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Abstract 
 In this work, we are proposing a hardware-in-the-loop 
model-driven method to develop real-time and embedded 
applications based on DEVS (Discrete Event Systems 
Specification) formalism. This approach combines the 
advantages of a simulation-based approach with the rigor of 
a formal methodology. This framework can be used to 
develop embedded applications incrementally, and integrate 
simulation models with hardware components seamlessly. 
We have defined structural modifications to the current 
DEVS abstract simulator, allowing for integration with 
hardware devices, using external ports of the model and 
adding hardware control mechanisms. The use of this 
methodology provides model continuity from the early 
stages of model design to embedding it on the target. We 
have discussed the details of implementation of the 
proposed technique on E-CD++ (a DEVS based toolkit).  
 
1. INTRODUCTION 
 Embedded real-time software construction has usually 
posed interesting challenges due to the complexity of the 
tasks executed. Most methods are either hard to scale up for 
large systems, or require a difficult testing effort with no 
guarantee for bug-free software products. Formal methods 
have showed promising results, nevertheless, they are 
difficult to apply when the complexity of the system under 
development scales up. Instead, systems engineers have 
often relied on the use of modeling and simulation (M&S) 
techniques in order to make system development tasks 
manageable. Construction of system models and their 
analysis through simulation reduces both end costs and 
risks, while enhancing system capabilities and improving 
the quality of the final products. M&S let users experiment 
with “virtual” systems, allowing them to explore changes, 
and test dynamic conditions in a risk-free environment. This 
is a useful approach, moreover considering that testing 
under actual operating conditions may be impractical and in 
some cases impossible. 

 M&S methodologies and tools have provided means for 
cost-effective validity analysis for real-time embedded 
systems [1],  [2]. M&S-based testing is a popular technique, 
which is widely used for the early stages of a project; 
however, when the development tasks switch towards the 
target environment, the early models and simulation 
artifacts are often abandoned. We propose a Model-driven 
framework to develop embedded systems based on DEVS 
formalism  [3]. DEVS provides a formal foundation to M&S 
which proved to be successful in different complex systems. 
This approach combines the advantages of a simulation-
based approach with the rigor of a formal methodology. The 
approach supports rapid prototyping, and encourages reuse. 
Many existing techniques that have been widely used for the 
development of embedded and Real-Time systems, also 
mapped into DEVS models. 
 The use of DEVS improves reliability (in terms of 
logical correctness and timing), enables model reuse, and 
permits reducing development and testing times for the 
overall process. Consequently, the development cycle is 
shortened, its cost reduced, and quality and reliability of the 
final product is improved.   
 
2. RELATED WORK AND MOTIVATION  
 DEVS is a sound formal framework based on generic 
dynamic systems, including well-defined coupling of 
components, hierarchical, modular construction, support for 
discrete event approximation of continuous systems and 
support for repository reuse. DEVS theory provides a 
rigorous methodology for representing models, and it does 
present an abstract way of thinking about the world with 
independence of the simulation mechanisms, underlying 
hardware and middleware. A real system modeled with 
DEVS is described as a composite of sub-models, each of 
them being behavioral (atomic) or structural (coupled). 
 There has been few works on mapping DEVS models 
to real-time and embedded environment. A consistent 
model-based approach using DEVS would have a 
progressive effect on embedded application development. 
The main motivation for using DEVS (a mathematical based 
formalism) for embedded application development is the 
reliability and portability of this approach. Model continuity 
from early simulation models to final embedded 



implementation, increases portability and reliability in terms 
of ease of verification for this kind of application. 
 A Parallel DEVS (P-DEVS) modelError! Reference 
source not found.  [4] is described as a set of basic atomic 
and coupled models. Atomic models are still the most basic 
constructions, which can be combined with other models 
into coupled models. The P-DEVS atomic model has the 
following structure: 
AM = < X M , YM , S, δext , δint, δcon, λ, ta >, where: 
X M = {(p, v)| p ∈ IPorts, v ∈ X p }  is the set of input ports 
and values; 
Y M = {(p, v)| p ∈ OPorts, v ∈ Y p } is the set of output ports 
and values; 
S: is the set of sequential states; 
δext: Q × XM

b → S is the external state transition function; 
δint: S →  S is the internal state transition function; 
δcon: Q × XM

b → S is the confluent transition function; 
λ : S → YM

b is the output function; 
ta: S → R+

0,∞ is the time advance function; with 
Q: = {(s, e) | s ∈ S, 0≤ e ≤ta(s)} the set of total states. 
 The semantics of the P-DEVS definition are as follows. 
At any given time, a basic model is in a state s. And in the 
absence of external events, it will remain in that state for a 
period of time as defined by ta(s). When an internal 
transition takes place, the system outputs the value λ(s), and 
changes to state δint(s). If one or more external events E = 
{x 1  ... xn / x ∈XM} occurs before ta(s) expires, i.e., when the 
system is in the state (s, e) with e ≤ ta(s), the new state will 
be given by δext(s, e, E). Suppose that an external and an 
internal transition collide, i.e., an external event E arrives 
when e = ta(s), the new system’s state could either be given 
by δext(δint(s), e, E) or δint(δext(s, e, E)). The modeler can 
define the most appropriate behavior with the δcon function. 
As a result, the new system’s state will be the one defined 
by δcon(s, E).  
 A P-DEVS coupled model (CM) is defined the same as 
DEVS model except that there is no tie breaking function 
(SELECT), as this problem is solved within the atomic 
model using δcon function.  
 The Real-Time DEVS (RT-DEVS) formalism  [5] is an 
extension of the DEVS formalism for real-time systems 
simulation. An atomic model in RT-DEVS formalism 
(RTAM), is defined as:  
RTAM=<X, S, Y, δext, δint, λ, ta, ti, ψ, A >, Where:  
X, S, Y, δint, λ and ta are the same as original DEVS.  
δext: Q x X→S, an external transition function, where Q is 
the total state set of M= {(s, e)|s∈S and 0 ≤ e ≤ ti(s)|max}  
ti: a time interval function,  
ψ: an activity mapping function, 
A: a set of activities, with constraints:  
ta: S→A, ti: S→ R+

0,∞ × R+
0,∞, 

 Where ti(s)|min≤ t(a) ≤ ti(s)|max, ti(s)|min≤ ta(s) ≤ ti(s)|max, 
s∈S, a = ti(s)∈A and t(a) is the execution time of an 
activity a.  
 A= {a| t(a)∈R+

0,∞, a∉{X?, Y!, S=}}, Where: X? is the 
action of receiving data from X, Y! is the action of sending 
data from Y and S= is the action of modifying a state in S.  
 In RT-DEVS an activity mapping function ψ and an 
activity set A are defined to advance time with an 
executable activity associated with an event. The regular ta 
time advance function only verifies the correctness of 
activity mapping time constraints and compensates time 
discrepancy problems. The time bound of each activity are 
specified by ti function. 
 A coupled model within the RT-DEVS formalism is 
defined the same way as in the original DEVS formalism 
with an exception. The exception is that there is no SELECT 
function in RT-DEVS, which has been defined in the DEVS 
formalism to break ties for simultaneous events scheduling. 
This is because such simultaneous events will not occur in a 
real-time simulation environment. In real-time simulation 
with one processor, only one event at a time can be 
physically processed even if more than one event occurred 
from the external environment.  
 In  [6] a software development methodology for 
dynamic distributed real-time systems was presented. The 
methodology is based on DEVSJAVA modeling and 
simulation environment. It supports model continuity so that 
a dynamic distributed real-time system can be designed, 
analyzed and tested by simulation methods, and then 
migrated to be executed in a distributed network while 
preserving its control models. To handle the dynamic 
properties of a distributed real-time system, the variable 
structure modeling capability is integrated into the proposed 
methodology. Stepwise simulation methods such as central 
simulation, distributed simulation, and hardware-in-the-loop 
(HIL) simulation are developed to incrementally test the 
control models in a virtual environment. A distributed 
robotic “team formation” example was developed and 
presented in the paper to demonstrate how this dynamic 
system can be developed by applying the proposed 
methodology in different stages.  
 In  [7], RTDEVS/CORBA, is presented as a modeling 
and simulation framework, to support the development of 
distributed real-time systems. The framework supports 
model continuity for real-time software development from 
model design to performance evaluation and even to final 
real-time control. This approach is based on RT-DEVS 
formalism and maps activities to each state. The authors do 
not mention details about real-time control part and the 
focus is on real-time simulation and a case study is also 
presented. 
 



3. PROPOSED REAL-TIME DEVS APPROACH 
 In this paper, a more efficient real-time extension to P-
DEVS formalism is proposed, which does not change the 
main formalism and defines driver model for hardware 
interaction. The RT-DEVS formalism modifies DEVS 
formalism and adds time interval function, activity mapping 
function and set of activities. Each state is reflected to the 
hardware while the state change is happening. Thus, the 
time advance function is responsible of verifying the 
hardware reaction time to compensate the time discrepancy 
problem. The RT-DEVS formalism does not mention details 
of implementation of hardware interaction for a model for 
embedded control applications and its main application is 
real-time simulation.  
 
3.1. Time Advance and State Change Reflection  
 In the DEVS and P-DEVS formalisms, virtual 
simulation time advances, only when a simulator calls the 
time advance function ta of an atomic model. The RT-
DEVS formalism replaces virtual time by real-time. The 
actual advance of simulation time is the real execution time 
of δext and δint functions.   
 In the proposed approach, P-DEVS formalism is used 
with the following modifications:  
1) The time advance function (ta) counts the wall clock 

time, hence the simulation/execution proceeds with 
real-time clock and events are processed at the wall 
clock time ticks that they are supposed to be injected to 
the model. While real execution on hardware, the model 
also listens to the hardware and accepts hardware inputs  

2) The concept of state reflection to the hardware using 
the output function (λ) is introduced here. In this 
approach the output function is responsible of reflecting 
the state change to the actual hardware. Therefore, each 
hardware device needs to have its own atomic model to 
generate hardware control signals. Whenever an atomic 
model finishes its ta(s), it produces an output to the 
hardware which informs the hardware about the state 
change and then the internal transition function changes 
the state, based on the current state. All the hardware 
control signals are produced in the output function.  

 Thus, the new atomic model is formally defined by: 
RTAM = < X, S, Y, δext, δint, δcon, λ, ta >, where:  
X, S, Y, δext, δint, δcon and λ are the same as P-DEVS 
ta: S → R+

0,∞ , a time advance function which works with 
actual wall clock time 
 The coupled model definition will be the same as P-
DEVS in which the only difference from DEVS is the 
omission of SELECT function. 
 This Approach does not modify P-DEVS model 
definition. Thus, makes model reuse from DEVS and P-
DEVS to real-time and embedded simulation/execution 
possible and provides a verification mechanism, for real-
time and embedded application development.  

 
3.2. Hardware Interface and Deadline 
 The most critical attribute of real-time systems is the 
availability of output within the deadline specified or 
otherwise ignoring the output. RT-DEVS verifies the time 
bound of each state, to make sure the deadline of each state 
is met. Here the concept of deadline is embedded in the 
driver object of the Top model (The top most coupled 
model containing the entire model hierarchy). Assuming 
any input that comes to the system can finally produce an 
output to the hardware, the deadline is defined for each 
input event from the hardware.  

In  [8] RT-DEVS has been used with slight modification 
and addition of the concept of driver for hardware 
interaction. The main function of the driver model is to 
translate the inputs from external world to the RT-DEVS 
model and from RT-DEVS model to the external world. The 
inputs can come from hardware device, network interface or 
software interface and outputs can be directed to any of 
them. All the interactions are through DEVS input and 
output ports. Every Top coupled model port which is 
connected to an external device has a driver object 
associated with it which provides the required user defined 
interface for that specific port. Driver object model provides 
flexibility in terms of different possible external 
communications and extensibility in terms of interaction 
with outside world to RT-DEVS model. The definition for a 
real-time driver model, is as follows:  
RTDM=<X, Y, TME, TEM>, where: 
X= XM ∪ XE: an input events set 
XM: input events from model 
XE: input events from environment 
Y= YM ∪ YE: an output events set 
YM: output events to models 
YE: output events to environment 
TME: XM→YE: an event translation function from a model to 
an environment 
TEM: XE→YM: an event translation function from an 
environment to a model. 
 In this approach, all the input and output ports of the 
Top coupled model own a driver object. This lets the model 
to be portable on any environment platform (the only part 
that changes is the driver object.) The definition of driver 
model is limited to the Top coupled model, therefore the P-
DEVS notation of Top coupled model is redefined as 
follows:  
TOPCM = <X, Y, OS, IS, DX, DY, D, {Md | d∈D}, EIC, 
EOC, IC>, where: 
X, Y, D, Md, EIC, EOC and IC are the same as P-DEVS  
IS = {(is, iy, dl) | is ∈ Input Signals from Hardware, iy∈Y 
output port which the result of incoming signal will be 
produced at, dl∈R+

0,∞ deadline for the input signal} is the set 
of hardware input signals and associated deadlines.  



OS = {(os, oy, pt) | os ∈ Output Signals to Hardware, oy∈Y 
output port that the signal will be submitted to, pt∈R+

0,∞ 
processing time from when the associated is signal has been 
received} is the set of hardware output signals.  
DX: IS →Xv:  converts external hardware inputs signals to 
input port value (Xv)  
DY: Yv →OS:  converts output port value to external 
hardware outputs signals (Yv) with constraint (∀ iy = oy → pt 
≤ dl)  
 
3.3. Internal Time Management   
 The proposed approach does not define activity 
mapping time constraint. Instead, the deadline of output is 
used to check the time constraint of each activity. Therefore, 
activity is not limited to one state of a model and it can be 
spread over a sequence of. In the other words, a deadline 
can be placed for a sequence of activities. The time stamp of 
the messages transferred for triggering state changes and 
events do not get updated by real-time clock and are the 
same during the lifetime of the message keeping the need 
for δcon tie breaking function for atomic models. As a result, 
the whole model can be considered as a black box that 
receives the input from hardware, processes the input and 
performs state changes in real-time and produces output 
within the acceptable pre-specified deadline. Because the 
states are not tied with hardware activities, there is no need 
to check their durations, therefore the simulator is 
responsible to initiate internal events at the end of ta(s) of a 
state.  
 
3.4. DESIGN CONSIDERATIONS 
 There are some considerations that must be addressed 
while designing a real-time model using the proposed 
approach. One advantage of this approach is that the 
designer is not forced to map a model state to an activity in 
the hardware device. Thus, some atomic models or states 
can only be dedicated to processing, using state changes. To 
keep track of hardware behavior, an atomic model can be 
defined for each hardware device (sensors, motors, actuators 
…).  
 

3.4.1. Interruptive Inputs 
 Interruptive inputs from hardware (e.g. touch sensor) 
are the regular inputs that happen randomly whenever a 
sensor detects something. While working with real-time 
hardware, in some circumstances (e.g. a robotic car has been 
blocked by an obstacle and the touch sensor is kept touched 
against the obstacle) the hardware might detect a recursive 
and rapid input sequence that locks the model because the 
time interval between two consequent inputs is too small 
compared with the ta(s) of the input state to finish and 
produce output. To overcome this problem, the model must 
ignore any input while it is in ta(s) of such critical input 
states to complete the state and produce output. The output 

will signal an activity in the hardware device and resumes 
the sensor to its normal condition. 
 

3.4.2. Periodic Inputs 
 Periodic inputs are those that happen at certain periods 
of time (e.g. distance sensor). A model that receives this 
type of input must avoid deadlock that happens because of 
period < ta(s) of the input state. There are two strategies to 
avoid deadlock with these inputs:  
1) If the model is sensitive to certain ranges of input data 

received by a periodic input device, then ta(s) can be 
greater than the input period and the model must ignore 
incoming inputs while it is in ta(s). Usually close 
ranges of data are received close to each in time. 
Though, the model gets flooded with inputs while it is 
in ta(s) and starts a new external transition each time it 
receives an input which prevents the model from 
finishing the state to producing output. (e.g. the robotic 
car has become close to an obstacle and the distance 
sensor is sending small ranges which the model is 
sensitive to them and must react) 

2) If the model must react to each input value of a periodic 
input device, then, ta(s) < period must be satisfied. This 
ensures that before the next input is received, the model 
produces an output therefore reacts to the input. The 
period must be long enough for the hardware device to 
react to the input that receives from the model.  

 
4. IMPLEMENTATION ON EMBEDDED CD++ 
 CD++  [9] is an open-source simulation software which 
implements the DEVS simulation formalism. In CD++, 
simulators and coordinators progress through the simulation 
by exchanging messages as described by the abstract 
simulation mechanism. CD++ benefits from object-oriented 
design which allows the developer to make use of powerful 
object-oriented tools to integrate simulation code with 
modeling code that will be added by user.  
 E-CD++ (Embedded CD++)  [10] is an extension of 
CD++ toolkit that has been developed based on P-DEVS 
formalism which has converted the virtual time function of 
CD++ into a real-time function (using a time advance 
function tied to the real-time clock).  
 Working on E-CD++ can be done writing C++ code in 
a text-based Linux environment with open source tools. In 
order to improve the development and simulation 
experience, an IDE is provided for the E-CD++ simulator as 
an Eclipse plug-in that contains E-CD++ functionalities. It 
also has a graphical model designer that supports GGAD 
(Generic Graphical Advanced environment for DEVS 
modeling and simulation) diagram  [11].  
 
4.1. E-CD++ Software Structure  
 E-CD++ is modularized in the way that systems’ 
objects (written in C++) run as separate software modules 



with well-defined behaviors and independent functionalities. 
Four main components of E-CD++ are: Main Runtime 
System, Modeling Subsystem, Runtime Subsystem and 
Messaging Subsystem.  
Main Runtime System manages the overall aspects of the 
runtime system. It is the first object that is created when the 
Runtime System starts. In general, it does the following 
tasks in sequence: 
Registers Atomic model objects, which are C++ objects 
derived from the Atomic class; 
Reads in the external events (from event file) and builds an 
external events table;  
Reads in the model file and builds the model hierarchy; 
Creates the Root Coordinator and triggers it to run 
The Runtime Subsystem consists of Runtime Systems, 
coordinators, and the Processors Manager. The Processors 
Manager maintains a hashing table of pointers to Processor 
class objects, such that actions, such as searching, can be 
performed upon those objects.  
The Root Coordinator is a special Coordinator that manages 
and controls the Runtime cycles. It receives the incoming 
external events and sends the corresponding External 
Messages to the underlying coupled and atomic models in 
the hierarchy of model objects. The Root coordinator 
advances the Global Runtime System Time.  
The Messaging Subsystem consists of the Message Manager 
and various Messages class objects. Processors and 
coordinators send messages via the Messages Manager 
which is responsible for delivering messages. The incoming 
messages are first buffered into the Message Queue and are 
processed by the Messages Manager in FIFO order. Each 
Message object contains information to identify the sender 
and the receiver. A time-stamp for the message and an 
associated value and port are also included in the packet. 
The Modeling Subsystem provides a logical representation 
of the DEVS models defined by the modeler. The subsystem 
is composed by the Models Manager and the DEVS Models 

Hierarchy Tree. The Models Manager manages the models 
hierarchy. More precisely, it does the following two tasks: 
Main Runtime System registers Atomic model objects, and 
Models Manager creates and manages the Atomic models 
objects database (a dictionary data structure that stores 
Atomic model string names). It also creates the Models 
Hierarchy Tree which is composed by atomic and coupled 
models. 
 
4.2. Proposed Approach on E-CD++ 
 E-CD++ class structure has been modified to 
implement the proposed model.  
 Port Admin object has been added to the software 
architecture which maintains a hashing table of pointers to 
the Top model ports that are connected to hardware. The 
hardware driver for each port will be programmed by user 
for any specific hardware.  
Driver object has been added which provides hardware 
initialization and termination functions and catches 
incoming real-time events from hardware devices and sends 
output commands to hardware by calling user implemented 
driver objects. The Driver class is also responsible for 
providing interruptive and periodic behavior for input 
hardware.  
 The followings are modifications and additions to 
existing objects to implement hardware interface feature on 
E-CD++:  
 Main Simulator initializes and terminates hardware 
connections using Root coordinator functions and registers 
Top model ports that are connected to hardware.  
Port object has been modified to provide input/output driver 
for input/output Top model ports. Each Top model port 
which is connected to the hardware will be implemented by 
user as a child of Port class object.  
Figure 1 shows the modified E-CD++ software structure in 
which yellow objects are the main hardware related objects.  



 
Figure 1. E-CD++ modified software structure 

5. ROBOTARM MODEL 
 RobotArm is a sophisticated robotic arm that can lift, 
pivot, and grab objects by its claw. It is consisted of Sound, 
Touch and color sensors and two motors: one for moving 
the arm up and down and one for the claw to grab and 
release.  
 A DEVS model specification has been defined for 
RobotArm model which is shown in Figure 2. There is a 
Top coupled model that contains five atomic models. 
Sound, touch and color sensor atomic models control the 
functionality of sound, touch and color sensors. These 
models receive inputs of the sensors and forward them to 
the arm controller model and provide interruptive or 
periodic behavior for sensors. The arm controller model is 
responsible for controlling the arm motor. It receives inputs 
from sensor models and sends outputs to color sensor 
model, claw model and arm motor. The claw model is only 
responsible for the claw motor.  
 At the start of the execution the arm motor starts 
spinning and brings the arm down until it touches the ball. 
As soon as the touch sensor detects a ball, the arm stops and 
the color sensor provides the intelligence to the robot arm to 
decide what to do depending on the color of the ball. If it is 
a red ball, the claw grabs the ball and the arm goes back up, 
taking the ball with it. If it is a blue ball the claw does not 

grab and the arm just goes back up. The touch and sound 
sensor models define interruptive inputs, but the color 
sensor uses periodic inputs.  
 Figure 2 illustrates the DEVS model hierarchy of the 
RobotArm model.  
 

 
Figure 2. DEVS hierarchical model for RobotArm 

 
 The DEVS formal specifications for Arm controller 
model is as follows:  
M = <X, S, Y, δext, δint,λ, ta>, where: 
X: IN_S, IN_T, IN_C.  



S: Idle, Prepare_Going_Down, Gowing_Down, 
Prepare_Stop, Get_Action, Prepare_Grab, Grab, 
Prepare_Going_Up, Going_Up.  
Y: OUT_L, OUT_M, OUT_C.   
δext: Receives inputs from the input port and initiates 
appropriate state transitions.  
δint: defines state changes based current state.   
λ: based on the input value and the current state sends the 
following outputs signals to the output port (arm motor): 1 
for going down, 2 for Stop, 5 for going up.   
ta: real-time advance function for each state.  
 Figure 3 illustrates the GGAD diagram of the arm 
controller atomic model. Note that the continuous lines 
show external transitions and dashed lines show internal 
transitions between states. The labels on external transitions 
show the input ports and input values and the labels on 
internal transitions show output ports and output values.  
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Figure 3. GGAD diagram of the Arm Controller atomic 

model 
 
5.1. Simulation and Execution Results 
 Variety of tests for different scenarios has been carried 
out. The proposed implementation enabled E-CD++ to 
execute the simulation model on the target device with 
hardware inputs and outputs. A robot has been built and the 
execution model has been run on the hardware both with 
eventfile inputs and hardware inputs. 
 RobotArm model outputs of E-CD++ is shown in Table 
1 for blue ball scenario.  
Note that the output file only shows the outputs of the Top 
model ports. The first row shows that at the time 4 seconds 
and 293 milliseconds from the start of the simulation the 
arm controller sent the value of 1 to the output port “out_m” 
and no deadline has been specified for inputs. Value 1 
means going down for the arm motor, which shows that, the 
sound sensor model detected a sound command and 
forwarded it to the arm controller model. The second row 
shows the value 2 which means stop, line 3 shows value 5 
meaning “going up” and row 4 shows stop.  
 

Table 1.  ECD++ outputs for blue ball 
Time Deadline Output Port Output 

Value 
00:00:04:293 No Deadline out_m 1 
00:00:11:274 No Deadline out_m 2 
00:00:11:235 No Deadline out_m 5 
00:00:14:437 No Deadline out_m 2 
 
Table 2 shows the output file for red ball scenario in which, 
first row shows the start of going down by arm motor, 
second row: stop, third row: grab by claw motor (port out2 
of Top model), forth row: stop by claw motor, fifth row: go 
up by arm motor and sixth row: stop by arm motor.   
 
Table 2. ECD++ outputs for red ball 

Time Deadline Output Port Output 
Value 

00:00:01:053 No Deadline out_m 1 
00:00:03:364 No Deadline out_m 2 
00:00:03:472 No Deadline out2 3 
00:00:05:467 No Deadline out2 6 
00:00:06:473 No Deadline out_m 5 
00:00:09:475 No Deadline out_m 2 
 
Figure 4.a shows a shot of RobotArm in the lab when it 
detected the blue ball while it discarded it and is moving 
back up and Figure 4.b shows the RobotArm while it 
detected the red ball and grabbed it.  

  

a)                                          b) 
Figure 4. a) RobotArm discarding blue ball. b) RobotArm 

grabbing red ball 
 
6. CONCLUSIONS 
 M&S techniques offer significant support for the design 
and test of complex embedded real-time applications. In this 
paper the use of DEVS as the basis for developing model-
based embedded systems has been showed, which allowed 
the incremental development of the sample case study 
application including hardware components and DEVS 
simulated models. The use of different experimental 
frameworks permitted analyzing the model execution in a 
simulated environment, checking the model’s behavior and 
timing constraints within a risk-free environment. The 
simulation results were then used in the development of the 
actual application. The integration of hardware components 



into the system was straightforward. The transition from 
simulated models to the actual hardware counterparts can be 
incremental, incorporating deployed models into the 
framework when they are ready. Testing and maintenance 
phases are highly improved due to the use of a formal 
approach like DEVS for modeling.  
 The proposed approach has been implemented on 
CD++, an open-source DEVS tool that has been built 
following DEVS formal definitions and implementation 
details are presented. A simple robotic case study model is 
developed and presented.  
The proposed approach offers following advantages over 
existing DEVS based real-time approaches: 
The same models that are defined for DEVS and P-DEVS 
formalisms can be reused. 
Hardware interface definition is clear and accompanied by 
the model (each input and output port that is connected to 
hardware is specified and the output values are also 
predefined with the model unlike RT-DEVS in which each 
state contains a hardware activity). 
The proposed hardware driver can be easily implemented on 
the existing DEVS tools.  
DEVS output function has been used to reflect state changes 
to the hardware which makes it more formal and robust.  
Design considerations with different types (interruptive and 
periodic) of inputs are discussed.  
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