiiq: iS the input coupling list; computed value will be transmitted to other compise
Y« is the output coupling list; after consuming the DELAY. If the precondition &de, the

| : represents the definition of the model’s inteefa next rule in the list is evaluated until a rulesistisfied or

X: is the set of external input events; there are no more rules.

Y: is the set of external output events;
n: is the dimension of the cell space;

3. PROBLEM DEFINITION

Currently, building heights are restricted by tlesign
limitations of their elevators. Elevator cables aaach a
maximum length of 500 yards before they stretchrneh
under their own weight. A solution to this problé@s been
suggested for the Millennium Tower, a massive, -halé

high skyscraper. The solution[7] involves an
electromagnetic elevator that operates not onlytlie
traditional vertical dimension, but also in a horial
dimension. This would be implemented by using rmonal
transfer shafts that allow the elevator cars to enfoom side
to side, allowing multiple cars to be stacked Birgyle shaft
to allow for more efficient traffic routing.

Figure 3 shows an example model in which a 106¢flo
high skyscraper with 30 blocks in length and 30ckéoin
width is shown. Four vertical elevator tunnels laeated at
each corner of the building and three horizontaingls
connect the four vertical ones, one in the firsbf| one in
the 50th floor and one in 100th floor. To simplitiie
elevator car movements in these tunnels, they mase in

Figure 3- A 3D view of the elevator system in a 100-floor
skyscraper

The two vertical tunnels on each side of the hgd
have 20 blocks distance from each other.

intersection, the elevator cars are forced to olbley
traditional traffic rule (the elevator on the rightist go first
and the left one must yield). The three dimensi@bavator
system permits efficient use of tunnels, by havingre
elevator cars than number of vertical tunnels. Dhieer
advantage of this approach is access to both comfen
huge building. People can get in and get off ahlmairners
of the building and travel horizontally besides ticzadly.
The other advantage of horizontal tunnel is in gaecy
situations when elevators can be programmed to nmtre
horizontal tunnels (which are safer places) andcex®
people.

4. PROPOSED MODEL

To model the above mentioned example using Cell-
DEVS formalism, different sketches can be foundiple
trivial model can have 30 planes of 30 by 100 cétls
represent the actual size of the building, inclgdinnnels
and elevators. However, this approach consumes huge
amount of memory on any system as the size of étle ¢
space contains 90000 cells. Most of the cells teptesent
the walls are actually useless during the simutatiAn
efficient way of abstractly implementing the desiignto
only simulate the four planes that contain the &lsiron
each side of the building. Hence, we unfold thesidf the
building and make it a two dimensional cell spadt iour
tunnels with wrapped neighbors on both sides. The f
sides that contain the tunnels are unfolded andexed to
each other, making a two dimensional cell spac8by
100 cells with four vertical tunnels and three honial
tunnels. The number of cells drops to 8000.

Figure 4 illustrates the final cell space aftefolging.
The three horizontal tunnels are connected to edbbr
from both sides. The movement direction is signedcach
tunnel. This simplified design saves memory spacd a
eliminates unnecessary computation. In Cell-DEV® th
origin of the cell space is the top left cell oétplane (0,0)
and as we go down the first component (y) increaselsas
we move laterally to the right the second compor(@t
increases. There are 12 intersection cells withifdllewing
coordinates: (0,0), (0,20), (0,40), (0,60), (50,(850,20),
(50,40), (50,60), (99,0), (99,20), (99,40) and €@9,which
are shown in the figure.

On each

Figure 4- unfolded view of the cell space

Intersection cells must take care of collisiongd an

organize the traffic based on the previously memgborder
to avoid possible collisions between elevator chigure 3
illustrates a collision scenario in an intersectioh a
downward tunnel and a horizontal tunnel,
downward going elevator is going to enter the Baetion
simultaneously with a right going cell from the izontal
tunnel. In this scenario the right moving elevegoes first
because it is on the right side of the downwardngoi

elevator.

Figure5- A collision scenario in an intersection cell

coordinate and travels towards a random destinatiche
tunnels. As soon as it arrives at the destinatieh, dt
chooses another random destination and moves teviiaed
new destination. Elevators follow the closest patlyet to
destinations.

To organize the behaviors that govern the conegptu

model, several rules must be defined to apply th eative
cell in the simulation space. The rules must besistent
and cover all the cells that participate in thewdation. The
rules are categorized in four groupgward intersection
rules, downward intersection rules, next destination
calculation rules anddirect movement rules.

2)

3)

4)

Upward intersection rules manage movement of the
elevators at the intersection between upward tgnnel
and lateral tunnels. These rules manage collision
avoidance and also decide the next direction of an
elevator car in order to get closer to the dedtinat
Downward intersection rules are applied to the
intersection cell between downward moving tunnels
and horizontal tunnels. They perform the same tasks
the upward intersection rules do.

Next destination calculation rules are used when an
elevator has reached its destination. These ridele

a random location in the building as the next aesibn

for that elevator.

Direct movement rules manage the horizontal and
vertical movements of the elevators in the tunnels.

To implement the above rules, each cell must ke tab

watch its above, bellow, left, right, bottom rigirtd bottom
left corners. Therefore, we used Moore neighborhood
definition. Figure 6 illustrates the neighborhooefidition

for elevator model.

where a

et

Figure 6- Moore neighbourhood for elevator model

Formal specification of a Cell-DEVS model for tthe

proposed elevator model is given by:

M=<I, X, Y, Xligt, Ylist, n, N, {n1,n2}, C, B, Z, select>
Where:

I= <PX,Py>, with PX={1}, Py={0};

X=Y={0, 20, 51, 52, 53, 61, 62, 63, ...};

Xlist=

Ylist=(]

n=9

N:{('li'l)('llo)!('1!1)!(01'1)7(0!0)!(011)1(11'1)na)1(111)}
{n1, n2 }= {100,80}
C={Cij /i O[1,100], [I[1,80]}

In our model, each elevator starts from a randonB_:{D}wrapped;

Pj Y1 - Pij-1 X1
Pj Y2 - Pi+1,j X2
Pij Y3 - Pij+1 X3
Pj Y4 - Pi-1,j X4
Pij Y5 ~ Pj X5

Pij+1Y1 - Pij X1
Pi.1j Y2~ RjX

Pij-1Y3 - Pj X3
Pi+1, Y4 - Pj X4
Pij Y5~ Pij X5

select :{('11'1)1 ('1!0)! ('1!1)1 (O,'l), (010)7 (Ovl)a (1)1'
(1,0), (1.1}

A mapping between numerical cell values and differe
physical representations has been defined as fsilow

0: represents a wall cell.

20: represents an empty (tunnel) cell. row, therefore it enters the intersection but iteeation

51, 61, 71, ...: represent upward going elevator cell changes to moving right, in order to direct it ke tlateral
52, 62, 72, ...: represent downward going elevatbr ce tunnel. The second rule applies to an upward iattien
53, 63, 73, ...: represent right going elevator.cell cell where an upward moving cell is entering bug it

An example elevator cell with value 51 is an upwarddestination is above the current row and it isegitim the
elevator cell, as soon as it changes directionigbtrits same upward tunnel or in the next (downward moving)
value changes to 53, and if it moves down its vileeome tunnel. Therefore, the elevator enters the int¢imeand
52. The most significant digit is the id of theeltor and continues upward. If the destination is in the reotumn, it
the least significant digit indicates its directidpigits after is directed downward in the next intersection. fKfet
decimal point are used to store elevator destinafibe first destination has a lateral distance of 40 cells orenand its
two digits indicate the X component and the othgot above the current location, the elevator is guitedhe
indicate Y component. For example an elevator wéth lateral tunnel, to be redirected in the next upward
value 72.2440, is going downward, towards destimati intersection (shown in the third rule). Rule fivadasix

located at (24, 40) in the cell space. forward all the incoming traffic to the right ditém
because they apply to the top intersection celle ®ther
4.1. CD++ Implementation three rules apply to right moving elevator cell$egimg an

As discussed earlier CD++ is an M&S tool which upward elevator cell. Similar path finding strategigh the
implements DEVS and Cell-DEVS formalisms. We usedupward moving elevators is used for right movingvators.
CD++ to implement three-dimensional elevator model.The rules applying to elevators with precedenceam
CD++ provides an eclipse based GUI to define C&W3 intersection are placed prior the rules associatid the
atomic and coupled model and corresponding rules ttower priority elevator, (in this case, upward muyicells
govern cell state changes. We declare the fougodts of are handled prior to right moving cells as the ferrhas
rules that have been mentioned earlier. precedence over the latter in an upward intersgctnce

Figure 7 shows the upward moving intersection sule the first rule that applies to an intersection Wil executed.
category, implemented in CD++ GUI. The first rulkkecks Hence the higher priority cell will first enter the
whether an upward moving elevator cell is goingetder intersection.
the intersection, and its destination is bellow therent

%Rules
[elevator]

Upward Intersection Rules
rule : {(1,0) + 2} 100 { (#macro(upward moving)) and cellpos(0)=50 and (cellpos(1)=0 or cellpos(1l)=40) and

(cellPos(0) < trunc(fractional((1,0)) * 100))}
rule : {(1,0)} 100 {(#macro(upward moving)) and cellpos(0)=50 and (cellpos(1l)=0 or cellpos(1l)=40) and

(cellPos(0) > trunc(fractional((1,0)) * 100)) and (abs(round(remainder(fractional((1,0)) * 10000,100)) - cellPos(1l)) < 40)}
rule : {(1,0) + 2} 100 { (#macro(upward moving)) and cellpos(0)=50 and (cellpos(1l)=0 or cellpos(1l)=40) and

(cellPos(0) > trunc(fractional((1,0)) * 100))}

rule : {(1,0) + 2} 100 { (#macro(upward moving)) and cellpos(0)=0 and (cellpos(1l)=0 or cellpos(1l)=40)}
rule : {(0,-1)} 100 { (#macro(moving_right)) and cellpos(0)=0 and (cellpos(1l)=0 or cellpos(1l)=40)}

rule : {(0,-1)} 100 { (#macro(moving_right)) and (cellpos(0)=50 or cellpos(0)=99) and (cellpos(1l)=0 or cellpos(1l)=40) and
(cellPos(0) < trunc(fractional((0,-1)) * 100))}

rule : {(0,-1) - 2} 100 {(#macro(moving right)) and (cellpos(0)=50 or cellpos(0)=99) and (cellpos(1l)=0 or cellpos(1l)=40) and
(cellPos(0) > trunc(fractional((0,-1)) * 100)) and (abs(round(remainder (fractional((0,-1)) * 10000,100)) - cellPos(l)) < 40

)}

rule : {(0,-1)} 100 { (#macro(moving_right)) and (cellpos(0)=50 or cellpos(0)=99) and (cellpos(l)=0 or cellpos(1)=40) and
(cellPos(0) > trunc(fractional((0,-1)) * 100))}

Figure 7- Upward moving rules in CD++

Similar rules have been defined for downwardthat cell and replaces its destination by anotlaom
intersection cells. In CD++ each cell has a valueagh step destinationFigure 8 shows the next destination calculation
which gets propagated to other cells in its neiginbood at rules in CD++ GUI. Three rules are provided foretnr
each step. As soon as an elevator cell reachazthieefore directions which modify the fractional part of thell value
its destination, the destination cell is informefl this representing the destination.
achievement and a destination calculation rule iappio

Next Destination Calculation
rule : {trunc((1,0))+ round(uniform(0, 99)) / 100 + (round(uniform(0, 3)) * 20) / 10000} 100

{ (cellPos (0) = trunc(fractional((1,0)) * 100)) and (cellPos(l) = round(remainder (fractional((1,0)) * 10000,100)))}
rule : {trunc((-1,0))+ round(uniform(0, 99)) / 100 + (round(uniform(0, 3)) * 20) / 10000} 100
{ (cellPos (0) = trunc(fractional((-1,0)) * 100)) and (cellPos(l) = round(remainder (fractional((-1,0)) * 10000,100)))}

rule : {trunc((0,-1))+ round(uniform(0, 99)) / 100 + (round(uniform(0, 3)) * 20) / 10000} 100
{ (cellPos (0) = trunc(fractional((0,-1)) * 100)) and (cellPos(l) = round(remainder (fractional((0,-1)) * 10000,100)))}

Figure 8- Next destination calculation rules

Two groups of rules have been defined for directelevator cells in the next step, they receive thevator
movement inside the tunnels each of them deal With value and own this value. For each movement doecti
three direction movements. First group applies e t (upward, downward, right) a separate rule is defiimeeach
elevator cells at each step, when they find an gl for group. Figure 9 shows direct movement rules in CD++

the next move, they become empty cells. The segoogp GUI.
applies to the empty cells which are going to bezom

Direct Movement Rules

rule : {(1,0)} 100 {#macro (upward_moving) }
rule : {(-1,0)} 100 {#macro (downward_moving) }
rule : {(0,-1)} 100 {#macro(moving_right)}

rule : 20 100 { #macro(next upward moving)}
rule : 20 100 { #macro(next downward moving) and #macro(not moving right)}
rule : 20 100 { #macro(next moving right) and #macro(not_upward moving)}

Figure 9- Direct movement rules

4.2. Simulation Results

To run the model on CD++, a value file has been
provided which initializes the cell values. We cust the
proposed structure presented in Figure 4, by settia wall,
tunnel and elevator cell values. The model is dexig
generically allowing any number of elevator carshbe
introduced to the model. CD++ modellg8] is a toolkit
accompanied by CD++ which provides two dimensional
representation of the cell space, by tracingltigéle of the
simulation. It is capable of associating differealors to
different cell values. Figure 10 represents a smaipsf the
graphical representation made by CD++ Modeller kibol
The dark gray cells represent walls, white cellgresent
tunnels and color cells located in the tunnels elevator
cells. The red square specifies a downward intésec
where two elevators are trying to enter (discussegigure
11).

Figure 10- Snapshot of CD++ graphical representation of

3D elevator model

Figure 11 shows a collision scenario in a downward

intersection, where two elevator cells, one fromowab
(green cell) and one from left (brown cell) ardrigyto enter
the intersection. The correspondinggfile of CD++ is
shown under each step (zero values indicating el are
not printed in thelogdfile). Based on the traffic rules
discussed before, the right going cell has precssi@ver
the other one. The value of the left cell is 113 ats
destination is (99, 70) (indicated by the digiteeaflecimal
point). The intersection cell routs the cell towstte target
which in this case is routed to the lateral tuniiélerefore
the cell value does not change and it continuegath. The
downward moving cell’'s value is 62 and its destoratis
(35, 40). It enters the intersection after the ledtl, and
because its destination is on the right of thergaetion it is
routed to the lateral tunnel. Hence its value clearp 63,
indicating right direction movement.

20.0000 20.0000
20.0000 20.0000
20.0000 20.0000
20.0000f113 9570 20.0000 20.0000 20.0000 20.0000 20.0000113.5970] 20.0000 20.0000
20.0000 20.0000
z0.0000 20.0000
20.0000 20.0000
20.0000 20.0000

Step 1

——p -

20.0000 20.0000
20.0000 20.0000
20.0000 20.0000
20.0000 20.0000
20.0000 20.0000[63.3540[113.5970] 20.0000 20.0000 20.0000 20.0000
20.0000 20.0000
20.0000 20.0000
20.0000
20.0000

Step 2

20.0000
20.0000

Step 3

Figure 11- Collision detection scenario in CD++ modeller

Step 4

Figure 12 shows two pieces of thegfile in which the
elevator cell with value 121 and destination (68, i®
moving upward in the first column (Y=0, the firsinhel on
the left). The numbers on the left show the rowelabAs
soon as the elevator cell reaches row 68 whichtds i
destination, it randomly picks another destinationl heads
toward this new destination.

87| Z0.0000 67| Z0.0000

68| _20.0000 sg(121.3860
53 ([121. 5800 63| 20.0000
70| 20.0000 70| 181.6620
711151, 6620 71| 20.0000
72| 2z0.0000 72| 20.0000
73| 20.0000 73| 20.0000

Figure 12- Destination achievement scenario

Varieties of simulation scenarios have been testth
different number of elevator cells in different tial
locations. The model was able to run the simulation
correctly and rout the cells to their destinatiohso videos
of the simulation results with 10 and 20 elevatare

available in[9] and[10].

5. CONCLUSIONS

Massive skyscrapers need more advanced elevator
systems because of restrictions of the traditiocable
elevator systems. The new elevator systems opesitg
electromagnetic technology and are able to travehiee
dimensions. A cellular simulation model based ois th
technology using Cell-DEVS methodology has been
presented in this paper, to verify the performamcel
efficiency of this system. Collision avoidance apdth
finding strategies have been used to safely rdetetors in
the tunnels. Cell-DEVS formal specifications of timedel
have been presented followed by the details of
implementation in CD++ simulation software.

The simulation proved the effectiveness and efficy
of the three dimensional elevator system as it mocodates
higher number of elevators in the tunnels and plewi
lateral movement as well as vertical movement. &hes
systems can be used with intelligent path finding
algorithms, reducing transfer time in huge building

Reference [6]

[1] Wolfram, S. "Theory and applications of cellular
automata". Vol. 1. Advances Series on Complex
Systems. World Scientific. Singapore. 1986. [7]

[2] The Use of Cellular Automata in the Classroom L.l
H.A.; Supercomputing, 1995. Proceedings of the
IEEE/ACM SC95 Conference.

[3] Wainer, G.; Giambiasi, N. "Timed Cell-DEVS:
modeling and simulation of cell spaces ". In "Diter [8]
Event Modeling & Simulation: Enabling Future
Technologies", Springer-Verlag. 2001.

[4] ZEIGLER, B.; KIM, T.; PRAEHOFER, H. "Theory of
Modeling and Simulation". Academic Press. 2000. [9]

[5] WAINER G., “CD++: a toolkit to define discrete-even

Wainer, G. et al. "CD++ A tool for DEVS and Cell-
DEVS Modeling and Simulation. User's Guide". Draft.
August 2004.

Mark Hayden, Chris Stasiuk, Tim Tober “2
Dimensional Elevator Controller” project website,
available at:
http://www.ee.ualberta.ca/~elliott/ee552/proje 398
w/elevator _controller/

Chiril Chidisiuc, Gabriel A. Wainer "CD++Modeler: a
graphical viewer for DEVS models" Poster, Poster
Papers Workshop. SpringSim 2008. Ottawa, ON. —
2008.

Simulation results video with 10 elevators avagaht:
http://www.youtube.com/watch?v=32eGuPtWotl

models”. Software, Practice and Experience. Vol. 32[10] Simulation results video with 20 elevators aafalié

No.3. pp. 1261-1306. November 2002.

at: http://www.youtube.com/watch?v=d0ThOAM5UrY

