
Designing an Interface for Real-Time and Embedded DEVS

Mohammad Moallemi, Gabriel Wainer
Dept. of Systems and Computer Engineering

Carleton University Centre of Visualization and Simulation (V-Sim)
 1125 Colonel By Dr. Ottawa, ON, Canada.

{moallemi,gwainer}@sce.carleton.ca

 Keywords: Discrete event simulation, DEVS,
Embedded Systems, Real-Time Simulation and Control,
Model Based Approach

Abstract
 In this work, we are proposing a hardware-in-the-loop
model-driven method to develop real-time and embedded
applications based on DEVS (Discrete Event Systems
Specification) formalism. This approach combines the
advantages of a simulation-based approach with the rigor of
a formal methodology. This framework can be used to
develop embedded applications incrementally, and integrate
simulation models with hardware components seamlessly.
We have defined structural modifications to the current
DEVS abstract simulator, allowing for integration with
hardware devices, using external ports of the model and
adding hardware control mechanisms. The use of this
methodology provides model continuity from the early
stages of model design to embedding it on the target. We
have discussed the details of implementation of the
proposed technique on E-CD++ (a DEVS based toolkit).

1. INTRODUCTION
 Embedded real-time software construction has usually
posed interesting challenges due to the complexity of the
tasks executed. Most methods are either hard to scale up for
large systems, or require a difficult testing effort with no
guarantee for bug-free software products. Formal methods
have showed promising results, nevertheless, they are
difficult to apply when the complexity of the system under
development scales up. Instead, systems engineers have
often relied on the use of modeling and simulation (M&S)
techniques in order to make system development tasks
manageable. Construction of system models and their
analysis through simulation reduces both end costs and
risks, while enhancing system capabilities and improving
the quality of the final products. M&S let users experiment
with “virtual” systems, allowing them to explore changes,
and test dynamic conditions in a risk-free environment. This
is a useful approach, moreover considering that testing
under actual operating conditions may be impractical and in
some cases impossible.

 M&S methodologies and tools have provided means for
cost-effective validity analysis for real-time embedded
systems [1], [2]. M&S-based testing is a popular technique,
which is widely used for the early stages of a project;
however, when the development tasks switch towards the
target environment, the early models and simulation
artifacts are often abandoned. We propose a Model-driven
framework to develop embedded systems based on DEVS
formalism [3]. DEVS provides a formal foundation to M&S
which proved to be successful in different complex systems.
This approach combines the advantages of a simulation-
based approach with the rigor of a formal methodology. The
approach supports rapid prototyping, and encourages reuse.
Many existing techniques that have been widely used for the
development of embedded and Real-Time systems, also
mapped into DEVS models.
 The use of DEVS improves reliability (in terms of
logical correctness and timing), enables model reuse, and
permits reducing development and testing times for the
overall process. Consequently, the development cycle is
shortened, its cost reduced, and quality and reliability of the
final product is improved.

2. RELATED WORK AND MOTIVATION
 DEVS is a sound formal framework based on generic
dynamic systems, including well-defined coupling of
components, hierarchical, modular construction, support for
discrete event approximation of continuous systems and
support for repository reuse. DEVS theory provides a
rigorous methodology for representing models, and it does
present an abstract way of thinking about the world with
independence of the simulation mechanisms, underlying
hardware and middleware. A real system modeled with
DEVS is described as a composite of sub-models, each of
them being behavioral (atomic) or structural (coupled).
 There has been few works on mapping DEVS models
to real-time and embedded environment. A consistent
model-based approach using DEVS would have a
progressive effect on embedded application development.
The main motivation for using DEVS (a mathematical based
formalism) for embedded application development is the
reliability and portability of this approach. Model continuity
from early simulation models to final embedded

implementation, increases portability and reliability in terms
of ease of verification for this kind of application.
 A Parallel DEVS (P-DEVS) modelError! Reference
source not found. [4] is described as a set of basic atomic
and coupled models. Atomic models are still the most basic
constructions, which can be combined with other models
into coupled models. The P-DEVS atomic model has the
following structure:
AM = < X M , YM , S, δext , δint, δcon, λ, ta >, where:
X M = {(p, v)| p ∈ IPorts, v ∈ X p } is the set of input ports
and values;
Y M = {(p, v)| p ∈ OPorts, v ∈ Y p } is the set of output ports
and values;
S: is the set of sequential states;
δext: Q × XM

b → S is the external state transition function;
δint: S → S is the internal state transition function;
δcon: Q × XM

b → S is the confluent transition function;
λ : S → YM

b is the output function;
ta: S → R+

0,∞ is the time advance function; with
Q: = {(s, e) | s ∈ S, 0≤ e ≤ta(s)} the set of total states.
 The semantics of the P-DEVS definition are as follows.
At any given time, a basic model is in a state s. And in the
absence of external events, it will remain in that state for a
period of time as defined by ta(s). When an internal
transition takes place, the system outputs the value λ(s), and
changes to state δint(s). If one or more external events E =
{x 1 ... xn / x ∈XM} occurs before ta(s) expires, i.e., when the
system is in the state (s, e) with e ≤ ta(s), the new state will
be given by δext(s, e, E). Suppose that an external and an
internal transition collide, i.e., an external event E arrives
when e = ta(s), the new system’s state could either be given
by δext(δint(s), e, E) or δint(δext(s, e, E)). The modeler can
define the most appropriate behavior with the δcon function.
As a result, the new system’s state will be the one defined
by δcon(s, E).
 A P-DEVS coupled model (CM) is defined the same as
DEVS model except that there is no tie breaking function
(SELECT), as this problem is solved within the atomic
model using δcon function.
 The Real-Time DEVS (RT-DEVS) formalism [5] is an
extension of the DEVS formalism for real-time systems
simulation. An atomic model in RT-DEVS formalism
(RTAM), is defined as:
RTAM=<X, S, Y, δext, δint, λ, ta, ti, ψ, A >, Where:
X, S, Y, δint, λ and ta are the same as original DEVS.
δext: Q x X→S, an external transition function, where Q is
the total state set of M= {(s, e)|s∈S and 0 ≤ e ≤ ti(s)|max}
ti: a time interval function,
ψ: an activity mapping function,
A: a set of activities, with constraints:
ta: S→A, ti: S→ R+

0,∞ × R+
0,∞,

 Where ti(s)|min≤ t(a) ≤ ti(s)|max, ti(s)|min≤ ta(s) ≤ ti(s)|max,
s∈S, a = ti(s)∈A and t(a) is the execution time of an
activity a.
 A= {a| t(a)∈R+

0,∞, a∉{X?, Y!, S=}}, Where: X? is the
action of receiving data from X, Y! is the action of sending
data from Y and S= is the action of modifying a state in S.
 In RT-DEVS an activity mapping function ψ and an
activity set A are defined to advance time with an
executable activity associated with an event. The regular ta
time advance function only verifies the correctness of
activity mapping time constraints and compensates time
discrepancy problems. The time bound of each activity are
specified by ti function.
 A coupled model within the RT-DEVS formalism is
defined the same way as in the original DEVS formalism
with an exception. The exception is that there is no SELECT
function in RT-DEVS, which has been defined in the DEVS
formalism to break ties for simultaneous events scheduling.
This is because such simultaneous events will not occur in a
real-time simulation environment. In real-time simulation
with one processor, only one event at a time can be
physically processed even if more than one event occurred
from the external environment.
 In [6] a software development methodology for
dynamic distributed real-time systems was presented. The
methodology is based on DEVSJAVA modeling and
simulation environment. It supports model continuity so that
a dynamic distributed real-time system can be designed,
analyzed and tested by simulation methods, and then
migrated to be executed in a distributed network while
preserving its control models. To handle the dynamic
properties of a distributed real-time system, the variable
structure modeling capability is integrated into the proposed
methodology. Stepwise simulation methods such as central
simulation, distributed simulation, and hardware-in-the-loop
(HIL) simulation are developed to incrementally test the
control models in a virtual environment. A distributed
robotic “team formation” example was developed and
presented in the paper to demonstrate how this dynamic
system can be developed by applying the proposed
methodology in different stages.
 In [7], RTDEVS/CORBA, is presented as a modeling
and simulation framework, to support the development of
distributed real-time systems. The framework supports
model continuity for real-time software development from
model design to performance evaluation and even to final
real-time control. This approach is based on RT-DEVS
formalism and maps activities to each state. The authors do
not mention details about real-time control part and the
focus is on real-time simulation and a case study is also
presented.

3. PROPOSED REAL-TIME DEVS APPROACH
 In this paper, a more efficient real-time extension to P-
DEVS formalism is proposed, which does not change the
main formalism and defines driver model for hardware
interaction. The RT-DEVS formalism modifies DEVS
formalism and adds time interval function, activity mapping
function and set of activities. Each state is reflected to the
hardware while the state change is happening. Thus, the
time advance function is responsible of verifying the
hardware reaction time to compensate the time discrepancy
problem. The RT-DEVS formalism does not mention details
of implementation of hardware interaction for a model for
embedded control applications and its main application is
real-time simulation.

3.1. Time Advance and State Change Reflection
 In the DEVS and P-DEVS formalisms, virtual
simulation time advances, only when a simulator calls the
time advance function ta of an atomic model. The RT-
DEVS formalism replaces virtual time by real-time. The
actual advance of simulation time is the real execution time
of δext and δint functions.
 In the proposed approach, P-DEVS formalism is used
with the following modifications:
1) The time advance function (ta) counts the wall clock

time, hence the simulation/execution proceeds with
real-time clock and events are processed at the wall
clock time ticks that they are supposed to be injected to
the model. While real execution on hardware, the model
also listens to the hardware and accepts hardware inputs

2) The concept of state reflection to the hardware using
the output function (λ) is introduced here. In this
approach the output function is responsible of reflecting
the state change to the actual hardware. Therefore, each
hardware device needs to have its own atomic model to
generate hardware control signals. Whenever an atomic
model finishes its ta(s), it produces an output to the
hardware which informs the hardware about the state
change and then the internal transition function changes
the state, based on the current state. All the hardware
control signals are produced in the output function.

 Thus, the new atomic model is formally defined by:
RTAM = < X, S, Y, δext, δint, δcon, λ, ta >, where:
X, S, Y, δext, δint, δcon and λ are the same as P-DEVS
ta: S → R+

0,∞ , a time advance function which works with
actual wall clock time
 The coupled model definition will be the same as P-
DEVS in which the only difference from DEVS is the
omission of SELECT function.
 This Approach does not modify P-DEVS model
definition. Thus, makes model reuse from DEVS and P-
DEVS to real-time and embedded simulation/execution
possible and provides a verification mechanism, for real-
time and embedded application development.

3.2. Hardware Interface and Deadline
 The most critical attribute of real-time systems is the
availability of output within the deadline specified or
otherwise ignoring the output. RT-DEVS verifies the time
bound of each state, to make sure the deadline of each state
is met. Here the concept of deadline is embedded in the
driver object of the Top model (The top most coupled
model containing the entire model hierarchy). Assuming
any input that comes to the system can finally produce an
output to the hardware, the deadline is defined for each
input event from the hardware.

In [8] RT-DEVS has been used with slight modification
and addition of the concept of driver for hardware
interaction. The main function of the driver model is to
translate the inputs from external world to the RT-DEVS
model and from RT-DEVS model to the external world. The
inputs can come from hardware device, network interface or
software interface and outputs can be directed to any of
them. All the interactions are through DEVS input and
output ports. Every Top coupled model port which is
connected to an external device has a driver object
associated with it which provides the required user defined
interface for that specific port. Driver object model provides
flexibility in terms of different possible external
communications and extensibility in terms of interaction
with outside world to RT-DEVS model. The definition for a
real-time driver model, is as follows:
RTDM=<X, Y, TME, TEM>, where:
X= XM ∪ XE: an input events set
XM: input events from model
XE: input events from environment
Y= YM ∪ YE: an output events set
YM: output events to models
YE: output events to environment
TME: XM→YE: an event translation function from a model to
an environment
TEM: XE→YM: an event translation function from an
environment to a model.
 In this approach, all the input and output ports of the
Top coupled model own a driver object. This lets the model
to be portable on any environment platform (the only part
that changes is the driver object.) The definition of driver
model is limited to the Top coupled model, therefore the P-
DEVS notation of Top coupled model is redefined as
follows:
TOPCM = <X, Y, OS, IS, DX, DY, D, {Md | d∈D}, EIC,
EOC, IC>, where:
X, Y, D, Md, EIC, EOC and IC are the same as P-DEVS
IS = {(is, iy, dl) | is ∈ Input Signals from Hardware, iy∈Y
output port which the result of incoming signal will be
produced at, dl∈R+

0,∞ deadline for the input signal} is the set
of hardware input signals and associated deadlines.

OS = {(os, oy, pt) | os ∈ Output Signals to Hardware, oy∈Y
output port that the signal will be submitted to, pt∈R+

0,∞
processing time from when the associated is signal has been
received} is the set of hardware output signals.
DX: IS →Xv: converts external hardware inputs signals to
input port value (Xv)
DY: Yv →OS: converts output port value to external
hardware outputs signals (Yv) with constraint (∀ iy = oy → pt
≤ dl)

3.3. Internal Time Management
 The proposed approach does not define activity
mapping time constraint. Instead, the deadline of output is
used to check the time constraint of each activity. Therefore,
activity is not limited to one state of a model and it can be
spread over a sequence of. In the other words, a deadline
can be placed for a sequence of activities. The time stamp of
the messages transferred for triggering state changes and
events do not get updated by real-time clock and are the
same during the lifetime of the message keeping the need
for δcon tie breaking function for atomic models. As a result,
the whole model can be considered as a black box that
receives the input from hardware, processes the input and
performs state changes in real-time and produces output
within the acceptable pre-specified deadline. Because the
states are not tied with hardware activities, there is no need
to check their durations, therefore the simulator is
responsible to initiate internal events at the end of ta(s) of a
state.

3.4. DESIGN CONSIDERATIONS
 There are some considerations that must be addressed
while designing a real-time model using the proposed
approach. One advantage of this approach is that the
designer is not forced to map a model state to an activity in
the hardware device. Thus, some atomic models or states
can only be dedicated to processing, using state changes. To
keep track of hardware behavior, an atomic model can be
defined for each hardware device (sensors, motors, actuators
…).

3.4.1. Interruptive Inputs
 Interruptive inputs from hardware (e.g. touch sensor)
are the regular inputs that happen randomly whenever a
sensor detects something. While working with real-time
hardware, in some circumstances (e.g. a robotic car has been
blocked by an obstacle and the touch sensor is kept touched
against the obstacle) the hardware might detect a recursive
and rapid input sequence that locks the model because the
time interval between two consequent inputs is too small
compared with the ta(s) of the input state to finish and
produce output. To overcome this problem, the model must
ignore any input while it is in ta(s) of such critical input
states to complete the state and produce output. The output

will signal an activity in the hardware device and resumes
the sensor to its normal condition.

3.4.2. Periodic Inputs
 Periodic inputs are those that happen at certain periods
of time (e.g. distance sensor). A model that receives this
type of input must avoid deadlock that happens because of
period < ta(s) of the input state. There are two strategies to
avoid deadlock with these inputs:
1) If the model is sensitive to certain ranges of input data

received by a periodic input device, then ta(s) can be
greater than the input period and the model must ignore
incoming inputs while it is in ta(s). Usually close
ranges of data are received close to each in time.
Though, the model gets flooded with inputs while it is
in ta(s) and starts a new external transition each time it
receives an input which prevents the model from
finishing the state to producing output. (e.g. the robotic
car has become close to an obstacle and the distance
sensor is sending small ranges which the model is
sensitive to them and must react)

2) If the model must react to each input value of a periodic
input device, then, ta(s) < period must be satisfied. This
ensures that before the next input is received, the model
produces an output therefore reacts to the input. The
period must be long enough for the hardware device to
react to the input that receives from the model.

4. IMPLEMENTATION ON EMBEDDED CD++
 CD++ [9] is an open-source simulation software which
implements the DEVS simulation formalism. In CD++,
simulators and coordinators progress through the simulation
by exchanging messages as described by the abstract
simulation mechanism. CD++ benefits from object-oriented
design which allows the developer to make use of powerful
object-oriented tools to integrate simulation code with
modeling code that will be added by user.
 E-CD++ (Embedded CD++) [10] is an extension of
CD++ toolkit that has been developed based on P-DEVS
formalism which has converted the virtual time function of
CD++ into a real-time function (using a time advance
function tied to the real-time clock).
 Working on E-CD++ can be done writing C++ code in
a text-based Linux environment with open source tools. In
order to improve the development and simulation
experience, an IDE is provided for the E-CD++ simulator as
an Eclipse plug-in that contains E-CD++ functionalities. It
also has a graphical model designer that supports GGAD
(Generic Graphical Advanced environment for DEVS
modeling and simulation) diagram [11].

4.1. E-CD++ Software Structure
 E-CD++ is modularized in the way that systems’
objects (written in C++) run as separate software modules

with well-defined behaviors and independent functionalities.
Four main components of E-CD++ are: Main Runtime
System, Modeling Subsystem, Runtime Subsystem and
Messaging Subsystem.
Main Runtime System manages the overall aspects of the
runtime system. It is the first object that is created when the
Runtime System starts. In general, it does the following
tasks in sequence:
Registers Atomic model objects, which are C++ objects
derived from the Atomic class;
Reads in the external events (from event file) and builds an
external events table;
Reads in the model file and builds the model hierarchy;
Creates the Root Coordinator and triggers it to run
The Runtime Subsystem consists of Runtime Systems,
coordinators, and the Processors Manager. The Processors
Manager maintains a hashing table of pointers to Processor
class objects, such that actions, such as searching, can be
performed upon those objects.
The Root Coordinator is a special Coordinator that manages
and controls the Runtime cycles. It receives the incoming
external events and sends the corresponding External
Messages to the underlying coupled and atomic models in
the hierarchy of model objects. The Root coordinator
advances the Global Runtime System Time.
The Messaging Subsystem consists of the Message Manager
and various Messages class objects. Processors and
coordinators send messages via the Messages Manager
which is responsible for delivering messages. The incoming
messages are first buffered into the Message Queue and are
processed by the Messages Manager in FIFO order. Each
Message object contains information to identify the sender
and the receiver. A time-stamp for the message and an
associated value and port are also included in the packet.
The Modeling Subsystem provides a logical representation
of the DEVS models defined by the modeler. The subsystem
is composed by the Models Manager and the DEVS Models

Hierarchy Tree. The Models Manager manages the models
hierarchy. More precisely, it does the following two tasks:
Main Runtime System registers Atomic model objects, and
Models Manager creates and manages the Atomic models
objects database (a dictionary data structure that stores
Atomic model string names). It also creates the Models
Hierarchy Tree which is composed by atomic and coupled
models.

4.2. Proposed Approach on E-CD++
 E-CD++ class structure has been modified to
implement the proposed model.
 Port Admin object has been added to the software
architecture which maintains a hashing table of pointers to
the Top model ports that are connected to hardware. The
hardware driver for each port will be programmed by user
for any specific hardware.
Driver object has been added which provides hardware
initialization and termination functions and catches
incoming real-time events from hardware devices and sends
output commands to hardware by calling user implemented
driver objects. The Driver class is also responsible for
providing interruptive and periodic behavior for input
hardware.
 The followings are modifications and additions to
existing objects to implement hardware interface feature on
E-CD++:
 Main Simulator initializes and terminates hardware
connections using Root coordinator functions and registers
Top model ports that are connected to hardware.
Port object has been modified to provide input/output driver
for input/output Top model ports. Each Top model port
which is connected to the hardware will be implemented by
user as a child of Port class object.
Figure 1 shows the modified E-CD++ software structure in
which yellow objects are the main hardware related objects.

Figure 1. E-CD++ modified software structure

5. ROBOTARM MODEL
 RobotArm is a sophisticated robotic arm that can lift,
pivot, and grab objects by its claw. It is consisted of Sound,
Touch and color sensors and two motors: one for moving
the arm up and down and one for the claw to grab and
release.
 A DEVS model specification has been defined for
RobotArm model which is shown in Figure 2. There is a
Top coupled model that contains five atomic models.
Sound, touch and color sensor atomic models control the
functionality of sound, touch and color sensors. These
models receive inputs of the sensors and forward them to
the arm controller model and provide interruptive or
periodic behavior for sensors. The arm controller model is
responsible for controlling the arm motor. It receives inputs
from sensor models and sends outputs to color sensor
model, claw model and arm motor. The claw model is only
responsible for the claw motor.
 At the start of the execution the arm motor starts
spinning and brings the arm down until it touches the ball.
As soon as the touch sensor detects a ball, the arm stops and
the color sensor provides the intelligence to the robot arm to
decide what to do depending on the color of the ball. If it is
a red ball, the claw grabs the ball and the arm goes back up,
taking the ball with it. If it is a blue ball the claw does not

grab and the arm just goes back up. The touch and sound
sensor models define interruptive inputs, but the color
sensor uses periodic inputs.
 Figure 2 illustrates the DEVS model hierarchy of the
RobotArm model.

Figure 2. DEVS hierarchical model for RobotArm

 The DEVS formal specifications for Arm controller
model is as follows:
M = <X, S, Y, δext, δint,λ, ta>, where:
X: IN_S, IN_T, IN_C.

S: Idle, Prepare_Going_Down, Gowing_Down,
Prepare_Stop, Get_Action, Prepare_Grab, Grab,
Prepare_Going_Up, Going_Up.
Y: OUT_L, OUT_M, OUT_C.
δext: Receives inputs from the input port and initiates
appropriate state transitions.
δint: defines state changes based current state.
λ: based on the input value and the current state sends the
following outputs signals to the output port (arm motor): 1
for going down, 2 for Stop, 5 for going up.
ta: real-time advance function for each state.
 Figure 3 illustrates the GGAD diagram of the arm
controller atomic model. Note that the continuous lines
show external transitions and dashed lines show internal
transitions between states. The labels on external transitions
show the input ports and input values and the labels on
internal transitions show output ports and output values.

IN
_T? true

IN
_
C
?
5

O
U
T_
M
!2

Figure 3. GGAD diagram of the Arm Controller atomic

model

5.1. Simulation and Execution Results
 Variety of tests for different scenarios has been carried
out. The proposed implementation enabled E-CD++ to
execute the simulation model on the target device with
hardware inputs and outputs. A robot has been built and the
execution model has been run on the hardware both with
eventfile inputs and hardware inputs.
 RobotArm model outputs of E-CD++ is shown in Table
1 for blue ball scenario.
Note that the output file only shows the outputs of the Top
model ports. The first row shows that at the time 4 seconds
and 293 milliseconds from the start of the simulation the
arm controller sent the value of 1 to the output port “out_m”
and no deadline has been specified for inputs. Value 1
means going down for the arm motor, which shows that, the
sound sensor model detected a sound command and
forwarded it to the arm controller model. The second row
shows the value 2 which means stop, line 3 shows value 5
meaning “going up” and row 4 shows stop.

Table 1. ECD++ outputs for blue ball
Time Deadline Output Port Output

Value
00:00:04:293 No Deadline out_m 1
00:00:11:274 No Deadline out_m 2
00:00:11:235 No Deadline out_m 5
00:00:14:437 No Deadline out_m 2

Table 2 shows the output file for red ball scenario in which,
first row shows the start of going down by arm motor,
second row: stop, third row: grab by claw motor (port out2
of Top model), forth row: stop by claw motor, fifth row: go
up by arm motor and sixth row: stop by arm motor.

Table 2. ECD++ outputs for red ball

Time Deadline Output Port Output
Value

00:00:01:053 No Deadline out_m 1
00:00:03:364 No Deadline out_m 2
00:00:03:472 No Deadline out2 3
00:00:05:467 No Deadline out2 6
00:00:06:473 No Deadline out_m 5
00:00:09:475 No Deadline out_m 2

Figure 4.a shows a shot of RobotArm in the lab when it
detected the blue ball while it discarded it and is moving
back up and Figure 4.b shows the RobotArm while it
detected the red ball and grabbed it.

a) b)
Figure 4. a) RobotArm discarding blue ball. b) RobotArm

grabbing red ball

6. CONCLUSIONS
 M&S techniques offer significant support for the design
and test of complex embedded real-time applications. In this
paper the use of DEVS as the basis for developing model-
based embedded systems has been showed, which allowed
the incremental development of the sample case study
application including hardware components and DEVS
simulated models. The use of different experimental
frameworks permitted analyzing the model execution in a
simulated environment, checking the model’s behavior and
timing constraints within a risk-free environment. The
simulation results were then used in the development of the
actual application. The integration of hardware components

into the system was straightforward. The transition from
simulated models to the actual hardware counterparts can be
incremental, incorporating deployed models into the
framework when they are ready. Testing and maintenance
phases are highly improved due to the use of a formal
approach like DEVS for modeling.
 The proposed approach has been implemented on
CD++, an open-source DEVS tool that has been built
following DEVS formal definitions and implementation
details are presented. A simple robotic case study model is
developed and presented.
The proposed approach offers following advantages over
existing DEVS based real-time approaches:
The same models that are defined for DEVS and P-DEVS
formalisms can be reused.
Hardware interface definition is clear and accompanied by
the model (each input and output port that is connected to
hardware is specified and the output values are also
predefined with the model unlike RT-DEVS in which each
state contains a hardware activity).
The proposed hardware driver can be easily implemented on
the existing DEVS tools.
DEVS output function has been used to reflect state changes
to the hardware which makes it more formal and robust.
Design considerations with different types (interruptive and
periodic) of inputs are discussed.

References

[1] B. Alpern; F. Schneider, “Verifying Temporal

Properties without Temporal Logic,” ACM Trans.
Programming Lang. and Systems, Vol. 11, No. 1, 1989,
pp.147-167.

[2] A. Alfonso., V. Braberman, D. Garbervetsky, N.
Kicillof, A. Olivero, F. Schapachnik. “VInTiMe:
Combining High-Level Finesse with Low-Level
Muscle to Verify Real-Time Systems”. In Proc. of the
First International Conference on Principles of Software
Engineering, PRISE 2004.

[3] B. Zeigler, T. Kim, H. Praehofer. “Theory of Modeling
and Simulation”. Academic Press 2000, ISBN-10:
0127784551.

[4] Chow A, Kim D, Zeigler B. “Parallel DEVS: A
parallel, hierarchical, modular modeling formalism” In
Proceedings of Winter Simulation Conference, 1994,
Orlando, Florida.

[5] Hong J. S, Song H. H, Kim T. G. and Park K. H “A
Real-Time Discrete Event System Specification
Formalism for Seamless Real-Time Software
Development” 1997, Springer Netherlands.

[6] Hu, X.; Zeigler, B.P. “Model Continuity in the Design
of Dynamic Distributed Real-Time Systems”, IEEE
Transactions on Systems, Man And Cybernetics— Part
A: Systems And Humans, 35: 6, pp. 867- 878,
November, 2005.

[7] Cho, Y. K.; Hu, X.; Zeigler, B.P. “The
RTDEVS/CORBA Environment for Simulation-Based
Design of Distributed Real-Time Systems”,
SIMULATION: Transactions of the Society for
Modeling and Simulation International, Volume 79,
Number 4, 2003.

[8] Cho S. M. and Kim T. G. “Real-Time DEVS
Simulation: Concurrent, Time-Selective Execution of
Combined RT-DEVS Model and Interactive
Environment” In Proceeding of 1998 Summer
Simulation Conference, Reno, Nevada.

[9] Wainer, G. "CD++: a toolkit to define discrete-event
models". Software, Practice and Experience. Wiley.
Vol. 32, No.3. pp. 1261-1306. November 2002.

[10] YU, J.; WAINER, G. “E-CD++: a tool for modeling
embedded applications”. In Proceedings of the 2007
SCS Summer Computer Simulation Conference. San
Diego, CA. 2007.

[11] G. Christen, A. Dobniewski and G. Wainer, "Modeling
State-Based DEVS Models in CD++". In Proceedings
of MGA, Advanced Simulation Technologies
Conference 2004 (ASTC'04). Arlington, VA. U.S.A.

