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Abstract 
 Complex physical systems have been studied for many 
years using different approaches. Skyscraper building 
heights are restricted by the design limitations of their 
elevator systems. Long cable elevator systems will cause 
stretch because of their own weight. A newer technology is 
electromagnetic elevators that are able to travel in three 
dimensions and have no limitation on their height. M&S 
(Modeling and Simulation) methodologies and tools provide 
means for cost-effective validity analysis for designing 
complex physical and mechanical systems. Cell-DEVS is a 
formal methodology for cell-divided models based on 
DEVS (Discrete Event System Specifications) formalism. In 
this work, a cellular simulation model is used to model a 
three dimensional elevator system in a tall building with 
huge occupied area. The model defines appropriate rules for 
cells to control the elevators moving in different directions, 
while applying certain regulations to their movement to 
avoid collisions. Path finding and collision avoidance 
strategies are used to simulate an applicable system. We 
present the elevator model specifications, simulation design 
and discuss different simulation scenarios.   
 
1. INTRODUCTION AND MOTIVATION  
 Complex physical systems have been studied for many 
years using different approaches. In most cases, partial 
differential equations have been used to solve these kinds of 
problems. Analytical solutions for these problems are not 
practical in real life. Nevertheless, the appearance of 
computers allowed solving the problem from different point 
of view. Even in these days, differential equations are 
implemented in digital computers to solve physical and 
mechanical problems. Unfortunately, the complexity of 
certain problems is such that no solution can be found. In 
these cases, the use of computer simulation allowed viewing 
more complex problems in a different way, providing 
solutions to specific problems.  Defining model for the 
system under study provides a framework for formal 
representation of the system and enables us to program the 
model using computer. Modeling and Simulation (M&S) 
methodologies and tools have provided means for cost-

effective representation and validity analysis of different 
physical systems. M&S-based testing is a popular 
technique, which is widely used for these systems, since the 
lack of practical analytical solution encourages simulation-
based solution. Among existing M&S techniques, cellular 
automata is a popular cell-based simulation approach, which 
is a discrete model, composed of a network of cells in 
which; each cell has a finite number of states  [1]. Time is 
also discrete. The state of each of the cells in time t is a 
function of states of its predefined neighbor cells in time t-1. 
Cellular automata can be used in cellular simulation of 
physical systems in which each cell represents an entity, and 
events are represented as sequences of state changes of the 
cells.  
 Cell-DEVS theory introduced a novel mechanism for 
computation, based on asynchronous cellular models with 
explicit timing constructions  [2],  [3]. The technique has 
been used to develop a wide variety of models in different 
fields, ranging from environmental sciences, traffic, biology 
and physical systems. Cell-DEVS is based on DEVS which 
provides a framework for construction of hierarchical 
models in a modular fashion, and makes it ideal for 
describing naturally hierarchical systems  [4]. Likewise, its 
discrete-event nature improves the execution performance 
of the models, due to the asynchronous nature of the events 
occurring in the cell.  
 Cell-DEVS cellular simulation technique has been used 
in this work to simulate complex three dimensional elevator 
systems for tall buildings. We use cellular technique to 
represent the building structure, elevator tunnels and 
elevator cars. Appropriate rules are defined to control the 
movement of the elevators in the tunnels, while making it 
possible to have higher number of elevators compared to the 
number of tunnels available. Simulation provides a visual 
representation of the system, taking into account different 
collision avoidance and path finding solutions. The result of 
the simulation helps engineers to study the system in a 
simulated model, with less cost and time resources.  
 
2. BACKGROUND  
 Cell-DEVS methodology has extended the DEVS 
formalism, allowing the implementation of cellular models 
with timing delays. A Cell-DEVS model is a lattice of cells 



holding state variables and a computing apparatus, which is 
in charge of updating the cell state according to a local rule. 
This is done using the present cell state and those of a finite 
set of nearby cells (called its neighborhood). Cell-DEVS 
improves execution performance of cellular models by using 
a discrete-event approach. It also enhances the cell’s timing 
definition by making it more expressive. Each cell is 
defined as a DEVS atomic model, and it can be later 
integrated to a coupled model representing the cell space. 
Cell-DEVS atomic models are informally defined as shown 
in Figure 1.  

 
Figure 1- Description of a Cell-DEVS atomic model 

 
 Each cell uses N inputs to compute its next state. These 
inputs, which are received through the model's interface, 
activate a local computing function (ττττ). A delay (d) can be 
associated with each cell. The state (s) changes can be 
transmitted to other models, but only after the consumption 
of this delay.   
 Once the cell behavior is defined, a coupled Cell-DEVS 
can be created by putting together a number of cells 
interconnected by a neighborhood relationship. A Cell-
DEVS coupled model is informally presented as shown in 
Figure 2.  

 
Figure 2- Description of a Cell-DEVS coupled model  

 
Cell-DEVS coupled models represent the cell space as 
follows: 
GCC = < Xlist, Ylist, I, X, Y, n, {t1,...,tn}, N, C, B, Z, select > 
where 
Xlist: is the input coupling list; 
Ylist: is the output coupling list; 
I :  represents the definition of the model’s interface;  
X:  is the set of external input events; 
Y: is the set of external output events; 
n:  is the dimension of the cell space; 

{t 1,...,tn}: is the number of cells in each dimension; 
N:  is the neighborhood set; 
C : is the cell space; 
B : is the set of border cells; 
Z: is the translation function; and 
select: is the tie-breaking function for simultaneous events. 
 A coupled model is composed of an array of atomic 
cells (C) with given size and dimensions where each cell is 
connected through standard DEVS input/output ports to the 
cells defined in the neighborhood (N).  Since the cell space 
is finite, the borders of the cells are either connected to a 
different neighborhood than the rest of the space, or they are 
“wrapped” (i.e. B = {∅}) in which they are connected to 
those in the opposite one using the inverse neighborhood 
relationship. However, border cells have a different 
behavior due to their particular locations, which result in a 
non-uniform neighborhood. The Z function defines the 
internal and external coupling of cells in the model. It 
translates the outputs of the ith output port in cell Ca into 
values for the ith input port in cell Cb. Select function has 
similar functionality as in basic DEVS models, which is the 
tie-breaking function for the imminent components.  
 CD++  [5], [6] is an M&S tool that was defined using the 
DEVS and Cell-DEVS specifications. The toolkit includes 
facilities to build DEVS and Cell-DEVS models. CD++ is 
built as a class hierarchy of models related with simulation 
processing entities. DEVS Atomic models can be 
programmed and incorporated onto a class hierarchy 
programmed in C++. Coupled models can be defined using 
a built-in specification language. Cell-DEVS models are 
built following the formal specifications for DEVS models 
(informally presented in this section), and a built-in 
language is provided to describe them. CD++ makes use of 
the independence between modeling and simulation 
provided by DEVS, and different simulation engines have 
been defined for the platform. Once an atomic model is 
defined, it can be combined with others into a multi-
component model using a specification language specially 
defined with this purpose. CD++ also includes an interpreter 
for Cell-DEVS models. The language is based on the formal 
specifications of Cell-DEVS. The model specification 
includes the definition of the size and dimension of the cell 
space, the shape of the neighborhood and borders. The cell’s 
local computing function is defined using a set of rules with 
the form POSTCONDITION   DELAY 
{PRECONDITION}. These indicate that when the 
PRECONDITION is satisfied, the state of the cell will 
change to the designated POSTCONDITION, whose 
computed value will be transmitted to other components 
after consuming the DELAY. If the precondition is false, the 
next rule in the list is evaluated until a rule is satisfied or 
there are no more rules.  

 



3. PROBLEM DEFINITION  
 Currently, building heights are restricted by the design 
limitations of their elevators. Elevator cables can reach a 
maximum length of 500 yards before they stretch too much 
under their own weight. A solution to this problem has been 
suggested for the Millennium Tower, a massive, half-mile 
high skyscraper. The solution  [7] involves an 
electromagnetic elevator that operates not only in the 
traditional vertical dimension, but also in a horizontal 
dimension. This would be implemented by using horizontal 
transfer shafts that allow the elevator cars to move from side 
to side, allowing multiple cars to be stacked in a single shaft 
to allow for more efficient traffic routing.  
 Figure 3 shows an example model in which a 100-floor 
high skyscraper with 30 blocks in length and 30 blocks in 
width is shown. Four vertical elevator tunnels are located at 
each corner of the building and three horizontal tunnels 
connect the four vertical ones, one in the first floor, one in 
the 50th floor and one in 100th floor. To simplify the 
elevator car movements in these tunnels, they must move in 
regulated pathways. Two vertical tunnels are only accepting 
upward moving cars and two others downward moving cars. 
Elevator cars are only allowed to move in the right direction 
(as mentioned in the figure) in horizontal tunnels. 
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Figure 3- A 3D view of the elevator system in a 100-floor 

skyscraper 
 
 The two vertical tunnels on each side of the building 
have 20 blocks distance from each other. On each 

intersection, the elevator cars are forced to obey the 
traditional traffic rule (the elevator on the right must go first 
and the left one must yield). The three dimensional elevator 
system permits efficient use of tunnels, by having more 
elevator cars than number of vertical tunnels. The other 
advantage of this approach is access to both corners of a 
huge building. People can get in and get off at both corners 
of the building and travel horizontally besides vertically. 
The other advantage of horizontal tunnel is in emergency 
situations when elevators can be programmed to move to the 
horizontal tunnels (which are safer places) and evacuate 
people.  
 
4. PROPOSED MODEL   
 To model the above mentioned example using Cell-
DEVS formalism, different sketches can be found. A simple 
trivial model can have 30 planes of 30 by 100 cells to 
represent the actual size of the building, including tunnels 
and elevators. However, this approach consumes huge 
amount of memory on any system as the size of the cell 
space contains 90000 cells. Most of the cells that represent 
the walls are actually useless during the simulation. An 
efficient way of abstractly implementing the design is to 
only simulate the four planes that contain the tunnels on 
each side of the building. Hence, we unfold the sides of the 
building and make it a two dimensional cell space with four 
tunnels with wrapped neighbors on both sides. The four 
sides that contain the tunnels are unfolded and connected to 
each other, making a two dimensional cell space of 80 by 
100 cells with four vertical tunnels and three horizontal 
tunnels. The number of cells drops to 8000. 
 Figure 4 illustrates the final cell space after unfolding. 
The three horizontal tunnels are connected to each other 
from both sides. The movement direction is signed on each 
tunnel. This simplified design saves memory space and 
eliminates unnecessary computation. In Cell-DEVS the 
origin of the cell space is the top left cell of the plane (0,0) 
and as we go down the first component (y) increases and as 
we move laterally to the right the second component (x) 
increases. There are 12 intersection cells with the following 
coordinates: (0,0), (0,20), (0,40), (0,60), (50,0), (50,20), 
(50,40), (50,60), (99,0), (99,20), (99,40) and (99,60) which 
are shown in the figure. 



 
Figure 4- unfolded view of the cell space 

 
 Intersection cells must take care of collisions and 
organize the traffic based on the previously mentioned order 
to avoid possible collisions between elevator cars. Figure 3 
illustrates a collision scenario in an intersection of a 
downward tunnel and a horizontal tunnel, where a 
downward going elevator is going to enter the intersection 
simultaneously with a right going cell from the horizontal 
tunnel. In this scenario the right moving elevator goes first 
because it is on the right side of the downward going 
elevator. 

 
Figure 5- A collision scenario in an intersection cell 

 
 In our model, each elevator starts from a random 
coordinate and travels towards a random destination in the 
tunnels. As soon as it arrives at the destination cell, it 
chooses another random destination and moves towards the 
new destination. Elevators follow the closest path to get to 
destinations.  
 To organize the behaviors that govern the conceptual 
model, several rules must be defined to apply to each active 
cell in the simulation space. The rules must be consistent 
and cover all the cells that participate in the simulation. The 
rules are categorized in four groups: upward intersection 
rules, downward intersection rules, next destination 
calculation rules and direct movement rules.  

1) Upward intersection rules manage movement of the 
elevators at the intersection between upward tunnels 
and lateral tunnels. These rules manage collision 
avoidance and also decide the next direction of an 
elevator car in order to get closer to the destination.  

2) Downward intersection rules are applied to the 
intersection cell between downward moving tunnels 
and horizontal tunnels. They perform the same tasks as 
the upward intersection rules do.  

3) Next destination calculation rules are used when an 
elevator has reached its destination. These rules decide 
a random location in the building as the next destination 
for that elevator.  

4) Direct movement rules manage the horizontal and 
vertical movements of the elevators in the tunnels.  

 To implement the above rules, each cell must be able to 
watch its above, bellow, left, right, bottom right and bottom 
left corners. Therefore, we used Moore neighborhood 
definition. Figure 6 illustrates the neighborhood definition 
for elevator model.  

 
Figure 6- Moore neighbourhood for elevator model 

 
 Formal specification of a Cell-DEVS model for the the 
proposed elevator model is given by:   
M=<I, X, Y, Xlist, Ylist, n, N, {n1,n2}, C, B, Z, select>  
Where:  
I= <PX,Py>, with PX={∅}, Py={∅}; 
X=Y= {0, 20, 51, 52, 53, 61, 62, 63, …}; 
Xlist=∅ 
Ylist=∅ 
n=9 
N={(-1,-1)(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1)} 
{n1, n2 }= {100,80} 
C={Cij / i ∈[1,100], j∈[1,80]} 
B= {∅} wrapped; 
Z: 

Pij  Y1 → Pi,j-1 X1         

Pij  Y2 → Pi+1,j X2                 
Pij  Y3 → Pi,j+1 X3        

Pij  Y4 → Pi-1,j X4         

Pij  Y5 → Pij  X5 

Pi,j+1 Y1 →  Pij  X1 

Pi-1,j Y2 →   Pij  X2 

Pi,j-1 Y3  →  Pij  X3 

Pi+1,j Y4 →  Pij  X4 
Pij  Y5 →  Pij X5 

select ={(-1,-1), (-1,0), (-1,1), (0,-1), (0,0), (0,1), (1,-1), 
(1,0), (1,1)}  
A mapping between numerical cell values and different 
physical representations has been defined as follows: 
0: represents a wall cell.  



20: represents an empty (tunnel) cell.  
51, 61, 71, …: represent upward going elevator cell.  
52, 62, 72, …: represent downward going elevator cell.  
53, 63, 73, …: represent right  going elevator cell.  
An example elevator cell with value 51 is an upward 
elevator cell, as soon as it changes direction to right, its 
value changes to 53, and if it moves down its value become 
52. The most significant digit is the id of the elevator and 
the least significant digit indicates its direction. Digits after 
decimal point are used to store elevator destination. The first 
two digits indicate the X component and the other two 
indicate Y component. For example an elevator cell with 
value 72.2440, is going downward, towards destination 
located at (24, 40) in the cell space.  
 
4.1. CD++ Implementation  
 As discussed earlier CD++ is an M&S tool which 
implements DEVS and Cell-DEVS formalisms. We used 
CD++ to implement three-dimensional elevator model. 
CD++ provides an eclipse based GUI to define Cell-DEVS 
atomic and coupled model and corresponding rules to 
govern cell state changes. We declare the four categories of 
rules that have been mentioned earlier.  
 Figure 7 shows the upward moving intersection rules 
category, implemented in CD++ GUI. The first rule checks 
whether an upward moving elevator cell is going to enter 
the intersection, and its destination is bellow the current 

row, therefore it enters the intersection but its direction 
changes to moving right, in order to direct it to the lateral 
tunnel. The second rule applies to an upward intersection 
cell where an upward moving cell is entering but its 
destination is above the current row and it is either in the 
same upward tunnel or in the next (downward moving) 
tunnel. Therefore, the elevator enters the intersection and 
continues upward. If the destination is in the next column, it 
is directed downward in the next intersection. If the 
destination has a lateral distance of 40 cells or more and its 
above the current location, the elevator is guided to the 
lateral tunnel, to be redirected in the next upward 
intersection (shown in the third rule). Rule five and six 
forward all the incoming traffic to the right direction 
because they apply to the top intersection cells. The other 
three rules apply to right moving elevator cells entering an 
upward elevator cell. Similar path finding strategy with the 
upward moving elevators is used for right moving elevators. 
The rules applying to elevators with precedence in an 
intersection are placed prior the rules associated with the 
lower priority elevator, (in this case, upward moving cells 
are handled prior to right moving cells as the former has 
precedence over the latter in an upward intersection) since 
the first rule that applies to an intersection will be executed. 
Hence the higher priority cell will first enter the 
intersection.  

 
Figure 7- Upward moving rules in CD++ 

 
 Similar rules have been defined for downward 
intersection cells. In CD++ each cell has a value at each step 
which gets propagated to other cells in its neighbourhood at 
each step. As soon as an elevator cell reaches the cell before 
its destination, the destination cell is informed of this 
achievement and a destination calculation rule applies to 

that cell and replaces its destination by another random 
destination. Figure 8 shows the next destination calculation 
rules in CD++ GUI. Three rules are provided for three 
directions which modify the fractional part of the cell value 
representing the destination.  



Figure 8- Next destination calculation rules 
 
 Two groups of rules have been defined for direct 
movement inside the tunnels each of them deal with the 
three direction movements. First group applies to the 
elevator cells at each step, when they find an empty cell for 
the next move, they become empty cells. The second group 
applies to the empty cells which are going to become 

elevator cells in the next step, they receive the elevator 
value and own this value. For each movement direction 
(upward, downward, right) a separate rule is defined in each 
group. Figure 9 shows direct movement rules in CD++ 
GUI.  

 

Figure 9- Direct movement rules 
 
4.2. Simulation Results  
 To run the model on CD++, a value file has been 
provided which initializes the cell values. We construct the 
proposed structure presented in Figure 4, by setting the wall, 
tunnel and elevator cell values. The model is designed 
generically allowing any number of elevator cars to be 
introduced to the model. CD++ modeller  [8] is a toolkit 
accompanied by CD++ which provides two dimensional 
representation of the cell space, by tracing the logfile of the 
simulation. It is capable of associating different colors to 
different cell values. Figure 10 represents a snapshot of the 
graphical representation made by CD++ Modeller toolkit. 
The dark gray cells represent walls, white cells represent 
tunnels and color cells located in the tunnels are elevator 
cells. The red square specifies a downward intersection 
where two elevators are trying to enter (discussed in Figure 
11).  

 
Figure 10- Snapshot of CD++ graphical representation of 

3D elevator model  
 



Figure 11 shows a collision scenario in a downward 
intersection, where two elevator cells, one from above 
(green cell) and one from left (brown cell) are trying to enter 
the intersection. The corresponding logfile of CD++ is 
shown under each step (zero values indicating wall cells are 
not printed in the logfile). Based on the traffic rules 
discussed before, the right going cell has precedence over 
the other one. The value of the left cell is 113 and its 
destination is (99, 70) (indicated by the digits after decimal 
point). The intersection cell routs the cell towards the target 
which in this case is routed to the lateral tunnel. Therefore 
the cell value does not change and it continues its path. The 
downward moving cell’s value is 62 and its destination is 
(35, 40). It enters the intersection after the left cell, and 
because its destination is on the right of the intersection it is 
routed to the lateral tunnel. Hence its value changes to 63, 
indicating right direction movement.  

Step 1 Step 2

Step 3 Step 4
 

Figure 11- Collision detection scenario in CD++ modeller 
 
Figure 12 shows two pieces of the logfile in which the 
elevator cell with value 121 and destination (68, 0) is 
moving upward in the first column (Y=0, the first tunnel on 
the left). The numbers on the left show the row labels. As 
soon as the elevator cell reaches row 68 which is its 
destination, it randomly picks another destination and heads 
toward this new destination.  

 
Figure 12- Destination achievement scenario 

 
Varieties of simulation scenarios have been tested with 
different number of elevator cells in different initial 
locations. The model was able to run the simulation 
correctly and rout the cells to their destinations. Two videos 
of the simulation results with 10 and 20 elevators are 
available in  [9] and  [10].   
 
5. CONCLUSIONS   
 Massive skyscrapers need more advanced elevator 
systems because of restrictions of the traditional cable 
elevator systems. The new elevator systems operate using 
electromagnetic technology and are able to travel in three 
dimensions. A cellular simulation model based on this 
technology using Cell-DEVS methodology has been 
presented in this paper, to verify the performance and 
efficiency of this system. Collision avoidance and path 
finding strategies have been used to safely route elevators in 
the tunnels. Cell-DEVS formal specifications of the model 
have been presented followed by the details of 
implementation in CD++ simulation software.  
 The simulation proved the effectiveness and efficiency 
of the three dimensional elevator system as it accommodates 
higher number of elevators in the tunnels and provides 
lateral movement as well as vertical movement. These 
systems can be used with intelligent path finding 
algorithms, reducing transfer time in huge buildings.  
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