Designing an Interface for Real

M ohammad M oallem

-Time and Embedded DEVS

i, Gabriel Wainer

Dept. of Systems and Computer Engineering
Carleton University Centre of Visualization and Simulation (V-Sim)
1125 Colonel By Dr. Ottawa, ON, Canada.
{moallemi,gwainer}@sce.carleton.ca

Keywords:. Discrete event simulation, DEVS,
Embedded Systems, Real-Time Simulation and Control,
Model Based Approach

Abstract
In this work, we are proposing a hardware-in-thegl
model-driven method to develop real-time and embddd

M&S methodologies and tools have provided means fo
cost-effective validity analysis for real-time erdded

systemfl], [2]. M&S-based testing is a popular technique,
which is widely used for the early stages of a o)
however, when the development tasks switch tow#rds
target environment, the early models and simulation
artifacts are often abandoned. We propose a Mordletu

applications based on DEVS (Discrete Event Systemgamework to develop embedded systems based on DEVS

Specification) formalism. This approach combines th
advantages of a simulation-based approach withigloe of
a formal methodology. This framework can be used t
develop embedded applications incrementally, atebnate
simulation models with hardware components seatyless
We have defined structural modifications to therenr
DEVS abstract simulator, allowing for integrationittw
hardware devices, using external ports of the maohel

adding hardware control mechanisms. The use of thi

methodology provides model continuity from the wearl
stages of model design to embedding it on the talye
have discussed the details of implementation of th
proposed technique on E-CD++ (a DEVS based toolkit)

1. INTRODUCTION

Embedded real-time software construction has lsual
posed interesting challenges due to the complefitihe
tasks executed. Most methods are either hard te apafor
large systems, or require a difficult testing effaith no
guarantee for bug-free software products. Formahaus
have showed promising results, nevertheless, they a
difficult to apply when the complexity of the systaunder
development scales up. Instead, systems engineams h
often relied on the use of modeling and simula(ipt&S)

manageable. Construction of system models and th
analysis through simulation reduces both end casid
risks, while enhancing system capabilities and oy
the quality of the final products. M&S let userpeximent
with “virtual” systems, allowing them to explore aifges,
and test dynamic conditions in a risk-free envirenin This
is a useful approach, moreover considering thatinges
under actual operating conditions may be impraktod in
some cases impossible.

formalism[3]. DEVS provides a formal foundation to M&S
which proved to be successful in different comdgstems.

®his approach combines the advantages of a sirontati

based approach with the rigor of a formal methoghpld he
approach supports rapid prototyping, and encouregese.
Many existing techniques that have been widely dsethe
development of embedded and Real-Time systems, also
mapped into DEVS models.
S The use of DEVS improves reliability (in terms of
logical correctness and timing), enables model ecasd
ermits reducing development and testing times tfar
verall process. Consequently, the developmentecygl
shortened, its cost reduced, and quality and riétiabf the
final product is improved.

2. RELATED WORK AND MOTIVATION

DEVS is a sound formal framework based on generic
dynamic systems, including well-defined coupling of
components, hierarchical, modular construction psupfor
discrete event approximation of continuous systend
support for repository reuse. DEVS theory provides
rigorous methodology for representing models, amtbes
present an abstract way of thinking about the waevith
independence of the simulation mechanisms, unaerlyi

lfwardware and middleware. A real system modeled with
®BEVS is described as a composite of sub-modeld) ec

them being behavioral (atomic) or structural (cedl

There has been few works on mapping DEVS models
to real-time and embedded environment. A consistent
model-based approach using DEVS would have a
progressive effect on embedded application devedmpm
The main motivation for using DEVS (a mathematlzased
formalism) for embedded application developmenthis
reliability and portability of this approach. Modabntinuity
from early simulation models to final embedded

implementation, increases portability and reliapilin terms Where ti(s}}in< t(a) < ti(S)nax ti(S)hin< ta(s)< ti(S)hnax

of ease of verification for this kind of applicatio sLIs, a = ti(s|IA and t(a) is the execution time of an
A Parallel DEVS (P-DEVS) modetror! Reference activity a.

source not found. [4] is described as a set of basic atomic A= {a] t(@)LIR,.,, aJ{X?, Y!, S=}}, Where: X? is the

and coupled models. Atomic models are still thetbasic ~ action of receiving data from X, Y! is the actiohsending

constructions, which can be combined with other emd data fromY and S=is the action of modifying deia S.

into coupled models. The P-DEVS atomic model has th ~ In RT-DEVS an activity mapping functiop and an

following structure: activity set A are defined to advance time with an
AM=<Xum, Ym, S, 0xts Ont Ocon A, ta >, Where: executable activity associated with an event. Hgularta

X m = {(p, V)| p0 IPorts, vl X , } is the set of input ports time advance function only verifies the correctneds
and values: activity mapping time constraints and compensaie® t

Y w ={(p, v)| pO OPorts, VI Y , } is the set of output ports discrepancy problems. The time bound of each agtavie
and values: specified byti function.

S: is the set of sequential states; A coupled model within the RT-DEVS formalism is
Bexi Q X Xu® = S is the external state transition function; d(_efmed the same way as n _the_orlglnal DE\./S forsnal
. : ; o I with an exception. The exception is that thered SELECT
Ont: S — S is the internal state transition function; C .) X
Beor Q X % — Sis the confluent transition function: functhn in RT-DEVS, which .has been defined in [DEVS
)\C‘_’“'S Vobis th function: ’ formalism to break ties for simultaneous eventsdaling.
R IS the output function; o This is because such simultaneous events will ootioin a
ta: S~ R, is the time advance function; with real-time simulation environment. In real-time slation
Q:={(s,€) | 1S, & esta(s)} the set of total states. with one processor, only one event at a time can be

The semantics of the P-DEVS definition are afedl. physically processed even if more than one eveotroed
At any given time, a basic model is in a staténd inthe {om the external environment.

absence of external events, it will remain in tht@te for a
period of time as defined bya(s). When an internal

o K | h h q dynamic distributed real-time systems was preseriiéeé
transition takes place, the system outputs theeve(s), an methodology is based on DEVSJAVA modeling and
changes to stat®.(s). If one or more external events E =

) " ~ simulation environment. It supports model contingid that
{x1 X,/ x OXy} occurs before ta(s) expires, i.e., when they4 dynamic distributed real-time system can be desig
system is in the state (s, e) witke €a(s), the new state will analyzed and tested by simulation methods, and then
be given byde(s, e, E). Suppose that an external and amnigrated to be executed in a distributed networkilevh
internal transition collide, i.e., an external ev&nharrives preserving its control models. To handle the dymami
when e =ta(s), the new system’s state could either be giverproperties of a distributed real-time system, tlagiable
by Oex(Gini(S), €, E) ordi(dex(s, €, E)). The modeler can structure modeling capability is integrated inte firoposed
define the most appropriate behavior with &g function. methodology. Stepwise simulation methods such atrae
As a result, the new system'’s state will be the defined simulation, distributed simulation, and hardwardkia-loop
by Ocor(S, E). (HIL) simulation are developed to incrementallyttéise

A P-DEVS coupled model (CM) is defined the same asontrol models in a virtual environment. A distribd
DEVS model except that there is no tie breakingcfiom robotic “team formation” example was developed and
(SELECT), as this problem is solved within the aitom presented in the paper to demonstrate how this ndigna

In [6] a software development methodology for

model using.,, function. system can be developed by applying the proposed
The Real-Time DEVS (RT-DEVS) formalisfg] is an ~ Methodology in different stages.

extension of the DEVS formalism for real-time sysse In [7], RTDEVS/CORBA, is presented as a modeling

simulation. An atomic model in RT-DEVS formalism and simulation framework, to support the developmen

(RTAM), is defined as: distributed real-time systems. The framework sutgpor

RTAM=<X, S, Y, Sext Oint: A, ta, ti,y, A >, Where: model continuity for real-time software developmérmm

X, S, Y, 8 A and ta are the same as original DEVS. model design to performance evaluation and evefintd

dext Q X X—S, an external transition function, where Q isreal-time control. This approach is based on RT-BEV

the total state set of M= {(s, e}l$S and 0< e < ti(S) hnaxt formalism and maps activities to each state. Thkaoas do

ti: a time interval function, not mention details about real-time control pard ghe

y: an activity mapping function, focus is on real-time simulation and a case studwalso

A: a set of activities, with constraints: presented.

ta: S—>A, ti: S— R+O,oo X R+Q’m,

3. PROPOSED REAL-TIME DEVS APPROACH

In this paper, a more efficient real-time extengio P- 3.2, HardwareInterface and Deadline
DEVS formalism is proposed, which does not charge t The most critical attribute of real-time systerssthe
main formalism and defines driver model for hardsvar availability of output within the deadline specdieor
interaction. The RT-DEVS formalism modifies DEVS otherwise ignoring the output. RT-DEVS verifies tirae
formalism and adds time interval function, activitlgpping bound of each state, to make sure the deadlinaaif state
function and set of activities. Each state is tfid to the is met. Here the concept of deadline is embeddethén
hardware while the state change is happening. Ttines, driver object of theTop model (The top most coupled
time advance function is responsible of verifyinget model containing the entire model hierarchy). Assigm
hardware reaction time to compensate the time glisarcy any input that comes to the system can finally poedan
problem. The RT-DEVS formalism does not mentiorailet output to the hardware, the deadline is defined dach
of implementation of hardware interaction for a mlotbr input event from the hardware.

embedded control applications and its main apptinats In [8] RT-DEVS has been used with slight modification

real-time simulation. and addition of the concept of driver for hardware
interaction. The main function of the driver modslto

3.1. TimeAdvance and State Change Reflection translate the inputs from external world to the BEVS

In the DEVS and P-DEVS formalisms, virtual model and from RT-DEVS model to the external woflde
simulation time advances, only when a simulatotscile inputs can come from hardware device, network fater or
time advance functiota of an atomic model. The RT- software interface and outputs can be directednty af
DEVS formalism replaces virtual time by real-timehe them. All the interactions are through DEVS inputda
actual advance of simulation time is the real efienuime output ports. EveryTop coupled model port which is

of dex andd;y functions. connected to an external device has a driver object
In the proposed approach, P-DEVS formalism is usedssociated with it which provides the required wsfined
with the following modifications: interface for that specific port. Driver object nebgrovides

1) The time advance functiorta) counts the wall clock flexibility in terms of different possible external
time, hence the simulation/execution proceeds witltcommunications and extensibility in terms of intgi@n
real-time clock and events are processed at thé walith outside world to RT-DEVS model. The definitifor a
clock time ticks that they are supposed to be tepeto real-time driver model, is as follows:
the model. While real execution on hardware, theleho RTDM=<X, Y, Tye, Tem>, Where:
also listens to the hardware and accepts hardwptes X=Xy, O Xg: an input events set

2) The concept of state reflection to the hardwaregisi X,: input events from model
the output function A) is introduced here. In this Xg: input events from environment
approach the output function is responsible obrtthg Y=Y, O Y¢: an output events set
the state change to the actual hardware. Theredagh Y ,: output events to models
hardware device needs to have its own atomic model Y.: output events to environment
generate hardware control signals. Whenever aniatomT,,.: X,,—Yg: an event translation function from a model to
model finishes itga(s), it produces an output to the an environment
hardware which informs the hardware about the statg.,;; Xc—Y,: an event translation function from an
change and then the internal transition functioanges environment to a model.
the state, based on the current state. All thevianel In this approach, all the input and output portghe
control signals are produced in the output function Top coupled model own a driver object. This lets theded
Thus, the new atomic model is formally defined by: to be portable on any environment platform (theyquart

RTAM =< X, S, Y,8ext Oint» Ocom A, 12 >, Where: that changes is the driver object.) The definitafndriver
X, S, Y, 8ext Oints Ocon aNdA are the same as P-DEVS model is limited to thd op coupled model, therefore the P-
ta: S— R’ , a time advance function which works with DEVS notation of Top coupled model is redefined as
actual wall clock time follows:

The coupled model definition will be the same as PTOPCM = <X, Y, OS, IS, DX, DY, D, {M | dID}, EIC,
DEVS in which the only difference from DEVS is the EOC, IC>, where:
omission of SELECT function. X, Y, D, My, EIC, EOC and IC are the same as P-DEVS
This Approach does not modify P-DEVS model|S = {(is, iy, dl) |is O Input Signals from Hardwaréy(Y
definition. Thus, makes model reuse from DEVS and Poutput port which the result of incoming signal Iwlle
DEVS to real-time and embedded simuIation/executiorbroduced at, dIR",, deadline for the input signal} is the set

possible and provides a verification mechanism, riml- of hardware input signals and associated deadlines.
time and embedded application development.

OS = {(os, oy, pt) ps O Output Signals to HardwareyY
output port that the signal will be submitted ta[JR",,
processing time from when the associatesignal has been
received} is the set of hardware output signals.

DX: IS —Xv: converts external hardware inputs signals to

input port value (Xv)
DY: Yv —O0S:
hardware outputs signals (Yv) with constraintiy = oy — pt
<dl)

3.3. Internal Time Management

The proposed approach does not define activity

mapping time constraint. Instead, the deadline wpuat is
used to check the time constraint of each actiViberefore,
activity is not limited to one state of a model ahdan be
spread over a sequence of. In the other words,adlide
can be placed for a sequence of activities. The stamp of
the messages transferred for triggering state asamymd
events do not get updated by real-time clock aredthe
same during the lifetime of the message keepingntexl
for &.on tie breaking function for atomic models. As a ttesu

the whole model can be considered as a black bak th2)

receives the input from hardware, processes thet iapd
performs state changes in real-time and producégsubu
within the acceptable pre-specified deadline. Bseathe
states are not tied with hardware activities, theneo need
to check their durations, therefore the simulater i
responsible to initiate internal events at the ehth(s) of a
state.

3.4. DESIGN CONSIDERATIONS

will signal an activity in the hardware device am$umes
the sensor to its normal condition.

3.4.2. PeriodicInputs
Periodic inputs are those that happen at certaiiogs
of time (e.g. distance sensor). A model that rezithis

converts output port value to externaltype of input must avoid deadlock that happens sz @f

period <ta(s) of the input state. There are two strategies to
avoid deadlock with these inputs:

1) If the model is sensitive to certain ranges of ingata
received by a periodic input device, thits) can be
greater than the input period and the model musirig
incoming inputs while it is inta(s). Usually close
ranges of data are received close to each in time.
Though, the model gets flooded with inputs whilésit

in ta(s) and starts a new external transition each time
receives an input which prevents the model from
finishing the state to producing output. (e.qg. thieotic

car has become close to an obstacle and the distanc
sensor is sending small ranges which the model is
sensitive to them and must react)

If the model must react to each input value of &ogkc
input device, therta(s) < period must be satisfied. This
ensures that before the next input is receiveditbdel
produces an output therefore reacts to the inpoe T
period must be long enough for the hardware detdce
react to the input that receives from the model.

IMPLEMENTATION ON EMBEDDED CD++

CD++[9] is an open-source simulation software which
implements the DEVS simulation formalism. In CD++,

There are some considerations that must be a@dresssimulators and coordinators progress through tmeilsition
while designing a real-time model using the propose by exchanging messages as described by the abstract
approach. One advantage of this approach is that trsimulation mechanism. CD++ benefits from objecentéd

designer is not forced to map a model state toctimity in
the hardware device. Thus, some atomic models atesst
can only be dedicated to processing, using staaggs. To
keep track of hardware behavior, an atomic modal lwa
defined for each hardware device (sensors, maotgators

).

3.4.1. Interruptivelnputs

Interruptive inputs from hardware (e.g. touch sens
are the regular inputs that happen randomly whenave
sensor detects something. While working with reakt
hardware, in some circumstances (e.g. a robotibasibeen
blocked by an obstacle and the touch sensor istkephed
against the obstacle) the hardware might deteetcarsive
and rapid input sequence that locks the model lsecthe
time interval between two consequent inputs is sowll
compared with thea(s) of the input state to finish and
produce output. To overcome this problem, the mouedt
ignore any input while it is ira(s) of such critical input
states to complete the state and produce outpet.oltput

design which allows the developer to make use @fgsful
object-oriented tools to integrate simulation coaéh
modeling code that will be added by user.

E-CD++ (Embedded CD++)10] is an extension of
CD++ toolkit that has been developed based on P®EV
formalism which has converted the virtual time fiiore of
CD++ into a real-time function (using a time adwanc
function tied to the real-time clock).

Working on E-CD++ can be done writing C++ code in
a text-based Linux environment with open sourcdstolm
order to improve the development and simulation
experience, an IDE is provided for the E-CD++ siatoit as
an Eclipse plug-in that contains E-CD++ functiotied. It
also has a graphical model designer that suppoBaLs
(Generic Graphical Advanced environment for DEVS

modeling and simulation) diagrajl].

4.1. E-CD++ Software Structure
E-CD++ is modularized in the way that systems’
objects (written in C++) run as separate softwamlutes

with well-defined behaviors and independent funwidies. Hierarchy Tree. The Models Manager manages the models
Four main components of E-CD++ arktain Runtime hierarchy. More precisely, it does the followingottasks:
System, Modding Subsystem, Runtime Subsystem and Main Runtime System registers Atomic model objects, and
M essaging Subsystem. Models Manager creates and manages the Atomic models
Main Runtime System manages the overall aspects of theobjects database (a dictionary data structure shates
runtime system. It is the first object that is ¢ceghwhen the Atomic model string names). It also creates tedels
Runtime System starts. In general, it does theoiollg Hierarchy Tree which is composed by atomic and coupled

tasks in sequence: models.

Registers Atomic model objects, which are C++ digjec

derived from the Atomic class; 4.2. Proposed Approach on E-CD++

Reads in the external events (from event file) bunittls an E-CD++ class structure has been modified to
external events table; implement the proposed model.

Reads in the model file and builds the model himar Port Admin object has been added to the software
Creates th&oot Coordinator and triggers it to run architecture which maintains a hashing table oh{gos to

The Runtime Subsystem consists of Runtime Systems, the Top model ports that are connected to hardware. The
coordinators, and the Processors Manager. The $&oce hardware driver for each port will be programmedusgr
Manager maintains a hashing table of pointerBrimessor for any specific hardware.

class objects, such that actions, such as searcbémgbe Driver object has been added which provides hardware
performed upon those objects. initialization and termination functions and catshe
The Root Coordinator is a special Coordinator that managescoming real-time events from hardware devices samtls
and controls the Runtime cycles. It receives ttmmmng output commands to hardware by calling user implaete
external events and sends the corresponding Exkterndriver objects. TheDriver class is also responsible for
Messages to the underlying coupled and atomic rsoidel providing interruptive and periodic behavior forput
the hierarchy of model objects. ThRoot coordinator hardware.

advances the Global Runtime System Time. The followings are modifications and additions to
The Messaging Subsystem consists of théessage Manager existing objects to implement hardware interfacguee on
and various Messages class objects. Processors andE-CD++:

coordinators send messages via fflessages Manager Main Smulator initializes and terminates hardware
which is responsible for delivering messages. fiteming connections usingroot coordinator functions and registers
messages are first buffered into tlessage Queue and are Top model ports that are connected to hardware.
processed by th&lessages Manager in FIFO order. Each Port object has been modified to provide input/outpixet
Message object contains information to identify tisender for input/output Top model ports. Eaciiop model port
and thereceiver. A time-stamp for the message and anwhich is connected to the hardware will be impletadrby
associatedal ue andport are also included in the packet. user as a child dPort class object.

The Modeling Subsystem provides a logical representation Figure 1 shows the modified E-CD++ software strrectin

of the DEVS models defined by the modeler. The gstiesn ~ which yellow objects are the main hardware relatiejécts.

is composed by th®lodels Manager and theDEVS Models

Hatrdware
connected

potts table

Readfarite

Port
Admin

Register
potts

1
Modeling Subsystem,
]

T T T T T A i @Y o HE— Procegsnds 7~~~ 7 ! 1 - -
ML Subsyste: a] | ;
i essaging muhsystem i E coordinators hierarchy E i Models hierarchy
] i ' i
] () i]
i Messages Manager i i ' i @
i - Mapi:ing ralation
i i
| <10
| i Lo .
] i] i
] ()]]
| i b
! Sends " ' | Ivlanages
| receives {Jendg S Ilanages] ! Ilodels
=== - REEages threiyes processors | H (eg,
rl:uas ages (eg,add, | | adds
Exter : find) : : ztom.v:
3] |
nal ; Ad?s profes s Coupled
events ' TOCESS0. ! H jects)
tahle : Manager ! ' Models
Read E i i Manager
I
.
I
=== Processors i |
: IDs ! ! Atomd
Root 1 i 0nie
' [Coordinate Lookup o Model
Loads : Cordina tor (hashing) ! H Ohijects
Events] Tabls ; i database
! :
Creates : i
! ' |
| Init, Fin, o
. i Send/ReceivegT 1O .
Main ! ' :
Simulater | ! Driver | | |
H ! ! Port
' Run-Time Subsysiem 1 i
________________________________ H !
]
- Cately BT Ewents/ send
Model Loading process hard\:;a}e“ozﬁgl;{ """""""""""""

Figure 1. E-CD++ modified software structure

5. ROBOTARM MODEL

grab and the arm just goes back up. The touch endds

RobotArm is a sophisticated robotic arm that détn | sensor models define interruptive inputs, but tlodorc
pivot, and grab objects by its claw. It is consisté Sound, sensor uses periodic inputs.
Figure 2 illustrates the DEVS model hierarchy loé t

Touch and color sensors and two motors: one forimgov
the arm up and down and one for the claw to gradb anRob
release.

A DEVS model specification has been defined for
RobotArm model which is shown in Figure 2. Thereais
Top coupled model that contains five atomic models pid
Sound, touch and color sensor atomic models cotitl
functionality of sound, touch and color sensors.eskh .
models receive inputs of the sensors and forwaedhtko Sensor
the arm controller model and provide interruptive o ™
periodic behavior for sensors. The arm controlledsai is
responsible for controlling the arm motor. It res inputs
from sensor models and sends outputs to color sens
model, claw model and arm motor. The claw modeinky
responsible for the claw motor.

At the start of the execution the arm motor starts
spinning and brings the arm down until it touches ball.
As soon as the touch sensor detects a ball, thestaps and
the color sensor provides the intelligence to it arm to
decide what to do depending on the color of thé Hat is
a red ball, the claw grabs the ball and the arns dpaek up,
taking the ball with it. If it is a blue ball thdagv does not

otArm model.

Robotarm

Light/color

-

Sound |0t ouT_L in3
in | Controller NS in_ls
Arm IN_C out3 €
Controller
Touch |out!
i Sensor INT OUT_M

output to motor A to grab or release the ball

Figure 2. DEVS hierarchical model for RobotArm

sensor
input

outputto
Motor B to
raise or
lower the
arm

The DEVS formal specifications for Arm controller

model is as follows:
M=<X, S, Y, 8w G, ta>, where:
X:IN_S,IN_T,IN_C.

S: Idle, Prepare_Going_Down, Gowing_Down, Table 1. ECD++ outputs for blue ball

Prepare_Stop, Get_Action, Prepare_Grab, GrabTime Deadline Output Port Output
Prepare_Going_Up, Going_Up. Value

Y: OUT_L, OUT_M, OUT_C. 00:00:04:293 | No Deadling out_m 1

dex¢ Receives inputs from the input port and initiatgs00:00:11:274 | No Deadling out m 2
appropriate state transitions. 00:00:11:235 | No Deadling out m 5

ont. defines state changes based current state. 00:00:14:437 | No Deadling out_m 2

A: based on the input value and the current staidssthe
following outputs signals to the output port (arnotor): 1

Table 2 shows the output file for red ball scenamiavhich,

for going down, 2 for Stop, 5 for going up. first row shows the start of going down by arm mmpto
ta: real-time advance function for each state. second row: stop, third row: grab by claw motorr{pmit2
Figure 3 illustrates the GGAD diagram of the armof Top model), forth row: stop by claw motor, fiftbw: go

controller atomic model. Note that the continuoiuses
show external transitions and dashed lines shoerriat
transitions between states. The labels on extéraasitions

up by arm motor and sixth row: stop by arm motor.

Table 2. ECD++ outputs for red ball

show the input ports and input values and the $aloel Time Deadline Output Port Output
internal transitions show output ports and out@itigs. Value

00:00:01:053| No Deadline out_m 1
& Propere SR 00:00:03:364] No Deadling out_m 2
&7 00:00:03:472| No Deadling out2 3
/ 00:00:05:467| No Deadling out2 6
_ (revareoo, menro 00:00:06:473] No Deadling out_m 5
i N 00:00:09:475 No Deadling _out_m 2

Figure 3. GGAD diagram of the Arm Controller atomic
model

5.1. Simulation and Execution Results

Variety of tests for different scenarios has beamied
out.
execute the simulation model on the target devidita w
hardware inputs and outputs. A robot has been andtthe

execution model has been run on the hardware bdth w

eventfile inputs and hardware inputs.

The proposed implementation enabled E-CD++ to

Figure 4.a shows a shot of RobotArm in the lab when
detected the blue ball while it discarded it andnisving
back up and Figure 4.b shows the RobotArm while it
detected the red ball and grabbed it.

a) b)
Figure4. a) RobotArm discarding blue ball. b) RobotArm
grabbing red ball

RobotArm model outputs of E-CD++ is shown in Tableg, CONCLUSIONS

1 for blue ball scenario.

Note that the output file only shows the outputdhef Top
model ports. The first row shows that at the timeedonds
and 293 milliseconds from the start of the simolatthe
arm controller sent the value of 1 to the output faut_m”
and no deadline has been specified for inputs. &/du
means going down for the arm motor, which showg tha
sound sensor model detected a sound command
forwarded it to the arm controller model. The setoow
shows the value 2 which means stop, line 3 showseVa
meaning “going up” and row 4 shows stop.

M&S techniques offer significant support for thestn
and test of complex embedded real-time applicatibnthis
paper the use of DEVS as the basis for developindeth
based embedded systems has been showed, whictedllow
the incremental development of the sample caseystud
application including hardware components and DEVS
simulated models. The use of different experimental

afR@meworks permitted analyzing the model execufiora

simulated environment, checking the model’'s behaaad
timing constraints within a risk-free environmenthe
simulation results were then used in the developrokthe
actual application. The integration of hardware ponents

into the system was straightforward. The transitfoom
simulated models to the actual hardware countesgar be

incremental, incorporating deployed models into the
framework when they are ready. Testing and maimema [4]
phases are highly improved due to the use of adbrm

approach like DEVS for modeling.

The proposed approach has been implemented on
CD++, an open-source DEVS tool that has been builf5]

following DEVS formal definitions and implementatio
details are presented. A simple robotic case stodgel is
developed and presented.

The proposed approach offers following advantagesr o [6]

existing DEVS based real-time approaches:

The same models that are defined for DEVS and P®EV

formalisms can be reused.
Hardware interface definition is clear and acconmgaty
the model (each input and output port that is coteteto

hardware is specified and the output values ar® als

predefined with the model unlike RT-DEVS in whicaca
state contains a hardware activity).

The proposed hardware driver can be easily impléadeon
the existing DEVS tools.

DEVS output function has been used to reflect sthemges
to the hardware which makes it more formal and sbbu
Design considerations with different types (intptive and
periodic) of inputs are discussed.

References

[1] B. Alpern; F. Schneider, “Verifying Temporal

[3] B. Zeigler, T. Kim, H. Praehofer. “Theory of Modedj

and Simulation”. Academic Press 2000, ISBN-10:
0127784551.

Chow A, Kim D, Zeigler B. “Parallel DEVS: A
parallel, hierarchical, modular modeling formalisin’
Proceedings of Winter Simulation Conference, 1994,
Orlando, Florida.

Hong J. S, Song H. H, Kim T. G. and Park K. H “A
Real-Time Discrete Event System Specification
Formalism for Seamless Real-Time Software
Development” 1997, Springer Netherlands.

Hu, X.; Zeigler, B.P. “Model Continuity in the Degi

of Dynamic Distributed Real-Time Systems”, |IEEE
Transactions on Systems, Man And Cybernetics— Part
A: Systems And Humans, 35: 6, pp. 867- 878,
November, 2005.

Cho, Y. K., Hu, X, Zeigler, B.P. “The
RTDEVS/CORBA Environment for Simulation-Based
Design of Distributed Real-Time Systems”,
SIMULATION: Transactions of the Society for
Modeling and Simulation International, Volume 79,
Number 4, 2003.

Cho S. M. and Kim T. G. “Real-Time DEVS
Simulation: Concurrent, Time-Selective Execution of
Combined RT-DEVS Model and Interactive
Environment” In Proceeding of 1998 Summer
Simulation Conference, Reno, Nevada.

Wainer, G. "CD++: a toolkit to define discrete-etren
models". Software, Practice and Experience. Wiley.
Vol. 32, No.3. pp. 1261-1306. November 2002.

Properties without Temporal Logic,” ACM Trans. [10]YU, J.; WAINER, G. “E-CD++: a tool for modeling

Programming Lang. and Systems, Vol. 11, No. 1, 1989

pp.147-167.

[2] A. Alfonso., V. Braberman, D. Garbervetsky, N.

Kicillof, A. Olivero, F. Schapachnik. “VInTiMe:

Combining High-Level Finesse with Low-Level

Muscle to Verify Real-Time Systems”. In Proc. oéth
First International Conference on Principles oft&afe
Engineering, PRISE 2004.

embedded applications”. In Proceedings of the 2007
SCS Summer Computer Simulation Conference. San
Diego, CA. 2007.

[11]G. Christen, A. Dobniewski and G. Wainer, "Modeling

State-Based DEVS Models in CD++". In Proceedings
of MGA, Advanced Simulation Technologies
Conference 2004 (ASTC'04). Arlington, VA. U.S.A.

